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Abstract—Clustering is one of the main data mining tasks with
many proven techniques and successful real-world applications.
However, in changing environments, the existing systems need to
be regularly updated in order to describe in the best possible way
an observed phenomenon at each point in time. Since changes lead
to uncertainty, the respective systems also require an adequate
modeling of the involved kinds of uncertainty. This paper presents
a novel method for dynamic clustering called dynamic rough-fuzzy
support vector clustering (D-RFSVC). Its main idea is to take ad-
vantage of the knowledge acquired in previous cycles to speed up
model updating while tracking the structural changes that clus-
ters can experience over time. The core method of the proposed
approach is the well-known support vector clustering algorithm,
which can be used for large datasets employing powerful optimiza-
tion techniques. The computational experiments, together with a
conceptual and numerical comparative study, highlight the poten-
tial D-RFSVC has in dynamic environments.

Index Terms—Dynamic data mining, fuzzy systems, support
vector clustering (SVC), visualization.

I. INTRODUCTION

C LUSTERING is one of the main approaches for reducing
the complexity related to huge volumes of data. A plethora

of methods have been proposed for this purpose, which are used,
e.g., to segment customers, images, products, or any other rele-
vant kind of observations. Most of these applications, however,
are static in the sense that they analyze data snapshots. On the
other hand, almost all real-world phenomena are dynamic and
characterized by data structures that change over time. Thus,
clustering dynamically changing data plays an important role in
practice and will be one of the main original contributions of
this paper.

Most of the organizations are challenged, e.g., by varying en-
vironments, which underlines the necessity of adapting systems
for decision support. Dynamic clustering for customer segmen-
tation is an example where updated information on customer be-
havior could lead to better decisions. Obviously, market players
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who detect changes of customer preferences first might obtain a
strategic advantage over their competitors. But business-related
applications are not the only ones that require evolving systems.
Other domains also have to face dynamism, e.g., in healthcare
where patients are monitored over time; crime analytics, where
the dynamics of the so-called hotspots are studied [1]; and anal-
ysis of weather data (see Section V-C), to mention just a few.
This has motivated an increasing number of researchers to en-
rich and extend traditional static clustering by dynamic versions
[2]–[6].

In general, changes lead to uncertainty, thus making uncer-
tainty modeling especially important for dynamic clustering [7],
[8]. Many related clustering approaches have been developed,
from areas such as probability theory [9], fuzzy set theory [10],
possibility theory, and rough set theory, among others, address-
ing different kinds of uncertainty. In this paper, we focus on a
combination of fuzzy logic with rough sets, which offers partic-
ular advantages for dynamic clustering, as will be shown below.

Although many dynamic clustering algorithms have proven
their advantages in real-world applications, such as traffic man-
agement [2], customer segmentation [5], and weather analysis
[11], among others, they maintain the main drawbacks of the
core methods used for the clustering process. These are spherical
cluster shapes, cluster centers as prototypes, and an inadequate
treatment of outliers. However, real-world datasets are not nec-
essarily distributed spherically, so center-based prototypes are
not always the best representatives. Furthermore, it might be
important to recognize outliers accordingly [12], especially in
a dynamic setting, since these outliers could provide impor-
tant information on upcoming changes in the underlying data
structure.

These considerations motivated the development of a dy-
namic clustering algorithm that is able to deal with flexible
cluster structures and prototypes, providing degrees of mem-
bership of outliers to the clusters found in order to trace their
evolution over time. Support vector clustering (SVC) [13] and
its soft computing derivative, rough-fuzzy support vector clus-
tering (RFSVC) [14], are two algorithms that fulfill the previ-
ously mentioned properties; however, they work only on static
datasets.

The objective of this paper is to introduce dynamic rough-
fuzzy support vector clustering (D-RFSVC) comprehensively.
Each step of the respective method consists of a sound and novel
mathematical development to treat changing data structures.
D-RFSVC is applied to artificial, benchmark, and real-world
datasets.

In Section II, some basic concepts of dynamic clustering
and related algorithms are discussed briefly. In the subsequent
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section, we present the static version of RFSVC. Section IV
introduces the details of the proposed method. The results of
our experiments are shown in Section V. Finally, Section VI
concludes this paper and provides ideas for possible future
developments.

II. LITERATURE OVERVIEW

A. Foundations of Dynamic Clustering

The objective of traditional (static) clustering is to group sim-
ilar objects in one cluster and dissimilar objects in different clus-
ters. The respective clustering algorithms require static datasets,
in the sense that both objects to be clustered and clusters have to
be static. An object is considered to be static if its feature vector
contains just current values, i.e., feature values are “snapshots”
and do not reflect development over time. Similarly, clusters are
static if their respective structure does not change over time, i.e.,
the number of clusters, their shape, and position remain stable
[4]. Allowing objects and/or clusters to become dynamic leads
to the following categories of dynamic cluster analysis [2], [15].

1) Static objects and static clusters: The traditional case
where static data are observed and there is no need to
update the respective model.

2) Dynamic objects and static clusters: The case where fea-
ture values change over time, leading to feature trajecto-
ries rather than feature values.

3) Static objects and dynamic clusters: In this case, the ex-
isting objects maintain their previous feature values; how-
ever, new objects arrive at the dataset causing possibly a
changing cluster structure.

4) Dynamic objects and dynamic clusters: The most general
case, where objects, as well as clusters, can change over
time.

To cope with the challenges posed by the dynamics of a given
environment, soft computing approaches are of particular in-
terest since changes lead to uncertainty that has to be treated
adequately [4]. As a consequence, techniques for uncertainty
modeling have been integrated successfully into dynamic clus-
tering algorithms [2], [5], [7], [11], [16]–[18].

A common characteristic of most of these algorithms is the
use of the so-called dynamic clustering cycle [4], which consists
of the following generic steps.

1) The classifier with its respective parameters is applied to
an initial dataset.

2) The dataset is updated in each new cycle by adding new
data and, optionally, by removing data from obsolete clus-
ters.

3) The static cluster algorithm is applied to classify the new
dataset.

4) The classification results are analyzed for structural
changes.

5) If relevant changes are detected, cluster parameters are
updated.

6) Go back to Step 2.
In the case of a particular algorithm for dynamic clustering

with soft computing approaches, these generic steps have to be
specified, and criteria for model updating have to be developed.

Various structural changes have been proposed in the literature;
the most common ones are the following:

1) Create new clusters.
2) Move current clusters.
3) Merge existing clusters.
4) Eliminate obsolete clusters.
For each of these structural changes, specific conditions have

to be accomplished in order to be recognized by the respective
dynamic clustering scheme, as will be shown in Section II-B.

B. Related Dynamic Clustering Algorithms

Dynamic clustering algorithms can deal with static/dynamic
objects and static/dynamic clusters; see Section II-A. The case of
dynamic objects is usually known as clustering of trajectories,
which goes beyond the scope of this paper; see, e.g., [4], [16],
and [19] for related work. The case of static objects and dynamic
clusters is relevant for the present paper. Hence, we briefly
review the respective algorithms.

1) Dynamic Fuzzy c-Means (D-FCM): Crespo and Weber
[2] presented D-FCM, one of the first dynamic clustering al-
gorithms that integrate soft computing paradigms to deal with
static objects and dynamic clusters. It is based on the dynamic
clustering cycle using fuzzy c-means [20] as core clustering
algorithm. Although D-FCM has been applied successfully to
solve real-world problems, it needs several user-specified pa-
rameters (e.g., number of clusters), it is sensitive to outliers and
noise, the membership degrees of each object to all clusters must
sum 1, and the cluster shape is assumed to be spherical.

2) Dynamic Rough c-Means (D-RCM): Consolidating pre-
vious work [17], [18], Peters et al. [5] introduced D-RCM.
The core clustering method is rough c-means [21] refined by
techniques proposed by Peters [22]. Similar to D-FCM, the al-
gorithm adapts the generic dynamic clustering cycle to address
particular changes in the classifier structure. The novel contribu-
tion in D-RCM is the way changes in the level of uncertainty are
managed. Peters et al. [5] proposed maintaining the roughness
of the initial clusters, which is defined as the fraction of elements
in the lower approximation of any cluster and the number of all
available objects.

3) Evolving Dynamic Data Assigning Assessment (E-
DDAA): Georgieva and Klawonn [11] presented E-DDAA as a
dynamic generalization of their static algorithm, dynamic data
assignment assessment (DDAA) [23]. The aim of DDAA is to
find interesting clusters in a given dataset considering that a
large part of the data can be classified as noise. It discovers
interesting patterns in terms of single clusters that might cover
a small proportion of the data instead of partitioning the whole
dataset as in other classical clustering methods. E-DDAA has
been applied successfully to weather analysis showing its po-
tential for identifying interesting clusters without knowing the
number of clusters in advance. However, cluster elimination has
not been considered explicitly in this approach.

4) Dynamic DBSCAN (D-DBSCAN): Mary and Kumar [24]
proposed D-DBSCAN, which is an extension of the well-known
DBSCAN algorithm [25]. The main structural changes the al-
gorithm detects are the creation of new clusters and merging
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TABLE I
RELATED APPROACHES OF DYNAMIC CLUSTERING

Author Year Core Method Partition Prototypes Shape

Crespo et al. 2005 FCM Fuzzy Centers Spherical
Peters et al. 2012 RCM Rough Centers Spherical
Georgieva et al. 2008 DDAA Crisp and Fuzzy Centers Spherical
Mary et al. 2012 DBSCAN Crisp No Any
Dehideniya et al. 2013 ABC Crisp Centers Spherical

of the existing ones. Given that D-DBSCAN uses the density
concepts inherited from DBSCAN, Mary’s algorithm has the
ability to deal with clusters of any shape without knowing a
priori their number and to detect outliers at the same time.
However, elimination and movement of clusters, as well as an
adequate modeling of uncertainty, are not considered.

5) Agent-Based Dynamic Clustering (ABDC): Dehideniya
and Karunananda [16] introduced ABDC, a crisp dynamic parti-
tional clustering algorithm. It is based on multiagent technology
in which a group of agents, represented by their data records,
negotiate decisions that can improve the configuration of the
current clusters. The algorithm does not need the number of
clusters as an input parameter. Since the ideas presented in [16]
are mostly conceptual, without presenting mathematical details,
we consider this algorithm to be still under development.

Another related research field is data stream clustering, which
corresponds to the clustering of data points that arrive as a con-
tinuous flux [26], [27]. This is particularly interesting in online
applications, like, e.g., the analysis of multimedia data or web
pages, which deal with large datasets where retraining the clus-
tering algorithms becomes intractable [26]. Several algorithms
have been proposed for data stream clustering, which usually
are either partitioning-based or density-based. A comprehensi-
ble literature review was developed in [28]–[30].

In contrast to the topics discussed in the present paper, data
stream clustering aims at constructing a good segmentation
model of the streaming data efficiently in terms of computational
time and memory [26], rather than analyzing and modeling the
changes that occur over time. In fact, data stream algorithms
have to be able to manage the data in a single pass, i.e., they can
look at a data point only once before making a decision about its
membership [31]. This constraint does not exist in the context
of dynamic clustering. Hence, we concentrate in our paper on
dynamic clustering rather than on data stream clustering.

C. Conceptual Comparative Analysis of Algorithms

Table I presents the main characteristics of each previously
explained algorithm in order to identify already achieved ad-
vances and to reveal the gaps that motivate future research. It
focuses on properties such as the core method used for the clus-
tering process, the type of partition obtained, the prototypes
representing the clusters, and the assumed cluster shape.

Table II shows the main structural changes that clusters can
undergo, such as creation, elimination, movement, merging, and
the change in the level of uncertainty. Additionally, outlier trace-
ability is an important issue that must be considered within

TABLE II
STRUCTURAL CHANGES ADDRESSED BY DYNAMIC CLUSTERING ALGORITHMS

D-FCM D-RCM E-DDAA D-DBSCAN ABDC

Creation � � � � �
Deletion � � - - �
Movement � - � - -
Merging - - � � �
Change of Uncertainty - � - - -
Change of Shape - - - - -
Outlier Traceability - - - - -

dynamic clustering given that an outlier can become an element
of a cluster in the course of the actions.

Tables I and II clearly identify “white spots” in the research
landscape of dynamic clustering, emphasizing the necessity of
developing advanced algorithms capable of revealing diverse
structural changes, and providing outlier traceability at the same
time.

III. ROUGH-FUZZY SUPPORT VECTOR CLUSTERING

Saltos and Weber [14] proposed RFSVC, which is the core
method of the approach introduced in this paper. RFSVC con-
structs a fuzzy partition of the data using support vector domain
description (SVDD) [32], where outliers can be clearly identi-
fied and distinguished from the clusters found.

The RFSVC algorithm consists of three steps that will be de-
scribed in the following subsections in more detail. The training
step uses SVDD to obtain a hypersphere (in a higher dimensional
projected feature space) that encloses most of the data points.
All observations that fall outside its boundary are considered as
outliers. In the subsequent labeling step [13], different classes
of the set of data points enclosed by the hypersphere are identi-
fied. Finally, a fuzzification step is performed for those objects
that were considered as outliers in the training step. A formal
description of the three steps follows.

A. Training Step

Let X = {xi ∈ Rd/i = 1, . . . , N} be the set of N data points
of dimension d. First, the observations are projected to a repro-
ducing kernel Hilbert space, where a hypersphere with minimal
radius is constructed that encloses most of the training objects.
The following convex quadratic optimization problem (SVDD)
is solved:

MinR,a,ξ R2 + C

N∑

i=1

ξi (1)

s.t.

‖ φ(xi) − a ‖2≤ R2 + ξi ∀i = 1, . . . , N (2)

ξi ≥ 0 ∀i = 1, . . . , N (3)

where R is the radius of the hypersphere and a its center, φ is a
nonlinear mapping function, ξ is a vector of slack variables used
to allow observations falling outside the boundary of the hyper-
sphere, ‖ · ‖ is the Euclidean norm, and C ∈ [0, 1] is a constant
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Fig. 1. General idea of RFSVC (+: IDs, ⊕: SVs, x: BSVs). (a) Projection from original data space to higher-dimensional space. (b) Inverse projection from
enclosing sphere to cluster contours [14].

regularization parameter that controls the tradeoff between the
volume of the sphere and the number of data points it includes.
The dual formulation of SVDD follows:

Maxβ

N∑

i=1

βiK(xi ,xi) −
N∑

i=1

N∑

j=1

βiβjK(xi ,xj ) (4)

s.t.

N∑

i=1

βi = 1 (5)

0 ≤ βi ≤ C ∀i = 1, . . . , N (6)

where β are Lagrange multipliers and K(xi ,xj ) = φ(xi) ·
φ(xj ) is the kernel function. A widely used kernel function
is the radial basis function or Gaussian kernel, which has the
following form:

K(xi ,xj ) = e−q‖x i −xj ‖2
(7)

where q is a parameter that controls the kernel’s width [33]. We
used the generalized sequential minimal optimization (GSMO)
algorithm [34] to solve the quadratic optimization problem of
the training step.

Only those observations i with 0 < βi < C define the con-
tours of the clusters [13]; these are called support vectors (SVs).
Objects with βi = 0 lie inside the hypersphere and are called
inside data points (ID). Finally, objects with βi = C lie outside
the hypersphere and are called bounded support vectors (BSV)
or outliers.

For a given object, x, the distance between its projection and
the center of the hypersphere, a, is calculated as

R2(x) = ‖ φ(x) − a ‖2

= K(x,x) − 2
N∑

i=1

βiK(xi ,x)

+
N∑

i=1

N∑

j=1

βiβjK(xi ,xj ). (8)

The radius of the hypersphere follows:

RS =
1

|SSV|
∑

x i ∈SSV

R(xi) (9)

where SSV is the set of SVs and |SSV| its cardinality.

Fig. 1 illustrates a geometric interpretation of the SVDD
algorithm, in which Fig. 1(a) describes the objects’ projection
to a higher dimensional space and the construction of the hyper-
sphere, while in Fig. 1(b), the images of data points are projected
back to the original space.

B. Labeling Step

The outputs of the training step are the sets of SVs, BSVs,
and IDs. The main drawback from a clustering perspective is
that many clusters may coexist within the hypersphere without
being distinguished.

To overcome this problem, we will use the labeling strategy
called SV graph proposed by Ben-Hur et al. [13]. It works
as follows: Given two data points from different clusters, xi

and xj , any path that connects them must exit the hypersphere,
i.e.,∃λ ∈ [0, 1], such that R(yi,j ) > RS , where yi,j = yi,j (λ) =
λxi + (1 − λ)xj . This leads to the following definition of the
adjacency matrix A, whose elements ai,j represent whether a
pair of points xi and xj belongs to the same cluster

ai,j =

{
1, if R(yi,j ) ≤ RS ,∀λ ∈ [0, 1]
0, otherwise.

(10)

Clusters are now defined as the connected components of the
graph induced by A. Note that the BSVs remain unclassified
since they lie outside the enclosing sphere. Studying alternative
labeling approaches would go beyond the scope of this paper;
see, e.g., [35], [36], and [37].

C. Fuzzification Step

Saltos and Weber [14] proposed a fuzzification step in order
to calculate membership degrees for BSVs with respect to the
clusters created in the preceding step. The strategy follows.

1) Cast the hard cluster structure established in the training
step into a rough-fuzzy one based on two components: a
lower approximation and a fuzzy boundary.

2) Assign the SVs and IDs to the lower approximations of
their respective clusters according to the labeling step.

3) Assign the BSVs to the fuzzy boundaries of all clusters.
4) Calculate the membership degree μi,k of BSV i to cluster

k using the following formula:

μi,k = μ(BSVi , SVk,i) = K(BSVi , SVk,i)

= e−q‖BSVi −SVk , i ‖2
(11)
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TABLE III
OUTPUTS OF THE RFSVC ALGORITHM

Step Output

Training Sets of SV, BSV, and ID

Labeling
μi,k ∈ {0, 1} ∀i ∈ SV ∪ ID ∀k
μi,k = 0 ∀i ∈ BSV ∀k

Fuzzification μi,k ∈ [0, 1) ∀i ∈ BSV ∀k

where SVk,i is the SV in cluster k, which is closest to the
BSV i.

The use of the kernel function as the membership function in
(11) is justified by Theorem 1, which has already been formu-
lated and proven by Saltos and Weber [14].

Theorem 1: Let xi , xj , xk ∈ Rd be elements of a d-
dimensional data space. Let φ be a nonlinear transformation
from Rd to some higher dimensional space with K (xi ,xj ) =
φ(xi) · φ(xj ) = e−q‖x i −xj ‖2

the Gaussian kernel function with
width parameter q > 0. Let ‖ · ‖ be the Euclidean norm and
d(·, ·), d′(·, ·) be the Euclidean distance in the original data
space and the higher dimensional projected space, respectively.
Then,

d (xi ,xj ) ≤ d (xi ,xk ) ⇐⇒
d′ (φ (xi) , φ (xj )) ≤ d′ (φ (xi) , φ (xk )) .

For the static case, this theorem guarantees that the order
relation in the data space is maintained in the higher dimen-
sional space after applying the nonlinear transformation φ.
Below, we will extend this Theorem to the dynamic case; see
Section IV-B3.

To summarize, Table III provides a description of the outputs
of each step of RFSVC, where μi,k is the membership degree
of data point i to cluster k.

IV. DYNAMIC ROUGH-FUZZY SUPPORT VECTOR CLUSTERING

We first introduce structural changes that D-RFSVC will de-
tect when new objects arrive. Then, in Section IV-B, the respec-
tive method will be presented in detail, and we will show how the
classifier is adapted to those changes. Finally, in Section IV-C,
we will present the algorithm’s pseudocode and compare it con-
ceptually with alternative algorithms.

A. Addressed Structural Changes

As shown in Table II, the possible structural changes that
clusters can experience are creation, elimination, movement,
merging, and splitting, along with changes of their level of
uncertainty. Most of the existing dynamic clustering algorithms
do not treat all of these changes. In order to overcome these
limitations, the method proposed in this paper addresses the
structural changes as is explained in the following subsections
(without loss of generality and to simplify presentation, we treat
these changes independently).

1) Creation of New Clusters: A cluster can be considered
to be a cloud of points with high relative density. As a con-
sequence, new clusters have to be created when new objects

Fig. 2. Creation of clusters by accumulation. (a) Cycle t = s. (b) Cycle t =
s + Δt.

Fig. 3. Creation of clusters by merging. (a) Cycle t = s. (b) Cycle t = s +
Δt.

enter the dataset forming clouds of high density (Creation by
Accumulation). If one or more new clusters appear by accumu-
lation, the number of columns of the membership matrix [see
formula (11)] will be increased by the number of clusters that
were created in that period. At the same time, a subset of BSVs
will become SVs or IDs. Fig. 2 shows this phenomenon, where
the three orange (light) points in the upper left of part (a) are not
yet a cluster.

2) Merging Clusters: Another scenario is when the new ob-
jects arrive in between two or more clusters. In this case, the clus-
ters affected could merge in future periods. Under this premise,
it could be argued that merging clusters is a particular case of
cluster creation (see Fig. 3), but we treat this kind of change
separately due to some conceptual differences.

If cm > 1 clusters merge, the number of clusters and, hence,
the number of columns of the membership matrix will be re-
duced by cm − 1. At the same time, a subset of BSVs will
become SVs or IDs, and a subset of SVs will become IDs.

3) Elimination of Clusters: When a cluster does not receive
enough new observations to maintain its relative density com-
pared to the other ones, it should be eliminated. This case can
be inferred from the membership matrix as follows.

1) If one or more clusters disappear, the number of columns
of the membership matrix will be reduced by the number
of dying clusters. At the same time, the set of SVs and IDs
that belonged to those clusters will become BSVs.

It is important to highlight that objects of dying clusters will
not be eliminated from the dataset, given that in future cy-
cles they can receive new observations as neighbors and revive
as a cluster. This is an important difference between the pro-
posed method and current state-of-the-art dynamic clustering
algorithms.



SALTOS et al.: DYNAMIC ROUGH-FUZZY SUPPORT VECTOR CLUSTERING 1513

4) Splitting Clusters: The opposite case of merging clusters
is splitting clusters. If a connecting area of a large cluster does
not receive new observations, its density will go down, possibly
leading to a split into two or more smaller clusters. In this
case, the number of columns of the membership matrix will be
increased by cs − 1, where cs > 1 is the number of fragments
into that the larger cluster splits. Additionally, some SVs and
IDs will become BSVs.

5) Other Structural Changes: Apart from creating, merg-
ing, eliminating, and splitting clusters, our algorithm is capa-
ble of detecting other kinds of structural changes, such as the
following.

1) Change of shape: New observations that appear in the
existing clusters can alter their original silhouette. Since
D-RFSVC uses SVs as cluster representation instead of
cluster centers, changing shapes can be accomplished
easily.

2) Contraction: When a cluster receives fewer new observa-
tions than others, its relative density will decrease grad-
ually. This fact can be observed when its SVs get closer
to each other and the number of BSVs increases. If this
phenomenon continues for several periods, all SVs and
IDs will become BSVs, finally causing the elimination
of the cluster. Identifying cluster contraction is especially
important in dynamic clustering since it could anticipate
elimination of clusters, as will be shown in our experi-
ments; see, e.g., Fig. 5.

3) Dilatation: This is the opposite case of contraction. In this
scenario, a cluster receives many more new objects than
the others, dispersing its SVs and, as a consequence, ab-
sorbing part of the nearby BSVs. Cluster dilatation could
anticipate the merging of clusters.

4) Change of the level of uncertainty: The level of uncer-
tainty, also called roughness in D-RCM, is automatically
maintained stable, as will be shown in Section IV-B.

5) Outlier traceability: Tracing outliers (BSVs) could pro-
vide important information about structural changes in the
respective class structure to happen in subsequent cycles.
This can be accomplished by monitoring their member-
ship degrees over the respective cycles.

B. Development of D-RFSVC

The following subsections show how to adapt each step of
static RFSVC to the dynamic case.

1) Training Update: As mentioned in Section III-A, we used
the GSMO algorithm [34] to solve the quadratic optimization
model of the training step. In the static case, it starts with a
feasible solution of the quadratic problem, checks first-order
conditions, and improves this solution iteratively until conver-
gence is reached.

In the dynamic case, however, new observations arrive, in-
creasing the number of components of vector β as solution of
model (4)–(6), thus making it infeasible. As a consequence, we
propose applying the idea of the two-phase method of optimiza-
tion from [38], with which we determine a feasible solution in
Phase I, using the information provided by the optimal solution

of the previous cycle. In Phase II, we then optimize starting
from the feasible solution that was determined in Phase I. Next,
we introduce the necessary mathematical notation.

Recall model (4)–(6). The variable transformation αi = βi

C∀i = 1, . . . , N leads to the model given in (12)–(14):

Maxα

N∑

i=1

αiK(xi ,xi) −
N∑

i=1

N∑

j=1

αiαjK(xi ,xj ) (12)

s.t.

N∑

i=1

αi =
1
C

(13)

0 ≤ αi ≤ 1 ∀i = 1, . . . , N (14)

where C = 1
υN is the penalty constant, υ ∈ [ 1

N , 1
]

is the ratio
of data points that we allow to lie outside the hypersphere in the
higher dimensional space, and α is the N -dimensional solution
vector of the above model. Now, the sets of SVs, BSVs, and IDs
are given by

1) ID = {xi ∈ X/αi = 0}.
2) BSV = {xi ∈ X/αi = 1}.
3) SV = {xi ∈ X/0 < αi < 1}.
Let X(t) = {xi ∈ Rd/i = 1, 2, . . . , nt} be the set of nt ob-

jects that arrived at period t, with t = 0, 1, 2, . . . , T . We define
the set:

Xt =
t⋃

s = 0

X(s) (15)

as the set of all data points that arrived until period t, with
Nt = |Xt |. Let αt be the optimal solution of model (12)–(14)
applied to the dataset Xt .

Denote as Ct = 1
υNt

the value of the penalty constant when
using the dataset Xt . Since in each cycle t the number of ele-
ments in the dataset Xt increases, it follows that N0 < N1 <
. . . < Nt , and therefore, C0 > C1 > . . . > Ct . These facts indi-
cate that the stability of the clusters’ roughness is automatically
maintained without any additional parameter.

Since the value of Ct decreases, the value of 1
Ct

increases.
This fact leaves a slack in the constraint (13), allowing the
variables αi , associated with the new observations, to become
part of the feasible solution of the model (12)–(14).

To summarize, in each period t, given the dataset Xt , we have
to solve the quadratic model:

Maxα

Nt∑

i=1

αiK(xi ,xi) −
Nt∑

i=1

Nt∑

j=1

αiαjK(xi ,xj ) (16)

s.t.

Nt∑

i=1

αi =
1
Ct

(17)

0 ≤ αi ≤ 1 ∀i = 1, . . . , Nt. (18)

Since the optimal solution vector for period t − 1 (αt−1) has
fewer components than the optimal solution vector for period t
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(αt), we apply Phase I in order to determine a feasible solution;
see Algorithm 1.

In Phase II, we run the GSMO algorithm using αt from
Phase I as the initial solution in order to determine the set of
SVs, BSVs, and IDs for the current cycle. Finally, we compare
these new sets with their predecessors to detect the changes
between the previous cycle and the current one, among which
are the following:

1) data points that become SVs;
2) data points that leave the set of SVs.
These changes are the most important ones because SVs are

the prototypes of the clusters, define their contours, and are the
basis for the labeling step.

2) Labeling Update: After we have changed the set of SVs
from the previous period to the current one, labeling can be
updated as follows:

1) If no changes are revealed, the current classifier remains
unchanged, and it is only necessary to classify the new
objects into the current clusters.

2) If some observations left the set of SVs, we remove
their respective rows and columns from the adjacency
matrix A.

3) If some data points became SVs, we add their respective
rows and columns to the adjacency matrix A.

After updating the adjacency matrix A, it is necessary to
identify connected components of the new graph induced by A.
This can be done from scratch, or by modifying the algorithm
used for this purpose, in order to take advantage of the previous
knowledge. Finally, IDs have to be assigned to the new clusters
according to the changes made during labeling.

3) Fuzzification Update: All changes applied in the before-
mentioned steps call for updated membership degrees of previ-
ously existing BSVs. For new observations, these values have
to be calculated. This can be done as follows.

1) If the set of SVs does not change, we only need to calculate
the membership degrees for the new BSVs using (11).

2) If the set of SVs changes, we must check whether the
closest SV to the respective BSV is the same or not for each
cluster. If so, it is not necessary to change membership
values. In the opposite case, the membership degrees have
to be updated according to the new closest SV using (11).

In order to use (11) to update or calculate the membership
degrees for the BSVs, it is necessary to guarantee that the order
relation of the data space has not been changed after the arrival
of new data points. To do so, we first postulate the following
corollary that follows from Theorem 1.

Corollary 1: Let X ⊂ Rd be a set that fulfills Theorem 1.
Any set S ⊂ X with card(S) ≥ 3 also fulfills Theorem 1.

Proof: By contradiction, if subset S does not fulfill
Theorem 1, then ∃xi , xj , xk ∈ S that do not ful-
fill d(xi ,xj ) ≤ d(xi ,xk ) ⇐⇒ d′(φ(xi), φ(xj )) ≤ d′(φ(xi),
φ(xk )). This contradicts the corollary’s assumption. �

This allows us to generalize Theorem 1 to be used in a dy-
namic environment.

Theorem 2: Let t = 0, 1, . . . , T be the index for the dynamic
clustering cycles and Xt be the database of observations that ar-
rived until cycle t. Let xt

i , x
t
j , and xt+Δt

k ∈ Rd be observations,
which entered the database Xt and Xt+Δt , respectively.

Let ‖ · ‖ be the Euclidean norm and d(·, ·), d′(·, ·) be the
Euclidean distance in the original data space and in the higher
dimensional projected space, respectively. Let φ be a nonlin-
ear transformation from Rd to some higher dimensional space
and K (xi ,xj ) = φ(xi) · φ(xj ) = e−q‖x i −xj ‖2

be the Gaussian
kernel function with width parameter q > 0. Then,

d
(
xt

i ,x
t
j

) ≤ d
(
xt

i ,x
t+Δt
k

) ⇐⇒
d′

(
φ

(
xt

i

)
, φ

(
xt

j

)) ≤ d′
(
φ

(
xt

i

)
, φ

(
xt+Δt

k

))
.

Proof: Without loss of generality, we establish a time index
s ∈ {t + Δt, ..., T}. Given that data points xt

i , xt
j , and xt+Δt

k

had entered the dataset Xs in previous cycles, they are now
elements of Xs . On the other hand, Xs fulfills Theorem 1 be-
cause it can be ignored that it was built by adding new elements
over time, i.e., it can be seen as a static dataset. By Corollary 1,
any subset of Xs also fulfills Theorem 1. This implies that
observations xt

i , xt
j , and xt+Δt

k also fulfill Theorem 1, whose
equivalence is a particular case of Theorem 2 without time
index. �

Theorem 2 guarantees that the order relation of the data
space is maintained over time when new observations enter
the database.

An important difference between our Theorem 2 and
Lemma 1 presented in [39] is that we explicitly consider BSVs,
i.e., outliers. In [39], outliers are explicitly not allowed. We think
that this assumption is too restrictive in general in real-world
datasets, and here is where the special contribution of this pa-
per takes place: we model outliers explicitly in dynamic soft
clustering.

At the end of this step, all necessary updates have been per-
formed, leading to an updated classifier. Note that each of the
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update steps uses previous knowledge to modify the current
classifier, saving important resources.

C. Pseudocode, Computational Complexity, and Conceptual
Comparison

Next, we present the pseudocode of D-RFSVC and show how
to obtain its crisp version (dynamic support vector clustering—
D-SVC). Thereafter, we analyze its computational complexity.
Finally, a conceptual comparison between D-RFSVC and re-
lated cluster approaches is presented, highlighting its potential
for dynamic clustering.

1) Pseudocode of D-RFSVC: Combining the ideas from
Sections IV-B1–IV-B3 leads to Algorithm 2, which is capa-
ble of dealing with dynamic databases in the manner presented
in this paper without building the classifier from scratch after
each update.

The parameter T in Algorithm 2 represents the final of a series
of periods observed over time, but all completely in the past.
This approach is used if we want to understand behavior changes
from the past, e.g., past customers’ purchasing behavior in order
to reveal patterns on which to base future decisions. Algorithm 2
could also be applied continuously over time without assuming
a final period. In that case, upcoming patterns could be detected
as they appear, in order to provide timely information in order
to make the most appropriate decisions.

Step 7 is optional. If it is omitted, the classes found will be
crisp, providing the dynamic version of SVC, i.e., D-SVC can
be considered as a special case of the proposed D-RFSVC. As
a consequence, the BSVs detected in each cycle will remain
unclassified, and outlier traceability will be lost since it is based
on the membership degrees calculated for these data points.

2) Computational Complexity: Following Ben-Hur et al.
[13] and Li and Ping [40], the computational complexity of the
proposed method can be approximated as follows: The quadratic
programming problem of the training step can be solved by
the GSMO algorithm [34]. Benchmarks reported in [34] show
that this algorithm converges after approximately O

(
N 2

)
ker-

nel evaluations. The complexity of the labeling part of the

TABLE IV
CONCEPTUAL COMPARISON BETWEEN D-RFSVC AND OTHER DYNAMIC

CLUSTER ALGORITHMS

D-FCM E-DDAA D-RCM D-DBSCAN ABDC D-RFSVC

Creation � � � � � �
Deletion � - � - � �
Movement � � - - - �
Merging - � - � � �
Splitting - - - - - �
Change of Uncertainty - - � - - �
Change of Shape - - - - - �
Contraction - - - - - �
Dilatation - - - - - �
Outlier Traceability - - - - - �

algorithm is O
(
mSV 2

)
, since we do not compute the entire

adjacency matrix, but only adjacencies with SVs.
Saltos and Weber [14] presented a rough-fuzzy version of

SVC. This method for static environments proposes to model
uncertainty via rough-fuzzy concepts adding a fuzzification step,
which uses already computed kernel values. As a consequence,
the static RFSVC algorithm maintains the computational com-
plexity of Ben-Hur’s SVC.

Finally, D-RFSVC also maintains this computational com-
plexity, since it applies RFSVC in each iteration of the proposed
updating scheme, but it uses previously computed information
(kernel values, adjacency matrix, and membership values) to
reduce the computational time required to update the classifier.

3) Conceptual Comparison: To conclude this section, Ta-
ble IV presents a conceptual comparison between the algorithms
discussed in Section II and D-RFSVC, indicating which struc-
tural change the respective algorithms address.

D-FCM and E-DDAA perform the movement of clusters by
updating their centers. Since D-RFSVC uses SVs instead of
centers as prototypes, it is not possible to perform the movement
of clusters in the same sense defined by Crespo and Weber
[2] and Georgieva and Klawonn [11]. However, the effects of
changing shape or dilatation can be interpreted as movement of
clusters, recalling that Crespo and Weber [2] update the centers
in order to include the new observations close to those clusters.
Change of shape and dilatation have the same purpose, i.e.,
to include the new observations that are located close to the
changing cluster. It can be concluded that D-RFSVC has the
intrinsic ability to perform cluster movements but in a way
different from that proposed by other authors.

V. EXPERIMENTS AND DISCUSSION

A. Description of the Datasets and Experimental Setup

Table V summarizes the main characteristics of the datasets
used. The column “Total Instances” refers to the total number
of objects that arrived until the final period T .

The parameters for t = 0 are given in Table VI. They were
set using the ideas reported in [13], similarly to those of the
algorithm’s static version. For comparison, Crespo’s D-FCM
[2] was selected since other dynamic algorithms do not provide
membership degrees nor detect enough structural changes.
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TABLE V
DATASET CHARACTERISTICS

Name Type Total Instances Attributes Periods (T)

Four Squares Synthetic 9000 2 10
Three Spheres Synthetic 17 250 3 10
XO Benchmark 3600 2 10
S1-Gaussian Benchmark 5000 2 10
Unbalance Benchmark 6500 2 10
NOAA Weather Real-World 8759 8 12
Electric Real-World 50 000 7 10
Retail Real-World 12 170 3 12
IndapU2 Real-World 22 380 3 48
Pokemon Real-World 800 6 6

TABLE VI
ALGORITHM’S PARAMETERS FOR t = 0

D-RFSVC D-FCM

q υ c

Four Squares 12 1
3 2

Three Spheres 8 1
3 3

XO 6 1
6 2

S1-Gaussian 20 0.4 2
Unbalance 10 0.05 2
NOAA Weather 0.5 0.05 2
Electric 0.0345 0.05 2
Retail 0.12 0.05 2
IndapU2 10 0.05 2
Pokemon 0.0002 0.05 2

Fig. 4. Creation and expansion of clusters for S1-Gaussian dataset. (a) Cycle
t = 1. (b) Cycle t = 2.

B. Results for Benchmark and Synthetic Datasets

Using the benchmark and synthetic datasets as described in
Section V-A, we illustrate how the proposed method identifies
the structural changes introduced in Section IV-A.

For Figs. 4–6, orange (light) points belong to fuzzy bound-
aries (BSV), color highlighted points are each cluster’s proto-
types (SV), while the remaining gray/cyan (dark) data points
are elements of the lower approximations of their respective
clusters (ID).

Fig. 4 shows a sample of the results obtained for the S1-
Gaussian dataset. In cycle t = 1, four clusters are present, while

for t = 2, we have five clusters. The main changes observed in
the transition between these two cycles are a new cluster (C5),
and cluster C4 expanded. In t = 1, this cluster has only one SV
and a few IDs, while in t = 2, it has more objects in its lower
approximation and new SVs covering a larger area.

Fig. 5 shows how clusters can contract and disappear between
cycles. The initial cluster structure is shown in Fig. 5(a), where
three clusters were found, two of them having most of the exist-
ing objects. Then, in cycle t = 4, the three clusters have received
new data points, but the red one (the one in front of the other
two) has a significantly higher number than the others, causing
their contraction. However, until period t = 7, only the blue (in
the upper right corner) and red (the one in front) clusters have
received new objects. This fact causes the blue class to expand
while the purple one (in the left upper corner) disappears [see
Fig. 5(c)]. Note that all the data points of the disappeared (pur-
ple) cluster are now BSVs, becoming elements of the remaining
clusters’ fuzzy boundaries. The proposed method does not re-
move former objects of eliminated classes, given that they might
belong to clusters that could appear in future cycles.

Fig. 6 shows how clusters can change their shape and merge.
From period t = 1 to t = 4, the red cluster (initially a rectangle)
changed its silhouette becoming an “X.” At the same time, two
new clusters appeared: the upper and lower part of what will
later become the “O.” Finally, in cycle t = 7, these clusters
merged leading to the “O” cluster.

To conclude this section, we emphasize that all changes
shown in Figs. 4–6 can be detected using the membership ma-
trices and the sets SV, BSV, and ID. As an example, a small
section of the membership matrix for the S1-Gaussian dataset is
presented in Tables VII and VIII. These data points correspond
to elements located in the top right corner, with values close to
1 on both dimensions (see Fig. 4).

The membership values of each of the four clusters in Ta-
ble VII reveal that four of the six observations are outliers re-
lated to C4 , while the remaining two belong to this cluster.
Table VIII shows the membership degrees for the five clusters
found in period t = 2. This reveals the fact that a new cluster
appeared from one cycle to another, but more importantly, we
infer that C4 has expanded because three of the four outliers
related to this cluster in the previous cycle became IDs. This
phenomenon can be observed in Fig. 4 for the cluster in the top
right corner.

An interesting alternative for inferring the same results de-
scribed above for 2-D or 3-D datasets, but with high-dimensional
data, is using aggregated indicators characterizing the clusters
found. This is performed based exclusively on information pro-
vided by the membership matrix. In this work, we calculate the
following indicators.

1) The cardinality of each cluster’s lower approximation
(CardLA). When this value increases, we postulate that
the cluster is dilating or changing its shape to cover more
data points. Otherwise, the cluster is contracting.

2) The cardinality of the fuzzy boundary (CardFB), given
by the number of BSVs surrounding each cluster’s lower
approximation. These BSVs fulfill μi,k ∈ (0.001, 1). An
increasing number of BSVs indicate a contracting cluster.
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Fig. 5. Contraction and elimination of clusters for three spheres dataset. (a) Cycle t = 0. (b) Cycle t = 4. (c) Cycle t = 7.

Fig. 6. Changing shape and merging clusters for XO dataset. (a) Cycle t = 1. (b) Cycle t = 4. (c) Cycle t = 7.

TABLE VII
S1-GAUSSIAN: MEMBERSHIP MATRIX FOR t = 1

Data ID X Y C1 C2 C3 C4

995 1.249 0.932 4.11E-10 3.50E-21 6.67E-21 0.892
996 1.239 1.007 0 0 0 1
997 1.349 0.798 1.35E-10 7.55E-18 2.29E-24 0.328
998 1.356 0.953 3.99E-12 8.05E-22 1.02E-23 0.716
999 1.140 0.974 9.01E-09 2.03E-22 5.40E-18 0.804
1000 1.256 1.010 0 0 0 1

TABLE VIII
S1-GAUSSIAN: MEMBERSHIP MATRIX FOR t = 2

Data ID X Y C1 C2 C3 C4 C5

995 1.249 0.932 0 0 0 1 0
996 1.239 1.007 0 0 0 1 0
997 1.349 0.798 2.91E-08 2.78-18 5.83E-27 0.858 2.38E-39
998 1.356 0.953 0 0 0 1 0
999 1.140 0.974 0 0 0 1 0
1000 1.256 1.010 0 0 0 1 0

3) The mean of the membership degrees of the elements
in each cluster’s fuzzy boundary (MeanFB). This indi-
cator can be interpreted in two ways: The first one is
based on a static snapshot. If the value is high, we can
infer that the cluster’s fuzzy boundary is very compact,
i.e., the dispersion of BSVs is low. Otherwise, their dis-
persion is high. The second interpretation is the change
from one period to another. Whether this value increases
or decreases indicates whether the cluster is receiving
BSVs with high membership or low membership, respec-
tively. This phenomenon could “anticipate” changing data
structures.

4) The standard deviation of the membership degrees of the
elements in each cluster’s fuzzy boundary (StdFB) com-
plementing the information provided by MeanFB.

5) The mean of the membership degrees of each cluster’s
elements (Mean). This is similar to MeanFB but includes
the elements in the lower approximation.

6) The standard deviation of the membership degrees of
each cluster’s elements (Std) complementing the indicator
Mean.
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Fig. 7. Parallel coordinates plot for the XO dataset. (a) Cluster 1. (b) Cluster 2.
(c) Cluster 3.

If a cluster appears in one cycle but disappears in others, we
set the previously mentioned indicators at −1 for those clusters
that do not exist in certain cycles.

Using a parallel coordinates plot [41], e.g., for XO data, we
obtain Figs. 7 and 8. This is a powerful visualization tool that
allows users to evaluate several dimensions graphically in a
single plot and, in our case, to assess the evolution over time for
various indicators. Fig. 7 shows the parallel coordinate plot for
each cluster and for different periods.

We use Fig. 8 to explain how to identify changes using parallel
coordinates. This figure shows the trajectories for cluster 3 at
t = 5 and t = 6 (blue and green lines, respectively). The blue
line shows the values that the previously introduced indicators
take in each period, while the green line goes to the value −1.
This indicates that cluster 3 disappears from period 5 to period 6.
Appearing clusters follow a similar reasoning. The curve of the
previous cycle will start with value −1, and in a posterior cycle,

Fig. 8. Parallel coordinates plot for the XO Dataset: Tracking Cluster 3.

TABLE IX
WEATHER DATASET MEMBERSHIP MATRIX

Data Id. t = 1 t = 2 t = 3
C1 C1 C1

10 1 1 1
12 1 1 1
14 1 1 1
15 0.9706 0.7110 0.9277
16 1 1 1
22 1 0.6898 0.6333

the indicator will take values different from −1. Similar results
can be inferred for the remaining datasets.

C. Application to the NOAA Weather Dataset

The NOAA Weather dataset [42] is a database containing
information related to the normal climate variables from 1981 to
2010 for the 12 months of each of those years in San Francisco,
CA, USA. A normal climate variable is defined as the 30-year
average of that particular variable. More details can be found
in [42]. In order to emulate dynamism, the method receives
monthly chunks of observations.

As mentioned in Table V, the dataset contains 8759 instances
for the observed period. The parameters for the first cycle were
set at q = 0.5 and υ = 0.05. In the first month, the algorithm
found three clusters, but in the next one, these clusters merge
into only one for the whole remaining observation period. The
conclusion we can obtain is that only one cluster exists in the
dataset. This makes sense since the climate conditions com-
monly do not change abruptly, i.e., the weather usually has
gradual changes from one day to another. As a consequence,
only the change of shape and expansion of the found cluster
occurs over time.

Table IX shows a sample of the membership matrix for three
cycles. The main fact we can highlight from this sample is that
data point 22 lost its status as an inside vector, becoming a
BSV with a 0.68 membership degree. This may have happened
because SVs moved away in order to cover new objects that
arrived in t = 2.
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TABLE X
VALIDATION MEASURES WHEN D-FCM DOES NOT ELIMINATE CLUSTERS

D-FCM D-RFSVC

PC PE α PC PE α

S1 Gaussian Mean 0.8419 0.4029 0.6887 0.8057 0.0875 0.9372
Std. Dev. 0.0824 0.2250 0.1419 0.0124 0.0066 0.0138

Unbalance Mean 0.8668 0.2441 0.9339 0.9896 0.0057 0.9982
Std. Dev. 0.0827 0.1378 0.0612 0.0040 0.0021 0.0013

XO Mean 0.8568 0.2493 0.7772 0.9655 0.0176 0.9735
Std. Dev. 0.1049 0.1439 0.2437 0.0093 0.0057 0.0112

Three Spheres Mean 0.8958 0.2359 0.8129 0.7898 0.0826 0.9181
Std. Dev. 0.0117 0.0207 0.0212 0.0282 0.0064 0.0683

NOAA Weather Mean 0.7101 0.4544 0.6403 0.9883 0.0055 0.9975
Std. Dev. 0.0163 0.0210 0.0457 0.0056 0.0019 0.0015

Electric Mean 0.6862 0.4795 0.5124 0.9761 0.0096 0.7896
Std. Dev. 0.0116 0.0152 0.0901 0.0015 0.0007 0.0892

Retail Mean 0.9567 0.0847 0.9866 0.9868 0.0053 0.9975
Std. Dev. 0.0018 0.0034 0.0053 0.0033 0.0013 0.0001

IndapU2 Mean 0.7242 0.4359 0.5527 0.9912 0.0043 0.9987
Std. Dev. 0.0109 0.0139 0.1125 0.0028 0.0014 0.0003

Pokemon Mean 0.4979 0.8346 0.1217 0.9873 0.0053 0.8687
Std. Dev. 0.0647 0.1341 0.1025 0.0066 0.0029 0.0879

Four Squares Mean 0.8883 0.2110 0.7790 0.8445 0.0687 0.9476
Std. Dev. 0.1135 0.1568 0.3010 0.0264 0.0089 0.0163

TABLE XI
VALIDATION MEASURES WHEN D-FCM ELIMINATES CLUSTERS

D-FCM D-RFSVC

PC PE α PC PE α

S1 Gaussian Mean 0.8675 0.3125 0.7010 0.8057 0.0875 0.9372
Std. Dev. 0.0555 0.1340 0.1352 0.0124 0.0066 0.0138

Unbalance Mean 0.9216 0.1423 0.9594 0.9896 0.0057 0.9982
Std. Dev. 0.0854 0.1302 0.0586 0.0040 0.0021 0.0013

XO Mean 0.5775 0.2052 0.5919 0.9655 0.0176 0.9735
Std. Dev. 0.4087 0.1887 0.3888 0.0093 0.0057 0.0112

Three Spheres Mean 0.5544 0.1037 0.5290 0.7898 0.0826 0.9181
Std. Dev. 0.4775 0.0995 0.4574 0.0282 0.0064 0.0683

NOAA Weather Mean 0.7236 0.4368 0.6403 0.9883 0.0055 0.9975
Std. Dev. 0.0119 0.0158 0.0457 0.0056 0.0019 0.0015

Electric Mean 0.6862 0.4795 0.5124 0.9761 0.0096 0.7896
Std. Dev. 0.0116 0.0152 0.0901 0.0015 0.0007 0.0892

Retail Mean 0.9567 0.0847 0.9866 0.9868 0.0053 0.9975
Std. Dev. 0.0018 0.0034 0.0053 0.0033 0.0013 0.0001

IndapU2 Mean 0.7243 0.4359 0.5527 0.9912 0.0043 0.9987
Std. Dev. 0.0109 0.0139 0.1125 0.0028 0.0014 0.0003

Pokemon Mean 0.4330 1.3050 0.1515 0.9873 0.0053 0.8687
Std. Dev. 0.1666 0.4152 0.1443 0.0066 0.0029 0.0879

Four Squares Mean 0.9110 0.1557 0.8209 0.8445 0.0687 0.9476
Std. Dev. 0.1168 0.1666 0.3179 0.0264 0.0089 0.0163

D. Numerical Comparison

It is important to highlight that the existing validation mea-
sures only work for static cluster solutions, making an objective
quantitative comparison between state-of-the-art dynamic clus-
tering algorithms and D-RFSVC difficult. In particular, classi-
cal cluster validity measures such as, e.g., DB-index or Maji’s
Indices [43], are not applicable here, since we are not only in-
terested in validating static cluster structures found each time
period. We are interested in validating how well the algorithms
detect changes between two consecutive periods. To the best of
our knowledge, there are still no such dynamic cluster validity

measures. As a consequence, we used the partition coefficient
(PC), partition entropy (PE), and Maji’s α index to compare the
results of D-RFSVC and D-FCM. Since these validation mea-
sures are computed for each cycle, we report their mean and
standard deviation.

Since cluster elimination has to be guided by a parameter in D-
FCM, whereas in D-RFSVC, it is simply based on the clusters’
density, we present two comparisons. First, we analyze the case
where D-FCM is not allowed to eliminate clusters followed by
the case where such an elimination is based on a user-defined
parameter.
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TABLE XII
HOLM’S TEST WITHOUT CLUSTER ELIMINATION

Index PC PE α

Method D-FCM D-RFSVC D-FCM D-RFSVC D-FCM D-RFSVC

Mean Rank 1.7 1.3 2 1 2 1
Mean Index 0.7925 0.9326 0.363 0.029 0.681 0.943
p-value 0.2059 0.0016*** 0.0016***

*** = 0.01, ** = 0.05, * = 0.1 significance level.

TABLE XIII
HOLM’S TEST WITH CLUSTER ELIMINATION

Index PC PE α

Method D-FCM D-RFSVC D-FCM D-RFSVC D-FCM D-RFSVC

Mean Rank 1.8 1.2 2 1 2 1
Mean Index 0.7357 0.9326 0.366 0.029 0.644 0.943
p-value 0.0578* 0.0016*** 0.0016***

*** = 0.01, ** ]= 0.05, * = 0.1 significance level.

Table X shows the mean and standard deviation of validity
indices when D-FCM does not eliminate clusters compared with
D-RFSVC. In each row, the bold number indicates the best solu-
tion for each indicator. Clearly, D-RFSVC outperforms D-FCM
in most of the tested datasets and provides more stable results
since the respective standard deviations are lower than those for
D-FCM. Similar results are shown in Table XI when eliminating
clusters is allowed for D-FCM. The number of periods required
to eliminate clusters was set to 3 following the ideas reported
in [2].

We perform Holm’s test [44] to compare the performance of
both algorithms and present the respective results in Tables XII
and XIII. The proposed D-RFSVC has the best overall perfor-
mance for all experiments, achieving differences that are sta-
tistically significant at the respective levels mentioned in both
tables.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the novel D-RFSVC algorithm.
It allows updating clusters built from previous cycles to the
current one, taking advantage of the knowledge generated in
each period. Since it is a generalization of the static version
of RFSVC, it inherits and adapts the following fundamental
properties.

1) D-RFSVC identifies soft clusters of any silhouette with
crisp lower approximations and fuzzy boundaries. It is
able to detect complex structural changes such as change
of shape, merging clusters, contraction, and dilatation.

2) The membership degrees of the BSVs are calculated using
the Gram matrix, and they are not constrained to sum 1. As
a consequence, in each cycle, we can identify new outliers
and trace the behavior of previously detected ones.

3) Similar to its static version, D-RFSVC does not require
the number of clusters as an input parameter. This decision
is just based on the clusters’ density.

The applications presented in this paper highlight the poten-
tial dynamic clustering has in general and particularly under-
line the original contribution of D-RFSVC, which is an ade-
quate modeling of outliers as BSVs indicating changing data
structures.

The following ideas represent fruitful avenues for future re-
search. Further applications could discover D-RFSVC’s ben-
efits and limitations. It would also be interesting to see how
other density-based clustering algorithms could adapt ideas we
have implemented in the proposed D-RFSVC in order to detect
changing data structures.
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del Litoral, Guayaquil, Ecuador, in 2011, the M.S.
degree in operations research from the Universidad
Nacional Autónoma de México, Mexico City, Mex-
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