
502978-1-5090-4749-9/17/$31.00 ©2017 IEEE ICUFN 2017

Efficient Video Streaming Rate Control Based on a
Deadline-Sensitive Selection of SVC Layers

Andrés Sanhueza
University of Chile

Email: asanhueza@ing.uchile.cl

Hugo Méric
NIC Chile Research Labs
Email: hmeric@niclabs.cl

Claudio Estevez
University of Chile

Email: cestevez@ing.uchile.cl

Abstract—Video streaming over the Internet is challenging
due to the varying intrinsic and extrinsic network conditions
such as loss rates, throughput and delay. In this work, a
cross-layer solution using scalable video coding in collaboration
with TCP is proposed. The objective is to ensure that all
frames arrive before their deadline by implementing a novel
deadline-sensitive discarding policy that adjusts the video stream
rate to the available bandwidth. Our proposal thus improves
stream fluidity and it also reduces transmission of unnecessary
traffic. Simulation results show that no rebuffering occurs, while
maintaining a high quality video, in a 70-ms RTT link with a
loss rate of 1%.

I. INTRODUCTION

Multimedia streaming is becoming one of the dominant
applications of the Internet. A recent study estimates that
video traffic will comprise at least 80 percent of all consumer
Internet traffic by 2019 [1]. Thus designing a robust and
network-friendly video delivery solution is a current exigency.

Multimedia content transmission faces several challenges
inherent from networks such as losses, varying throughput and
delay. This needs to be surmounted to provide a satisfactory
quality of experience (QoE) to the users. Several protocols
may be employed at the network level to carry the video
stream, for instance the user datagram protocol (UDP) or the
transmission control protocol (TCP). Even with the growth of
streaming applications which often use UDP, TCP flows still
represent the majority of the Internet traffic [2]. One reason is
that enterprises are implementing packet filtering, particularly
of UDP packets, to avoid unrestrained congestion-unaware
data flows and the ingress of unsolicited UDP packets. As
a corollary, UDP-based applications are transitioning to TCP,
a congestion-aware protocol. Concepts such as media-friendly
and TCP-friendly rate control are ameliorating the new video
streaming protocol designs but are still rarely used.

This work focuses on adaptive video streaming solutions
where a stored video file is encoded and transmitted in a
unicast fashion using TCP. The objective is twofold: (1) to
vary the video quality with changing network conditions and
(2) to avoid re-buffering as it severely impairs the QoE [3].
To that end, we propose a rate control algorithm that adjusts
the transmission rate by discarding parts of a scalable video
bitstream. This is the main contribution of this work. To the
best of our knowledge, a rate control algorithm that matches
scalable video coding (SVC) video bitrate to the classical TCP
throughput was never studied before.

The paper is organised as follows: Section II introduces
related work on video transmission over networks. We present
our main contribution, a deadline-sensitive system for scalable
video streaming over TCP, in Section III. We evaluate the per-
formance of our proposal through simulations in Section IV.
Finally, we summarize the results and discuss future research
directions in Section V.

Terminology. A segment is the transport layer unit, broadly
speaking a packet. The available segment transmission rate
(ASTR) is the instantaneous link capacity due to (mainly) the
congestion in the network. Loosely speaking, this can also be
referred as the bandwidth.

II. RELATED WORK

Several approaches exist to adapt the video throughput to
the available bandwidth. Many proposals rely on cross-layer
solutions between the transport protocol and the application
layer. In [7], the authors studied the interactions between
layered video and congestion control for video streaming.
However the proposed solution relies on MPEG-4, scalable
video coding (SVC) did not exist at that time, and on bino-
mial congestion control. Starting from different optimisation
problems to transmit video on the Internet, several control
policies are derived in [8]. Once again, the evaluation relies on
MPEG-4. In [5], an external cross-layer input (the bandwidth
for instance) controls the video encoder by changing the
coding parameters. The solution is applied to a single layer
H.264 encoded video over datagram congestion control pro-
tocol (DCCP). A streaming system using SVC and providing
a congestion control algorithm is introduced in [9]. Finally,
a well-known technique is the dynamic adaptive streaming
over HTTP (DASH) [10]. This solution considers the HTTP
protocol (above TCP or UDP) to send the video. The media
presentation on the HTTP server generally requires to encode
the video several times. Moreover DASH adapts the quality
for each video segment (time scale in s), while our proposal
reacts at every congestion windows (time scale in ms).

Compared to previous work, our proposal aims to exhibit
a low complexity and to be the least invasive possible. At
the server side, the video is encoded one time only using the
SVC concept. Moreover, our solution directly works above
TCP with no need to modify its behaviour. To the best of our
knowledge, it is the first proposal that combines SVC with the
classical TCP algorithm.

503503

Efficient Video Streaming Rate Control Based on a
Deadline-Sensitive Selection of SVC Layers

Andrés Sanhueza
University of Chile

Email: asanhueza@ing.uchile.cl

Hugo Méric
NIC Chile Research Labs
Email: hmeric@niclabs.cl

Claudio Estevez
University of Chile

Email: cestevez@ing.uchile.cl

Abstract—Video streaming over the Internet is challenging
due to the varying intrinsic and extrinsic network conditions
such as loss rates, throughput and delay. In this work, a
cross-layer solution using scalable video coding in collaboration
with TCP is proposed. The objective is to ensure that all
frames arrive before their deadline by implementing a novel
deadline-sensitive discarding policy that adjusts the video stream
rate to the available bandwidth. Our proposal thus improves
stream fluidity and it also reduces transmission of unnecessary
traffic. Simulation results show that no rebuffering occurs, while
maintaining a high quality video, in a 70-ms RTT link with a
loss rate of 1%.

I. INTRODUCTION

Multimedia streaming is becoming one of the dominant
applications of the Internet. A recent study estimates that
video traffic will comprise at least 80 percent of all consumer
Internet traffic by 2019 [1]. Thus designing a robust and
network-friendly video delivery solution is a current exigency.

Multimedia content transmission faces several challenges
inherent from networks such as losses, varying throughput and
delay. This needs to be surmounted to provide a satisfactory
quality of experience (QoE) to the users. Several protocols
may be employed at the network level to carry the video
stream, for instance the user datagram protocol (UDP) or the
transmission control protocol (TCP). Even with the growth of
streaming applications which often use UDP, TCP flows still
represent the majority of the Internet traffic [2]. One reason is
that enterprises are implementing packet filtering, particularly
of UDP packets, to avoid unrestrained congestion-unaware
data flows and the ingress of unsolicited UDP packets. As
a corollary, UDP-based applications are transitioning to TCP,
a congestion-aware protocol. Concepts such as media-friendly
and TCP-friendly rate control are ameliorating the new video
streaming protocol designs but are still rarely used.

This work focuses on adaptive video streaming solutions
where a stored video file is encoded and transmitted in a
unicast fashion using TCP. The objective is twofold: (1) to
vary the video quality with changing network conditions and
(2) to avoid re-buffering as it severely impairs the QoE [3].
To that end, we propose a rate control algorithm that adjusts
the transmission rate by discarding parts of a scalable video
bitstream. This is the main contribution of this work. To the
best of our knowledge, a rate control algorithm that matches
scalable video coding (SVC) video bitrate to the classical TCP
throughput was never studied before.

The paper is organised as follows: Section II introduces
related work on video transmission over networks. We present
our main contribution, a deadline-sensitive system for scalable
video streaming over TCP, in Section III. We evaluate the per-
formance of our proposal through simulations in Section IV.
Finally, we summarize the results and discuss future research
directions in Section V.

Terminology. A segment is the transport layer unit, broadly
speaking a packet. The available segment transmission rate
(ASTR) is the instantaneous link capacity due to (mainly) the
congestion in the network. Loosely speaking, this can also be
referred as the bandwidth.

II. RELATED WORK

Several approaches exist to adapt the video throughput to
the available bandwidth. Many proposals rely on cross-layer
solutions between the transport protocol and the application
layer. In [7], the authors studied the interactions between
layered video and congestion control for video streaming.
However the proposed solution relies on MPEG-4, scalable
video coding (SVC) did not exist at that time, and on bino-
mial congestion control. Starting from different optimisation
problems to transmit video on the Internet, several control
policies are derived in [8]. Once again, the evaluation relies on
MPEG-4. In [5], an external cross-layer input (the bandwidth
for instance) controls the video encoder by changing the
coding parameters. The solution is applied to a single layer
H.264 encoded video over datagram congestion control pro-
tocol (DCCP). A streaming system using SVC and providing
a congestion control algorithm is introduced in [9]. Finally,
a well-known technique is the dynamic adaptive streaming
over HTTP (DASH) [10]. This solution considers the HTTP
protocol (above TCP or UDP) to send the video. The media
presentation on the HTTP server generally requires to encode
the video several times. Moreover DASH adapts the quality
for each video segment (time scale in s), while our proposal
reacts at every congestion windows (time scale in ms).

Compared to previous work, our proposal aims to exhibit
a low complexity and to be the least invasive possible. At
the server side, the video is encoded one time only using the
SVC concept. Moreover, our solution directly works above
TCP with no need to modify its behaviour. To the best of our
knowledge, it is the first proposal that combines SVC with the
classical TCP algorithm.

III. SCALABLE VIDEO STREAMING OVER TCP

Scalable Video Coding Overview. The SVC extension of
the H.264/AVC standard enables to generate a multi-layer
video bitstream with a moderate increase in encoding/decoding
complexity relative to single-layer coding [4]. The standard
offers three types of scalability: temporal, spatial and quality.
This means that a substream obtained by dropping packets
from the original bitstream results in a lower frame rate, lower
resolution or lower quality video signal. Our proposal takes
advantage of this feature by discarding packets to adjust the
video stream rate to the ASTR. In our work, we only consider
quality scalability; nevertheless the extension to temporal and
spatial scalabilities is also feasible.

In video coding, a group of pictures (GOP) is a group of
successive frames within a coded video stream. The GOP
contains at least one intra-coded frame (I-frame), which is
compressed independently of the other frames, predictive (P-
frame) and/or bi-predictive (B-frame) frames. Fig. 1 depicts
the GOP structure used in the simulations. We consider a GOP
size of 8 frames with two quality layers per frame. The B-
frame encoding and decoding dependencies are also illustrated.

I IB B B B B B B
0 1 2 3 4 5 6 7 8
0 1234 5 67 8Encoding order

Base layer

Display order

Group of Pictures

Enhancement layer

Frame type

Fig. 1: Scalable video coding with two quality layers. The
arrows represent the dependencies between the frames.

SVC over TCP. A cross-layer mechanism that links SVC
with TCP can efficiently adapt the video bitstream to the
ASTR in real-time by selecting the transmitted segments.
The instantaneous throughput is determined by the congestion
window size (cwnd) and round trip time (RTT). TCP is
aware of both of these parameters: it controls the cwnd and
constantly estimates the RTT. Meanwhile, SVC has knowledge
of the frame types, frame layers and video segmentation. By
combining this information, some segments may be omitted
to improve the fluidity of the video, i.e., avoiding rebuffering
events at the receiver. Our discarding policy takes into account
the type (I or B), the quality layer (base or enhanced) and the
deadline of the frame contained in each segment.

Discarding policy. A central problem in video streaming
arises when the transmission rate is lower than the bitstream
rate. In that case, two solutions are typically implemented: rate
adaptation at the transmitter side or rebuffering at the receiver
side. In this work, we focus on the former solution as we
propose to regulate the stream rate by discarding packets in
the video stream. Two questions naturally arise: when should
we discard segments? and which segment should be discarded?

Several metrics may signal the need to perform rate adapta-
tion. For instance, the authors in [5] rely on the instantaneous
throughput. Our solution uses the time difference ∆F between
the estimated arrival time of a frame F and its deadline. When
the estimated arrival time approaches the deadline, we start
discarding segments based on their content.

The discarding prioritization is straightforward as SVC
generates dependencies during the encoding. Consider a SVC-
encoded video with two quality layers, base and enhanced, as
illustrated in Fig. 1. Video decoding is not possible without
the base information making it high priority; therefore the
enhanced layer is low priority. Moreover if the base layer of
a I-frame is not received, the I-frame will be lost and this
generates errors in two GOPs. If the base layer of a B-frame
is lost, the B-frame is lost and artefacts are present in the
corresponding GOP. In that case, the number of frame affected
depends on the frame position in the GOP. For instance
in Fig. 1, if frame 2 (encoding order) is lost, artefacts are
present in frame 3 to frame 8; if frame 4 is lost, no other
frame is affected. This also suggests that B-frames data should
generally be discarded before I-frame data.

Based on the previous discussion about data priorization,
Table I resumes the proposed discarding policy. The different
thresholds (in the left column) have been chosen experi-
mentally. On one hand, they enable to quickly react to low
bandwidth; on the other hand, they avoid discarding segments
unnecessarily, i.e., segments that still may be decoded on time.

TABLE I: Discarding policy based on the packet content and
the time difference ∆F between the estimated arrival time of
each frame and its deadline

Base layer Enh. layer
I frame B frame I frame B frame

0 � ∆F � 5 RTT � � � �

5 RTT � ∆F � 10 RTT � � � �

10 RTT � ∆F � 15 RTT � � � �

∆F � 15 RTT � � � �

Example. We illustrate our discarding policy through an
example in Fig. 2. The transmitter searches to fill a congestion
window of 7 segments. In the transmitter buffer, the first seven
segments correspond to only one frame called F1. We start
by computing ∆F1

based on the knowledge of the segment
content and the RTT (more details are given in the next
paragraph about the computation of ∆F for any frame F).
Assuming that 5 RTT � ∆F1

� 10 RTT, the transmitter fills
the cwnd with packets verifying this discarding policy (i.e.,
segments containing base quality data) and discards the other.
If new frames are introduced in the cwnd during the filling
operation, we do not compute their estimated arrival time. The
estimated arrival time is only computed for the frames initially
present (fully or partially) in the cwnd and we apply the most
restrictive discarding rule using Table I.

Finally the algorithm transmits three base quality frames
rather than one entire high quality frame. This behaviour is
representative of all simulation scenarios where the ASTR is

504504

I − Base Layer

I − Base Layer

I − Base Layer

B − Enh. Layer

2

3

8

9

13

14

15

16

17

18

19

1

B − Base Layer

B − Base Layer
2

4

B − Base Layer

B − Base Layer

B − Enh. Layer

B − Base Layer

B − Base Layer

Segment n
umber

Frame number

Segment c
ontent

I − Base Layer

I − Base Layer

I − Base Layer

I − Enh. Layer

I − Enh. Layer

I − Enh. Layer

I − Enh. Layer

B − Base Layer

B − Base Layer

B − Enh. Layer

B − Enh. Layer

B − Enh. Layer

2

3

4

5

6

7

8

9

10

11

12

1 I − Base Layer

I − Base Layer

I − Base Layer

I − Enh. Layer

I − Enh. Layer

I − Enh. Layer

I − Enh. Layer

B − Base Layer

B − Base Layer

B − Enh. Layer

B − Enh. Layer

B − Enh. Layer

2

3

4

5

6

7

8

9

10

11

12

1

Remaining segments to transmit

Congestion window

1

2

1

2

3

1

B − Enh. Layer

Fig. 2: Discarding frame policy to fill a congestion window of
7 packets and assuming that 5 RTT � ∆F1 � 10 RTT

lower than the video stream bitrate.
Computation of ∆F . The computation of ∆F requires two

components: the deadline and the estimated arrival time of
each frame. The frame deadline depends on the starting time
of the streaming, the playout buffer length, the frame rate and
the frame number. Its computation is straightforward.

The computation of the estimated arrival time works as fol-
low: assume that at least one segment containing data relative
to frame F is initially present in the cwnd. The first step is to
identify all the segments corresponding to F content. Then
we determine how many congestion windows are required
to transmit these segments. Two cases are possible: all the
packets fit or not in the current cwnd. In the first case, one
congestion window is necessary and the estimated arrival time
is given by tc +RTT/2, where tc is the current time. In the
second case, the transmission of F requires several congestion
windows. However the evolution of the cwnd size is unknown
due to the losses. To tackle this issue, we assume that no
loss occurs during the transmission enabling to compute the
(minimum) number of congestion window required to transmit
F , noted wF . Then the estimated arrival time of frame F is
equal to tc + (wF − 1)×RTT +RTT/2.

We conclude this section with two important remarks: (1)
when losses occur, the packets are not acknowledged and we
keep them in the buffer to transmit and (2) the estimated arrival
time of each frame is refreshed at each cwnd if necessary.

IV. SIMULATION RESULTS

Simulation setup. The proposed deadline-sensitive video
streaming rate control is assessed using Joint Scalable Video
Model (JSVM), the reference software for SVC coding, and
MATLAB. In the simulations, the 900-frames video Highway
with CIF resolution1 is encoded at 30 frames per second
resulting in a stream of 30 seconds. The GOP size is set to 8
and we consider two quality layers (base and enhancement).

1Reference YUV video sequences: http://trace.eas.asu.edu/yuv/index.html

The quantization parameters relative to the base and enhanced
quality layers are 40 and 20, respectively.

After the encoding, JSVM generates a trace file that sum-
marizes the information about the encoded video stream. This
trace file is used by MATLAB, which implements the TCP
congestion control and the proposed rate control algorithm.
The congestion control is based on the traditional TCP be-
haviour: it reflects the network state (for instance a large
loss rate is representative of a congested network). MATLAB
outputs the segments that arrive before their deadline at the
receiver.

The last stage is the video decoding, achieved by JSVM. If
a frame base layer is not available when the frame deadline
arrives, the frame is lost. In that case, the frame is replaced by
a blank frame as JSVM does not implement error concealment
algorithms. Fig. 3 illustrates the impact of a frame loss. The
blank frames maintain the same video length between the
transmitter and the receiver; it also enables the JSVM decoder
to run properly. Finally, it is assumed that the travel time
of each congestion window is equal to RTT/2 and a frame
is received if the receiver possesses all the segments that
compose it.

(a) Blank frame replacing a lost frame

(b) Artefacts due to a frame loss

(c) Artefacts due to a frame loss

Fig. 3: Examples of video frames after a frame loss (i.e., a
frame that did not meet its deadline). For each figure, the
original picture is on the left while the reconstructed frame
is on the right. In Fig. 3a, a frame whose base layer did
not meet its deadline is replaced by a blank frame. Due to
error propagation, this may generate artefacts in some frames
(depending on the position of the lost frame in its GOP).

505505

I − Base Layer

I − Base Layer

I − Base Layer

B − Enh. Layer

2

3

8

9

13

14

15

16

17

18

19

1

B − Base Layer

B − Base Layer
2

4

B − Base Layer

B − Base Layer

B − Enh. Layer

B − Base Layer

B − Base Layer

Segment n
umber

Frame number

Segment c
ontent

I − Base Layer

I − Base Layer

I − Base Layer

I − Enh. Layer

I − Enh. Layer

I − Enh. Layer

I − Enh. Layer

B − Base Layer

B − Base Layer

B − Enh. Layer

B − Enh. Layer

B − Enh. Layer

2

3

4

5

6

7

8

9

10

11

12

1 I − Base Layer

I − Base Layer

I − Base Layer

I − Enh. Layer

I − Enh. Layer

I − Enh. Layer

I − Enh. Layer

B − Base Layer

B − Base Layer

B − Enh. Layer

B − Enh. Layer

B − Enh. Layer

2

3

4

5

6

7

8

9

10

11

12

1

Remaining segments to transmit

Congestion window

1

2

1

2

3

1

B − Enh. Layer

Fig. 2: Discarding frame policy to fill a congestion window of
7 packets and assuming that 5 RTT � ∆F1 � 10 RTT

lower than the video stream bitrate.
Computation of ∆F . The computation of ∆F requires two

components: the deadline and the estimated arrival time of
each frame. The frame deadline depends on the starting time
of the streaming, the playout buffer length, the frame rate and
the frame number. Its computation is straightforward.

The computation of the estimated arrival time works as fol-
low: assume that at least one segment containing data relative
to frame F is initially present in the cwnd. The first step is to
identify all the segments corresponding to F content. Then
we determine how many congestion windows are required
to transmit these segments. Two cases are possible: all the
packets fit or not in the current cwnd. In the first case, one
congestion window is necessary and the estimated arrival time
is given by tc +RTT/2, where tc is the current time. In the
second case, the transmission of F requires several congestion
windows. However the evolution of the cwnd size is unknown
due to the losses. To tackle this issue, we assume that no
loss occurs during the transmission enabling to compute the
(minimum) number of congestion window required to transmit
F , noted wF . Then the estimated arrival time of frame F is
equal to tc + (wF − 1)×RTT +RTT/2.

We conclude this section with two important remarks: (1)
when losses occur, the packets are not acknowledged and we
keep them in the buffer to transmit and (2) the estimated arrival
time of each frame is refreshed at each cwnd if necessary.

IV. SIMULATION RESULTS

Simulation setup. The proposed deadline-sensitive video
streaming rate control is assessed using Joint Scalable Video
Model (JSVM), the reference software for SVC coding, and
MATLAB. In the simulations, the 900-frames video Highway
with CIF resolution1 is encoded at 30 frames per second
resulting in a stream of 30 seconds. The GOP size is set to 8
and we consider two quality layers (base and enhancement).

1Reference YUV video sequences: http://trace.eas.asu.edu/yuv/index.html

The quantization parameters relative to the base and enhanced
quality layers are 40 and 20, respectively.

After the encoding, JSVM generates a trace file that sum-
marizes the information about the encoded video stream. This
trace file is used by MATLAB, which implements the TCP
congestion control and the proposed rate control algorithm.
The congestion control is based on the traditional TCP be-
haviour: it reflects the network state (for instance a large
loss rate is representative of a congested network). MATLAB
outputs the segments that arrive before their deadline at the
receiver.

The last stage is the video decoding, achieved by JSVM. If
a frame base layer is not available when the frame deadline
arrives, the frame is lost. In that case, the frame is replaced by
a blank frame as JSVM does not implement error concealment
algorithms. Fig. 3 illustrates the impact of a frame loss. The
blank frames maintain the same video length between the
transmitter and the receiver; it also enables the JSVM decoder
to run properly. Finally, it is assumed that the travel time
of each congestion window is equal to RTT/2 and a frame
is received if the receiver possesses all the segments that
compose it.

(a) Blank frame replacing a lost frame

(b) Artefacts due to a frame loss

(c) Artefacts due to a frame loss

Fig. 3: Examples of video frames after a frame loss (i.e., a
frame that did not meet its deadline). For each figure, the
original picture is on the left while the reconstructed frame
is on the right. In Fig. 3a, a frame whose base layer did
not meet its deadline is replaced by a blank frame. Due to
error propagation, this may generate artefacts in some frames
(depending on the position of the lost frame in its GOP).

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 100 200 300 400 500 600 700 800 900

Ti
m

e
[s

]

Frame number (coding order)

Frame arrival with rate control
Frame arrival without rate control
Frame deadline
Frame deadline − 15 RTT

Fig. 4: Frame arrival time with and without rate control
(RTT = 70 ms, loss rate = 0.01 and buffer of 3 s)

Results. The first simulation results consider a RTT of 70
ms, a loss rate of 0.01 and a playout buffer of 3 seconds
at the receiver side. Fig. 4 presents the frame arrival time
with and without rate control. First, we remark that the frame
deadline curve is not strictly increasing. This is because we
consider the coding order and not the display order (see Fig. 1).
Then the results show that the proposed rate control algorithm
enables to meet the frame deadline for all frames. When no
rate control is used, the frame arrival time exceeds the frame
deadline after transmitting about 370 frames. Moreover at the
end of the transmission, a time gap of about 12 seconds exists
between the two schemes. We also remark that the proposed
scheme keeps a margin with the deadline, this ensures a quality
smoothness at the receiver.

Fig. 5 shows the congestion window size and the frame
quality in terms of luminance peak signal to noise ratio (Y-
PSNR) for a simulation with the same parameters as before:
a RTT of 70 ms, a loss rate of 0.01 and a playout buffer of
3 seconds. We choose the Y-PSNR as the human eye is more
sensitive to the brightness information. Fig. 5b also depicts
the mean opinion score as defined in [6]. In both figures, we
present the discarded segments in order to see the behaviour of
our rate control algorithm. In Fig. 5a, the discarded segments
do not half the congestion window because it is a consequence
of our rate control algorithm, this is not a loss in the network.

At the beginning of the streaming, there is no discarded
segment and the video quality is excellent with a Y-PSNR
above 40 dB. This is due to the presence of the playout buffer.

Around the congestion window #200, the rate control
algorithm starts to discard segments and the video quality
decreases. In this simulation, the discarded segments contain
mainly the enhanced layer of B-frames. Indeed, only one
I-frame was affected by the removal of its enhanced layer
(see Fig. 5b). Moreover no segment containing base layer
information (for I or B-frames) was discarded. This means
that the rate control algorithm always kept a 10 RTT margin
with the frame deadline. Finally, the resulting video quality
oscillates between good and excellent.

In Table II, we present the impact of the RTT on: (1) the
number of frames affected by base or enhanced layer removal,

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450

C
W

N
D

 s
iz

e
 [
s
e
g
m

e
n
ts

]

RTT cycle

CWND size

Discarded segments

(a) Congestion window size

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800 900
Fr

am
e

Y−
PS

NR
 [d

B]

Frame number (coding order)

Bad

Poor
Fair

Good

Excellent

Discarded enh. layer
segments of I frame

Frame Y−PSNR
Discarded enh. layer segments of B frame

(b) Frame Y-PSNR

Fig. 5: Simulation results with a loss rate of 0.01, a RTT of 70
ms and a playout buffer of 3 s. The background color enables
to match the RTT cycles with the transmitted frames.

(2) the difference between the last frame arrival time with or
without rate control and (3) the average Y-PSNR. The loss rate
is set to 0.1 and the playout buffer to 3 s. When the RTT is
70 ms, we retrieve the results presented in Fig. 4 and Fig. 5.
The results point out that the proposed algorithm obtains good
performance up to 150 ms as the video quality is still good.
The video quality decreases heavily for a RTT of 175 ms,
this is mainly due to the losses of many B-frames base layer.
In that case, two solutions are possible: modify the proposed
algorithm (for instance the different discarding thresholds) or
encode the video with a larger quantization parameter.

TABLE II: Simulations results for various RTT values (loss
rate of 0.01 and playout buffer of 3 s)

RTT
Base layer discarded Enh. layer discarded Time Average
I frame B frame I frame B frame Gap Y-PSNR

50 ms 0 0 1 143 2.4 s 40 dB
70 ms 0 0 1 339 11.6 s 38 dB
100 ms 0 0 25 462 20 s 37 dB
150 ms 0 0 78 705 61.1 s 35 dB
175 ms 0 87 95 771 70.7 s 15 dB

V. CONCLUSION

A deadline-sensitive rate-control algorithm for scalable
video streaming is presented and evaluated. As the frame

506506

arrival time approaches its deadline, the proposed solution
discards segments in a SVC stream based on the segment
content. Our technique works over TCP. The concept is novel
and proven to efficiently control the bitstream to produce a
continuous video stream (no re-buffering), while maintaining
a high quality video under bandlimited scenarios. The cross-
layer interaction between SVC and TCP improves the QoE
and reduces unnecessary traffic in the underlying network.

Future work will extend the current results in several
directions. First, we will investigate the impact of the system
parameters (discarding thresholds, loss rate, playout buffer,
TCP version, etc.) on the video quality. We also plan to
use rate-distortion studies in order to improve our discarding
policy. Finally, the potential benefits of using the late-arrival
segments [11] will be researched.

REFERENCES

[1] “Cisco visual networking index: Forecast and methodology, 2014-2019,”
CISCO, Tech. Rep., 2015.

[2] D. Lee, B. E. Carpenter, and N. Brownlee, “Observations of UDP to
TCP ratio and port numbers,” in Internet Monitoring and Protection
(ICIMP), International Conference on, 2010, pp. 99–104.

[3] O. Oyman and S. Singh, “Quality of experience for HTTP adaptive
streaming services,” Communications Magazine, IEEE, vol. 50, no. 4,
pp. 20–27, 2012.

[4] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 13, no. 7, pp. 560–576, 2003.

[5] G. Sarwar, R. Boreli, and E. Lochin, “Xstream-x264: Real-time H.264
streaming with cross-layer integration,” in Multimedia and Expo (ICME),
IEEE International Conference on, 2011, pp. 1–4.

[6] J. Klaue, B. Rathke, and A. Wolisz, “Evalvid – a framework for video
transmission and quality evaluation,” in 13th International Conference
on Modelling Techniques and Tools for Computer Performance Evalu-
ation, 2003, pp. 255–272.

[7] N. Feamster, D. Bansal, and H. Balakrishnan, “On the interactions
between layered quality adaptation and congestion control for streaming
video,” in International Packet Video Workshop, 2001.

[8] P. de Cuetos, “Network and content adaptive streaming of layered-
encoded video over the Internet,” Ph.D. dissertation, Institut Eurécom,
2003.

[9] D. T. Nguyen and J. Ostermann, “Congestion control for scalable video
streaming using the scalability extension of H.264/AVC,” Selected Topics
in Signal Processing, IEEE Journal of, vol. 1, no. 2, pp. 246–253, 2007.

[10] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP - Standards
and Design Principles,” in ACM Conference on Multimedia Systems,
2011, pp. 133–144.

[11] J. Xiao, T. Tillo, C. Lin, Y. Zhang, and Y. Zhao, “A real-time error
resilient video streaming scheme exploiting the late- and early-arrival
packets,” Broadcasting, IEEE Transactions on, vol. 59, no. 3, pp. 432–
444, 2013.

