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Abstract: A discrete load change (DLC) event may be described as an abrupt change in feeder demand. These events are due
to network reconfigurations, or the connection/disconnection of large consumers to the grid. This phenomenon affects the
performance of load forecasting methods and, in general, it may worsen any planning or operational application that uses feeder
demand records as input. This study proposes four load adjustment (LA) methods to correct this type of distortion from
distribution system demand database. The methods are tested by using real demand values, encompassing six years of hourly
data registered in 169 feeders, of a distribution company. To test the effectiveness of the LA methods, in medium-term load
forecasting, a comparative study using different forecasting techniques is performed. Results show that demand forecasting,
with DLC adjustment, improve their average performance over 33% compared to the case were this phenomena is not
considered.

1 Introduction
Today more than ever the incorporation of new technologies to the
distribution grids is transforming the paradigms of how the
operation and planning of the distribution systems is done [1].
Conventional networks are evolving into more sophisticated grids,
which require information flow between generation and
consumption, a higher participation from the end users, and a
growing need for a more flexible operation of the system [2–5].

Modern smart grids require high accuracy in the knowledge of
consumer behaviour [6], where demand forecasting has been
identified as a key process with links to many areas of system
planning and operation [7–10]. This process requires the
availability of a reliable and timely demand database, which is a
cornerstone in distribution companies [11–12].

The reconfiguration of feeders in distribution networks, i.e. the
load transfer between primary feeders, is a common operation to
relieve overloading and reduce system losses. This switching
operation can achieve load balance among distribution feeders and
is registered as a discrete demand change in the primary
substations data [13]. Another source of discrete changes is the
connection (or disconnection) of large consumers. In both cases,
the effect on the load data set is a distinctive abrupt change in the
demand level that remains in time. In this paper, this phenomenon
is called discrete load change (DLC).

DLC events produce distortion in the readings of monitoring
equipment at a feeder level [14]. In this reference it is shown that
data shifts, due to feeders switching, contaminates registers and
reduces forecasting accuracy in the medium and long term. In
addition, feeders' reconfiguration has been recognised as an
important element for estimating future demand values in the short-
term (24 h ahead) [15]. In that reference the authors conclude that
switching operation in primary networks has a substantial impact
on load profiles, hence, producing errors in future demand
forecasting.

In [16] the effect of reconfiguration events over an artificial
neural network (ANN) model is evaluated. In that work the authors
show that reconfiguration events degrade the one-day ahead
forecasting. This degradation is reduced when new samples (after
the DLC event) are used to retrain the ANN.

In [17] the DLC effects are referred as load transfer coupling,
and they are studied in the context of several months and several
years, but not in daily operation such as several hours or days. In

[18] in order to improve forecasting accuracy, abnormal data (load
re-allocation, feeder reconfiguration, or faults) are eliminated. In
[13] reconfiguration events at a feeder level are identified as
abnormal changes in demand and are treated as special cases to
train an ANN for load forecasting.

Most of the work on medium and long-term demand forecasting
has been focused on aggregated data, where few variables are
projected (e.g. maximum demand, average demand and so on) [19–
22]. However, modern technologies, such as electric vehicles,
renewable-based generation in distribution grids and energy
storage devices, usually require hourly (or shorter) demand
estimations to study their performance in future scenarios [23–26].
Therefore, long and medium-term load forecasting with hourly
resolution has emerged as an important problem in modern energy
systems [27–28].

In [29] the authors propose an additive semi-parametric model
to perform load forecasting in short and medium-term for more
than 2200 feeders of the French distribution network. They show
that DLC events degrade the accuracy of models and, to get rid of
the problem, they eliminate the time series that present DLC
events.

According to the literature, the impact of DLC events depends
on the timeframe of the application. On the one hand, in short-term
load forecasting the impact is low as DLC is sporadic events
(sometimes with one or two events per year) [16]. Also, in this
timeframe, less data is required to achieve a good forecast (e.g. two
weeks data is needed to perform one-day ahead prediction [16]), so
a DLC can be treated as an especial case [13]. On the other hand, in
medium and long-term applications, eliminating data containing a
DLC (as proposed in [18]) could reduce significantly the amount of
data available. Then, with reduced datasets the training process of
methods like ANN or support vector regression (SVR) could
become difficult or even infeasible [30].

As DLC events will become more common in future networks,
their importance on medium-term load forecasting will increase
accordingly, as it will have a direct impact on investment in new
grid components or in the upgrade of the existing ones [31]. This
work is motivated by the fact that DLC events on feeders' data can
deteriorate significantly the performance of medium-term demand
forecasting with hourly information, and it is focused on the
characterisation of the phenomenon and the data pre-processing to
adjust demand with DLC events, regardless of the forecasting
techniques used afterwards.
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This paper presents efficient methods to adjust DLC events in
load databases. Specifically, the methods allow to pre-process data
registered previous to the occurrence of a DLC event, in order to
have sufficient and reliable feeders demand databases to train
models and, then, perform the forecasting. Evaluations of the
proposed adjustment methods in the context of medium-term load
forecasting with hourly granularity for 20 feeders of Santiago's
distribution network are presented. Also, a standard forecasting
Naive Benchmark is used to test the proposed Load Adjustment
(LA) methods over 169 feeders at the distribution company of
Santiago, Chile. This Naive Benchmark approach includes a
trending forecasting of feeders' demand, which was done with the
current spatial forecasting model used by the distribution company.

The remaining of this paper is organised as follows. In Section
2, DLCs definition, characterisation and its detection are presented.
Section 3 describes four LA methods to correct DLC events. In
Section 4, the effect of DLC events on medium-term demand
forecasting is illustrated by using a Naive Benchmark and Artificial
Intelligence (AI) methods, which are applied to a database of 20
feeders located in the distribution system of the city of Santiago,
Chile. In Section 5, the effect of DLC events in one-year ahead
demand forecasting is evaluated for the Naive Benchmark approach
by using an hourly demand (HD) database of 169 feeders. Finally,
Section 6 summarises the main findings of this work.

2 DLCs characterisation
In this section, a characterisation of the DLC phenomenon is
developed, where the main features for the detection of DLC events
are shown. Throughout the paper we use HD f h, j  to represent the
real demand at hour h in the year j, for feeder f.

2.1 Definition of DLCs

A DLC event could be described as an abrupt increase (or
decrease) in demand HD f h, j , which persists over time (more
than one month). In order to define the main parameters to
characterise a DLC in distribution feeders, in this subsection a real
case from the distribution company of the city of Santiago is
analysed.

In real databases there are missing values and outliers, which
has to be pre-process before any forecasting is made. In Fig. 1, data
demand HD f (h, j), in a feeder f, in the period 2010/2013 is shown.
In this figure, missing data is represented with yellow dots (see
middle of January 2011 and August 2012 data). Spikes in Fig. 1
represent special events such as a football match, a peak demand
during the news of the San Jose's Miners rescue and a daily peak
the day before Christmas. 

In Fig. 1, there is a DLC at the beginning of August 2011,
which is characterised by a clear increase in the demand (marked
with the dotted-red line), which looks like a shift in load data of
nearly 1.5 MW (shown between blue lines). It is important to keep
in mind that this change does not correspond to consumption
trends, as it only occurs once and remains for the rest of the period.

In this work, two parameters are used to characterise DLC. The
first parameter measures the abrupt change in load, referred as the
size of the DLC, and is portrayed as the ΔDLC variable in Fig. 1.
The other parameter is the day of occurrence, which is defined as
tDLC in Fig. 1.

Notice also that in Fig. 1 there is a seasonal pattern of the load.
It corresponds to an increase followed by a decrease in load with a
period of 6 months approximately. For illustrative purposes, it is
highlighted with a green line starting in 2010.

The DLC phenomenon has two possible explanations. On the
one hand, this could be a reconfiguration of the feeder, i.e. the
transference of load among feeders. Or, it could be the connection/
disconnection of a large customer (e.g. a large commercial
building). In any case, it is a discrete load increase, whose effect is
clearly different from the typical demand growth of existing
customers.

2.2 Characterisation of DLC events

In the demand database, a DLC effect may be modelled as a
discrete amount added to the load (see ΔDLC in Fig. 1), so the
demand of the remainder of year 2011 is increased. In this case,
from beginning of August 2011 to the end of 2013 a fix amount,
close to 1.5 MW in Fig. 1, is added to the demand.

Notice that DLC starts as a sudden load increase (or decrease)
which has a lasting effect rather than a seasonal effect. In order to
illustrate this feature, Fig. 2 shows a demand panel with four
feeders on a time span of 6 years (which was extracted from the
same database used in Fig. 1). In Fig. 2, DLC events are
highlighted with a red-dotted line. These DLC events produce load
changes that last from a few months to years, and they are not
repeated on a yearly basis, i.e. they do not correspond to seasonal
changes. These events were analysed and confirmed by the
distribution company's personnel working on planning.
Furthermore, the database containing the demand of 169 feeders
was carefully examined by the company's expert, who identified
DLC events from 2008 to 2013. 

2.3 DLC detection in feeders databases

A distinctive characteristic of DLC is that it produces permanent
changes in a demand feeder. Therefore, for its proper detection it is
necessary to confirm that the resulting demand change persists over

Fig. 1  Example of a DLC in a feeder
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time. In addition, a DLC event could be confused with daily
variation, weekly patterns or even with a seasonal behaviour. To
illustrate the above mentioned problems, Fig. 1 shows one example
in a period of 5 years in a real feeder.

In Fig. 1, a distribution planning engineer could identify a DLC
event in 2011 (shown with the dashed red line). In this example, at
the beginning of year 2011 there is a continuous decrease in the
load, which is followed by a period of constant increase (green line
highlighted in Fig. 1). This pattern could be preliminary attributed
to a DLC in 2011, but as it is also found in years 2010 and 2009, so
it actually corresponds to a seasonal load pattern.

As this work is focused on the adjustment of abrupt changes in
load database and not on detecting this phenomenon, an expert
identification of the DLC events is considered. In other words, the
expert identification provides what we call Ground Truth
Identification (GTI), which later on is required as an input for the
adjustment methods. Note that this approach allows eliminating the
error that could be added by an automatic DLC detection method
from the final results of this work.

The identification of abrupt changes in data has been studied
previously [32]. The application and development of algorithms to
detect these abrupt changes can be seen in a wide branch of areas,
namely time series image processing [33], climate change
applications [34], fault detection [35], IP network anomalies
detection [36], land cover changes [37], and medical treatments
[38]. In addition, this problem has been addressed in time domain
and also in frequency domain [39], where the methodologies and
algorithms must be tailored to the particularities of each specific
application.

A preliminary DLC detection, made by human inspection or by
using computers, should assesses that the size of the DLC is
different for the maximum and minimum values of the hourly
feeder's demand, which depends on the consumption patterns of
end users. Fig. 3 shows aggregated daily values for the same load
data of Fig. 1, where the black line is the daily maximum, the green
line is the daily average and the purple line is the daily minimum.
In this figure, DLC event is also highlighted in dotted-red line. The
horizontal dotted and dash lines correspond to the average demand
considering all data after and before the DLC event (highlighted
with the vertical dotted-red line). 

Notice that the difference between the average daily statistics
before and after the DLC event is different for each curve. This is
clear from Fig. 3, where ΔDLC considering the daily minimum is
ΔDLC( min ) = 2.61–1.75 = 0.86 MW, whereas the difference for

the daily average is ΔDLC(avg) = 4.29–2.70 = 1.59 MW and for the
daily maximum it is ΔDLC( max ) =5.69–3.51 = 2.18 MW.

According to the field experience, not always the biggest ΔDLC
comes from the maximum demand statistic, and it is necessary to
consider the three statistics to detect a DLC event in the general
case. Regarding the correction of the DLC, different sizes of DLC
must be tested for different demand levels in the time series.

3 LA methodology for the correction of DLC
The purpose of the LA methodology is to eliminate the effect of the
DLC on the load database. In Fig. 4, the HD [HD is the entire time
series HD f (h, j)] and all the variables used for the proposed LA are
illustrated. In this figure, a typical discrete load increase of 1.5 
MW (ΔDLC) occurs at the beginning of August 2011, in the 947th
day of the time series (tDLC  = 947). 

The variables used for LA are

• Ub is the average of daily maximum (Dmax) for the period before
the DLC occurrence in tDLC (pink line).

• Mb is the average of daily average demand (Davg) for the period
before the DLC occurrence in tDLC (green line).

• Lb is the average of daily minimum (Dmin) for the period before
the DLC occurrence in tDLC (orange dash line).

• Ua, Ma, La are the corresponding values for the period after the
DLC event in tDLC.

The proposed LA method assumes that if the DLC occurs in a
given year, its effect may be captured by adding (or subtracting)
the constant change ΔDLC to the data before the DLC occurrence.
Thus, the proposed strategy for LA consists of adjusting the
registers before the DLC (from January 2009 to the beginning of
August 2011 in Fig. 4), whereas the remaining values (after the
DLC) are kept unaltered (from August 2011 to December 2013 in
Fig. 5). 

In this work, four LA strategies are tested and evaluated, which
differ mainly in the way they compute the size ΔDLC:

• LA-A. Here two ΔDLC are tested. In the first place, it is computed
as the difference ΔM = Ma − Mb which is added to all demand
records with values above the mean Mb. In the second place,
ΔDLC is calculated as ΔL = La − Lb is subtracted to all records
below or equal to Mb.

Fig. 2  Example of a DLC in feeders
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• LA-B. Here also two DLC sizes are used. The first size ΔDLC is
estimated as ΔU = Ua − Ub, which is added to the records above
Mb; whereas the second uses ΔL, and it is subtracted to all
records below or equal to Mb.

• LA-C. Here ΔDLC = ΔM is used, which is added to all records.
• LA-D. Here seven DLC sizes are used, one for each day of the

week. This is done by subtracting a representative HD matrix
before the DLC, named Rb(h, td), from a representative HD
matrix after the DLC, named Ra(h, td). These matrices have one
row for each hour h of the day (24 rows) and one column for
each type of day td (seven types of days, from Monday to
Sundays). The elements of matrices Rb(h, td) and Ra(h, td) are
calculated as the average of all days before (rh, td

b ) and after (rh, td
a )

the DLC.

Then, the difference ΔR(h, td) = Ra(h, td) − Rb(h, td), is added to
adjust the load before the DLC for each type of day.

Notice that methods LA-A to LA-C perform LA by increasing or
reducing the demand before a DLC event. The fourth LA-D method
follows the same strategy but the adjustment incorporates the
changes in the daily patterns.

4 Effect of DLCs on medium-term forecasting
In order to illustrate the effect of DLC events on load forecasting,
in this section, two exercises are presented. In the first exercise, an
example of the Naive Benchmark approach, on one feeder for 3
years, is presented, whereas in the second the effect of using DLC
adjustment on a small data set of 20 feeders, by using two popular
AI forecasting techniques, is shown.

4.1 Effects of DLC event on MTLF: Naive Benchmark
example

A comparison of the real load, using the same feeder of Fig. 1, with
two load forecasting exercises for the period 2012–2013, is
presented in Fig. 5.

Fig. 3  Daily statistics of feeders electric demand
 

Fig. 4  Variables used in the proposed LA methods
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In Fig. 5, the black time series show the real behaviour of the
demand (historic values of HD f (h, j)) for years 2011–2013.

The Naive Benchmark load forecasting used in this exercise is
obtained from the product of the electricity load of the previous
year and the growth rate (GR j, f ) estimated by the distribution
company, for each feeder f and each year j, based on where the
feeder is located [29]. This approach was defined by Hyndman and
Athanasopoulos [40] as a naive approach with drift.

The distribution company uses a spatial regression model to
estimate the growth of different areas of the city based on historical
demand and economic variables. The projected growth rate
estimated in 2010 for the feeder used in the example was 1.6% in
2012 and 2% in 2013. The red time series in Fig. 5 correspond to a
straightforward forecasting by using those constant annual growth
rates applied to the year 2011. Note that from January to August
(months 1–8) for years 2012 and 2013 there is a clear difference
between the real demand (black lines) and the projected values (red
lines). The reason explaining this behaviour is the blind repetition
of the load pattern of year 2011, which includes the DLC in the
month of August 2011.

The adjustment consists of adding ΔDLC to all records previous
to the day of the event tDLC. Let us call HD f (h, j)  the adjusted
demand after applying the LA-D method, in hour h, year j and
feeder f. Then, the Naive Benchmark forecast HD f (h, j + 1), for
year j + 1, hour h and feeder f is calculated as follows:

HD f (h, j + 1) = HD f (h, j)(1 + GR j, f )

This procedure has been applied to the 2011 database by using the
same growth rates (1.6% in 2012 and 2% in 2013) in order to
obtain the forecasts for 2012 and 2013. Results with the DLC

adjustment LA-D are shown in Fig. 5 with the blue lines. It is clear
from that figure that the best forecast is given by the blue line (is
the closest to the real data).

In order to measure the performance of the forecasting, the
mean average error (MAE), mean average percentage error
(MAPE) and a relative change (RC) indicator are used. MAPE and
MAE are common measures of errors, whereas RC in this work is
defined as

RC = 100 ∗ (IW A − IA)
IA

where IW A is the forecasting indicator (MAE or MAPE) without
adjustment of the database and IA is the corresponding indicator
with the adjustment.

Results for MAPE and MAE of the real and forecasted demand
(same data as shown in Fig. 5) for the period 2012–2013 are shown
in Table 1. 

Results in Table 1 show that the adjustment of DLC reduces
dramatically the MAE and MAPE errors, where average
improvements (RC) are over 104% when compared to the case
without DLC correction.

4.2 Measuring the effects of DLC events using AI forecasting
techniques

In order to show the effect of using the DLC adjustment technique
with more sophisticated load forecasting methods, the proposed
DLC LA method LA-D is used to feed two selected forecasting
techniques: non-linear autoregressive neural network (NAR) [41]
and SVRs (ε-SVR) [42]. By following the same idea of the
previous subsection, the exercise consists of a comparison of the
forecasting results in two cases. In the first case, data is adjusted
according to the DLC proposed techniques, whereas in the second
case NAR and SVRs are applied directly to the untreated data. In
these tests, data from 2008 to 2011 was used for training and
setting parameters, whereas data from 2012 to 2013 was used for
validation purposes. Results for MAPE indicators are shown in
Table 2. 

Fig. 5  Historic values and load forecasting
 

Table 1 Forecasting errors with and without LA
Forecast MAPE, % MAE, MW RC, %

Without LA With LA Without LA With LA
2012–2013 27.8 13.6 1.56 0.76 104

 

Table 2 MAPE indicator with and without DLC adjustment
Method Without LA With LA RC
NAR, % 28.7 11.6 147.4
e-SVR, % 26.8 10.8 148.1
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Results in Table 2 show a consistent improvement when the
proposed LA procedure is used with more sophisticated forecasting
methods, such as NAR and ε-SVR. For both univariate methods,
the input data was processed in order to consider intraday,
intraweek and intrayear seasonal cycles [43]. By considering that
data are on an hourly basis, the length of intraday (s1), intraweek
(s2) and intrayear cycles (s3) are:
s1 = 24, s2 = 24 × 7, s3 = 24 × 7 × 52. With these definitions and
dt as a demand register in time t, the input variables used for all
forecasting evaluations are the following:

d1, d2, d3, ds1, ds1 + 1, ds1 + 2,
ds2, ds2 + 1, ds2 + 2, d2s2, d2s2 + 1, d2s2 + 2,
d3s2, d3s2 + 1, d3s2 + 2, ds3, ds3 + 1, ds3 + 2 .

In all evaluations, the best parameters for each model are found
based on a greedy search approach.

For the NAR method a search of the best number of delays
(from 1 to 10) and the best number on neurons in the hidden layer
(from 5 to 15) was implemented. A linear transfer function was
used in the input layer and a log-sigmoid transfer function was
used in the output layer, as load forecasting must be always
positive. Regarding data, the training set (2008–2011) was divided
into 70% to train, 15% for testing and 15% for validation. By using
this validation results, the best 10 models configurations out of 110
models tested, for each feeder, were selected to produce the final
forecasting evaluation presented in Table 2.

In the case of ε-SVR the same previous approach was followed.
Linear and non-linear kernels were tested and a search for the best
ten models was performed. For the non-linear tests, the Gaussian
radial basis function (RBF) was used. As previous work shows that
ε-SVR is less sensitive to the ε parameter [44], in this application ε
was fixed at 0.1. In these cases, the search for the best
hyperparameters considered σ2 and C with values from 2−9 to 29. In
the linear tests, the search for the best hyperparameters considered
ε between 0.1 and 1, and C with values from 2−9 to 29. Again the
best ten models were selected to calculate an average perform of
this technique with and without LA as shown in Table 2.

In the literature, it is reported that the overall MAPE errors with
DLC events is above 20% [29], which are larger than those shown
in Table 2. In summary, significant improvement for medium-term
load forecasting accuracy is achieved when proper detection and
correction of DLC events is performed on real field data.

5 Evaluation of LA methods
In this section, the performance of the LA methods is evaluated.
The methods are tested on an HD database of 169 feeders located
in the city of Santiago with registers from 2008 to 2013. These data
represent real scenarios in different conditions, e.g. feeders having
significant random fluctuations, feeders with and without trending,
feeders with and without seasonal variations and so on.

In order to compare the performance of the proposed LA
methods, it is necessary to build the true identification of DLC
occurrences. This is done by an extensive work, where the database
containing the demand at each feeder was carefully examined by
an expert, who identified DLC events from 2008 to 2013. The
result is an expert-built indicator IDLC

exp (t) that provides the GTI,
which is required as an input for the LA methods.

As the focus of these tests is on the performance of LA methods,
rather than in the forecasting technique, only the Naive Benchmark
approach is used. Thus, forecasting is calculated simply by
multiplying the demand of the previous year with the growth rate
(GR j, f ) projected by the distribution company with the current
spatial forecasting model, for each feeder f and each year j (same
procedure shown in Section 4.1).

Furthermore, to simplify the comparison, a special testing
database is built, which is constructed with feeders that have a
DLC in the first year and, simultaneously, they do not have a DLC
in the next year. It is found that 71 demand time series fulfil these
conditions. The next step is to apply the DLC-LA methods to adjust
the demand at each year j.

In order to measure the performance of LA methods, the error
between the projected demand in year j + 1, HD f (h, j + 1), and the
actual register of that year, HD f (h, j + 1), is calculated. Table 3
shows the performance for the four LA methods, which is measured
with the MAPE and RC indicators. In addition, for reference
purposes, in Table 3 the second column indicates the corresponding
MAPE when no LA is applied. 

From Table 3, columns 3–6 show that all LA methods achieve a
reduction in MAPE as compared with the reference case (second
column). Last four columns show the MAPE improvement as a
percentage with respect to the reference case (column 2). It can be
seen that for the LA-D method, improvements over 71% on average
are achieved in all years. In fact, from the total of 71 demand series
evaluated from 2009 to 2013, it is found that LA-D method is able
to reduce the forecasting errors in 61 cases.

6 Conclusion
In this work, the DLC phenomenon, resulting from network
reconfigurations or the incorporation of large consumers in
distribution feeders, is characterised, identified and adjusted.

Tests are carried out by using field data from a distribution
company, covering 169 feeders and a time span of 6 years.

Results show a notorious improvement in mid-term load
forecasting when the adjustments methods (LA) are used. The best
method, which uses seven DLC sizes, one for each day of the
week, is able to improve load forecasting over 71% on average for
all years, when compared to the case where no DLC is adjusted.

Future work is focused on applications of these methods to
medium-term load forecasting with hourly granularity and
incorporating weather variables.
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