
Building a Threshold Cryptographic Distributed
HSM with Docker Containers
Caterina Munoz

INRIA Chile,
Avenida Apoquindo 2827, piso 12,

Las Condes, Santiago de Chile.
Email: caterina.munoz@inria.cl

Francisco Cifuentes
NIC Labs, Universidad de Chile

Blanco Encalada 1975,
Santiago de Chile.

Email: francisco@niclabs.cl

Francisco Montoto
NIC Labs, Universidad de Chile

Blanco Encalada 1975,
Santiago de Chile.

Email: montoto@niclabs.cl

Javier Bustos-Jiménez
NIC Labs, Universidad de Chile

Blanco Encalada 1975,
Santiago de Chile.

Email: jbustos@niclabs.cl

Abstract—The Domain Name System (DNS) has evolved
to support the exponential growth of the Internet, by
relying heavily on a highly distributed infrastructure.
Nevertheless, trust between server must exist in order to
guarantee correct functioning of the system, which is prone
to attacks and errors. The Domain Name System Security
Extensions (DNSSEC) is the current extension of the DNS
system to provide security constrains to the query process.
DNSSEC key management main impact on DNS operation
has been the use of a monolithic equipment: Hardware
Security Modules.

A Hardware Security Module (HSM) is a specialized
hardware designed to protect keys against logical and
physical tampering or extraction, while providing secure
mechanisms to employ those keys in cryptographic op-
erations without ever exposing sensitive material. Unfor-
tunately, the high costs of most HSMs make them a
reasonable solution only for large corporations. Even then,
there is the risk of failures; provisions must then be taken
to replace or recover failed HSMs, further increasing the
overall cost of this technology.

We have presented a distributed signer system based
on threshold cryptography, called Poor Man’s Hardware
Security Module (pmHSM), which provides the signa-
ture components of an HSM over inexpensive commodity
hardware to support the operational signing workflow of
DNSSEC. We did test our virtual pmHSM by using it
to support the operational signing workflow of DNSSEC.
Nevertheless, our solution did not used all the capabilities
of the PKCS11 API and it had a single point of failure.

Thus, we changed pmHSM’s architecture moving part
of it services to the client side and isolating the signer,

replacing the previous compile-creation version of the
distributed signers for self-contained and easy to configure
containers. With this change, we aim to build a system
more extensible, usable, and more configurable to the users
needs.

I. INTRODUCTION

DNSSEC is a security extension to provide
authenticity and integrity to the traffic between
DNS servers. In regular DNS query/response schema,
the answers are not authenticated, making man in
the middle attacks a real possibility. In DNSSEC, a
public-key infrastructure architecture is introduced to
endow every query with an authenticated response, by
means of a digital signature and a public key. All these
signatures use to be stored safely in Hardware Security
Modules (HSM), which often their security level is
proportional to their costs.

On one hand an HSM is still a monolithic machine
that could fail, and in other hand to put the keys
of an inherent distributed protocol as DNS in a
monolithic infrastructure seems to be unnatural. Also,
there were some issues detected in the use of HSMs.
For instance, in the RIPE 62 meeting, Brett Carr
declared that ”in September 2010 a HSM hardware
failure caused a OS crash, then the HSM was locked
on reboot, and the 2-Day TTL on DNSKEY caused
slow recovery of .uk signing” [1]. Also, in ICANN
41 meeting, Vincent Levigneron (from AFNIC) stated978-1-5386-3123-2/17/$31.00 c©2017 IEEE

that their ”first DNSSEC outage was in November
2010, during key deletion we had a network issue
making our HSM unreachables. The error was not
well detected, so the publication process didn’t stop
as expected. OpenDNSSEC to Bind synchronization
process (homemade script) decided to purge the key files
one hour after it was supposedly deleted”. Their second
outage in February 2011 was caused by a bug in bind,
and their third one was in March 2011: ”Bind “decided”
to modify it’s private records. But at the same time,
we had (again) a HSM reachability issue. Then, the
published zone was not correct” [2]. Furthermore, the
chance of a HSM failure is considered in the process
of signing a root zone in the draft published in 2010 by
ICANN[3].

In a previous work [4] we described the Poor
Man’s Hardware Security Module (pmHSM) a system
able to emulate a HSM without requiring expensive
hardware. We built it by implementing the inner works
of the HSM using threshold cryptography with a set
of distributed nodes (Figure 1). In order to provide
the needed functionality, we distribute the key and
the required operations (eg. digital signing) over these
nodes. In particular, our system provided digital signing
capabilities via an efficient, modular, and diverse
implementation of the Victor Shoup’s scheme [5].

Fig. 1. Threshold Cryptography: Key is divided in n key-shares and
it is only need k > n

2
sign-shares to produce a valid signing.

However, our previous version still presented a single-
point of failure (see details in Section IV), so we re-
designed it under the following principles:

1) it should be fully distributed,
2) it should be open source, and

3) in order to be adopted by TLD administrators, it
deployment should be harmless.

Our solution was designed to be extremely easy to
adopt, as it provides a simple yet standard interface for
any application that wants to use it: from the outside,
the system presents the standard PKCS#11 interface
implementing the associated API. This provides a trans-
parent interface between applications and our system:
any application which already access an HSM is now be
able to use our implementation with almost no changes.

II. RELATED WORK

Threshold cryptographic systems have been widely
used in network protocols. Given its distributed nature
it has been widely used in security of wireless [6], [7],
[8], and mobile ad-hoc networks [9], [10], [11], voting
systems [12], and as a solution for the problem of
storing DNS zone secrets online without leaking them
to a corrupted server [13].

We remark that our distributed solution can be
implemented with no special hardware (which yields
smaller costs), is resilient to attacks such as those
presented in the work of Bau and Mitchell [14], and
provides a high availability rate (such as wanted in the
work of Deccio et al. [15]), since nodes can fail and
the system will operate anyway [16]. Hardware security
modules provide very high mean time between failures,
but in the worst case scenario, they can fail or we can
suffer natural disasters.

On the DNSSEC side, the two most used mechanisms:
Bind [17] and OpenDNSSEC1 use a one-to-one client-
server scheme to manage signatures and keys [18],
both provide connection to hardware security modules
(HSMs) via PKCS#11 connections. However, the key
point in pmHSM is the reliability of the threshold
cryptographic backend compared to client-server
schemes [19].

III. DISTRIBUTED HSM

Our first version of pmHSM [4] comprised of three
different process which can run over different machines
that communicates using ZeroMQ messages over TCP.
The processes are (a) the application, (b) the Manager,
and (c), the Node. For each pmHSM instance, there is a
single Manager instance and a single set of distributed

1http://www.opendnssec.org

Fig. 2. Architecture of the pmHSM DNSSEC distributed signer

nodes (Figure 2). Notice that multiple applications can
send requests to pmHSM.

A. pmHSM Layers

Our pmHSM was based in a separated implementation
of a three layer system [4]:

1) A PKCS11 dynamic library: This is the part that
implements the PKCS#11 API. The library file
(libpkcs11.so) must be installed on the ma-
chine with the application that will be making
requests to the HSM.

2) A server that acts as a manager of all cryptographic
operations.

3) A manager’s client application, named Shareholder
node.

The signing process works as follows: when a node
receives a document and a key-share alias, it generated
a new signature-share and sends it to the manager. The
manager joins the needed signature-shares to make a
complete RSA signature. The nodes, as modules that
store private key pieces, are the most vulnerable module
of the system. Hereby, the system was designed to let
the nodes be implemented in different programming

languages, and to let them run in different operating
systems and architectures.

B. Inside the Manager

The manager module was developed in Java, and as we
stated in [4] it had five sub-modules: Method Collector,
Key Generator, Dispatcher, Results Collector y Request
Manager. The Method Collector was the module that
receives the application’s requests, and send the response
back after the other modules have worked on it using
the Response mechanism of ZeroMQ. Dispatcher was
the module that send messages to the nodes using the
Publish ZeroMQ mechanism. Results Collector was the
module that listens messages from the nodes in order to
execute the requested actions. Finally, Request Manager
is the module that send specific request to the nodes by
the mean of the dispatcher, and generating tickets to be
used in the asynchronous processing of the answers.

IV. SYSTEM REDESIGN

We noticed that the manager was a critical part of the
system, and it could became a single point of failure
of our architecture (Figure 3(a)). Thus, we studied how
to improve our system. The first choice was to replicate
the manager and use replicate messaging for consistence
(Figure 3(b)), and the second choice was the use a repli-
cated database in the manager (Figure 3(c)). Nevertheless
both solutions impacted in performance and not solve the
problem of the critical part of the infrastructure.

Then, we decided to split the manager services, im-
plementing the dispatcher, key generator, and results
collector in the client side with the PKCS#11 API,
and distributing main services of method collector and
request managers among the client and nodes side. The
resultant design is presented in Figure 4 and now the
system has not a single point of fairlure.

With the new node’s design, we noticed that one
of the main drawback in to publish the node “as it
is” in our GitHub site 2 was the cryptography library
dependencies, which add extra effort to operations and
sysadmins in order to install them. Thus, giving our
experience with Linux Containers [20], we decided to
build Docker containers for the infrastructure, one for
the library itself, and one for the signer node.

V. “CONTAINERIZING”

We tested the whole system in a desktop computer,
with Intel Core i5-2400 CPU at 3.10GHz (x 4), having a
docker container for each participant (Knot NameServer

2https://github.com/niclabs/tchsm-libdtc

(a) Critic (single) point of failure

(b) Replicated Communication

(c) Replicated Database

Fig. 3. Design process.

Fig. 4. Architecture of the new pmHSM DNSSEC distributed signer

and four nodes). To avoid nodes to connect to default
network, we simply add every component to the same
bridge (in our case called tchsm):

docker network create -d bridge tchsm
for i in $(seq 1 $NODES)

do

docker -D run --net=tchsm -d \
--name node-$i tchsm-node \
-c /etc/node$i.conf

done

docker create --net=tchsm \
--name knot-demo \
-p ${EXPOSE_PORT}:53 \
-p ${EXPOSE_PORT}:53/udp \
tchsm-demo

Then, our performance results were:
• Signature: around 75 signatures per second.
• Signing 250, 000 domains (500, 000 lines in zone

file) took 2 hours and 50 minutes.
The simple network configuration provided by Docker

and the new self-contained node lead us to improve it
and make the node capable now to serve different clients,
selecting the key-share depending on a session-id.
With this improvement we can have nodes serving mul-
tiple clients, as in Figure 5.

The full system can be tested from https://github.com/
niclabs/docker/tree/master/tchsm .

Fig. 5. Multiple client’s nodes.

VI. CONCLUSIONS AND FUTURE WORK

Docker allowed us to make deployments simpler,
without requiring a deep intervention of the servers. This
is very important when we look for the system to be
used by third parties. The migration to Docker does not

cause a decrease in service performance, because the
cryptographic operations are, at least, ten times more
expensive than the synchronization and communication
of the participants.

REFERENCES

[1] B. Carr, “.uk dnssec status update,” in RIPE 62 Meeting, 2011,
http://ripe62.ripe.net/presentations/219-uk DNSSEC Status
Ripe 62.pdf.

[2] V. Levigneron, “Key deletion issues and other
dnssec stories,” in ICANN 41 Meeting, 2011,
http://singapore41.icann.org/meetings/singapore2011/
presentation-key-deletion-issues-22jun11-en.pdf.

[3] R. D. D. Team, “Dnssec test plan for the root zone
(draft),” ICANN and VeriSign, Tech. Rep., 2010,
http://www.root-dnssec.org/wp-content/uploads/2010/06/
draft-icann-dnssec-testing-01.txt.

[4] F. Cifuentes, A. Hevia, F. Montoto, T. Barros, V. Ramiro,
and J. Bustos-Jiménez, “Poor man’s hardware security module
(pmhsm): A threshold cryptographic backend for dnssec,” in
Proceedings of the 9th Latin America Networking Conference.
ACM, 2016, pp. 59–64.

[5] V. Shoup, “Practical threshold signatures,” in Advances in
Cryptology—EUROCRYPT 2000. Springer, 2000, pp. 207–
220.

[6] C. Crépeau and C. R. Davis, “A certificate revocation scheme
for wireless ad hoc networks,” in Proceedings of the 1st ACM
workshop on Security of ad hoc and sensor networks. ACM,
2003, pp. 54–61.

[7] C. Basile, Z. Kalbarczyk, and R. K. Iyer, “Neutralization of
errors and attacks in wireless ad hoc networks,” in International
Conference on Dependable Systems and Networks. IEEE,
2005, pp. 518–527.

[8] S. Yi and R. Kravets, “Key management for heterogeneous ad
hoc wireless networks,” in IEEE International Conference on
Network Protocols. IEEE, 2002, pp. 202–203.

[9] B. Wu, J. Wu, E. B. Fernandez, M. Ilyas, and S. Magliveras,
“Secure and efficient key management in mobile ad hoc net-

[9] B. Wu, J. Wu, E. B. Fernandez, M. Ilyas, and S. Magliveras,
“Secure and efficient key management in mobile ad hoc net-
works,” Journal of Network and Computer Applications, vol. 30,
no. 3, pp. 937–954, 2007.

[10] J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla, and S. Lu,
“Adaptive security for multilevel ad hoc networks,” Wireless
Communications and Mobile Computing, vol. 2, no. 5, pp. 533–
547, 2002.

[11] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang, “Ursa: ubiq-
uitous and robust access control for mobile ad hoc networks,”
IEEE/ACM Transactions on Networking (ToN), vol. 12, no. 6,
pp. 1049–1063, 2004.

[12] P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryption in
the context of voting or lotteries,” in Financial Cryptography.
Springer, 2001, pp. 90–104.

[13] C. Cachin and A. Samar, “Secure distributed dns,” in Inter-
national Conference on Dependable Systems and Networks.
IEEE, 2004, pp. 423–432.

[14] J. Bau and J. C. Mitchell, “A security evaluation of dnssec with
nsec3,” in NDSS. The Internet Society, 2010.

[15] C. Deccio, J. Sedayao, K. Kant, and P. Mohapatra, “Quantifying
and improving dnssec availability,” in International Conference
on Computer Communications and Networks (ICCCN). IEEE,
2011, pp. 1–7.

[16] A. Kasabov and Y. Schaeffer, “Resilient opendnssec,” Univer-
siteit van Amsterdam - NLnetLabs, The Netherlands, Tech.
Rep., August 2012.

[17] D. B. Terry, M. Painter, D. W. Riggle, and S. Zhou, The berkeley
internet name domain server. University of California, 1984.

[18] D. Kozic, B. Zwittnig, J. Sterle, and A. Kos, “Dnssec key
management,” Elektrotehniski Vestnik/Electrotechnical Review,
vol. 79, 2012.

[19] H. Yang, E. Osterweil, D. Massey, S. Lu, and L. Zhang,
“Deploying cryptography in internet-scale systems: A case
study on dnssec,” IEEE Transactions on Dependable and Secure
Computing, vol. 8, no. 5, pp. 656–669, 2011.

[20] J. Bustos-Jiménez, R. Alonso, C. Faúndez, and H. Méric,
“Boxing experience: Measuring qos and qoe of multimedia
streaming using ns3, lxc and vlc,” in Local Computer Networks
Workshops (LCN Workshops), 2014 IEEE 39th Conference on.

IEEE, 2014, pp. 658–662.

