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Abstract: Geostatistics offers a set of methods for modeling, predicting, or simulating geological
domains in space. In addition of being an input of some of these methods, indicator direct and
cross-variograms convey valuable information on the geometry of the domain layouts and on their
contact relationships, in particular, on the surface area of a domain boundary, on the surface area of
the contact between two domains, on the propensity for a domain to be in contact with, or separated
from, another domain, and on the minimum and maximum distances between points from two
domains. Accordingly, the indicator variograms inferred from sparse sampling data can be used to
determine whether or not an interpreted model of the subsurface is consistent with the sampling
information. The previous concepts are illustrated through a case study corresponding to a porphyry
copper deposit.

Keywords: geological domaining; indicator direct and cross-variograms; edge effects; contact
relationships

1. Introduction

Identifying and modeling rock type, mineralization and alteration domains in ore deposits has
become a crucial step in the assessment of geological and geometallurgical regionalized variables,
such as metal grades or metal recoveries, due to the controls that these domains often exert on the
distribution of these variables [1–5].

One issue for mining geologists and geometallurgists is to define the layout of each domain with
the greatest possible accuracy, in order to minimize misclassifications (material predicted as belonging
to a domain, but actually belonging to another one). Another issue relates to the consistency between
the interpreted domain layouts and the information obtained from sampling data, so as to determine
whether or not the geological interpretation is a faithful representation of reality. Of particular interest
are the spatial regularity of the domain layouts and the contact relationships between domains, as some
domains may have a propensity to be or not to be in contact depending on the geological setting.

The appraisal of the spatial and geometrical properties of geological domains often relies on
geostatistical tools like vertical or regionalized proportion curves [6,7], contact matrices [8], transition
probabilities under Markov chain models [9,10], or multiple-point metrics [11,12]. This paper focuses
on alternative tools (namely, the indicator direct and cross-variograms) that are often disregarded
in the geological modeling stage, although they can easily be inferred from a set of sampling data.
The aim is to show that these tools convey geometrical information about the domain layouts and
can be used to validate the consistency between sampling data (geological logs) and an interpreted
geological model.

The outline is the following one: Section 2 provides theoretical background about the direct and
cross-variograms of the indicators of non-overlapping domains and links the variogram properties
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with geometrical features of the domains. Section 3 presents a case study of a porphyry copper deposit.
A general discussion and conclusions follow in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Indicator Modeling

A geological model can be viewed as a partition of a mineral deposit or, more generally, of a
region in the subsurface, into non-overlapping domains, such as rock type, mineralization or alteration
domains. Each domain Dk, with k = 1, . . . , K, can be codified by a binary variable called indicator:

Ik(x) =

{
1, if x belongs to Dk
0, otherwise

(1)

where x stands for a generic point in the three-dimensional Euclidean space R3. Viewing this indicator
as a spatial random field in R3 opens the way for the use of the geostatistical formalism, which allows
for prediction or simulation of the indicator at any point based on the values observed at surrounding
sampling points.

The expected value of Ik(x) represents the probability of finding domain Dk at point x:

pk(x) = E{Ik(x)} = P{x ∈ Dk} (2)

where E and P denote the expected value and the probability measure associated with the random
field definition, respectively. Provided that the indicator random field is first-order stationary, pk does
not depend on x and stands for the proportion of space covered by domain Dk. First-order stationarity
means that the probability of finding domain Dk is constant over space.

2.2. Theoretical Indicator Direct Variogram

A tool commonly used in geostatistical modeling for quantifying the spatial continuity of domain
Dk is the direct variogram of the indicator random field Ik, defined for each pair of points (x,x′) as:

γk(x, x′) =
1
2

var{Ik(x)− Ik(x
′)} (3)

where var denotes the variance. Under the assumption of first-order stationarity, one has [13–15]:

γk(x, x′) = 1
2 E{[Ik(x)− Ik(x′)]

2}
= 1

2 [P{x ∈ Dk, x′ /∈ Dk}+ P{x /∈ Dk, x′ ∈ Dk}]
(4)

Furthermore, P{x ∈ Dk, x′ /∈ Dk} = pk − P{x ∈ Dk, x′ ∈ Dk} = P{x /∈ Dk, x′ ∈ Dk},
so that one obtains:

γk(x, x′) = P{x ∈ Dk, x′ /∈ Dk} = P{x /∈ Dk, x′ ∈ Dk} (5)

Provided that the indicator random field Ik is second-order stationary, γk only depends on the
separation vector between x and x′ and is commonly denoted as γk(h) with h = x − x′. The indicator
direct variogram γk(h) represents the probability of transitioning from inside Dk at point x to outside
Dk at point x′ = x− h (equivalently, from outside Dk at point x to inside Dk at point x− h), the transition
happening somewhere over the extent of the separation vector h.

When the norm of x − x′ becomes infinitely large, the indicator variables Ik(x) and Ik(x′) are
independent, so that P{x ∈ Dk, x′ /∈ Dk} = P{x ∈ Dk} P{x′ /∈ Dk} = pk(1− pk). For separation
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vectors with a large norm, the indicator direct variogram presents a sill, whose value relates to the
proportion of space (pk) covered by domain Dk:

γk(h) −−−−−→
‖h‖→+∞

pk(1− pk) (6)

The distance ‖h‖ at which the indicator direct variogram reaches the sill (correlation range),
corresponds to the distance beyond which the two indicator variables Ik(x) and Ik(x + h) are
independent. This distance may depend on the direction of h and does not relate to the size of domain
Dk [9] (under the first-order stationarity assumption, Dk has a constant probability of occurrence over
R3, so it is unbounded) nor to the size of its convex parts [16] (based on Equation (5), Dk has the same
indicator direct variogram as its complement, whose convex parts differ from that of Dk).

More information on the geometry of domain Dk can be obtained from the indicator direct
variogram, in particular, from its behavior at the origin. The first-order derivative conveys information
about the regularity of the boundary of Dk [13,17]:

1
π

∫
S3

γ′k
(u)

(0) du = E{| ∂Dk |} (7)

where E{| ∂Dk |} is the expected surface area of the boundary of Dk per unit volume of R3, S3 is the
unit sphere of R3, u a unit-length vector and γ′k

(u)(0) is the first-order derivative of the variogram at
the origin in the direction of vector u:

γ′k
(u)

(0) = lim
ε→0

P{x ∈ Dk, x + εu /∈ Dk}
ε

= lim
ε→0

P{x /∈ Dk, x + εu ∈ Dk}
ε

(8)

Accordingly, unless Dk is void (pk = 0) or fills the whole space R3 (pk = 1), a null derivative
(indicator direct variogram with a zero slope at the origin) in every direction cannot be observed [18].
A finite non-zero derivative means that the boundary of Dk is almost always regular (Figure 1A,B),
while an infinite derivative means that Dk has an irregular or fractal boundary (Figure 1C,D). In the
former case, the second-order derivative of the indicator direct variogram at the origin in the direction
of vector u relates to the existence of singular points along the boundary of Dk [19]:

γ
′′
k
(u)

(0) = −lim
ε→0

P{x−εu /∈ Dk ,x ∈ Dk ,x+εu /∈ Dk}
ε2

= −lim
ε→0

P{x−εu ∈ Dk ,x /∈ Dk ,x+εu ∈ Dk}
ε2

(9)

If the boundary has singular points (such as angular points or “vertices”), then the second-order
derivative is negative and the indicator direct variogram is strictly concave near the origin (Figure 2A,B).
On the contrary, if any point of the boundary has a single tangent plane (i.e., if Dk has a smooth
boundary everywhere), then the second-order derivative of the indicator direct variogram at the origin
is zero, which means that the variogram is straight at the origin (Figure 2C,D).

Finally note that the properties of the indicator direct variogram (correlation range, slope at
the origin, concavity at the origin and overall shape) can depend on the direction of space under
consideration, which corresponds to an anisotropic behavior of the indicator random field Ik. In such a
case, the geometric properties of domain Dk and of its boundary are not the same in all the directions
of space.
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Figure 1. Plan views of geological domains (A,C) and indicator variograms of domain D1 (B,D). The 
regularity of the domain boundary is reflected in the first-order derivative of the indicator direct 
variogram at the origin: regular domain boundary (A) associated with a finite variogram slope at the 
origin (B); fractal domain boundary (C) associated with an infinite variogram slope at the origin (D). 
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second-order stationarity assumption. This situation happens when the probability of occurrence of 
Dk is not constant in space (presence of a systematic trend or zonation, which can be explained by 
geological considerations). In such a situation, one may assume that the second-order stationarity 
assumption is valid only at small scales (local stationarity), and restrict the interpretation of the 
experimental variogram to small distances. In particular, the regularity and smoothness of the 
domain boundary can still be inferred from the behavior of the variogram near the origin. 

Figure 1. Plan views of geological domains (A,C) and indicator variograms of domain D1 (B,D).
The regularity of the domain boundary is reflected in the first-order derivative of the indicator direct
variogram at the origin: regular domain boundary (A) associated with a finite variogram slope at the
origin (B); fractal domain boundary (C) associated with an infinite variogram slope at the origin (D).

2.3. Experimental Indicator Direct Variogram

Given a set of points {xα : α = 1, . . . , n} where the indicator is known, the experimental indicator
direct variogram is defined as:

γ̂k(h) =
1

2 card{N+(h)} ∑
(α,β)∈N+(h)

[Ik(xα)− Ik(xβ)]
2 (10)

where N+(h) = {(α, β) ∈ {1, . . . n}2 : xα − xβ = h up to distance and angle tolerances} and card{N+(h)}
is the cardinality of N+(h). Under a second-order stationarity assumption, this is an unbiased estimator
of the indicator direct variogram γk(h), so that its properties (behavior at large distances, behavior
near the origin, anisotropy) should be the same, up to statistical fluctuations.

An experimental variogram that does not converge to a positive sill may incite one to revise the
second-order stationarity assumption. This situation happens when the probability of occurrence of
Dk is not constant in space (presence of a systematic trend or zonation, which can be explained by
geological considerations). In such a situation, one may assume that the second-order stationarity
assumption is valid only at small scales (local stationarity), and restrict the interpretation of the
experimental variogram to small distances. In particular, the regularity and smoothness of the domain
boundary can still be inferred from the behavior of the variogram near the origin.
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strictly concave variogram near the origin (B); smooth domain boundary (C) associated with a straight 
variogram near the origin (D). 
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The indicator cross-variogram is negative and represents, up to the sign, the probability of 
transitioning from Dk to Dk′ (or vice-versa, from Dk′ to Dk) between two points separated by vector h. 
If the two indicator random fields Ik and Ik′ are jointly second-order stationary, kk ′γ ,  only depends on 
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Figure 2. Plan views of geological domains (A,C) and indicator variograms of domain D1 (B,D).
The smoothness of the domain boundary is reflected in the second-order derivative of the indicator
direct variogram at the origin: domain boundary with vertices highlighted in red (A) associated with a
strictly concave variogram near the origin (B); smooth domain boundary (C) associated with a straight
variogram near the origin (D).

2.4. Theoretical Indicator Cross-Variogram

Consider now two domains Dk and Dk ′ that do not overlap. The joint behavior of these two
domains can be modeled by the cross-variogram of the associated indicator fields Ik and Ik ′ :

γk,k′(x, x′) =
1
2

cov{Ik(x)− Ik(x
′), Ik′(x)− Ik′(x

′)} (11)

where cov denotes the covariance. Under the assumption of first-order stationarity, one has [14–16]:

γk,k′(x, x′) = 1
2 E{[Ik(x)− Ik(x′)][Ik′(x)− Ik′(x′)]}

= − 1
2 [P{x ∈ Dk, x′ ∈ Dk′}+ P{x ∈ Dk′ , x′ ∈ Dk}]

= − 1
2 P{(x ∈ Dk, x′ ∈ Dk′

)
or (x ∈ Dk′ , x′ ∈ Dk)}

(12)

The indicator cross-variogram is negative and represents, up to the sign, the probability of
transitioning from Dk to Dk ′ (or vice-versa, from Dk ′ to Dk) between two points separated by vector h.
If the two indicator random fields Ik and Ik ′ are jointly second-order stationary, γk,k′ only depends on
h = x – x′ and is commonly denoted as γk,k′(h).
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When the norm of x − x′ becomes infinitely large, the indicator variables Ik(x) and Ik ′ (x) are
independent of Ik(x′) and Ik ′ (x′), so that [14]:

γk,k′(h) −−−−−→‖h‖→+∞
−P{x ∈ Dk}P{x + h ∈ Dk′}+ P{x ∈ Dk′}P{x + h ∈ Dk}

2
= −pk pk′ (13)

The indicator cross-variogram presents a sill whose value relates to the proportions of space
covered by domains Dk and Dk ′ . The distance ‖h‖ at which the sill is reached (correlation range)
corresponds to the distance beyond which the indicator variables Ik(x) and Ik ′ (x) are independent of
Ik(x + h) and Ik ′ (x + h). This distance may differ from the correlation ranges of the indicator direct
variograms and may also depend on the direction of h. Note that the two domains Dk and Dk ′ cannot
be independent, insofar as they are assumed not to overlap; as a consequence, the cross-variogram
cannot be identically zero, which is corroborated by the existence of a negative sill (Equation (13)),
unless one of the domains is void (pk = 0 or pk ′ = 0).

The behavior at the origin of the indicator cross-variogram conveys information about the
boundary common to both domains Dk and Dk ′ . In particular, one has:

1
π

∫
S3

γ
′(u)
k,k′ (0) du = −E{ | ∂Dk ∩ ∂Dk′ |} (14)

where E{| ∂Dk ∩ ∂Dk′ |} is the expected surface area of the boundary common to Dk and Dk ′ per unit

volume of R3 and γ
′(u)
k,k′ (0) is the first-order derivative of the indicator cross-variogram at the origin in

the direction of vector u:

γ
′(u)
k,k′ (0) = −lim

ε→0

P{x ∈ Dk, x + εu ∈ Dk′}+ P{x ∈ Dk′ , x + εu ∈ Dk}
2ε

(15)

A null derivative (indicator cross-variogram with a zero slope at the origin) in all directions
indicates that Dk and Dk ′ have no contact (Figure 3A,B). Even more, the distance up to which the
cross-variogram is equal to zero in a given direction represents the minimum separation distance
between the two domains Dk and Dk ′ along this direction. In contrast, an indicator cross-variogram
with a negative derivative (negative slope) at the origin indicates the existence of contacts between
Dk and Dk ′ : the greater the slope, the more contact area exists (Figure 3C–F).

2.5. Experimental Indicator Cross-Variogram

Given a set of points {xα : α = 1, . . . , n} where the indicators are known, the experimental indicator
cross-variogram is defined as:

γ̂k,k′(h) =
1

2 card{N+(h)} ∑
(α,β)∈N+(h)

[Ik(xα)− Ik(xβ)] [Ik′(xα)− Ik′(xβ)] (16)

with the same notation as in Section 2.3. Under a second-order stationarity assumption, this is an
unbiased estimator of the indicator cross-variogram γk,k′(h) and should therefore exhibit the same
properties, up to statistical fluctuations.

An experimental indicator cross-variogram that does not converge to a negative sill may incite
one to revise the second-order stationarity assumption. For instance, if Dk and Dk ′ are bounded,
the experimental indicator cross-variogram will be zero for distances larger than the maximum
separation distance between points from the two domains (all the terms in the summation of
Equation (16) are equal to zero). As stated in Section 2.3, one may then assume that the second-order
stationarity assumption is valid only locally and restrict the interpretation of the experimental indicator
cross-variogram to small distances. In particular, the slope at the origin reflects the amount of contact
area between Dk and Dk ′ .
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Figure 3. Plan views of geological domains (A,C,E) and indicator cross-variograms of domains D1 and
D2 (B,D,F). The surface area of the contact between domains D1 and D2 is reflected in the first-order
derivative of the indicator cross-variogram at the origin: no contact between domains (A) associated
with a zero cross-variogram slope at the origin (B); existence of a contact with a small surface area (C)
associated with a small negative cross-variogram slope at the origin (D); existence of a contact with a
large surface area (E) associated with a large negative cross-variogram slope at the origin (F).
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2.6. Link between Indicator Direct and Cross-Variograms

Due to the compositional nature of the indicator random fields, the sum of the indicator
cross-variograms γk,k′ for k′ 6= k is equal to the opposite of the indicator direct variogram γk, which
can be demonstrated using Equations (5) and (12):

∑
k′ 6=k

γk,k′(x, x′) = − 1
2 [ ∑

k′ 6=k
P{x ∈ Dk, x′ ∈ Dk′}+ ∑

k′ 6=k
P{x ∈ Dk′ , x′ ∈ Dk}]

= − 1
2 [P{x ∈ Dk, x′ /∈ Dk}+ P{x /∈ Dk, x′ ∈ Dk}]

= −γk(x, x′)

(17)

2.7. Ratio of Indicator Cross-to-Direct Variograms and Edge Effects

Under the assumption of first-order stationarity, based on Equations (5) and (12), the cross-to-direct
variogram ratio corresponds, up to the sign, to the average probability of reaching domain Dk ′ at point
x′ when leaving Dk at point x or, vice-versa, of reaching domain Dk ′ at point x when leaving Dk at
point x′:

γk,k′ (x,x′)
γk(x,x′) = − 1

2

[
P{x ∈ Dk ,x′ ∈ Dk′ }
P{x ∈ Dk ,x′ /∈ Dk}

+
P{x ∈ Dk′ ,x

′ ∈ Dk}
P{x /∈ Dk ,x′ ∈ Dk}

]
= − P{x′ ∈ Dk′ |x ∈ Dk ,x′ /∈ Dk}+P{x ∈ Dk′ |x /∈ Dk ,x′ ∈ Dk}

2

(18)

If the indicator random fields are second-order stationary, this ratio can be rewritten as:

γk,k′(h)
γk(h)

= −P{x + δh ∈ Dk′ |x ∈ Dk, x + δh /∈ Dk} (19)

with δ = 1 or −1 with equal probability 0.5. The sill of this ratio is (Equations (6) and (13)) [15]:

γk,k′(h)
γk(h)

−−−−−→
‖h‖→+∞

−P{x′ ∈ Dk′ |x′ /∈ Dk} = −
pk′

1− pk
(20)

and corresponds, up to the sign, to the probability that a point x’ belongs to Dk ′ knowing that it does
not belong to Dk, which is equal to the proportion of domain Dk ′ relative to the proportion of what is
not Dk. Such a sill value can be used as a reference to determine whether or not the transition from
domain Dk to domain Dk ′ between two points separated by vector h or −h is preferential, a situation
known as an edge effect or a border effect [14,20]. In particular, for small separation vectors (h = εu
with u a unit vector and ε a scalar tending to zero), the following cases may be found (Figure 4):

• − γk,k′ (εu)
γk(εu) <

pk′
1−pk

: due to Equations (19) and (20), P{x′ ∈ Dk′ |x ∈ Dk, x′ /∈ Dk} < P{x′ ∈ Dk′ |
x′ /∈ Dk} where x′ = x+ δεu is a point located close to x. Knowing that x belongs to Dk decreases
the probability that x’ belongs to Dk ′ , given that it does not belong to Dk This means that the
contact area between Dk and Dk ′ is smaller than it would be in the absence of edge effect, i.e.,
there is a propensity for both domains not to be in contact (Figure 4A,B).

• − γk,k′ (εu)
γk(εu) =

pk′
1−pk

: the contact area between domains Dk and Dk ′ coincides with the expected
contact area in the absence of edge effect (no preferential contact) (Figure 4C,D).

• − γk,k′ (εu)
γk(εu) >

pk′
1−pk

: the contact area between Dk and Dk ′ is larger than it would be in the absence of
edge effect. There is a propensity for both domains to be in contact together (Figure 4E,F).

Because the indicator cross-to-direct variogram ratios γk,k′/γk for k′ 6= k add to−1 (Equation (17)),
the existence of an edge effect between domains Dk and Dk ′ necessarily implies the existence of an
opposite edge effect between Dk and Dk” for some k” ∈ {1, . . . , n}.
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3. Case Study and Results

3.1. Presentation of the Deposit

The previous concepts are now illustrated through a case study corresponding to a porphyry
copper deposit. For confidentiality reasons, the name and location of the deposit are not disclosed.
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The host rock is composed of a sequence of acidic and andesite volcanic rocks with intercalations of
sedimentary rocks. Six main rock types have been recognized in the region under study (Figure 5):

• Andesite (code 1): this volcanic rock is distributed as an interbedded sequence spread over the
whole deposit and consists of lavas, auto-breccias and ocoites, with porphyritic to aphanitic
texture and, locally, with amygdaloidal to ocoitic texture.

• Other volcanic rocks (code 2): this is a sequence of differentiated volcanic rocks with textures that
vary from porphyritic to tuffaceous with an aphanitic matrix.

• Sedimentary rocks (code 3): this rock type includes undifferentiated, volcaniclastic and calcareous
sediments, which are mostly interbedded with dacite and andesite, forming the host rock of the
intrusive porphyry.

• Granodioritic porphyry (code 4): this is a medium grain granodiorite of Triassic age.
• Monzonitic porphyry (code 5): this porphyry rock is associated with the hypogene mineralization.
• Hydrothermal breccia (code 6) with tourmaline, quartz, chalcopyrite and pyrite cements, which

can be found in the contact between the monzonitic porphyry with the host rock as a breccia with
intrusive fragments.
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Figure 5. Interpreted rock type model in a cross-section under study. Sample drill hole data have been
superimposed. Local coordinates are used to preserve the confidentiality of the data.

3.2. Data Presentation and Pre-Processing

The deposit has been recognized by a set of exploration diamond drill holes, along which the rock
types have been logged. In the following, we will focus on a vertical cross-section in which 9060 data
points are available, with information on the spatial coordinates and prevailing rock types of core
samples. In addition to these data, a rock type model interpreted by the expert geologists is available
(Figure 5).

In the forthcoming sections, the indicator direct and cross-variograms will be calculated,
and geometrical information on the rock type layout will be extracted. To investigate the consistency
of interpreted rock type model, the information obtained from the variograms calculated with the
drill hole data will be compared with the information obtained from variograms calculated from the
interpreted model.

To avoid misinterpretations, the experimental variograms calculated from the drill hole data are
declustered to account for the irregular sampling pattern of these data [21–23]. To this end, each data is
assigned a declustering weight equal to its area of influence within the corresponding rock type layout
in the interpreted geological model. The weight assigned to a data pair in experimental variogram
calculations corresponds to the product of the two data weights [21]. This way, the declustered
mean (domain proportion) and variance (variogram sill) of each rock type indicator inferred from the
drill hole data coincide with the mean and variance inferred from the interpreted model, facilitating
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the comparison between the indicator variograms calculated from the drill hole data and from the
interpreted model.

3.3. Indicator Direct Variograms

For each rock type, the indicator direct variogram is calculated from the drill hole data and from
the interpreted rock type model, along the directions experimentally recognized as the main directions
of anisotropy (these are found to be the directions dipping 30◦ and −60◦ for rock types 1, 2 and 3,
and the directions dipping −15◦ and 75◦ for rock types 4, 5 and 6, with the dip being measured
positively upwards from the north direction). As an illustration, the direct variograms for rock types 1
(andesite) and 3 (sedimentary rocks) are displayed in Figures 6 and 7, respectively. The following
comments and interpretations can be made.
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been used for both variograms.
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The same lag values have been used for both variograms.
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3.3.1. Existence of a Sill

For both the drill hole data (Figure 6A) and the interpreted model (Figure 6B), the experimental
indicator variogram of rock type 1 (andesite) does not converge to a sill, which makes the stationarity
assumption questionable for this rock type. This is due to the fact that andesite mainly appears
in the center of the region under study, so that its proportion is not constant in space. In contrast,
the experimental indicator variogram of rock type 3 (sedimentary rocks) fluctuates around a sill
(Figure 7), which agrees with the stationarity assumption at the working scale (2000–2500 m along the
direction dipping 30◦ and 700–900 m along the direction dipping−60◦). This assumption is reasonable,
as the occurrences of sedimentary rocks are intermingled with that of the other rock types throughout
the region under study. The variogram sill (0.16) is related to the proportion of the region covered by
sedimentary rocks (0.20) (Equation (6)).

3.3.2. Shape and Anisotropy

Figures 6 and 7 show that there is more spatial continuity along the direction dipping 30◦ than
along the direction dipping −60◦. The shapes of the experimental variograms calculated from the drill
hole data (Figures 6A and 7A) are comparable to those of the experimental variograms calculated from
the interpreted geological model (Figures 6B and 7B). In terms of spatial continuity, the interpreted
model is therefore consistent with the drill hole data. As an exception, at short distances (0–300 m)
along the direction dipping −60◦, the experimental variograms calculated from the drill hole data
increase faster than the experimental variograms calculated from the interpreted model, but this
discrepancy can be provoked by statistical fluctuations and may not be significant.

3.3.3. Slope at the Origin

The experimental indicator variograms calculated from the drill hole data (Figures 6A and 7A)
have a large (almost infinite) slope at the origin; the same feature can be observed along other directions
(not displayed in Figures 6 and 7). This indicates that the boundaries of both andesite (rock type 1)
and sedimentary rocks (rock type 3) are irregular (Equation (7)). The same indicator variograms
calculated from the interpreted model (Figures 6B and 7B) exhibit a more moderate slope at the origin
and lower values at distances less than 100 m, suggesting slightly more regular domain boundaries
and short-scale behavior. However, as mentioned above, the differences are deemed not significant
in comparison with expected statistical fluctuations caused by the limited number of drill hole data,
their irregular sampling design, and the possible presence of errors in the data (mislogged rock types
in some drill hole samples). Several analytical and numerical approaches have been proposed to
quantify experimental variogram fluctuations, based on resampling techniques or on the fitting of a
theoretical random field model [24–27], which is out of the scope of this work.

3.4. Indicator Cross-Variograms

Let us now examine a few indicator cross-variograms calculated from the drill hole data
(Figures 8A, 9A and 10A) and from the interpreted rock type model (Figures 8B, 9B and 10B) along the
directions recognized as the main directions of anisotropy (directions dipping 30◦ and −60◦ for rock
types 2 and 3; directions dipping −15◦ and 75◦ for rock types 4, 5 and 6).

3.4.1. Behavior at Large Distances

In case of joint second-order stationarity, the indicator cross-variogram should converge to a sill
equal to minus the product of the rock type proportions (Equation (13)), but this behavior is not present
in any of the three examples shown in Figures 8–10. Instead, the presented cross-variograms tend to
zero at large distances. As mentioned in Section 2.5, the distance at which an experimental indicator
cross-variogram reaches a zero sill defines the maximum separation distance between points from the
two associated rock types. It is deduced that points located in the other volcanic rocks (rock type 2)
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and sedimentary rocks (rock type 3) are distant no more than 1000 m along the direction dipping −60◦,
but can be distant more than 2000 m along the direction dipping 30◦ (Figure 8). Also, points located
in granodioritic porphyry (rock type 4) are separated from points located in monzonitic porphyry
(rock type 5) less than 800 m along the direction dipping 75◦ and 1200 m along the direction dipping
−15◦ (Figure 9). Likewise, points located in granodioritic porphyry (rock type 4) are separated from
points located in hydrothermal breccia (rock type 6) less than 1800 m along the direction dipping
−15◦ (the two rock types are never found one above the other along the direction dipping 75◦, as the
corresponding cross-variogram is identically zero) (Figure 10).Minerals 2017, 7, 241  13 of 19 
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Figure 9. Indicator cross-variogram between rock types 4 (granodioritic porphyry) and 5 (monzonitic
porphyry) along directions dipping 75◦ (blue) and −15◦ (red) with respect to the north direction,
calculated from (A) drill hole data, (B) interpreted model. Calculations consider an angle tolerance of
20◦ around the target directions. The same lag values have been used for both cross-variograms.
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Figure 10. Indicator cross-variogram between rock types 4 (granodioritic porphyry) and
6 (hydrothermal breccia) along directions dipping 75◦ (blue) and −15◦ (red) with respect to the
north direction, calculated from (A) drill hole data, (B) interpreted model. Calculations consider
an angle tolerance of 20◦ around the target directions. The same lag values have been used for
both cross-variograms.

3.4.2. Behavior at Short Distances

Since the associated indicator cross-variograms have a large negative slope at the origin, the other
volcanic (rock type 2) and sedimentary (rock type 3) rocks on the one hand (Figure 8), and the
granodioritic (rock type 4) and monzonitic (rock type 5) porphyries on the other hand (Figure 9) are in
contact along the two anisotropy directions. In both cases, up to expected statistical fluctuations,
the cross-variograms calculated from the interpreted model are comparable to the cross-variograms
calculated from the drill hole data at short distances (0 to 300 m). Therefore, there is no evidence
that the amounts of contacts between the rock type domains in the interpreted model are over-
or underestimated with respect to reality: the interpreted model agrees with the sampling information
in this aspect.

In contrast, it is observed that the indicator cross-variogram between granodioritic porphyry
(rock type 4) and hydrothermal breccia (rock type 6) is zero until a distance of 1000 m (according to drill
hole data, Figure 10A) or 500 m (according to the interpreted model, Figure 10B) along the direction
dipping −15◦. These figures indicate the minimum distance between both rock types along the
mentioned direction, being twice larger in the drill hole data. A revision of the interpreted geological
model is therefore advisable not to underestimate the true separation distance between granodioritic
porphyry and hydrothermal breccia.

3.5. Ratios of Indicator Cross-to-Direct Variograms

We now focus on the ratios of indicator cross-to-direct variograms (Equation (19)). As an
illustration, Figures 11 and 12 show these ratios for rock types 2 (other volcanic rocks) and 3
(sedimentary rocks). From these two examples, one concludes that, at short distances, there is an edge
effect between other volcanic and sedimentary rocks, with both domains being prone to be in contact,
which can be corroborated by a look at the cross-section displayed in Figure 5. The edge effect is
stronger when leaving the other volcanic rocks to reach the sedimentary rocks than in the opposite way,
as the ratio plotted in Figure 11 is only a little higher than the expected sill, while the ratio in Figure 12
is significantly higher than the expected sill (one mostly finds rock type 3 when leaving rock type 2,
while one mostly finds both rock types 1 and 2 when leaving rock type 3). Such edge effects can be
explained by lithostratigraphic considerations, as the region is characterized by a volcano-sedimentary
sequence consisting of volcanic rocks (mainly rhyolitic and dacitic ash-flow tuffs, pyroclastic rocks,
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as well as basaltic and andesitic lavas) followed by sedimentary intercalations, which imply spatial
alternations between rock type 3 (sedimentary rocks) and rock types 1 and 2 (andesite and other
volcanic rocks, respectively).Minerals 2017, 7, 241  15 of 19 
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4. Discussion 

4.1. Geological Interpretation and Modeling 

A first axis for discussion concerns the geological domaining of ore deposits and the modeling 
of the domain layouts for further use in the evaluation of mineral resources and ore reserves or in the 
quantification of geological uncertainty. As shown in the previous sections, the indicator direct and 
cross-variograms give a profound insight into the spatial and geometrical properties of geological 
domains and into their contact relationships, since they convey information about the regularity and 
smoothness of the domain boundaries, the contact area between two domains, and their propensity 
to be in contact with, or separated from, each other at short distances.  

Figure 11. Absolute value of the ratio of indicator cross-to-direct variograms between rock types 2
(other volcanic rocks) and 3 (sedimentary rocks) along directions dipping 30◦ (blue) and−60◦ (red) with
respect to the north direction, calculated from (A) drill hole data, (B) interpreted model. Calculations
consider an angle tolerance of 20◦ around the target directions. The same lag values have been used for
both variogram ratios. The expected sill value (Equation (20)) is represented by a black solid line.
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4. Discussion

4.1. Geological Interpretation and Modeling

A first axis for discussion concerns the geological domaining of ore deposits and the modeling
of the domain layouts for further use in the evaluation of mineral resources and ore reserves or in
the quantification of geological uncertainty. As shown in the previous sections, the indicator direct
and cross-variograms give a profound insight into the spatial and geometrical properties of geological
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domains and into their contact relationships, since they convey information about the regularity and
smoothness of the domain boundaries, the contact area between two domains, and their propensity to
be in contact with, or separated from, each other at short distances.

Besides the aforementioned properties, one aspect not captured by indicator variograms is the
presence of a directional edge effect, when the transition from a domain to another one preferentially
occurs in one way rather than in the opposite way (for instance, an oxide mineralogical domain located
above a sulfide domain, while the reverse does not happen). To investigate such an edge effect, it is
necessary to resort to the indicator cross-covariance (Appendix A), which is not an even function,
unlike the indicator cross-variogram.

Indicator variograms or covariances therefore appear as a helpful tool to determine whether or
not an interpreted geological model is consistent with sampling data. For instance, a hand-drawn
interpreted model that is intended to be a locally accurate representation of reality is likely to exhibit
over-smoothed domain boundaries or to exaggerate the domain spatial continuity, a situation that
should be avoided if the interpreted model is used as a reference (training image) for constructing
multiple realizations of the geological domain layouts.

4.2. Geostatistical Modeling and Simulation

A second axis for discussion concerns the spatial prediction or simulation of geological domains
for modeling the subsurface and quantifying geological uncertainty. Two types of geostatistical
approaches have been developed for such a purpose. The first one consists of model-driven approaches,
which rely on the definition of a categorical random field and the specification of the parameters
characterizing its spatial distribution; the reader is referred to [13] for a review of the most widespread
model-driven approaches. The second type is the family of data-driven approaches. These approaches
do not completely specify the random field, but rely on the fitting of some of its parameters directly
from the available data.

The latter approaches are likely to suffer from consistency problems in the definition of the
model parameters. As a first example, indicator-based approaches such as indicator kriging, indicator
cokriging or sequential indicator simulation [28] rely on the fitting of indicator variogram models.
However, as seen in Sections 2 and 3, the behaviors of the direct and cross-variograms near the origin
is likely to be very different, with a possible zero slope for the cross-variograms, a situation that is
prohibited for the direct variograms. The anisotropy directions and the behavior at large distances
may also not be the same for the indicator direct and cross-variograms. In this context, the widely
used linear model of coregionalization, based on the fitting of the direct and cross-variograms with the
same set of basic nested structures [28,29], is inadequate. So is the separate modeling of the indicator
direct variograms, as used in indicator kriging and in sequential indicator simulation, because it
neglects the indicator cross-variograms and therefore omits important information about the contact
relationships between the geological domains. Instead, a non-linear model of coregionalization should
be used, a task that is made complex due to the mathematical restrictions that affect the indicator
variograms [13,18,27]. As a second example, the simulation approaches based on multiple-point
statistics [30] rely on the definition of a training image that is representative of the spatial distribution
of the geological domains under study. Following the statements of the previous subsection, the choice
of a training image consistent with the indicator direct and cross-variograms that can be inferred
from available sampling data (in particular, reproducing the domain proportions, boundary regularity,
contact relationships and edge effects) turns out to be crucial and non-trivial.

5. Conclusions

In geostatistical applications, geological domains are often codified through indicators and
partially characterized by their direct and cross-variograms. The sills, correlation ranges, shapes and
possible anisotropies of such indicator variograms convey information about the domain proportions
and on their spatial correlation structure. Furthermore, their behavior at short distances brings a wealth
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of knowledge on the domain boundaries. In particular, the average slope at the origin is proportional
to the surface area of the domain boundary (in case of a direct variogram) or to the surface area of
the contact between two domains (in case of a cross-variogram): the more slope, the more surface
area. Also, the ratio of cross-to-direct variograms allows identification for whether two domains are
preferentially in contact (border or edge effect) or whether they tend to be separated. Finally, the range
of distances for which an indicator cross-variogram differs from zero provides information about the
minimum and maximum distances between points from two domains.

In practice, all of these properties can be investigated on the basis of sampling information,
through the analysis of experimental indicator variograms. Such an analysis is helpful for validating
the consistency of an interpreted geological model of the subsurface or for constructing a representative
training image to be used for simulating the layout of the domains with data-driven geostatistical
approaches based on multiple-point statistics. A case study of a copper ore deposit has been presented,
in which the interpreted layout of rock type domains is globally consistent with the actual layout,
as revealed from the analysis of exploration drill hole data; as an exception, the distance separating
two rock type domains (granodioritic porphyry and hydrothermal breccia) may be underestimated in
the interpreted model and needs to be revised.
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Appendix A

Consider two domains Dk and Dk ′ that do not overlap. The non-centered cross-covariance of the
domains indicators Ik and Ik ′ is defined as:

Ck,k′(x, x′) = E{Ik(x) Ik′(x
′)} = P{x ∈ Dk, x′ ∈ Dk′} (A1)

and is related to the indicator cross-variogram in the following fashion (Equation (12)):

γk,k′(h) = −
Ck,k′(x, x′) + Ck,k′(x′, x)

2
(A2)

If the two indicator random fields are jointly second-order stationary, Ck,k′ only depends on
h = x′ − x and tends to pk pk ′ when the norm of x′ − x becomes infinitely large. Furthermore,
the boundary common to both domains Dk and Dk ′ is related with the average derivative of Ck,k′

at the origin (Equation (14)):

1
π

∫
S3

C
′(u)
k,k′ (0) du = E{ | ∂Dk ∩ ∂Dk′ |} (A3)

Unlike the cross-variogram, the cross-covariance provides information on the directional contact
between the two domains Dk and Dk ′ and on asymmetrical relationships between these domains
(for instance, Dk being preferentially above Dk ′ rather than below), a pattern that can sometimes be
explained by chemical or sedimentological processes [9,31,32]. In particular, the ratio between indicator
cross-covariance and direct variogram is:

Ck,k′(h)
γk(h)

=
P{x ∈ Dk, x + h ∈ Dk′}
P{x ∈ Dk, x + h /∈ Dk}

= P{x + h ∈ Dk′ |x ∈ Dk, x + h /∈ Dk} (A4)
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and corresponds, up to the sign, to the case δ = 1 of Equation (19). The sill of this ratio is pk ′/(1 – pk)
and represents the reference value against which one can determine the existence of directional edge
effects at very small distances:

• Ck,k′ (εu)
γk(εu) <

pk′
1−pk

: the contact area between Dk and Dk ′ when moving along vector u (i.e., leaving
Dk at x and reaching Dk ′ at x + εu) is smaller than it would be in the absence of a directional
edge effect.

• Ck,k′ (εu)
γk(εu) =

pk′
1−pk

: the contact area between Dk and Dk ′ when moving along vector u is equal to the
expected area in the absence of a directional edge effect.

• Ck,k′ (εu)
γk(εu) >

pk′
1−pk

: the contact area between Dk and Dk ′ when moving along vector u is larger than
it would be in the absence of an edge effect.
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