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Finite topology self-translating surfaces for the mean curva-
ture flow constitute a key element in the analysis of Type II 
singularities from a compact surface because they arise as lim-
its after suitable blow-up scalings around the singularity. We 
prove the existence of such a surface M ⊂ R3 that is ori-
entable, embedded, complete, and with three ends asymptot-
ically paraboloidal. The fact that M is self-translating means 
that the moving surface S(t) = M + tez evolves by mean 
curvature flow, or equivalently, that M satisfies the equation 
HM = ν · ez where HM denotes mean curvature, ν is a choice 
of unit normal to M , and ez is a unit vector along the z-axis. 
This surface M is in correspondence with the classical three-
end Costa–Hoffman–Meeks minimal surface with large genus, 
which has two asymptotically catenoidal ends and one pla-
nar end, and a long array of small tunnels in the intersection 
region resembling a periodic Scherk surface. This example is 
the first non-trivial one of its kind, and it suggests a strong 
connection between this problem and the theory of embedded 
complete minimal surfaces with finite total curvature.
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1. Introduction

We say that a family of orientable, embedded hypersurfaces S(t) in Rn+1 evolves 
by mean curvature if each point of S(t) moves in the normal direction with a velocity 
proportional to its mean curvature at that point. More precisely, there is a smooth 
family of diffeomorphisms Y (·, t) : S(0) → S(t) ⊂ R

n+1, t > 0, determined by the mean 
curvature flow (MCF) equation

∂Y

∂t
= HS(t)(Y )ν(Y ) (1.1)

where HS(t)(Y ) designates the mean curvature of the surface S(t) at the point Y (y, t), 
y ∈ S(0), namely the trace of its second fundamental form, and ν is a choice of unit 
normal vector.

The mean curvature flow is one of the most important examples of parabolic geometric 
evolution of manifolds. Relatively simple in form, it generates a wealth of interesting 
phenomena, which are so far only partly understood. Extensive, deep studies on the 
properties of this equation have been performed in the last 25 years or so. We refer for 
instance the reader to the surveys [6] and [32].

A classical, global-in-time definition of a weak solution to mean curvature flow is 
due to Brakke [3]. These solutions typically develop finite time singularities. When they 
arise, the evolving manifold loses smoothness, and a change of topology of the surface 
may occur as the singular time is crossed.

The basic issue of the theory for the mean curvature flow is to understand the way 
singularities appear and to achieve an accurate description of the topology of the surface 
obtained after blowing-up the manifold around the singularity.

Singularities are usually classified as types I and II. If T is a time when a singularity 
appears, type I roughly means that the curvatures grow no faster than (T−t)− 1

2 . In such 
a case, a blowing-up procedure, involving a time dependent scaling and translation leads 
in the limit to a “self shrinking” ancient solution, as established by Huisken in [16]. The 
appearance of these singularities turns out to be generic under suitable assumptions, see 
Colding and Minicozzi [7].

Instead, if the singularity is not of type I, it is called type II. In that case, a suitable 
normalization can lead in the limit to an eternal solution to the mean curvature flow. See 
Colding and Minicozzi [5], Huisken and Sinestrari [17,18]. An eternal solution to (1.1) is 
one that is defined at all times t ∈ (−∞, ∞).

The simplest type of eternal solutions are the self-translating solutions, which are 
surfaces that solve (1.1), do not change shape and travel at constant speed in some 
specific direction. A self-translating solution of the mean curvature flow (1.1), with speed 
c > 0 and direction e ∈ S

n+1 is a hypersurface of the form

S(t) = cte + S(0) ,

that satisfies (1.1). Equivalently, such that
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HS(0) = ce · ν. (1.2)

When c = 0, this problem is just the minimal surface equation. A result by Hamilton [12]
states that in the case of a compact convex surface, the limiting scaled singularity does 
indeed take place in the form of a self-translating solution. This fact makes apparent 
the importance of eternal self-translating solutions in the understanding of singularity 
formation. However, the result in [12] is not known without some convexity assumptions. 
An open, challenging issue is to understand whether or not a given “self-translator” 
(convex or non-convex) can arise as a limit of a type II singularity for (1.1).

A situation in which strong insight has been obtained is the mean convex scenario 
(namely, surfaces with non-negative mean curvature, a property that is preserved under 
the flow). In fact under quite general assumptions, mean convexity in the singular limit 
becomes full convexity for the blown-up surface, as has been established by B. White 
[36,37], and by Huisken and Sinestrari [17,18].

In spite of their importance in the theory for the mean curvature flow, relatively few 
examples of self-translating solutions are known, and a theory for their understanding, 
even in special classes is still far from achieved. In this direction, Ilmanen [19,20] proved 
that the genus of a surface is nonincreasing along the mean curvature flow. Therefore, 
self-translators originated from a singularity in the flow of a compact surface must have 
finite genus, or finite topology. Since for c = 0, equation (1.2) reduces to the minimal 
surface equation, it is natural to look for analogies with minimal surface theory in order 
to obtain new nontrivial examples.

The purpose of this paper is to construct new examples of self-translating surfaces to 
the mean curvature flow with finite topology in R3. More precisely, we are interested in 
tracing a parallel between the theory of embedded, complete minimal surfaces with finite 
total Gauss curvature (which are precisely those with finite topology) and self-translators 
with positive speed. Before stating our main result, we recall some classical examples of 
self-translators.

If S(t) = S(0) + cten+1 is a traveling graph, namely

S(0) = {(x, xn+1) | xn+1 = F (x), x ∈ Ω ⊂ R
n}

then equation (1.2) reduces to the elliptic PDE for F ,

∇ ·
(

∇F√
1 + |∇F |2

)
= c√

1 + |∇F |2
in Ω ⊂ R

n. (1.3)

For instance for n = 1 and c = 1, Grayson [11] gives an explicit solution, the so-called 
grim reaper curve G, given by the graph1

1 It is believed that Matt Grayson coined the phrase grim reaper, but the solutions were already known 
in 1956 by Mullins [26].
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x2 = F (x1) = − log(cosx1), x1 ∈ (−π

2 ,
π

2 ). (1.4)

In other words, S(t) = G + te2 solves (1.1).
For dimensions n ≥ 2, there exist entire convex solutions to equation (1.3). Altschuler 

and Wu [1] found a radially symmetric convex solution F (|x|) to (1.3) by blowing-up a 
type II singularity of the mean curvature flow. This solution can be obtained explicitly 
by solving the radial PDE (1.3) which becomes simply

F ′′

1 + (F ′)2 + (n− 1)F
′

r
= c. (1.5)

See [2] and [4]. The resulting surface is asymptotically a paraboloid: at main order, when 
c = 1, it has the behavior

F (r) = r2

2(n− 1) − log r + O(r−1) as r → +∞. (1.6)

We shall denote by P the graph of this entire graphical self-translator (which is unique 
up to an additive constant) which we shall refer to as the traveling paraboloid. Of course, 
this means that S(t) = P + ten+1 solves (1.1).

Xu-Jia Wang [35] proved that for n = 2, solutions of (1.3) are necessarily radially sym-
metric about some point, and in particular, they are convex. Surprisingly, for dimensions 
n ≥ 3, Wang was able to construct nonradial convex solutions of (1.3).

In dimension n +1, n ≥ 2, Angenent and Velázquez [2] constructed an axially symmet-
ric solution to (1.1) that develops a type II singularity with a tip that blows-up precisely 
into the paraboloid P. Also, B. White proved that the convex surface in Rn+1 given by 
the G ×R

n−1 where G is the grim reaper curve (1.4), cannot arise as a blow-up of a type 
II singularity for (1.1).

A non-graphical, two-end axially symmetric self translating solutions of (1.1) for n ≥ 2
has been found by direct integration of the radial PDE (1.3) by Clutterbuck, Schnürer 
and Schulze [4]. It can be described as follows:

Given any number R > 0, there is a self-translating solution of (1.1)

S(t) = W + ten+1,

where W is a two-end smooth surface of revolution of the form

W = W+ ∪W−, W± = {(x, xn+1) | xn+1 = F±(|x|) }.

Here the functions F±(r) solve (1.5) for c = 1 and r > R, with F−(r) < F+(r) and 
F+(R) = F−(R). It is shown in [4] that the functions F± have the asymptotic behavior 
(1.6) of P up to an additive constant. See Fig. 2. We call the two-end translating surface 
W the traveling catenoid. The reason is natural: when c = 0 equation (1.5) is nothing 
but the minimal surface equation for an axially symmetric minimal surface around the 
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Fig. 1. Costa–Hoffman–Meeks surface (from www.indiana.edu/~minimal/).

xn+1-axis. When n = 2 the equation leads (up to translations) to the plane x3 = 0, or 
the standard catenoid r = cosh(x3). The catenoid is exactly the parallel to W. The plane 
is actually in correspondence with the paraboloid P.

These simple but important examples are the only ones available with finite topology. 
Examples with infinite topology and periodic in one direction have been constructed by 
the third author [27–29].

Embedded minimal surfaces of finite total curvature in R3 The theory of embedded, 
minimal surfaces of finite total curvature in R3 has seen a spectacular development in 
the last 30 years or so. For about two centuries, only two examples of such surfaces were 
known: the plane and the catenoid. The first nontrivial example was found in 1981 by 
C. Costa [8,9]. The Costa surface is a genus one minimal surface, complete and properly 
embedded, with exactly three components (or ends) outside a large ball. Two of these 
ends are asymptotically catenoids with the same axis and opposite directions; the third 
one is asymptotic to a plane perpendicular to that axis. Hoffman and Meeks [13–15]
presented a class of three-end, embedded minimal surfaces, which look like the Costa 
surface far away, but they have an array of tunnels giving arbitrary genus k. These are 
known as the Costa–Hoffman–Meeks (CHM) surfaces, see Fig. 1. Many other examples 
of multiple-end embedded minimal surfaces have been found since.

All surfaces of this kind are constituted, away from a compact region, by the disjoint 
union of ends ordered along one coordinate axis, which are asymptotic to planes or to 
catenoids with parallel symmetry axes, as established by Osserman [30], Schoen [31] and 
Jorge and Meeks [21]. Such a surface is thus characterized by the genus of a compact 
region and the number of ends. Therefore, it has finite topology.

Main result: the traveling CHM surface of large genus In what follows, we restrict 
ourselves to the case n + 1 = 3.

Our purpose is to construct new complete and embedded surfaces in R3 which are 
self translating under mean curvature flow. After a rotation and dilation we can assume 

http://www.indiana.edu/~minimal/
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Fig. 2. Traveling paraboloid and catenoid.

that c = 1 and that the traveling direction is that of the positive x3-axis. Thus we look 
for orientable, embedded complete surfaces M in R3 satisfying the equation

HM = ez · ν, (1.7)

where ez = e3. In other words, the moving surface S(t) = M+tez satisfies equation (1.1). 
A major difficulty in extending the theory of finite total curvature minimal surfaces in R3

space to equation (1.7) is that much of the theory developed relies in the powerful tool 
given by the Weierstrass representation formula, which is not available in our setting. 
Unlike the static case, the traveling catenoid for instance is not asymptotically flat and 
does not have finite total Gauss curvature.

What we establish in our main result is the existence of a three-end surface M that 
solves (1.7), homeomorphic to a Costa–Hoffman–Meeks surface with large genus, whose 
ends behave like those of a traveling catenoid and a traveling paraboloid.

More precisely, let us consider the union of a traveling paraboloid P and a traveling 
catenoid W, which intersect transversally on a circle Cρ for some ρ > 0. See Fig. 2.

Our surface looks outside a compact set like P ∪W in Fig. 2, while near the circle Cρ

the look is that of the static CHM surface in Fig. 1.

Theorem 1.1. Let P and W be respectively a traveling paraboloid and traveling catenoid, 
which intersect transversally. Then for all ε > 0 small, there is a complete embedded 
3-end surface Mε satisfying equation (1.7), which lies within an ε-neighborhood of P∪W. 
In addition, we have that

genus (Mε) ∼
1
ε
.
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The construction provides much finer properties of the surface Mε. Let us point out 
that the CHM with large genus approaches a Scherk singly periodic minimal surface in 
the multiple-tunnel zone [15]. See Fig. 1.

Kapouleas [22–24], Traizet [33,34] and Hauswirth and Pacard [13] established a 
method for the reverse operation. Namely, starting with a union of intersecting catenoids 
and planes, they desingularize them using Scherk surfaces to produce smooth minimal 
surfaces (complete and embedded). A key element in those constructions is a fine knowl-
edge of the Jacobi operator of the Scherk surface and along the asymptotically flat ends. 
This approach was used by the third author to construct translating surfaces in R3 built 
from a two dimensional picture of intersecting parallel grim reapers and vertical lines, 
trivially extended in an additional direction, and desingularized in that direction by infi-
nite Scherk surfaces, see [27–29]. We shall use a similar scheme in our construction. The 
context here is considerably more delicate, since no periodicity is involved (the ultimate 
reason why the topology resulting is finite), and the fine interplay between the slowly 
vanishing curvatures and the Jacobi operators of the different pieces requires new ideas. 
Our method extends to the construction of more general surfaces built upon desingu-
larization of intersection of multiple traveling catenoids and traveling paraboloids, but 
for simplicity in the exposition we shall restrict ourselves to the basic context of Theo-
rem 1.1. Before proceeding into the detailed proof, we sketch below the core ingredients 
of it.

1.1. Sketch of the proof of Theorem 1.1

After a change of scale of 1/ε, the problem is equivalent to finding a complete embed-
ded surface M ⊂ R

3 that satisfies

HM = εν · ez. (1.8)

The first step is to construct a surface M that is close to being a solution to this 
equation. This is accomplished by desingularizing the union of P/ε and W/ε using 
singly periodic Scherk surfaces. At a large distance from Cρ/ε, the approximation M
is P/ε ∪ WR/ε and in some neighborhood of Cρ/ε, it is a slightly bent singly periodic 
Scherk surface. We call the core of M the region where the desingularization is made. 
The actual approximation M will depend on four real parameters: β1, β4, τ1, τ4, which 
are going to be small, of order ε.

Let ν denote a choice of unit normal of M. We search for a solution of (1.8) in the 
form of the normal graph over M of a function φ : M → R, that is, of the form

Mφ = {x + φν(x) : x ∈ M}.

Let Hφ and νφ denote the mean curvature and normal vector of Mφ, respectively, while 
H and ν denote those of M. Then
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Hφ = H + Δφ + |A|2φ + Q1, (1.9)

νφ = ν −∇φ + Q2,

where Δ is the Laplace–Beltrami operator on M, ∇ is the tangential component of the 
gradient, and Q1, Q2 are quadratic functions in φ, ∇φ, D2φ. This allows us to write 
equation (1.8) as

Δφ + |A|2φ + ε∇φ · ez + H − εν · ez + Q(x, φ,∇φ,D2φ) = 0 in M. (1.10)

To solve (1.10), we linearize around φ = 0, and the following linear operator becomes 
relevant:

Lε(φ) = Δφ + |A|2φ + ε∇φ · ez.

We work with the following norms for functions φ, h defined on M, where 0 < γ < 1, 
0 < α < 1 are fixed:

‖φ‖∗ = sup
s(x)≤δs/ε

eγs(x)‖φ‖C2,α(B1(x)) + ε2 sup
s(x)>δs/ε

eγδs/ε+εγs(x)‖φ‖C2,α(B1(x))

(1.11)

and

‖h‖∗∗ = sup
s(x)≤δs/ε

eγs(x)‖h‖Cα(B1(x)) + sup
s(x)>δs/ε

eγδs/ε+εγs(x)‖h‖Cα(B1(x)). (1.12)

Here δs > 0 is a small fixed parameter. The function s : M → R measures geodesic 
distance to the core of M and will be defined precisely later on, and B1(x) is the geodesic 
ball centered at x with radius 1.

The term in (1.10) that does not depend on φ is

E = H − εν · ez.

We have the following approximation for it.

Proposition 1.2. E can be decomposed as

E = E0 + Ed

with

‖E0‖∗∗ ≤ Cε

and
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Ed = τ1w1 + τ4w2 + β1w
′
1 + β4w

′
2 + O

⎛
⎝∑

i=1,4
β2
i + τ2

i

⎞
⎠ .

The functions wi, w′
i are defined later in (2.8), (2.9), but along with the ones appearing 

in O(
∑

i=1,4 β
2
i + τ2

i ), they are smooth with compact support. In particular, they all have 
finite ‖ ‖∗∗ norm.

The following claim illustrates the invertibility of the linear operator Lε, although it 
will not be used directly. Let us fix M by fixing the parameters β1, β4, τ1, τ4 sufficiently 
small and consider the problem

Δφ + |A|2φ + ε∂zφ = h +
∑
i=1,4

β̃iw
′
i + τ̃iwi in M. (1.13)

Then, for ε > 0 small, there is a linear operator h �→ φ, β̃i, ̃τi that produces for 
‖h‖∗∗ < ∞ a solution of (1.13) with

‖φ‖∗ + |β̃1| + |β̃4| + |τ̃1| + |τ̃4| ≤ C‖h‖∗∗,

where C is independent of ε.
Finally, the next result shows that the quadratic term Q in (1.10) is well adapted to 

the norms (1.11) and (1.12).

Proposition 1.3. Assume φi ∈ C2,α(M) (i = 1, 2) and ‖φi‖∗ ≤ 1. Then, for ε > 0 small,

‖Q(·, φ1,∇φ1, D
2φ1) −Q(·, φ2,∇φ2, D

2φ2)‖∗∗ ≤ C(‖φ1‖∗ + ‖φ2‖∗)‖φ1 − φ2‖∗,

with C independent of φi and ε.

These results are used to prove Theorem 1.1 by the contraction mapping principle, 
which is done in Section 6. The preparatory steps are the construction of an initial ap-
proximate solution in Section 2 and some geometric computations in Section 3, which 
lead to the estimate of E in Proposition 1.2 and the estimate of Q in Proposition 1.3. In 
Section 4, we analyze the Jacobi equation for the Scherk surface and in Section 5.1, we 
study the Jacobi operator on the ends, which are the regions far from the desingulariza-
tion.

2. Construction of an initial approximation

The purpose of this section is to construct a surface M that will serve as an initial 
approximation to (1.7).

Let F0 be the unique radially symmetric solution of



J. Dávila et al. / Advances in Mathematics 320 (2017) 674–729 683
F ′′

1 + (F ′)2 + F ′

r
= 1, F (0) = 0 (2.1)

and let P ⊂ R
3 be the corresponding surface z = F0(r). Let W be a catenoidal self-

translating solution of MCF, which can be written as W = W+ ∪ W− where W±

is given by z = F±(r) and F± satisfies (2.1) for r > R, with F+(R) = F−(R), 
limr→R+(F+)′(r) = ∞, limr→R+(F−)′(r) = −∞.

We assume that P and W intersect transversally at a unique circle Cρ of radius 
ρ > 0. To quantify the transversality, we fix a small constant δα > 0 so that all the 
intersection angles are greater than 4δα. In this section, we are going to replace P∪W in 
a neighborhood of Cρ with an appropriately bent Scherk surface. The number of periods 
used, and thus the number of handles, is of order ε−1. Two of the three ends of the 
resulting approximate solution will differ slightly from the original ends.

2.1. Self-translating rotationally symmetric surfaces

We briefly recall some properties of self-translating rotationally symmetric surfaces. 
Let ε > 0 be a small constant, let γ(s) = (γ1(s), γ3(s)), s ∈ [0, ∞) be a smooth pla-
nar curve parametrized by arc length and let S and Sε be the surfaces of revolution 
parametrized by{

(s, θ) �→ X(s, θ) := (γ1(ps) cos(θ), γ1(ps) sin(θ), γ3(ps))

(s, θ) �→ Xε(s, θ) := ε−1(γ1(εps) cos(εθ), γ1(εps) sin(εθ), γ3(εps)),
(2.2)

where p = γ1(0), and s ∈ [0, ∞), θ ∈ [0, 2π]. (The reason for introducing p in (2.2) is to 
make the parametrization conformal at s = 0.)

The surface S (Sε respectively) is a self-translating surface under mean curvature flow 
with velocity ez (εez respectively) if and only if γ, parametrized by arc length, satisfies 
the differential equation

−γ′′
1 γ

′
3 + γ′

1γ
′′
3 + γ′

3
γ1

− γ′
1 = 0. (2.3)

Another way to represent an axially symmetric self-translating solution is through the 
graph of a radial function, z = F (r), where F satisfies (2.1) on some interval (R, ∞). 
Then ϕ = F ′ satisfies

ϕ′ = (1 + ϕ2)
(
1 − ϕ

r

)
. (2.4)

Given R > 0 and an initial condition ϕ(R) = ϕ0 ∈ R, equation (2.4) has unique solution, 
which is defined for all r ≥ R, see [4]. All solutions have the common asymptotic behavior

ϕ(r) = r − 1
r
− 2

r3 + O

(
1
r5

)
, ϕ′(r) = 1 + 1

r2 + O

(
1
r4

)
, (2.5)

as r → ∞, see [2,4] (actually an expansion to arbitrary order is possible).
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Using γ1(s) = r(s), γ3(s) = F (r), with s(r) =
∫ r

0

√
1 + ϕ(t)2 dt and the asymptotic 

behavior (2.5), we can deduce the following estimates.

Lemma 2.1. For a smooth planar curve γ(s) = (γ1(s), γ3(s)), s ∈ [0, ∞) parametrized by 
arc length with γ1 and γ3 satisfying (2.3), we have

γ1(s) =
√

2s + 1
2 + o(1) γ3(s) = s + O(

√
s)

γ′
1(s) = 1√

2s
+ o(s−1/2) γ′

3(s) = 1 + O(s−1/2)

γ′′
1 (s) = O(s−3/2) γ′′

3 (s) = O(s−2)

as s tends to infinity.

2.2. The Scherk surfaces

Let x, y, z be Euclidean coordinates in R3 and consider the one parameter family of 
minimal surfaces {Σ(α)}α∈(0,π/2) given by the equation

cos2(α) cosh
( x

cosα

)
− sin2(α) cosh

( y

sinα

)
− cos(z) = 0. (2.6)

Outside of a large cylinder around the z-axis, Σ(α) has four connected components. We 
call these components the wings of Σ(α) and number them according to the quadrant 
where they lie. Each wing of Σ(α) is asymptotic to a half-plane forming an angle α
with the xz-plane (note that the asymptotic half-planes do not contain the z-axis unless 
α = π/4). Here, we will restrict the parameter α to [δα, π/2 − δα] so that the geometry 
on all the Σ(α)’s can be uniformly bounded as stated in the following lemma.

Let H+ be the half-plane {(s, z) : s > 0}. Note that the parameter s here is on 
a different scale than the one used in the previous section. We construct approximate 
solutions satisfying (1.8) here, while the rotationally symmetric surfaces in Section 2.1
satisfy (1.7).

Lemma 2.2. The surface Σ(α) is a singly periodic embedded complete minimal surface 
which depends smoothly on α. There is a constant a = a(δα) > 0 and smooth functions 
fα : H+ → R so that the wings of Σα can be expressed as the graph of fα over half-planes. 
More precisely, the half-plane asymptotic to the first wing can be parametrized by A1

α :
H+ → R

3, with

A1
α(s, z) := (a + s)((cosα)ex + (sinα)ey) + zez + bανα,

where bα = sin(2α) log | cotα| and να = −(sinα)ex + (cosα)ey. The wing itself is 
parametrized by F 1

α : H+ → R
3, which is defined by
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F 1
α(s, z) := A1

α(s, z) + fα(s, z)να.

The functions fα and F 1
α depend smoothly on α. Moreover, we have

∥∥∥∥es difαdαi

∥∥∥∥
Ck(H+)

≤ Ck,ie
−a

for any k, i ∈ N.

The function fα(s, z) satisfies the minimal surface equation

∂s

(
∂sf√

1 + (∂sf)2 + (∂zf)2

)
+ ∂z

(
∂zf√

1 + (∂sf)2 + (∂zf)2

)
= 0, (2.7)

for s > 0, z ∈ R.

Definition 2.3. Let us denote by Ryz the reflection across the yz-plane and Rxz the 
reflection across the xz-plane. The parametrizations of the second, third, and fourth 
wings are given by

F 2
α = Ryz ◦ F 1

α, F 3
α = Rxz ◦ Ryz ◦ F 1

α, F 4
α = Rxz ◦ F 1

α.

The ith wing of Σ(α) is given by F i
α(H+) and is denoted by W i(α). The parametrizations 

of the corresponding asymptotic half-planes are obtained by replacing F 1
α by A1

α in the 
above formulas. We use Ai

α to denote the parametrization of the ith asymptotic half-plane 
as well as its image, Ai

α(H+). The inner core of Σ(α) is the surface without its four wings.

Each half-plane Ai
α(H+) starts close to the boundary of the corresponding wing W i

and intersects neither the xz-plane nor the yz-plane. Each wing and each asymptotic 
half-plane inherit the coordinates (s, z) from their descriptions in Lemma 2.2 and Defi-
nition 2.3.

2.3. Dislocation of the Scherk surfaces

We now perform dislocations on the first and fourth wings of Σ(α). These perturba-
tions will help us deal with the kernel of the linear operator Lε associated to normal 
perturbations of solutions to (1.8). Because translated solutions of (1.8) remain solutions, 
the functions ex ·ν, ey ·ν, and ez ·ν are in the kernel of Lε. Here we have taken the normal 
component of the translations because we are considering normal perturbations. The last 
function, ez · ν does not satisfy our imposed symmetries so we can discard it from the 
kernel. The other two remain. In Section 4, we will show that the Dirichlet problem for 
the linear operator can be solved on a truncated piece of Σ(α), up to constants at the 
boundary. By adding a linear combination of the functions in the kernel, we can obtain a 



686 J. Dávila et al. / Advances in Mathematics 320 (2017) 674–729
Fig. 3. Sections of the Scherk surface Σ(α).

solution that vanishes on the boundary of two adjacent wings, say the second and third 
wings. To obtain a solution that vanishes on all the connected pieces of the boundary, 
we will artificially translate the first and fourth wing by constants τ1 and τ4.

The linear operator Lε is close to linear operator L := Δ + |A|2 associated to the 
equation H = 0, so we have small eigenvalues due to changes of the Scherk angle and 
rotation. Because there is a one parameter family of Scherk surfaces, we expect a function 
in the kernel of the Jacobi operator L, namely, the normal component of the motion 
associated to changing the angle α. One more dimension is generated by rotation of the 
Scherk surfaces around the z-axis. To summarize, besides the translations, we have two 
more dimensions in the kernel of L generated by linear functions along the wings. This 
is reasonable since L is close to the Laplace operator along the wings. By adding a linear 
combination of these two linear eigenfunctions, we can force exponential decay along the 
second and third wings again. As before, we will generate linear functions on the first 
and fourth wings through rotations by angles β1 and β4 respectively.

Definition 2.4. For β ∈ R, we define the map Zβ : R3 → R
3 to be the rotation of angle β

(counterclockwise in the xy-plane) around the z-axis:

Zβ(x, y, z) = (cos(β)x− sin(β)y, sin(β)x + cos(β)y, z).

In what follows, we will confine β to (−δp, δp), where δp > 0 is a small fixed num-
ber.

We consider two constants Rrot > 10, Rtr > Rrot + 10, and a family of smooth 
transition functions ηb : R → R such that 0 ≤ ηb(s) ≤ 1, ηb(s) = 0 for s < b, and 
ηb(s) = 1 for s > b + 1. The numbers Rrot, Rtr will be fixed later to be large.
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Fig. 4. Dislocations in wing 1.

Given α ∈ [δα, π/2 − δα], β1, β4, τ1, τ4 ∈ (−δp, δp), we modify the first and fourth 
wings in the following way: the ith wing is shifted by τi at around s = Rtr, then it is 
rotated by an angle βi at distance s = Rrot. The parametrization of the new ith wing, 
for i = 1, 4, is given by F i[α, βi, τi] : H+ → R

3, where

F 1[α, β1, τ1](s, z) = (1 − ηRrot
(s))F 1

α(s, z) + ηRrot
(s)Zβ1(F 1

α(s, z) + τ1ηRtr
(s)να)

F 4[α, β4, τ4](s, z) = Rxz ◦ F 1[α, β4, τ4](s, z),

and Rxz is the reflection across the xz-plane. Note that the ith wing is moved away from 
the x-axis for positive constants βi and τi. We denote the new wings by W i[α, βi, τi] :=
F i[α, βi, τi](H+), i = 1, 4 (see Fig. 4).

The wings have natural coordinates (s, z) given by the parametrizations F 1 and F 4. 
The surface Σ′[α, β1, β4, τ1, τ4] (or Σ′ for short) is defined to be the union of the inner 
core of Σ(α) with the four wings W 2(α), W 3(α), W 1[α, β1, τ1], and W 4[α, β4, τ4]. We 
will call the region of Σ′ for which s ∈ [0, Rtr + 10] the outer core.

Remark 2.5. The maps F i
α ◦ (F i[α, βi, τi])−1 and F i[α, βi, τi] ◦ (F i

α)−1, i = 1, 4 can be 
used to pullback tensors defined on W i(α) to W i[α, βi, τi] and vice versa: in the case 
of a function f defined on W i[α, β1, τ1], the composition f ◦ F i[α, βi, τi] ◦ (F i

α)−1 is 
the corresponding pullback function on W i(α). Taking each wing at a time, these maps 
transport functions and tensors between Σ′ and Σ(α). This is very useful as it lets us work 
on a fixed surface, usually Σ(α). We will use the same notation for functions and tensors 
on Σ′ or their pullback to Σ(α). For example, HΣ′ could denote the mean curvature of 
Σ′ as a function on Σ′ or its pullback to Σ(α). The same notation convention applies to 
the unit normal vector ν, the metric g, and the second fundamental form A.

Let us define the following functions on Σ(α), which capture the contribution of the 
dislocations to the mean curvature:

w1 := d ∣∣∣ HΣ′ , w2 := d ∣∣∣ HΣ′ , (2.8)

dτ1 βi=τi=0 dτ4 βi=τi=0
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w′
1 := d

dβ1

∣∣∣
βi=τi=0

HΣ′ , w′
2 := d

dβ4

∣∣∣
βi=τi=0

HΣ′ . (2.9)

These functions are compactly supported because rotations and translations do not 
change the mean curvature. They will later help us solve the Dirichlet problem asso-
ciated to the Jacobi operator Δ + |A|2 on the Scherk surfaces in Section 4.

Because the parameters βi are associated to rotations, the functions w′
1 and w′

2 can 
be written explicitly as the Jacobi operator on the normal component of rotation at a 
point (x, y, z) ∈ Σ(α):

{
w′

1(x, y, z) = (ΔΣ(α) + |AΣ(α)|2)(ηrot,1νΣ(α) · (−y, x, 0)),

w′
2(x, y, z) = (ΔΣ(α) + |AΣ(α)|2)(ηrot,4νΣ(α) · (−y, x, 0)),

(2.10)

where ηrot,1(s) is defined as ηRrot
(s) on wing 1 and zero elsewhere and similarly for ηrot,4. 

We also have,

{
w1 = (ΔΣ(α) + |AΣ(α)|2)(ηtr,1),

w2 = (ΔΣ(α) + |AΣ(α)|2)(ηtr,4),
(2.11)

on Σ(α), where ηtr,1(s) = ηRtr
on wing 1 and zero elsewhere, and similarly for ηtr,4.

2.4. Wrapping the dislocated Scherk surfaces around a circle

We first rotate our new surface Σ′ so that its second and third wings match the direc-
tions of two chosen pieces of catenoid or paraboloid coming out of the intersection circle. 
The wrapping is performed by simply using a smooth map from a tubular neighborhood 
of the z-axis to a neighborhood of a large circle. The scaling factor is ε−1 so our target 
circle will have a radius of order ε−1.

Definition 2.6. For ε > 0 and � > 0, we define

Bε,�(x, y, z) = (ε−1� + x)(cos(ε�−1z), sin(ε�−1z), 0) + (0, 0, y).

This map takes a segment of length 2πε−1� on the z-axis to the circle of radius ε−1�.
We can not wrap the whole surface Σ′, so we cut its four wings at s = Rtr + 10 and 

denote the new surface by Σ̄′, with a “bar” on top to indicate that it has a boundary. 
Our desingularizing surface is a dislocated rotated wrapped Scherk surface

Σ̄ := Bε,ρε
◦ Zβ(Σ̄′), (2.12)

where the angle β has yet to be fixed and ρε is the closest number in εZ to ρ (the radius 
associated to the original intersection Cρ).
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Fig. 5. Paraboloid P and catenoid WR with transversal intersection at Cρ.

We wish to prolong the wings of the desingularizing surface Σ̄ with pieces of self-
translating catenoids or paraboloids. At this point, it will be useful to record the bound-
ary, not of the surface Σ̄ itself, but of the asymptotic plane underneath at s = Rtr + 10. 
We will extend the asymptotic pieces first, then construct the approximate surface by 
adding the graph of fα.

2.5. Fitting the Scherk surface

It is now time to examine the initial configuration in detail. We will work with cross-
sections in the xz-plane. Let Cρ denote the intersection of the paraboloid and catenoid 
and let α0 ∈ [δα, π/2 − δα] be half of the angle of intersection between the top WR and 
the inner part of P (see Fig. 5).

On the bounded part of the paraboloid, we take two points P and P ′ at distances 
(a + bα0 cotα0 + Rtr + 20)ε and (a + bα0 cotα0 + Rtr + 10)ε from Cρ respectively and 
consider the half-line starting at P ′ tangent to the paraboloid and pointing to Cρ. Recall 
that a was chosen in Lemma 2.2 and that the term a + bα0 cotα0 is present because 
the distance from the intersection of the two (extended) asymptotic planes A2

α(R2) and 
A3

α(R2) to the line A2
α({s = 0}) on is a + bα cotα by Lemma 2.2. The new object P̃ is 

formed by the paraboloid up to P , a smooth interpolating curve from P to P ′, and the 
tangent half-line after P ′ (see Fig. 6). We will also denote its corresponding surface of 
revolution by P̃. We do a similar construction with the catenoid W and denote the new 
object W̃ (see Fig. 6).

For ε > 0 small, the curves P̃ an W̃ intersect at a point Cρ̃. We choose the angle α of 
the Scherk surface and the angle β of the rotation such that the lines A2

α, A3
α are parallel 

to the segments Cρ̃Q
′ and Cρ̃P

′ respectively. Note that α = α0(1 +O(ε)) and we did not 
dislocate the second and third wings of the Scherk surface, so α and β do not depend on 
β1, β2, τ1, or τ2.

Because we have approximated our original curves W and P up to first order, the new 
intersection point Cρ̃ is at distance O(ε2) from Cρ. By the same reasoning, the distance 



690 J. Dávila et al. / Advances in Mathematics 320 (2017) 674–729
Fig. 6. Step in the construction.

from Cρ̃ to either P ′ or Q′ is (a + bα0 cotα0 + Rtr + 10)ε + O(ε2). Combining with the 
estimate on α, we have

|Cρ̃Q
′|, |Cρ̃P

′| = (a + bα cotα + Rtr + 10)ε + O(ε2). (2.13)

We have to adjust the scale so that the dislocated bent Scherk surface Σ̄ given in (2.12)
fits around the circle of radius ρ̃ and so that its second and third asymptotic half-planes 
contain part of the line segments of W̃ and P̃ respectively. Considering the image of the 
z-axis under εBε,ρε

◦ Zβ would be a mistake because in general, the second and third 
asymptotic planes do not meet there. Instead, we look at the image under εBε,ρε

◦ Zβ

of the line (bα/ sinα, 0, z) (see Fig. 3) and obtain a circle of radius ρ′ = ρε + ε bα cos β
sin α =

ρε(1 + O(ε)) = ρ(1 + O(ε)). This is the desired radius.
We had to wrap our Scherk surface around a circle of radius ρε to get an embedded 

surface, so now we adjust the scale by defining λε = ρ̃
ρ′ = 1 +O(ε2). This function is not 

continuous in ε and the jumps occur when the number of periods of the desingularizing 
surface increases. We take λεεΣ̄ and shift it vertically so that the asymptotic cone asso-
ciated with the second wing matches the cone generated by the straight part of W̃ on 
an open set. The cone associated to the third wing aligns automatically with the cone 
of P̃ by our choice of α and β. We record the amount of vertical displacement with the 
constant dε and denote the shifted surface by λεεΣ̄↑.

The scaled surface λεεΣ̄↑ has a boundary at s = Rtr + 10. We wish to extend the 
underlying asymptotic cones with pieces of catenoidal ends that will match the cones 
in a C1 manner. We take the curve γ2 to be just a parametrization of W and γ3 to 
be the curve generating the inner part of P. Thanks to the estimate (2.13), the curves 
γ2 and γ3 match two of the underlying asymptotic cones to λεεΣ̄↑ in a C1 manner at 
some s ∈ (Rtr + 9, Rtr + 11) if ε is small enough (the exact value of s is different for 
each wing). For i = 1 and 4, we consider the circle on the ith asymptotic cone of λεεΣ̄↑

corresponding to s = Rtr + 10 and the tangent unit vector to the cone perpendicular 
to this circle, pointing away from the core. This gives us an initial position and velocity 
for the unique curve γi = (γi,1, γi,3) : [0, ∞) → R

2, i = 1, 4, generating a rotationally 
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self-translating surface. The curves γ1 and γ4 are perturbations of sections of the original 
paraboloidal and lower catenoidal ends. We can assume without loss of generality that 
the γi’s are parametrized by arclength.

The surface M, which is an approximate solution to (1.8) is defined in the following 
way. In the region s ≥ Rtr+20 the i-th wing of M is taken as a graph over the rotationally 
symmetric surface generated by γi. More precisely, let

Xi(t, θ) := ε−1(γi,1(εpt) cos(εθ), γi,1(εpt) sin(εθ), γi,3(εpt)),

for t ≥ 0, θ ∈ [0, 2π/ε], where p = γ1(0). The factor p is to make the parametrization 
conformal at t = 0, which we will take to be s = Rtr + 20. The unit normal vector is

ν(t, θ) = (−γ′
i,3(εpt) cos(εθ),−γ′

i,3(εpt) sin(εθ), γ′
i,1(εpt)).

We parametrize the i-th wing of M in the region Rtr + 20 ≤ s ≤ 5δs/ε by

(s, θ) �→ Xi(s− (Rtr + 20), θ) + u(s, θ)ν(s− (Rtr + 20), θ)

where the function u is given by

u(s, θ) = pfα(s, θ)η(εs),

where fα is as in Lemma 2.2 and η is a cut-off function satisfying η(s) = 1 for s ≤ 4δs
and η(s) = 0 for s ≥ 5δs. For s ≥ 5δs/ε, the surface M is the union of the four pieces of 
rotationally symmetric self-translating surfaces generated by the graphs of γi’s.

In the region Rtr+9 ≤ s ≤ Rtr+20 we smoothly interpolate the previous parametriza-
tion for s ≥ Rtr + 20 with the corresponding one for s ≤ Rtr + 9, where the surface can 
be written as the graph of a function over a cone.

Lemma 2.7. There exists a constant δp > 0 depending only on δα so that the surface 
M[ε, β1, β4, τ1, τ4] is embedded for β1, β4, τ1, τ4 ∈ (−δp, δp) and ε ∈ (0, δp). Moreover, 
M depends smoothly on β1, β4, τ1, and τ4. It also depends smoothly on ε, except on a 
countable set.

Proof. The only point that needs an argument is that the unbounded ends do not inter-
sect for all β1, β4, τ1, τ4 small. This is a consequence of the following observation: consider 
two solutions ϕi = ϕi(r), i = 1, 2 of (2.4) defined for all r ≥ R with initial conditions

ϕi(R) = ϕi,0, ϕ1,0 > ϕ2,0.

By uniqueness of solutions to ODE,

ϕ1(r) > ϕ2(r) ∀r ≥ R.
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Let Fi(r) be such that F ′
i = ϕi and F1(0) = F2(0). It follows that

F1(r) > F2(r) + m ∀r ≥ R,

with m > 0 and m remains positive if ϕ1,0 − ϕ2,0 remains positive. �
2.6. Summary of notation and terminology

We start by recalling the roles of the different parameters:

• ε controls the overall scale and the error in the construction.
• s is the distance to the inner core if we are on an underlying asymptotic surface. It 

is roughly the distance to the inner core if we are on M.
• ρε is the closest number in εZ to ρ, which is the radius of the intersection of the 

paraboloid and catenoid in the original scale.
• α is the angle associated to the original Scherk surface (see Fig. 3).
• β1 and β4 are the angles of rotation of the first and fourth wings respectively.
• τ1 and τ4 are the amount by which the first and fourth wings are translated (along 

the normal of the asymptotic plane to the respective wing).

Then we have the different scaled and bent Scherk surfaces:

• Σ(α) is the original minimal Scherk surface given by (2.6). Its wings W i(α) are 
asymptotic to the half-planes Ai

α(H+).
• Σ′ = Σ′[α, β1, β4, τ1, τ4] is Σ(α) with dislocations (see Fig. 4).
• Σ̄ := Bε,ρε

◦ Zβ(Σ̄′) is Σ′ wrapped around a circle of radius ρε/ε.
• λεεΣ̄↑ is the previous Scherk surface scaled by a factor ελε = ε(1 +O(ε2)) and shifted 

by dε in the �ez direction so that it fits the configuration in Fig. 6.

Finally, let us recall the names of the different parts of the initial approximation M =
M[ε, β1, β4, τ1, τ4]:

• The inner core is where the handles are.
• The middle core is where we perform all the dislocations. It corresponds to the region 

0 ≤ s ≤ Rtr + 10.
• The region s ∈ (Rtr + 9, Rtr + 20) is a transition region called the outer core. Note 

that there is a change of scale in this region from λεε to ε but this will not create too 
much error as the switch is contained in a bounded region with s small compared to 
ε−1.

• The core is the union of the inner, middle, and outer core.
• In the region {s ∈ (Rtr + 20, 4δs/ε)}, M is the graph of fα over the rotationally 

symmetric surface generated by γi, i = 1, . . . , 4.
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• The region {s ∈ (4δs/ε, 5δs/ε)} is a transition region where we cut-off the graph of 
fα. We have to do it far enough so that the function fα is small and the length of 
the interval has to be long enough so we don’t create too much error.

• The wings are defined to be the region {s ∈ (0, 5δs/ε)}.
• For {s ≥ 5δs/ε}, M is just the rotationally symmetric surface generated by the 

curves γi’s.

3. Geometric computations

In this section, we perform computations related to the ansatz M. In particular, we 
prove Proposition 1.2, which gives the error. We also use these computations to prove 
Proposition 1.3 for the quadratic terms appearing in the expansion of the mean curvature 
and normal vector.

3.1. Perturbation by normal graphs

Consider a surface M immersed in R3 with local parametrization of class C2:

X : U ⊂ R
2 → M, X = X(x1, x2).

We use the notation

ei = ∂iX = ∂xi
X

for tangent vectors and we take the normal unit vector to be

ν = e1 × e2

|e1 × e2|
,

where × is the cross product in R3. The metric of M is denoted by

gij = 〈ei, ej〉,

and its inverse by gij , where 〈·, ·〉 is the standard inner product in R3. We recall that

∂iν = −A j
i ej

where we used Einstein’s convention of summation over repeated indices, and A j
i is the 

second fundamental form, which can be computed as

A j
i = Aikg

kj , Aij = 〈Xij , ν〉 = −〈ei, ∂jν〉.

The mean curvature H of M is given by
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H = trace of A = A 1
1 + A 2

2 = gij〈Xij , ν〉.

Consider a function u ∈ C2(M). We write

ui = ∂xi
u, uij = ∂xixj

u.

Let X̃ = X + νu be the graph of u over M . We then have

ẽi = ∂xi
X̃ = ei + uiν − uA k

i ek

and

g̃ij = 〈ẽi, ẽj〉 = gij − u(A l
j gil + A k

i gkj) + u2A k
i A l

j gkl + uiuj .

We compute the cross product

ẽ1 × ẽ2 = e1 × e2(1 − uH − u2G) + u1ν × e2 + u2e1 × ν

− uu1A
l

2 ν × el − uu2A
k

1 ek × ν,

where G = A 1
1 A 2

2 −A 2
1 A 1

2 is the Gauss curvature. We also compute the second deriva-
tives of X̃:

X̃ij = ∂j(ei + νiu + νui)

= eij + uijν − uiA
l
j el − ujA

k
i ek − u(A k

i )jek − uA k
i ekj .

The mean curvature of Mu is given by

H̃ = g̃ij
〈
X̃ij ,

ẽ1 × ẽ2

|ẽ1 × ẽ2|

〉
.

Explicitly, the scalar product is

〈ẽ1 × ẽ2, X̃ij〉

= 〈e1 × e2(1 − uH − u2G) + u1ν × e2 + u2e1 × ν − uu1A
l

2 ν × el − uu2A
k

1 ek × ν,

eij + uijν − uiA
l
j el − ujA

k
i ek − u(A k

i )jek − uA k
i ekj〉

with det g̃ = |ẽ1 × ẽ2|2 and

g̃−1 = 1
det g̃

[
g̃22 −g̃12

−g̃12 g̃11

]
.
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3.2. Norms of tensors

We work with the following norms, which are independent of coordinates.

Definition 3.1. The pointwise norm of a tensor T b1...bs
a1...ar

is given by

|T |2 := T b1...bs
a1...ar

T d1...ds
c1...cr ga1c1 · · · garcrgb1d1 · · · gbsds

,

with summation over repeated indices.

We use the notation ∇i to denote the covariant derivative with respect to ∂
∂xi

. In the 
case where the metric is diagonal, the norms of the gradient and Hessian of a function u
are

|∇u|2 = |uiujg
ij | = (u1)2

g11
+ (u2)2

g22
,

|∇2u|2 = (g11∇11u)2 + (g22∇22u)2 + 2g11g22(∇12u)2.

For the second fundamental form, we have

|A|2 = (g11A11)2 + (g22A22)2 + 2(g11g22A12A12),

|∇A|2 =
2∑

i,j,k=1

(∇iA
k
j )2giigjjgkk.

3.3. Geometry of rotationally symmetric self-translating surfaces

We compute various geometric quantities attached to the parametrization Xε given 
in (2.2). We use ∂i or ( )i to denote regular differentiation with respect to the variables 
s (i = 1) or θ (i = 2). Let {e1, e2} be the tangent vectors to Sε given by

e1 = ∂1Xε = p(γ′
1(εps) cos(εθ), γ′

1(εps) sin(εθ), γ′
3(εps)), (3.1)

e2 = ∂2Xε = (−γ1(εps) sin(εθ), γ1(εps) cos(εθ), 0). (3.2)

We recall that (γ1(s), γ3(s)) is parametrized by arc length and that p := γ1(0) > 0. The 
associated metric is then

g11 = p2, g12 = g21 = 0, g22 = γ2
1 . (3.3)

The only nonzero Christoffel symbols are

Γ22,1 = −εpγ1γ
′
1, Γ12,2 = Γ21,2 = εpγ1γ

′
1,

Γ1
22 = −ε

γ1
γ′
1, Γ2

12 = Γ2
21 = ε

p
γ′
1.
p γ1
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Using Aij = 〈∂iej , ν〉, we obtain the coordinates of the second fundamental form

{
A11 = −εp2(−γ′′

1 γ
′
3 + γ′

1γ
′′
3 ),A12 = 0, A22 = εγ1γ

′
3

A 1
1 = −ε(−γ′′

1 γ
′
3 + γ′

1γ
′′
3 ) A 2

1 = A 1
2 = 0A 2

2 = εγ−1
1 γ′

3

(3.4)

where all the functions are taken at εps.
The following proposition is an immediate corollary of (3.4) and the growth of γ1, γ3

given in Lemma 2.1.

Proposition 3.2. In the coordinates given by Xε, the second fundamental form A and 
Christoffel symbols on Sε satisfy

∣∣∣∣ dkdsk
A j

i (εps)
∣∣∣∣ ≤ Cεk+1, (3.5)

|Γk
ij | ≤ Cε. (3.6)

Proposition 3.3. We have

|∇kA| ≤ Cεk+1, k = 0, 1, 2. (3.7)

Proof. The fact that |A|2 ≤ Cε2 is straightforward from (3.4), (3.3) and Proposition 3.2. 
For the first covariant derivative of A, we recall ∇kA

j
i = ∂kA

j
1 − Γl

kiA
j
l + Γj

klA
l
i with 

implied summation over l = 1, 2. Upon inspection, ∇1A
2

1 vanishes. If (i, j, k) �= (1, 2, 1), 
the quantity 

√
gkkgiigjj is bounded, therefore
√

gkkgiigjj |∇kA
k
i | ≤ C(|∂kA j

1 | + |Γl
kiA

j
l | + |Γj

klA
l
i |)

≤ Cε2

and the estimate for |∇A| is proved.
For the second covariant derivative, we argue similarly. Recall that ∇2

lkA
j
i =

∂l(∇kA
j
i ) − Γm

lk∇mA j
i − Γm

li ∇kA
j
m + Γj

lm∇kA
m
i . Note that ∇2

11A
2

1 = 0. As before, if 
(i, j, k, m) �= (1, 2, 1, 1), the product 

√
gkkgiigjjgll is bounded and we prove |∇2A| ≤ Cε3

by combining (3.5), (3.6), and (3.7) for k = 0, 1. �
3.4. Computation of the error

Proof of Proposition 1.2. The initial approximation M consists of three parts. The core 
of M is a smooth perturbation of a compact piece of Scherk minimal surface, when 
we consider one period only. This introduces curvatures of order ε, together with some 
dislocations, so the statement of Proposition 1.2 follows directly for the error restricted 
to this part.
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The region s ≥ 5δs/ε of M is a rotationally symmetric self-translating surface, so E
is zero there.

Where Rtr + 20 ≤ s ≤ 5δs/ε, the surface M is a graph over a self-translating rota-
tionally symmetric surface Sε. We parametrize Sε with Xε defined in (2.2), which we 
will write for convenience as X, so that

X(s, θ) := ε−1(γ1(εps) cos(εθ), γ1(εps) sin(εθ), γ3(εps)),

where p = γ1(0), and s ∈ [0, ∞), θ ∈ [0, 2π].
Then M in this region is parametrized by

(s, θ) �→ X̃(s, θ) = X(s, θ) + u(s, θ)ν, (3.8)

where the function u is given by

u(s, θ) = pfα(s, θ)η(εs), (3.9)

with fα given in Lemma 2.2 and η is a cut-off function satisfying η(s) = 1 for s ≤ 4δs
and η(s) = 0 for s ≥ 5δs. We observe that

|es∂ku(s, θ)| ≤ Ce−a, k = 0, . . . , 5,

and that fα(s, θ) satisfies the minimal surface equation (2.7).
In the rest of this proof, g, A, H, ν denote the metric, second fundamental form, mean 

curvature and Gauss map of the rotationally symmetric surface Sε and g̃, Ã, H̃, ̃ν the 
ones of M given by the parametrization above.

In the rest of this section, we shall work in the region s ≤ 5δs/ε. Following the 
calculations of Section 3.1 with the parametrization (3.8) and using (3.7) we have

ẽ1 = (1 − uA 1
1 )e1 − uA 2

1 e2 + u1ν = e1 + νu1 + O(εe−s),

ẽ2 = −uA 1
2 e1 + (1 − uA 2

2 )e2 + u2ν = e2 + νu2 + O(εe−s),

where O(εe−s) is in the C2 sense on the region s ≤ 5δs/ε as ε → 0, and e1, e2 are given 
in (3.1), (3.2). We compute the metric g̃ij :

g̃ij = gij − 2uAij + u2A l
i A

m
j glm + uiuj = gij + uiuj + O(εe−s). (3.10)

Using (3.3), we have

g̃−1 = 1
det(g̃)

(
γ2
1 + u2

2 −u1u2

−u1u2 p2 + u2
1

)
+ O(εe−s),

where γ1 is evaluated at pεs, and
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det(g̃) = p2γ2
1 + γ2

1u
2
1 + p2u2

2 + O(εe−s). (3.11)

For the normal direction, we recall that e1 and e2 are orthogonal and obtain

ẽ1 × ẽ2 = det(g)1/2ν − u1e1 − u2e2 + O(εe−s). (3.12)

Next, we compute

X̃ij = eij + uijν + O(εe−s)

and

Ãij = 〈X̃ij , ν̃〉 = det(g)1/2

det(g̃)1/2
(Aij + uij) + O(εe−s).

Since det(g)
det(g̃) = 1 + O(e−s) and Aij are O(ε), we get

Ãij = Aij + uij + O(εe−s). (3.13)

With this, the second fundamental form can be expressed as

Ã 1
1 = 1

det(g̃)
[
(A11 + u11)(γ1

1 + u2
2) − (A12 + u12)u1u2

]
+ O(εe−s)

Ã 2
2 = 1

det(g̃)
[
−(A21 + u21)u1u2 + (A22 + u22)(p2 + u2

1)
]
+ O(εe−s).

Therefore

H̃ = 1
det(g̃)

[
A11γ

2
1 + A22p

2 + u11(γ2
1 + u2

2) − 2u12u1u2 + u22(p2 + u2
1)
]

+ O(εe−s).

Let ū = 1
pu = fα(s, θ)η(εs). We recall that H = 1

det(g)
[
A11γ

2
1 + A22p

2] and expand 
γ1(pεs) = p + O(εs) in the region s ≤ 5δs/ε to get

H̃ = H + p3

det(g̃)
[
ū11(1 + ū2

2) − 2ū12ū1ū2 + ū22(1 + ū2
1)
]
+ O(εse−s)

Because η(εs) = 1 for s ≤ 4δs/ε and fα satisfies (2.7), we actually have

ū11(1 + ū2
2) − 2ū12ū1ū2 + ū22(1 + ū2

1) = 0

in this region. Thus we obtain

H̃ = H + O(εse−s), s ≤ 4δs/ε.
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Also in this region, from (3.11), (3.12) and |ẽ1 × ẽ2| = det(g̃)1/2, we have εν̃ · ez =
εν · ez + O(εe−s) and since Sε is a self translating surface, we get

H̃ − εν̃ · ez = O(εe−γs).

The same estimate holds for the derivatives of H̃ − εν̃ · ez (all the parametrizations here 
are smooth), which implies the corresponding estimate in the weighted Cα norm.

When 4δs/ε ≤ s ≤ 5δs/ε, we have |∂ku(s)| ≤ Ce−s ≤ εe−γs for ε small enough, so

H̃ = H + O(εe−γs), εν̃ · ez = εν · ez + O(εe−γs),

and the desired estimate holds. �
3.5. Estimate of the Jacobi operator

Here we use the following notation: The metric, Christoffel symbols, and second fun-
damental forms on a rotationally symmetric piece of self-translating surface are denoted 
by g, Γk

ij , and A, the corresponding quantities for the ansatz are gM, Γk
ij,M, and AM

while the ones on the corresponding original Scherk surface are gΣ, Γk
ij,Σ, and AΣ. For 

short, we write ΔgM = ΔM, ΔgΣ = ΔΣ. In the following proposition, the operators 
on M (the left-hand side) are pulled back to Σ using the transformations of Section 2.

Proposition 3.4. For s ≤ 5δs/ε, we have

ΔM + |AM|2 + ε〈ez,∇gM〉 = ΔΣ + |AΣ|2 + L′

where L′ is a second order differential operator with coefficients with C1 norm bounded 
by O(δs + δp + ε).

Proof. We again divide into several regions. For s ≤ Rtr + 20, M is obtained from the 
Scherk surface by a bending, which introduces terms of order ε and dislocations of order 
δp, so the estimate for L′ here follows.

When Rtr +20 ≤ s ≤ 5δs/ε, M can be described by the parametrization (3.8). In this 
region, we express all geometric quantities of M and Σ as functions of the coordinates 
s and θ.

We note that ΔM−ΔΣ is a second order operator with coefficients whose C1 norm can 
be estimated from the C2 norm of gM − gΣ. The ansatz is the graph of u from (3.9), so 
to be consistent, we take the Scherk surface parametrized by (s, θ) �→ (ps, pθ, pfα(s, θ)). 
Then (3.10) gives

gij,Σ − gij,M = p2δij + p2fα,ifα,j − (gij + uiuj) + O(εe−s).

We use (3.3), ‖u‖C3 ≤ C, and the expansion γ1(pεs) = p + O(εs) to deduce
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‖gij,Σ − ḡij,M‖C2 ≤ C(δs + ε),

where the norm is computed over Rtr + 20 ≤ s ≤ 5δs/ε. Because the metrics 
are uniformly equivalent, in order to bound |AM|2 − |AΣ|2, it suffices to control 
|Aij,M(s, θ) −Aij,Σ(s, θ)|. By (3.13),

Aij,Σ −Aij,M = pfij − (uij + Aij) + O(εe−s),

where O(εe−s) is in C1 norm. The functions u and f are equal if s ≤ 4δs/ε and we have 
e−s ≤ Cε otherwise. Moreover, Aij = O(ε) when s ≤ 5δs/ε by (3.4). Therefore,

‖Aij,Σ −Aij,M‖C1 ≤ Cε, (3.14)

where the norm is over Rtr + 20 ≤ s ≤ 5δs/ε.
Finally, the term ε〈ez, ∇gM〉 has coefficients of order ε in C1 norm over Rtr + 20 ≤

s ≤ 5δs/ε. �
3.6. Estimates of the quadratic terms

Here, we prove Proposition 1.3 for functions defined on the surface M. We recall 
from (3.14) and Proposition 3.3 that each |∇iA| remains uniformly bounded on M, for 
i = 0, 1, 2.

Let Q1 be defined by (1.9) and assume |uA| < 1. For this computation it is convenient 
to work with coordinates that are normal at a certain point x0 ∈ M, which means

gij(x0) = δij and ∂kgij(x0) = 0.

This implies

〈Xij , ek〉 = 0,

at x0. Moreover, by a further rotation 〈X12, ν〉 = 0 at x0 so that A 2
1 (x0) = 0. With 

these properties, following the computation in Section 3.1, we obtain at the point x0:

g̃−1 = 1
det(g̃)

[
1 − 2uA 2

2 + u2(A2
2)2 + u2

2 −u1u2

−u1u2 1 − 2uA 1
1 + u2(A1

1)2 + u2
1

]

with

det(g̃) = |ẽ1 × ẽ2|2 = (1 − uH − u2G)2 + u2
1(1 − uA2

2)2 + u2
2(1 − uA1

1)2,

where G is the Gaussian curvature.
We will use Q to denote different functions of u, ui, uij , x with the properties:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q is C∞ in u, ui, uij ,

Q(0, 0, 0, x) = 0, DuQ(0, 0, 0, x) = 0,

Dui
Q(0, 0, 0, x) = 0, Duij

Q(0, 0, 0, x) = 0,

Q is linear in uij ,

second derivatives with respect to u, ui, uij are bounded by 

universal functions of |A| and |∇A| for |uA| < 1/2.

(3.15)

Then we can write

g̃−1 = 1
det(g̃)

[
1 − 2uA 2

2 0
0 1 − 2uA 1

1

]
+ Q

and

det(g̃) = 1 − 2uH + Q.

Similarly,

〈X̃ij , ẽ1 × ẽ2〉 = (1 − uH)A j
i + uij − u(A j

i )2 + Q,

therefore

H̃ = H + u11 + u22 + ((A 1
1 )2 + (A 2

2 )2)u + Q1,

where Q1 satisfies the properties (3.15). Let u, v be C2,α functions on M with |uA| < 1/2, 
|vA| < 1/2. To simplify notation, let U(x) = (u(x), ∇u(x), ∇2u(x)). From the properties 
of Q1 and Taylor’s formula

|Q1(U(x), x) −Q1(V (x), x)| ≤ C(|U(x)| + |V (x)|)(|U(x) − V (x)|).

To estimate the Hölder norm of Q1, we note that the expression for H̃ − εν̃ · ez is 
linear in the second derivative of u and we have C1 bounds on all the other terms. We 
have Cα bounds on ∇gu and C1 bounds on everything else (u, ∇gu, A, and ∇gA).

4. The Jacobi equation on Scherk surfaces

Let Σ = Σ(α) be the singly periodic Scherk surface defined by (2.6). In this section, 
we want to solve the problem involving the Jacobi operator on Σ,

Δφ + |A|2φ = h in Σ,

where Δ is the Laplace–Beltrami operator and A is the second fundamental form of Σ.
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We let s and z denote the coordinates on the wings W i(α), i = 1, . . . , 4, described in 
Lemma 2.2. In the rest of the section, we will work with right-hand sides h defined on 
Σ and such that ‖eγsh‖L∞(Σ) < ∞ for a fixed γ ∈ (0, 1).

We will work with functions that are 2π periodic in z and even with respect to z, that 
is, φ and h satisfy

φ(x, y, z) = φ(x, y, z + 2π), φ(x, y, z) = φ(x, y,−z), ∀(x, y, z) ∈ Σ, (4.1)

which is equivalent to symmetry with respect to the planes z = kπ, k ∈ Z.
We choose the unit normal vector to Σ such that

ν · ey > 0 on wings 1 and 2, and ν · ey < 0 on wings 3 and 4. (4.2)

Because translating the surface Σ leaves its mean curvature unchanged, the functions 
ν · e are in the kernel of Δ + |A|2 for any fixed e ∈ R

3. Hence ν · ex, ν · ey, and ν · ez
are in the kernel of the Jacobi operator. Of these functions, ν · ex and ν · ey satisfy the 
symmetries (4.1) and ν · ez does not because it is antisymmetric with respect to z = 0. 
We will write

z1 = ν · ex, z2 = ν · ey. (4.3)

The main results in this section are the following. First, we consider the problem of 
finding a bounded solution φ of⎧⎪⎪⎨

⎪⎪⎩
Δφ + |A|2φ =

2∑
i=1

ciη0zi + h in Σ,

φ satisfies the symmetries (4.1)

(4.4)

for which ∫
Σ

φη0zi = 0, i = 1, 2, (4.5)

where η0 ∈ C∞(Σ) is a smooth function depending only on x2 + y2 such that

0 ≤ η0 ≤ 1, η0 = 1 on x2 + y2 ≤ R2
0, and η0 = 0 on x2 + y2 ≥ (R0 + 1)2, (4.6)

where R0 > 1 is fixed.

Proposition 4.1. Let 0 < γ < 1. Let h be defined in Σ, satisfy the symmetries (4.1), and 
‖eγsh‖L∞(Σ) < ∞. Then there are unique c1, c2 ∈ R and φ ∈ L∞(Σ) satisfying (4.4) and 
(4.5). Moreover

|c1| + |c2| + ‖φ‖L∞(Σ) ≤ C‖eγsh‖L∞(Σ) (4.7)
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and

|∇φ| ≤ C(‖eγsh‖L∞(Σ) + ‖φ‖L∞(Σ))e−γs. (4.8)

If φ is a bounded solution of (4.4), by (4.8) φ has a limit on each wing, that is, 
Li = lims→∞ φ(s, z) on all wings i = 1, . . . , 4. These limits define linear functionals of 
h and we have the estimate |Li| ≤ C‖eγsh‖L∞ . For later consideration, it is desirable 
to find a solution to (4.4) with limit equal to zero on all wings. To achieve this, the 
right-hand side has to satisfy four restrictions, or equivalently, has to be projected onto 
a space of codimension 4. We do this by considering the main terms introduced by the 
dislocations. So we consider now the problem

⎧⎪⎪⎨
⎪⎪⎩

Δφ + |A|2φ = h +
2∑

i=1
(βiw

′
i + τiwi) in Σ,

φ satisfies (4.1),

(4.9)

where the functions wi, w′
i are defined in (2.8), (2.9).

Proposition 4.2. Let 0 < γ < 1 and h be a function satisfying ‖eγsh‖L∞(Σ) < ∞ and the 
symmetries (4.1). Then if Rrot and Rtr, which are the parameters in the construction 
associated to the dislocations, are fixed large enough, there exist βi, τi, i = 1, 2 and φ a 
bounded solution of (4.9) such that φ has a limit equal to zero on all wings. Moreover φ, 
βi, τi depend linearly on h and

‖eγsφ‖L∞ +
2∑

i=1
(|βi| + |τi|) ≤ C‖eγsh‖L∞ . (4.10)

Using this proposition, we fix the parameters Rtr, Rrot of the construction of the 
initial approximation M. The following non-degeneracy property of the Jacobi operator 
is crucial in the proof of the above results and was proved by Montiel and Ros [25].

Proposition 4.3. Any bounded solution φ of

Δφ + |A|2φ = 0 in Σ

is a linear combination of ν · ex, ν · ey and ν · ez.

The rest of the section is devoted to prove Propositions 4.1 and 4.2. We start by 
considering the problem

{
Δφ + |A|2φ = h in ΣR

φ = 0 on ∂ΣR, φ satisfies (4.1)
(4.11)
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where R > 0 is large and

ΣR is the union of the core of Σ and ∪4
i=1W

i(α) ∩ {s ≤ R}. (4.12)

In the sequel, we work with R >> R0 + 1.

Lemma 4.4. Let 0 < γ < 1. Let h be defined in ΣR, satisfy the symmetries (4.1), and 
‖eγsh‖L∞(Σ) < ∞. Then there are R1, C such that for all R ≥ R1 and any solution φ
of (4.11) such that

∫
ΣR

φη0zi = 0 i = 1, 2, (4.13)

we have

‖φ‖L∞(ΣR) ≤ C‖eγsh‖L∞(ΣR).

Proof. We proceed by contradiction and assume that for any positive integer n, there 
are Rn, φn, hn such that Rn → ∞ as n → ∞, (4.11), (4.13) hold and

‖φn‖L∞(ΣRn ) = 1, ‖eγshn‖L∞(ΣRn ) → 0 as n → ∞. (4.14)

Let us show first that φn → 0 uniformly on compact sets of ΣRn
. Otherwise, up to a 

subsequence and using standard local estimates for elliptic equations, φn → φ uniformly 
on compact sets of Σ, where φ is bounded, not identically zero, and satisfies

Δφ + |A|2φ = 0 in Σ.

By Proposition 4.3, φ is a linear combination of ν · ex, ν · ey and ν · ez. But ν · ez is not 
present in this linear combination by the imposed symmetry (4.1), so

φ = c1ν · ex + c2ν · ey

for some constants c1 and c2. But passing to the limit in (4.13), we deduce that φ satisfies 
(4.13). This implies that c1 = c2 = 0.

We note that ψ = 1 − e−γs satisfies

Δψ + |A|2ψ ≤ −Ce−γs

for some C > 0 and s ≥ s0 where s0 is large enough. Using ψ as a barrier on each wing, 
we obtain that ‖φn‖L∞(ΣRn ) → 0 as n → ∞, which contradicts (4.14). �

With almost the same argument, we can prove the next result.
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Lemma 4.5. Let 0 < γ < 1. Let h be defined in Σ, satisfy the symmetries (4.1), and 
‖eγsh‖L∞(Σ) < ∞. Then there is a constant C such that for any bounded solution φ of

{
Δφ + |A|2φ = h in Σ

φ satisfies (4.1)
(4.15)

which also satisfies (4.5), we have

‖φ‖L∞(Σ) ≤ C‖eγsh‖L∞(Σ).

Proof. The proof changes only in the last step, when we use the maximum principle to 
show that φ ≤ Cψ. We change slightly the barrier by considering

ψ + δZ,

where Z is an element in the kernel of the Jacobi operator that grows linearly, and then 
take δ → 0. �
Lemma 4.6. Let 0 < γ < 1. Let h be defined in Σ, satisfy the symmetries (4.1), and 
‖eγsh‖L∞(Σ) < ∞. Suppose φ is a bounded solution of (4.15). Then

|∇φ| ≤ C(‖eγsh‖L∞(Σ) + ‖φ‖L∞(Σ))e−γs.

Proof. Changing variables, we rewrite the equation on a fixed wing as

Δφ = a0(s, z)φ + a1(s, z)∇φ + a2(s, z)D2φ + h in S (4.16)

with boundary conditions

∂φ

∂z
= 0 on (s0,∞) × {0, π},

where S is the strip (s0, ∞) ×(0, π). We write the variables in S as (s, z), s > s0, z ∈ (0, π)
and in (4.16), Δ = ∂ss + ∂zz. The functions a0, a1, a2 are smooth and have the decay

|ai(s, z)| ≤ Ce−s.

For T > s0, we have

‖φ‖L2((T,T+5)×(0,π)) ≤ C‖φ‖L∞(S).

Since the coefficients of ai are small as s → ∞, we have from standard estimates

‖φ‖H2((T,T+1)×(0,π)) ≤ C(‖φ‖L∞(S) + ‖eγsh‖L∞(S)).
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Hence,

‖a0φ + a1∇φ + a2D
2φ + h‖L2((T,∞)×(0,π)) ≤ C(‖φ‖L∞(S) + ‖eγsh‖L∞(S))e−γT .

(4.17)

Let g = a0φ + a1∇φ + a2D
2φ + h and write

φ(s, z) =
∞∑

n=0
φn(s) cos(nz), g(s, z) =

∞∑
n=0

gn(s) cos(nz),

where, for n ≥ 0, φn(s) = 2
π

∫ π

0 φ(s, z) cos(nz) dz and gn(s) = 2
π

∫ π

0 g(s, z) cos(nz) dz. We 
can write

φ0(s) = b0 +
∞∫
s

(t− s)g0(t) dt, (4.18)

where b0 = lims→∞ φ0(s). The claim is that

‖φ− b0‖L2((T,∞)×(0,π)) ≤ C
(
‖φ‖L∞(S) + ‖eγsh‖L∞(S)

)
e−γT . (4.19)

To prove this, let φ̃(s, z) =
∑∞

n=1 φn(s) cos(nz). We claim that, for T large

‖φ̃‖L2((T,∞)×(0,π)) ≤ C
(
‖φ‖L∞(S) + ‖eγsh‖L∞

)
e−γT . (4.20)

Indeed, we have

φ′′
n − n2φn = gn for s > s0.

Note that φn(s) is bounded as s → ∞, so that φn(s) must have the form (for n ≥ 1)

φn(s) = dne
−n(s−s0) + φ0,n(s),

where

dn = φn(s0), φ0,n(s) = −e−nd

s∫
s0

e2nt
∞∫
t

gn(τ)e−nτ dτ dt.

Let γ < a < 1 be fixed. By the Cauchy–Schwarz inequality, for n ≥ 1, we have

|φ0,n(s)| ≤ 1
(4n(n− a))1/2

e−as

⎛
⎝ s∫

s0

e2at
∞∫
t

|gn(τ)|2 dτ dt

⎞
⎠

1/2

. (4.21)
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Therefore

‖φ̃‖2
L2((T,∞)×(0,π)) ≤ Ce−2T

∞∑
n=1

d2
n + C

∞∑
n=1

∞∫
T

|φ0,n(s)|2 ds,

and using (4.17), (4.21), we deduce (4.20). The estimate above and a similar one for the 
integral in (4.18) give (4.19).

Note that φ̄ = φ − b0 satisfies

Δφ̄ = a0(s, z)φ̄ + a1(s, z)∇φ̄ + a2(s, z)D2φ̄ + h + a0(s, z)b0 in S.

From standard elliptic estimates, we get

‖φ̄ + |∇φ̄|‖L∞((T+1,T+2)×(0,π)) ≤ C
(
‖φ̄‖L2((T,T+3)×(0,π))

+ ‖h + a0b0‖L∞((T,T+3)×(0,π))
)

≤ C
(
‖φ‖L∞(S) + ‖h‖L∞(S)

)
e−γT . �

To prove existence, let ΣR be the truncated surface defined by (4.12) and consider 
the problem of finding φ and c1, c2 such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δφ + |A|2φ =
2∑

i=1
ciη0zi + h in ΣR,

φ = 0 on ∂ΣR,

φ satisfies (4.1).

(4.22)

Lemma 4.7. Let 0 < γ < 1. Let h be defined in ΣR, satisfy the symmetries (4.1), and 
‖eγsh‖L∞(ΣR) < ∞. Then there are unique c1, c2 ∈ R and φ ∈ L∞(ΣR) satisfying (4.22)
and (4.5). Moreover,

|c1| + |c2| + ‖φ‖L∞(ΣR) ≤ C‖eγsh‖L∞(ΣR), (4.23)

with C independent of R.

Proof. We prove first (4.23). Indeed, by Lemma 4.4,

‖φ‖L∞ ≤ C (|c1| + |c2| + ‖eγsh‖L∞) .

Multiplying by zj and integrating in ΣR, we find∫
∂ΣR

∂φ

∂ν
zj = cj

∫
ΣR

η0z
2
j . (4.24)
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We claim that ∫
∂ΣR

∂φ

∂ν
zj = o(1)(‖φ‖L∞ + ‖eγsh‖L∞) (4.25)

where o(1) → 0 as R → ∞. Combining (4.25) and (4.24), we get (4.23). To prove (4.25), 
we rewrite the equation on the ith wing as

Lφ =
2∑

i=1
ciη0zi + h in SR,

where Lφ = Δφ + a0φ + a1∇φ + a2D
2φ and SR = {(s, z) : 0 < s < R, 0 < z < π}. 

Here Δ = ∂ss + ∂zz and ai(s, z) are smooth with |ai(s, z)| ≤ Ce−s. Let R1 >> R0 and 

R >> R1. The function φ̄ =
(

R−s
R−R1

)μ

, where 0 < μ < 1 is fixed, satisfies

Lφ̄ ≤ −c

(
R− s

R−R1

)μ−2

in (R1, R) × (0, π) for some c > 0, if we take R1 large. By the maximum principle, 
|φ| ≤ C(‖φ‖L∞ + ‖eγsh‖L∞)φ̄ in (R1, R) × (0, π). It follows that

∣∣∣∣∂φ∂s (R, z)
∣∣∣∣ ≤ C

R−R1
(‖φ‖L∞ + ‖eγsh‖L∞),

and this proves (4.25).
For the existence of a solution of (4.23), let us define the Hilbert space

H =

⎧⎪⎨
⎪⎩φ ∈ H1(ΣR ∩ {z ∈ (0, π)}) : φ

∣∣
s=R

= 0,
∫

ΣR∩{z∈(0,π)}

φη0zi = 0, i = 1, 2

⎫⎪⎬
⎪⎭

with the inner product

〈ϕ1, ϕ2〉 =
∫

ΣR∩{z∈(0,π)}

∇ϕ1∇ϕ2

where η0 is the cut-off function with properties (4.6). We consider the following weak 
form of the equation to find φ ∈ H:

∫
ΣR∩{z∈(0,π)}

∇φ · ∇ϕ− |A|2φϕ = −
∫

ΣR∩{z∈(0,π)}

hϕ, ∀ϕ ∈ H. (4.26)
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Let T : H → H, T (φ) = ψ be the linear operator defined by the Riesz theorem from the 
relation

〈ψ,ϕ〉 =
∫

ΣR∩{z∈(0,π)}

|A|2φϕ, ∀ϕ ∈ H.

Then T is compact and we can formulate (4.26) as finding φ ∈ H such that

φ = T (φ) + Lh,

where Lh(ϕ) =
∫
ΣR∩{z∈(0,π)} hϕ. By the Fredholm theorem, this problem is uniquely 

solvable for any h provided the only solution of φ = T (φ) in H is φ = 0. This holds by 
(4.23). �

We now turn our attention to the problem on the whole Scherk surface Σ.

Proof of Proposition 4.1. First, let us show that, for any bounded solution φ, c1, c2 of 
(4.4) satisfying (4.5), the estimate (4.7) is valid. Indeed, by Lemma 4.5,

‖φ‖L∞ ≤ C(|c1| + |c2| + ‖eγsh‖L∞). (4.27)

For R >> 1, let ΣR = Σ ∩ {(x, y, z) : x2 + y2 ≤ R2}. Multiplying (4.4) by zj and 
integrating in ΣR ∩ {z ∈ (0, π)}, we have∫

∂ΣR∩{z∈(0,π)}

∂φ

∂ν
zj = cj

∫
ΣR∩{z∈(0,π)}

η0z
2
j +

∫
ΣR∩{z∈(0,π)}

hzj (4.28)

because 
∫
ΣR∩{z∈(0,π)} η0z1z2 = 0 by symmetry. By Lemma 4.6,

∫
∂ΣR∩{z∈(0,π)}

∣∣∣∣∂φ∂ν zi
∣∣∣∣ ≤ Ce−γR(|c1| + |c2| + ‖eγsh‖L∞ + ‖φ‖L∞). (4.29)

Combining (4.27), (4.28), and (4.29), we deduce (4.7) and prove the uniqueness.
By Lemma 4.7, for R large, the problem (4.22) is uniquely solvable, yielding a solution 

to φR (and constants c1,R and c2,R), which remains bounded as R → ∞ by (4.23). By 
standard elliptic estimates, φR converges locally uniformly in Σ to a solution of (4.4). 
Estimate (4.8) follows from Lemma 4.6. �
Proof of Proposition 4.2. Given h as stated, let φ, c1, c2 be the solution to (4.4) provided 
by Proposition 4.1. Let Li = lims→∞ φ(s, z) be the limit of φ on wing i. By adding 
appropriate multiples of z1 and z2, we can make two of these limits equal to zero. More 
precisely, by the choice of orientation (4.2) on Σ and the definition of z1 and z2 in (4.3), 
we have
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lim
s→∞

z1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− sinα on wing 1,

sinα on wing 2,

sinα on wing 3,

− sinα on wing 4,

lim
s→∞

z2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cosα on wing 1,

cosα on wing 2,

− cosα on wing 3,

− cosα on wing 4.

Let d1, d2 satisfy

d1 sinα + d2 cosα = L2, d1 sinα− d2 cosα = L3.

Then φ̃ = φ − d1z1 − d2z2 satisfies (4.4) and has limit equal to zero on wings 2 and 3.
We remark that we could also achieve limit equal to zero on any two adjacent wings, 

but not on opposite ones in general. Also note that if the original φ satisfies the orthog-
onality conditions (4.5), the new φ̃ does not in general.

Let η̃i, i = 1 or i = 4, be smooth cut-off functions on Σ such that:

η̃i = 1 on wing i and for s ≥ Rc + 1,

η̃i = 0 on wing i for 0 ≤ s ≤ Rc,

η̃i = 0 on the core and the rest of the wings.

Here Rc > 0 is a large constant to be fixed later. Define

z̃1 = ν · να, z̃4 = ν · (− sinα,− cosα, 0),

where να = (− sinα, cosα, 0) is the normal vector to the asymptotic plane of wing 1. 
Note that z̃1, ̃z4 are in the kernel of Δ + |A|2, z̃1 → 1 as s1 → ∞, and z̃4 → 1 as s4 → ∞
(they are convenient linear combinations of z1, z2). Define

φ̂ = φ̃− L1η̃1z̃1 − L4η̃4z̃1.

Then φ̂ satisfies

Δφ̂ + |A|2φ̂ = h +
2∑

i=1
ciη0zi −

∑
i=1,4

Li(Δ + |A|2)(η̃iz̃i) in Σ

and φ̂ has a limit equal to zero on all the wings. Moreover, φ̂ satisfies the symmetries 
(4.1).

Suppose that βi, τi, i = 1, 2, are given and let us consider the function φ̂ constructed 
previously with h replaced by h +

∑2
i=1 βiw

′
i + τiwi. This φ̂ satisfies

Δφ̂ + |A|2φ̂ = h +
2∑

i=1
ciη0zi −

∑
i=1,4

Li(Δ + |A|2)(η̃iz̃i) +
2∑

i=1
(βiw

′
i + τiwi) (4.30)
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in Σ, has the symmetries (4.1) and the limits on all wings are equal to zero. In this 
construction, h, βi, τi, i = 1, 2 are data and φ̂, ci (i = 1, 2), Li (i = 1, 4) are bounded 
linear functions of these data.

We claim that there is a unique choice of βi, τi, i = 1, 2, such that c1 = c2 = L1 =
L4 = 0. To prove this, we test (4.30) with functions that are linear combinations of 
z1, z2,

z3 = ν · (−y, x, 0), and z4 = ∂αS

|∇x,y,zS|
,

where

S(x, y, z, α) = cos2(α) cosh
( x

cosα

)
− sin2(α) cosh

( y

sinα

)
− cos(z)

is the function (2.6) defining the Scherk surface, and ∇x,y,zS = (∂xS, ∂yS, ∂zS). Note 
that z3 arises from a rotation about the z-axis and z4 is generated by the motion in α
of the Scherk surfaces Σ(α), so these functions are in the kernel of the Jacobi operator 
Δ + |A|2 and have the symmetries (4.1). Also, z3 and z4 have linear growth.

We multiply (4.30) by zi and integrate over Σ ∩ {x ∈ (0, π)}. Since φ̂ has exponential 
decay,

∫
Σ∩{z∈(0,π)}

(Δφ̂ + |A|2φ̂)zi =
∫

Σ∩{z∈(0,π)}

(Δzi + |A|2zi)φ̂ = 0,

for all 1 ≤ i ≤ 4, while the right-hand side becomes an affine function of the numbers 
c1, c2, L1, L4, β1, β2, τ1, τ2. More precisely, we obtain

0 =

⎡
⎢⎢⎢⎢⎣

∫
hz1∫
hz2∫
hz3∫
hz4

⎤
⎥⎥⎥⎥⎦+ M1

⎡
⎢⎢⎢⎣
c1

c2

L1

L4

⎤
⎥⎥⎥⎦+ M2

⎡
⎢⎢⎢⎣
β1

β2

τ1

τ2

⎤
⎥⎥⎥⎦ .

The claim is that we can choose β1, β2, τ1, τ2 to achieve c1 = c2 = L1 = L4 = 0. For this, 
we will verify that M1, M2 are invertible (if the parameters Rc, Rtr, and Rrot are chosen 
adequately).

Note that by symmetry,

∫
Σ∩{z∈(0,π)}

η0zizj = cδij , for i, j = 1, 2,

where c > 0 is some constant. Also thanks to symmetry, we have for i = 1, 2,
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∫
Σ∩{z∈(0,π)}

η0ziz3 = 0,
∫

Σ∩{z∈(0,π)}

η0ziz4 = 0.

Let us compute for i = 1 or i = 4, and j = 1, 2:∫
Σ∩{z∈(0,π)}

(Δ + |A|2)(η̃iz̃i)zj =
∫

Σ∩{z∈(0,π)}

(2∇η̃i · ∇z̃i + z̃iΔη̃i)zj

=
∫

Σ∩{z∈(0,π)}

∇ · (z̃2
i∇η̃i)

zj
z̃i

= −
∫

Σ∩{z∈(0,π)}

z̃2
i∇η̃i∇

(
zj
z̃i

)
= O(e−Rc),

where the last equality holds because z̃i, zj approach constants at an exponential rate.
For i = 1, 4, by the same computation, and using that z3 has linear growth (for 

example z3 = sin(α)y + cos(α)x + O(se−s) on wing 1, where s =
√
x2 + y2 + O(1)), we 

obtain ∫
Σ∩{z∈(0,π)}

(Δ + |A|2)(η̃iz̃i)z3 = −
∫

Σ∩{z∈(0,π)}

z̃2
i∇η̃i∇

(
z3

z̃i

)

= −B̄(−1)i−1 + o(1)

where B̄ > 0 and o(1) → 0 as Rc → ∞. Similarly, for i = 1, 4,∫
Σ∩{z∈(0,π)}

(Δ + |A|2)(η̃iz̃i)z4 = −
∫

Σ∩{z∈(0,π)}

z̃2
i∇η̃i∇

(
z4

z̃i

)

= B + o(1)

where B > 0. This implies that the matrix M1 is invertible if Rc is taken large (and 
fixed).

Let us now estimate the matrix M2. This means, we need to estimate
∫

Σ∩{z∈(0,π)}

wizj and
∫

Σ∩{z∈(0,π)}

w′
izj

for i = 1, 2, j = 1, . . . , 4. Using (2.11), for j = 1, 2, we have∫
Σ∩{z∈(0,π)}

w1zj =
∫

Σ∩{z∈(0,π)}

(Δ + |A|2)(ηtr,1)zj = O(e−Rtr)

and similarly 
∫
w2zj = O(e−Rtr). Next, we compute
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∫
Σ∩{z∈(0,π)}

w1z3 =
∫

Σ∩{z∈(0,π)}

(Δ + |A|2)(ηtr,1)z3

=
∫

Σ∩{z∈(0,π)}

z3Δηtr,1 +
∫

Σ∩{z∈(0,π)}

|A|2ηtr,1z3.

The first integral is supported on Rtr ≤ s ≤ Rtr + 1, so integrating by parts gives∫
Σ∩{z∈(0,π)}

z3Δηtr,1 = −
∫

{Rtr≤s≤Rtr+1}

∇z3∇ηtr,1

= − ∇z3n̂|s=Rtr+1 +
∫

{Rtr≤s≤Rtr+1}

ηtr,1Δz3,

where n̂ is tangent to Σ and perpendicular to the curve s = Rtr + 1. Therefore∫
Σ∩{z∈(0,π)}

w1z3 = − ∇z3n̂|s=Rtr+1 +
∫

{s≥Rtr+1}

|A|2z3

= −π + o(1),

where o(1) → 0 as Rtr → ∞, thanks to the behavior z3 = s + O(1) as s → ∞ and a 
corresponding estimate for its derivative. Similarly,

∫
Σ∩{z∈(0,π)}

w2z3 = −π + o(1),
∫

Σ∩{z∈(0,π)}

w1z4 = −π + o(1),

∫
Σ∩{z∈(0,π)}

w2z4 = π + o(1).

Let us now compute∫
Σ∩{z∈(0,π)}

w′
1z1 =

∫
Σ∩{z∈(0,π)}

(Δ + |A|2)(ηrot,1z3)z1,

where we have used (2.10). We have∫
Σ∩{z∈(0,π)}

(Δ + |A|2)(ηrot,1z3)z1 =
∫

Σ∩{z∈(0,π)}

(z3Δηrot,1 + 2∇ηrot,1∇z3)z1

=
∫

Σ∩{z∈(0,π)}

z1∇ηrot,1∇z3 − z3∇ηrot,1∇z1

= −π sin(α) + o(1),
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where o(1) → 0 as Rrot → 0. In a similar way,
∫

Σ∩{z∈(0,π)}

w′
1z2 = π cos(α) + o(1),

∫
Σ∩{z∈(0,π)}

w′
2z1 = π sin(α) + o(1),

∫
Σ∩{z∈(0,π)}

w′
2z2 = π cos(α) + o(1).

We also have ∫
Σ∩{z∈(0,π)}

w′
1z3 = 0 and

∫
Σ∩{z∈(0,π)}

w′
2z3 = 0.

Indeed, consider ∫
Σ∩{z∈(0,π)}

w′
1z3 =

∫
Σ∩{z∈(0,π)}

(Δ + |A|2)(ηrot,1z3)z3

=
∫

Σ∩{z∈(0,π)}

(z3Δηrot,1 + 2∇ηrot,1∇z3)z3

=
∫

Σ∩{z∈(0,π)}

∇ · (z2
3∇ηrot,1)

= 0.

The integral 
∫
w′

2z3 = 0 is computed similarly.
Finally, we observe that∫

Σ∩{z∈(0,π)}

w′
1z4 = O(1) and

∫
Σ∩{z∈(0,π)}

w′
2z4 = O(1),

as Rrot → ∞. Then

M2 =

⎡
⎢⎢⎢⎣

∫
w1z1

∫
w1z2

∫
w1z3

∫
w1z4∫

w2z1
∫
w2z2

∫
w2z3

∫
w2z4∫

w′
1z1

∫
w′

1z2
∫
w′

1z3
∫
w′

1z4∫
w′

2z1
∫
w′

2z2
∫
w′

2z3
∫
w′

2z4

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 0 −π −π

0 0 −π π

−π sin(α) π cos(α) 0 O(1)
π sin(α) π cos(α) 0 O(1)

⎤
⎥⎥⎥⎦ + o(1)
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This shows that M2 is invertible if we fix both Rrot + 10 < Rtr large, which finishes the 
proof. �
5. Linear theory

Let E = M ∩ {s ≥ δs
3ε}. In this section we construct a right inverse of the operator 

Δ + |A|2 + ε∂z on E . More precisely, given h defined on E with some decay, we want a 
solution φ of

Δφ + |A|2φ + ε∂zφ = h on E . (5.1)

Given α, γ ∈ (0, 1), let us define the following norms:

‖φ2‖∗,E = ε2 sup
x∈E

eγδs/ε+γεs(x)‖φ2‖C2,α(B1(x)), (5.2)

‖h2‖∗∗,E = sup
x∈E

eγδs/ε+γεs(x)‖h2‖C2,α(B1(x)),

where B1(x) is the geodesic ball with center x and radius 1, and s is the function defined 
in the construction of M, Section 2. The factor eγδs/ε in front of both norms is not 
immediately relevant; it will be useful later.

We have the following result.

Proposition 5.1. Let 0 < γ < 1. There is a linear operator that associates to a function 
h defined on E with ‖h‖∗∗,E < ∞ a solution φ to (5.1). Moreover,

‖φ‖∗,E ≤ C‖h‖∗∗,E .

For the proof, we scale to size one, that is, we work on Ẽ = εE . Then (5.1) becomes 
equivalent to

Δφ + |A|2φ + ∂zφ = h̃ on Ẽ , (5.3)

with h̃(x) = ε−2h(x/ε).
We study the linear operator on the unbounded pieces in the following section, then we 

deal with the bounded piece in Section 5.2. We point out that in the radially symmetric 
case, a related linear theory for the Jacobi operator was developed on [10].

5.1. Linear theory on the ends

Let Eu be any of the unbounded components of E and Ẽu = εEu. We introduce 
coordinates on Ẽu as follows. Consider a curve

s �→ (γ1(s), γ3(s)),
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parametrized by arc length, with s ∈ [0, ∞) and γ′
1(s) > 0, that solves the ordinary dif-

ferential equation (2.3) with initial conditions at s = 0 chosen to be compatible with the 
construction of the initial approximation M in Section 2.5. These initial conditions are 
functions of the parameters of the construction, in particular, the parameters β1, β4, τ1, τ4
used in the dislocations are all in [−δp, δp]. We note that the s here differs from the s in 
the construction of M in Section 2 by a shift and a scaling.

Then

X0 = ν0(s, θ) = (γ1(s) cos(θ), γ1(s) sin(θ), γ3(s))

s ∈ [0, ∞), θ ∈ [0, 2π], parametrizes part of the catenoid W or the paraboloid P. Let

ν0(s, θ) = (−γ′
3(s) cos(θ),−γ′

3(s) sin(θ), γ′
1(s))

be a unit normal vector. Then a parametrization of the unbounded end Ẽu is given by

X(s, θ) = X0(s, θ) + ν0(s, θ)f(s/ε, θ/ε) (5.4)

where f is essentially a cut-off function times fα, the function that allows one to write 
the Scherk surface as a graph over a plane, see Lemma 2.2. The important properties of 
f are that |∂kf(s̃, θ̃)| ≤ Cke

−δs/(10ε) for some Ck and that it vanishes for s̃ ≥ 10δs/ε.
We have the following expression for the operator Δ + |A|2 + ∂z in the coordinates s

and θ:

Δφ + |A|2φ + ∂zφ = ∂ssφ + 1
γ1(s)2

∂θθφ +
(
γ′
1(s)

γ1(s)
+ γ′

3(s)
)
∂sφ + |A|2φ + L̃φ (5.5)

where L̃ is a second order differential operator in φ with coefficients that are o(1) as ε → 0
and supported in s ∈ [0, 10δs]. Using (2.5) and the fact that the principal curvatures of 
a surface of revolution z = F (r) are given by

κ1 = F ′′(r)
(1 + F ′(r)2)3/2

, κ2 = F ′(r)
r(1 + F ′(r)2)1/2

,

we can write

Δφ + |A|2φ + ∂zφ = ∂ssφ + a(s)∂θθφ + b(s)∂sφ + |A|2φ + L̃φ,

where we have the following properties of the coefficients:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a(s) = 1
2s(1 + O(s−1/2))

b(s) = 1 + O(s−1/2)

|A|2 = 1
2s(1 + O(s−1/2))

(5.6)

as s → ∞, and a(s) > 0 for all s ≥ 0.
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Let

L0φ = ∂ssφ + a(s)∂θθφ + b(s)∂sφ + |A|2φ,

and consider the equation

L0φ = h, s ∈ (0,∞), θ ∈ [0, 2π]. (5.7)

To prove Proposition 5.1, we will first construct an inverse operator for L0.

Proposition 5.2. Let 0 < γ < 1. There is a linear operator h �→ φ that associates to a 
function h = h(s, θ) that is defined for (s, θ) ∈ (0, ∞) × [0, 2π], is 2π-periodic in θ, and 
satisfies ‖eγsh‖L∞ < ∞, a solution φ of (5.7) that is 2π-periodic in θ and satisfies

‖eγsφ‖L∞ ≤ C‖eγsh‖L∞ .

For the proof of this result, we will write h and φ in Fourier series

φ(s, θ) =
∑
k∈Z

φk(s)eikθ, h(s, θ) =
∑
k∈Z

hk(s)eikθ. (5.8)

Then, if φ is smooth with exponential decay, equation (5.7) is equivalent to

φ′′
k + b(s)φ′

k + (|A|2 − a(s)k2)φk = hk, for all s > 0, k ∈ Z. (5.9)

We need a couple of lemmas before starting the proof of Proposition 5.2. They allow us 
to deal with the low modes, i.e. |k| ≤ k0 for some fixed k0, so we can focus our attention 
on the higher frequencies.

Lemma 5.3. Let 0 < γ < 1. If |hk(s)| ≤ Ce−γs, then (5.9) has a unique solution φk with

‖eγsφk‖L∞ ≤ Ck‖eγshk‖L∞ .

Proof. As s → ∞, equation (5.9) with hk = 0 is asymptotic to

φ′′
k + φ′

k + bk
s
φk = 0, (5.10)

where bk = 1−k2

2 . Note that b0 = 1
2 , b1 = 0, and bk < 0 for k > 1. We see that the 

homogeneous equation (5.10) has two independent solutions with the behaviors s−bk(1 +
O(s−1)) and sbke−s(1 + O(s−1)) as s → ∞. Using these solutions, it is possible to 
construct, for each k ≥ 0, two elements z1,k and z2,k in the kernel of the operator 
φ′′ + b(s)φ′ + (|A|2 − a(s)k2)φ such that

z1,k(s) = s−bk(1 + O(s−σ)), z2,k(s) = sbke−s(1 + O(s−σ)),
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as s → ∞, where σ ∈ (0, 1). Now we can construct the solution φk using the variation 
of parameters formula:

φk = −z1,k

∫
hkz2,k

Wk
+ z2,k

∫
hkz1,k

Wk
,

where Wk = z1,kz
′
2,k−z′1,kz2,k = e−s(1 +O(s−σ)) and the integrals are chosen to have the 

desired decay. For an alternative construction, one can use the super solution φ̄ = e−γs

and the calculation as in Lemma 5.4. �
Let k0 ∈ N and φ be a bounded measurable function on [0, ∞) × [0, 2π]. We will say 

that the Fourier coefficients of φ of order less than k0 vanish if

2π∫
0

φ(s, θ)e−ikθ dθ = 0, ∀s > 0, ∀|k| < k0.

Lemma 5.4. There is a k0 with the following property: Suppose that φ and h are two 
functions that are 2π-periodic in θ, satisfy (5.7) and

φ(0, θ) = 0 ∀θ ∈ [0, 2π],

‖eγsφ‖L∞ < ∞, ‖eγsh‖L∞ < ∞.

In addition, if φ is continuous and the Fourier coefficients of order less than k0 of φ and 
h are zero, then there is a constant C independent of φ and h such that

‖eγsφ‖L∞ ≤ C‖eγsh‖L∞ .

Proof. We proceed by contradiction and assume that the statement fails. We then have 
two sequences φn, hn such that φn, hn are 2π-periodic in θ, with vanishing Fourier 
coefficients of order less than k0 (k0 will be fixed later), φn solves (5.7) with right hand 
side hn, φn(0, θ) = 0 for θ ∈ [0, 2π], and

‖eγsφn‖L∞ = 1, ‖eγshn‖L∞ → 0, as n → ∞. (5.11)

Consider φ̄(s) = e−γs. By (5.6) we see that

L0φ̄ = (γ2 − γ)e−γs(1 + O(s)) ≤ γ2 − γ

2 e−γs

for s ≥ s0 (here we fix s0 > 0 large). Using the maximum principle with φ̄ + σe−γ̃s for 
0 < γ̃ < γ and σ > 0, and then letting σ → 0, we obtain

‖eγsφn‖L∞((s0,∞)×[0,2π])) ≤ C‖eγshn‖L∞ + C‖eγsφn‖L∞((0,s0)×[0,2π])).
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From this and (5.11), we deduce that for a subsequence (also denoted φn)

‖eγsφn‖L∞((0,s0)×[0,2π])) ≥ c0

for some constant c0 > 0. By standard elliptic estimates, up to a new subsequence, 
φn → φ uniformly on compact subsets of [0, ∞) × [0, 2π] and by the previous remark, 
φ �≡ 0. But because of (5.11), φ satisfies

L0φ = 0 in (0,∞) × [0, 2π],

with φ(0, θ) = 0 and |φ(s)| ≤ e−γs.
Let us now expand φ in Fourier series as in (5.8). Due to the hypotheses, φk = 0 for 

|k| < k0. Note that φk satisfies (5.9) with the right-hand side equal to 0 and φk(0) = 0.
Once again, we use the function φ̄(s) = e−γs as a barrier because

φ̄′′ + b(s)φ̄′ + (|A|2 − a(s)k2)φ̄ =
(
γ2 − γb(s) + |A|2 − a(s)k2

)
e−γs.

From the fact that a(s) > 0 for all s ≥ 0 and the estimates on the coefficients (5.6), we 
see that there is a k0 such that

φ̄′′ + b(s)φ̄′ + (|A|2 − a(s)k2)φ̄ < −cke
−γs, ∀|k| ≥ k0, ∀s ≥ 0, (5.12)

where ck > 0. From the maximum principle, we deduce that φk ≡ 0 for all |k| ≥ k0. This 
is a contradiction. �
Proof of Proposition 5.2. Let k0 be as in Lemma 5.4. Using Lemma 5.3, for each |k| < k0, 
we find a solution φk of (5.9) in (0, ∞). Then we need to prove the proposition only under 
the assumption that the Fourier coefficients of order less than k0 of h vanish.

For the moment, let us assume in addition that h is C2 and

|hθθ(s, θ)| ≤ Ce−γs for all (s, θ) ∈ [0,∞) × [0, 2π]. (5.13)

Write h in Fourier series as in (5.8) for |k| ≥ k0, we can find a solution φk of (5.9) in (0, ∞)
with right-hand side hk, satisfying φk(0) = 0. This can be done using the supersolution 
φ̄(s) = e−γs and (5.12). Alternatively, one can use the variation of parameters formula 
and elements in the kernel as in Lemma 5.3. For m > k0, let

φm(s, θ) =
∑

k0≤|k|≤m

eikθφk(s)

and similarly define hm. By Lemma 5.4,

‖eγsφm‖L∞ ≤ C‖eγshm‖L∞ ,
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with C independent of m. Note that

|hk(s)| = 1
2π

∣∣∣∣∣∣
2π∫
0

h(s, θ)eikθ dθ

∣∣∣∣∣∣ = 1
2πk2

∣∣∣∣∣∣
2π∫
0

hθθ(s, θ)eikθ dθ

∣∣∣∣∣∣ ≤
C

k2 e
−γs.

Then

|hm(s, θ)| =

∣∣∣∣∣∣
∑

k0≤|k|≤m

hk(s)eikθ
∣∣∣∣∣∣ ≤

∑
k0≤|k|≤m

|hk(s)| ≤ Ce−γs
∑

k0≤|k|≤m

k−2.

Therefore

‖eγsφm‖L∞ ≤ C,

with C independent of m. By standard elliptic estimates, for a subsequence m → ∞
we find φm → φ uniformly on compact subsets of [0, ∞) × [0, 2π] and φ is the desired 
solution.

Next, we lift the assumption (5.13). Indeed, assume only ‖eγsh‖L∞ < ∞ and that the 
Fourier coefficients of h vanish for |k| < k0. Let ρn be a sequence of mollifiers in R2 and

hn = h ∗ ρn

(extending h by 0 for s ≤ 0). We have hn → h almost everywhere. The Fourier coefficients 
of order less than k0 of hn vanish and

|hn(s, θ)| ≤ Ce−γs,

|∂θθhn(s, θ)| ≤ Cne
−γs.

Using the previous argument we find a solution φn with

‖eγsφn‖L∞ ≤ C‖eγshn‖L∞ ≤ C,

with C independent of n and right-hand side hn. Passing to a subsequence, we find the 
desired solution. �
5.2. Linear theory on the bounded piece

Let us consider the bounded component Eb of E = M \ {s ≤ δs
3ε} and let Ẽb = εEb.

Lemma 5.5. For h ∈ Cα(Ẽb), there is a unique solution φ of
{

Δφ + |A|2φ + ∂zφ = h in Ẽb
φ = 0 on ∂Ẽb.
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with

‖φ‖L∞ ≤ C‖h‖L∞ , (5.14)

where the constant C is independent of h and φ.

Proof. Let Lφ be Δφ + |A|2φ + ∂zφ, where the geometric quantities and Laplacian are 
the ones for Ẽb. We let L0 denote the corresponding operator for the paraboloid P.

We can parametrize P with polar coordinates

X0(r, θ) = (r cos(θ), r sin(θ), F (r)),

with r ≥ 0, θ ∈ [0, 2π], where F = F0 is the unique radially symmetric solution of (2.1)
with F (0) = 0. Then, in the coordinates r and θ,

L0φ = B1(r)φrr + B2(r)φr + 1
r2φθθ + A2(r)φ,

where

B1(r) = 1
1 + F ′(r)2 ,

B2(r) = 1
r(1 + F ′(r)2) − F ′(r)F ′′(r)

(1 + F ′(r)2)2 ,

A2(r) = F ′′(r)2

(1 + F ′(r)2)3 + F ′(r)2

r2(1 + F ′(r)2) .

As before, we denote by ν0 the unit normal vector to P such that 〈ν0, ez〉 > 0. The 
surface Ẽb can then be parametrized by

X0(r, θ) + ν0(r, θ)f(r/ε, θ/ε)

for r ∈ [0, R1], θ ∈ [0, 2π], with some R1 > 0, and where f has the property that 
f(r/ε, θ/ε) is supported where r ∈ [R1 − 10δs, R1] and f and its derivatives can be 
bounded by e−δs/(10ε). This implies that

Lφ = L0φ + L̃φ,

where L̃ is a second order differential operator in φ with coefficients that are o(1) as 
ε → 0 and supported in r ∈ [R1 − 10δs, R1].

Let v(r) = 〈ν0, ez〉. Then L0v = 0 and v(r) > 0 for all r ≥ 0. We define now

φ̄(r) = v(r) − μe−Kr,

where μ = 1 infr∈[0,R1] v(r) > 0 and K > 0 is to be chosen. Then, we compute
2
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Lφ̄ = μe−Ks
[
−B1(r)K2 + KB2(r) −A2(r)

]
− μL̃(e−Ks) + L̃v.

But L̃v = O(ε), L̃(e−Kr) = o(1)K2e−Kr where in the last expression o(1) is uniform in 
K as ε → 0. Since B1(r) is positive in [0, R1] we can choose K large so that

Lφ̄ ≤ −c, ∀r ∈ [0, R1],

for some c > 0 and all ε > 0 small. Then φ̄ is a super solution for the operator L and 
hence the bound (5.14) holds. The equation is solved then by super and subsolutions. �
Proof of Proposition 5.1. Let 0 < γ < 1.

Let us consider first one of the unbounded ends Eu and Ẽu = εEu. Recall that Ẽu is 
parametrized by (5.4) so s ≥ 0, θ ∈ [0, 2π) are global coordinates on this surface. We 
write s(x) for x ∈ Ẽu. Using s, θ we may identify Ẽu with an unbounded piece of the 
paraboloid or catenoid. We write this piece as Eu.

Let α ∈ (0, 1) and define the norms for functions defined on Eu:

‖h‖k,α = sup
x∈Eu

eγs(x)‖h‖Ck,α(B1(x)),

where B1(x) is the geodesic ball of center x and radius 1 in Eu.
If h is defined on Eu and ‖h‖0,α < ∞, using Proposition 5.2, we obtain a solution 

φ = T0(h) of (5.7), 2π-periodic in θ, and such that

‖eγsT0(h)‖L∞ ≤ C‖eγsh‖L∞ ≤ C‖h‖0,α.

By considering φ and h as functions on Eu, equation (5.7) becomes

ΔEu
φ + |AEu

|2φ + ∂zφ = h on Eu.

Standard elliptic estimates, applied on geodesic balls of radius 1 of Eu, give that

‖φ‖2,α ≤ C(‖h‖0,α + ‖φ‖C2,α(∂Eu)).

Note that ∂Eu in the coordinates s, θ corresponds to s = 0. Consider the representations 
of φ and h as Fourier series as in (5.8). We recall that, by construction, if φ = T0(h)
then φ(0, ·) has Fourier modes of index |k| ≥ k0 equal to zero, where k0 is a fixed integer. 
Hence

‖φ‖C2,α(∂Eu) ≤ C
∑

|k|≤k0

|φk(0)|.

The solutions φk are constructed in Lemma 5.3 and, in particular, we have |φk(0)| ≤
Ck‖eγshk‖L∞ . From this, we deduce
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‖φ‖C2,α(∂Eu) ≤ C‖eγsh‖L∞ ,

and hence

‖T0(h)‖2,α ≤ C‖h‖0,α. (5.15)

To solve equation (5.3), we rewrite it as

ΔEu
φ + |AEu

|2φ + ∂zφ = h + L̃φ on Eu, (5.16)

where L̃ a second order elliptic equation with coefficients that are o(1) as ε → 0 and 
with compact support. This translates to

‖L̃φ‖0,α ≤ o(1)‖φ‖2,α. (5.17)

Using the operator T0, we can find a solution of (5.16) by solving the fixed point problem

φ = T0(h + L̃φ)

in the Banach space {φ ∈ C2,α(Eu) : ‖φ‖2,α < ∞}. By (5.15), (5.17) and the contraction 
mapping principle, this fixed point problem has a unique solution. This yields a solution 
of (5.3). By scaling we obtain therefore a solution of (5.1) in any of the unbounded ends.

The proof for the bounded component Eb of E = M \ {s ≤ δs
3ε} is similar, if one uses 

Lemma 5.5, and the fact that the boundary condition is taken equal to 0. �
6. Proof of Theorem 1.1

To prove the theorem, it is sufficient to find a solution φ of (1.10), that is,

Δφ + |A|2φ + ε∇φ · ez + E + Q(x, φ,∇φ,D2φ, x) = 0 in M, (6.1)

where M is the surface constructed in Section 2, which depends on β1, β2, τ1, τ4 ∈
[−δp, δp], and E = H − εν · ez. Later, we will verify that {x + φ(x)ν(x) : x ∈ M}
is an embedded complete surface.

Thanks to Proposition 1.2, E = E0 + Ed with ‖E0‖∗∗ ≤ Cε and

Ed = τ1w1 + τ4w2 + β1w
′
1 + β4w

′
2 + O

(∑
β2
i + τ2

i

)
,

where O
(∑

β2
i + τ2

i

)
are smooth functions with compact support, with ‖ ‖∗∗ bounded 

by 
∑

i=1,4 β
2
i + τ2

i . Thus (6.1) takes the form

Δφ + |A|2φ + ε∇φ · ez + Ẽ + Q(φ,∇φ,D2φ) + τ1w1 (6.2)

+ τ4w2 + β1w
′
1 + β4w

′
2 = 0, in M,
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where Ẽ = E0 + O
(∑

i=1,4 β
2
i + τ2

i

)
. Hence,

‖Ẽ‖∗∗ ≤ C

⎛
⎝ε +

∑
i=1,4

(
β2
i + τ2

i

)⎞⎠ .

Note that M = M[β1, β2, τ1, τ2] and the unknowns are φ and β1, β2, τ1, τ2.
We look for a solution φ of (6.2) of the form

φ = η1φ1 + η2φ2,

where φ1, φ2 are new unknown functions, which solve an appropriate system, and η1, η2
are smooth cut-off functions such that

η1(s) =

⎧⎨
⎩

1 if s ≤ 2δs
ε − 1

0 if s ≥ 2δs
ε

η2(s) =

⎧⎨
⎩

0 if s ≤ δs
3ε

1 if s ≥ δs
2ε

,

where s = s(x) measures geodesic distance from the core of M.
We introduce next the following system for φ1, φ2:

Δφ1 + |A|2φ1 + ε∂zφ1 = −εφ2∂zη2 − 2∇φ2∇η2 − φ2Δη2

− η̃1(Ẽ + Q(x, φ,∇φ,D2φ)) − τ1w1 + τ4w2 + β1w
′
1 + β4w

′
2 in C (6.3)

Δφ2 + |A|2φ2 + ε∂zφ2 = −εφ1∂zη1 − 2∇φ1∇η1 − φ1Δη1

− η̃2((Ẽ + Q(x, φ,∇φ,D2φ))) in E , (6.4)

where E = M ∩{s ≥ δs
3ε} is the union of the ends, C = M ∩{s ≤ 2δs

ε } is close to a Scherk 
surface, and η̃1, η̃2 are smooth cut-off functions such that:

η̃1(s) =

⎧⎨
⎩

1 if s ≤ δs
ε − 1

0 if s ≥ δs
ε

η̃2(s) = 1 − η̃1(s).

In the term Q(φ, ∇φ, D2φ) of (6.3), (6.4), φ means φ = φ1η1 +φ2η2. If φ1, φ2 solve (6.3), 
(6.4), then multiplying (6.3) by η1 and (6.4) by η2 we see that φ = φ1η1 + φ2η2 is a 
solution of (6.2).

Using the change of variables introduced in the construction of M in Section 2, we 
see that solving (6.3) is equivalent to finding a solution to
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ΔΣφ1 + |AΣ|2φ1 = L′φ1 − ε∂zφ1 − εφ1∂zη1 − εφ2∂zη2 − 2∇φ2∇η2 − φ2Δη2

− η̃1(Ẽ + Q(x, φ,∇φ,D2φ)) − τ1w1 + τ4w2 + β1w
′
1 + β4w

′
2 in Σ, (6.5)

where now all the functions are considered on the Scherk surface Σ so that ΔΣ and AΣ

refer to the Laplace operator and second fundamental form of Σ. By Proposition 3.4, 
L′ is a second order operator with coefficients supported on s ≤ 2δs/ε and whose C1

norms on the region s ≤ 5δs/ε are bounded by δs + δp + ε. In principle, by the change 
of variables, we need to solve (6.5) on a subset of Σ, but finding a solution in all Σ is 
sufficient. This solution is multiplied later by the cut-off η1.

Similarly, we consider E0 = M0 ∩ {s ≥ δs
3ε}, where M0 is the initial approximation 

corresponding to β1 = β2 = τ1 = τ2 = 0. For |βi| + |τi| ≤ δp and δp > 0 fixed small, E is 
mapped onto E0 and this mapping allows us to write (6.4) as

ΔE0φ2 + |AE0 |2φ2 + ε∂zφ2 = L′′φ2 − 2∇φ1∇η1 − φ1Δη1

− η̃2((Ẽ + Q(x, φ,∇φ,D2φ))) in E0,

where now all functions are considered on the Scherk surface E0. In particular, ΔE0 and 
AE0 refer to the Laplace operator and second fundamental form of E0. The operator L′′

has coefficients whose C1 norms are o(δp) as δp → 0. Indeed, one can see this using the 
form of the operator on the ends in (5.5) and the continuous dependence of ODE on 
initial conditions, because the parameters βi, τi determine the initial condition for the 
differential equation (2.3).

We solve (6.5) on the Scherk surface using Proposition 4.2 with norms

‖φ1‖∗,Σ = sup
x∈Σ

eγs(x)‖φ1‖C2,α(B1(x)), (6.6)

‖h1‖∗∗,Σ = sup
x∈Σ

eγs(x)‖h1‖Cα(B1(x)).

We consider the system (6.4), (6.5) as a fixed point problem for (φ1, φ2, β1, β2, τ1, τ2)
belonging to the subset B of C2,α(Σ) × C2,α(E0) × R

4 defined by

B = {(φ1, φ2, β1, β2, τ1, τ2) | max
i=1,2

(‖φi‖∗,Σ, |βi|, |τi|) ≤ Mε},

where M > 0 is a constant to be chosen later and the norms are defined in (5.2) and 
(6.6).

Consider (φ1, φ2, β1, β2, τ1, τ2) ∈ B. We define F (φ1, φ2, β1, β2, τ1, τ2) as follows. Using 
Proposition 4.2, we let φ̄1, β̄1, β̄2, τ̄1, τ̄2 be the solution of

ΔΣφ̄1 + |AΣ|2φ̄1 = L′φ1 − ε∂zφ1 − εφ1∂zη1 − εφ2∂zη2 − 2∇φ2∇η2 − φ2Δη2

− η̃1(Ẽ + Q(x, φ,∇φ,D2φ)) − τ̄1w1 + τ̄4w2 + β̄1w
′
1 + β̄4w

′
2 in Σ. (6.7)
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In the right-hand side of this equation, all terms are well defined in spite of the fact 
that φ1, φ2 (after changing variables) are defined only on some subsets, because of the 
cut-off functions. As we will verify later, the right-hand side has finite ‖ ‖∗∗,Σ norm, thus 
Proposition 4.2 applies. Next, using Proposition 5.1, we find a solution of

ΔE0 φ̄2 + |AE0 |2φ̄2 + ε∂zφ2 = L′′φ2 − 2∇φ1∇η1 − φ1Δη1

− η̃2(Ẽ + Q(x, φ,∇φ,D2φ)) in E0, (6.8)

where the right-hand side will be proven to have finite ‖ ‖∗∗,E0 norm. We define

(φ̄1, φ̄2, β̄1, β̄2, τ̄1, τ̄2) = F (φ1, φ2, β1, β2, τ1, τ2).

Let us verify that F maps B into B and is a contraction. Consider

(φ1, φ2, β1, β2, τ1, τ2) ∈ B

and let (φ̄1, φ̄2, β̄1, β̄2, ̄τ1, ̄τ2) = F (φ1, φ2, β1, β2, τ1, τ2). Using (4.10) and standard elliptic 
estimates, we deduce

‖φ̄1‖∗,Σ + |β̄i| + |τ̄i|
≤ C‖L′φ1 − ε∂zφ1 − εφ1∂zη1 − εφ2∂zη2 − 2∇φ2∇η2 − φ2Δη2‖∗∗,Σ

+ ‖η̃1(Ẽ + Q(x, φ,∇φ,D2φ))‖∗∗,Σ. (6.9)

We first remark that, by Proposition 1.2, we have

‖η̃1Ẽ‖∗∗,Σ ≤ CEε.

If x lies in the support of η2, that is, δs3ε ≤ s(x) ≤ δs
2ε , then

‖Δη2‖Cα(B1(x)) ≤ Cε2, ‖φ2‖Cα(B1(x)) ≤ ε−2e−γδs/ε−εγs(x)‖φ2‖∗,E0 .

Then

‖φ2Δη2‖∗∗,Σ ≤ Ce−
δs
2ε ‖φ2‖∗,E0 .

Similarly,

‖∇φ2∇η2‖∗∗,Σ ≤ Cε−1e−
δs
2ε ‖φ2‖∗,E0 and ‖φ2∂zη2‖∗∗,Σ ≤ Cε−1e−

δs
2ε ‖φ2‖∗,E0 .

Because the C1 norm of the coefficients of L′ in s ≤ 5δs/ε are bounded by C(δp+δs+ε), 
we have

‖L′φ1‖∗∗,Σ ≤ C(δp + δs + ε)‖φ1‖∗,Σ.
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Also,

‖ε∂zφ1‖∗∗,Σ ≤ Cε‖φ1‖∗,Σ.

For the Q term, analogously to Proposition 1.3, we have

‖η̃1Q(x, φ,∇φ,D2φ)‖∗∗,Σ ≤ C‖φ1‖2
∗,Σ + Cε−4e−

γδs
ε ‖φ2‖2

∗,E0
.

Therefore, using (6.9) and the previous inequalities, we obtain

‖φ̄1‖∗,Σ ≤ CCEε + Cε−1e−
δs
2ε ‖φ2‖∗,E0 + C(δp + δs + ε)‖φ1‖∗,Σ

+ C‖φ1‖2
∗,Σ + Cε−4e−

γδs
ε ‖φ2‖2

∗,E0
,

which gives

‖φ̄1‖∗,Σ
≤ CCEε + Cε−1e−

δs
2εMε + C(δp + δs + ε)Mε + CM2ε2 + Cε−4e−

γδs
ε M2ε. (6.10)

To estimate φ̄2, we use Proposition 5.1 to obtain

‖φ̄2‖∗,E0 ≤ C‖L′′φ2 − 2∇φ1∇η1 − φ1Δη1 − η̃2(Ẽ + Q(φ,∇φ,D2φ))‖∗∗,E0 . (6.11)

We first remark that, by Proposition 1.2, we have

‖η̃2Ẽ‖∗∗,E0 ≤ CEε.

We note that Δη1 is supported on 2δs
ε − 1 ≤ s ≤ 2δs

ε . Using the smoothness of η1, we 
get

‖φ1Δη1‖∗∗,E0 + ‖∇φ1∇η1‖∗∗,E0 ≤ Ce−
γδs
ε ‖φ1‖∗,Σ.

Again, as in Proposition 1.3, we have

‖η̃2Q(x, φ,∇φ,D2φ)‖∗∗,E0 ≤ C‖φ1‖2
∗,Σ + Cε−4e−

γδs
ε ‖φ2‖2

∗,E0
.

Combining (6.11) with the previous inequalities, we arrive at

‖φ̄2‖∗,Σ ≤ CCEε + o(δp)Mε + C e−
δs
2ε Mε + CM2ε2 + Cε−4e−

γδs
ε M2ε. (6.12)

The right-hand sides of (6.10) and (6.12) are less than Mε provided M is chosen large 
(for example 2CCE). Then we fix δp, δs small and work with small ε > 0. A similar 
estimate holds for β̄i, τ̄i and this shows that F maps B to itself.

Let us verify that F is a contraction in B. For this, we first claim that
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|F (φ1, φ2, β1, β2, τ1, τ2) − F (ψ1, ψ2, β1, β2, τ1, τ2)| ≤ o(1)(‖φ1 − ψ1‖∗,Σ + ‖φ2 − ψ2‖∗,E0)

for (φ1, φ2, β1, β2, τ1, τ2), (ψ1, ψ2, β1, β2, τ1, τ2) ∈ B, where o(1) is small if we choose the 
parameters δp, δs > 0 small and then let ε be small. The estimate relies on the same 
computations as before for the terms that are linear in φ1, φ2 in the right-hand side of 
equations (6.7) and (6.8). For the nonlinear terms, it is enough to have the following 
inequalities, whose proof is similar to Proposition 1.3: For φ = η1φ1 + η2φ2, ψ = η1ψ1 +
η2ψ2,

‖η̃1Q(x, φ,∇φ,D2φ) − η̃1Q(x, ψ,∇ψ,D2ψ)‖∗∗,Σ

≤ C(‖φ1‖∗,Σ + ‖φ2‖∗,E0 + ‖ψ1‖∗,Σ + ‖ψ2‖∗,E0)(‖φ1 − ψ1‖∗,Σ + ‖φ2 − ψ2‖∗,E0)

and there is a similar estimate for η̃2Q. The Lipschitz dependence of F on βi, τi with 
small Lipschitz constant is proved using the fact that, in each term in the right-hand 
side of (6.7) and (6.8), either the dependence on the parameters is Lipschitz with small 
constant or is quadratic (this is the case of Ẽ).

By the contraction mapping principle, for ε > 0 small, F has a unique fixed point 
in B. This gives the desired solution.
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