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Based on a fundamental work of R. B. Holmes from 1973, we study differentiability 
properties of the metric projection onto prox-regular sets. We show that if the set is 
a nonconvex body with a Cp+1-smooth boundary, then the projection is Cp-smooth 
near suitable open truncated normal rays, which are determined only by the function 
of prox-regularity. A local version of the same result is established as well, namely, 
when the smoothness of the boundary and the prox-regularity of the set are assumed 
only near a fixed point. Finally, similar results are derived when the prox-regular 
set is itself a Cp+1-submanifold.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In his 1973 fundamental paper [13], R. B. Holmes showed that, whenever we have a closed convex set K
in a Hilbert space X such that

(i) K has nonempty relative interior (namely, the interior of K as a subset of Y = aff(K) is nonempty), 
and

(ii) the boundary of K as a subset of Y , bdK, is a Cp+1-submanifold at a point x0 ∈ bdK, where p is a 
positive integer,

then the metric projection PK is a mapping of class Cp in an open neighborhood W of the open normal ray
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Rayx0
(K) := {x0 + tν : t > 0},

where ν denotes the unit exterior normal vector of K at x0. The main steps of his approach to arrive to 
this theorem were:

1. It is enough to prove the theorem for convex bodies (namely, where K has nonempty interior), since 
under (i), restricting to the case 0 ∈ K (after suitable translation) we can write

PK =
(
PK

∣∣
Y

)
◦ ΠY ,

where ΠY denotes the orthogonal projection to Y (which is a continuous linear mapping and therefore 
of class C∞);

2. The smoothness of bdK at x0 can be translated as the smoothness of the Minkowski functional ρK
(independently of which translation is used to ensure that 0 is an interior point of K); furthermore, the 
equality ν = ‖∇ρK(x0)‖−1∇ρK(x0) holds true;

3. The distance function dK is of class C1 in X \K; and finally,
4. For any point x ∈ Rayx0

(K) and a suitable choice of neighborhoods U and V of x and x0 respectively, 
the mapping

F : U × V → X

(u, v) �→ u− v − dK(u) ∇ρK(v)
‖∇ρK(v)‖

is well defined, of class C1, and for every (u, v) ∈ U × V , one has

F (u, v) = 0 ⇐⇒ v = PK(u).

With all these features, Holmes concluded his theorem through an application of the well-known Implicit 
Function Theorem. Following the way opened by the strategy of Holmes, the aim of the present work is to 
establish, under the same hypotheses (i)–(ii), similar local results dropping the hypothesis of convexity and 
replacing it with prox-regularity, a notion first introduced as positive reach by H. Federer in [11] and widely 
studied in the literature.

The main motivation for this research came from the huge advances made in Proximal Analysis and 
from the 2000’s paper by Poliquin, Rockafellar and Thibault [20], which allows us to replace the continuous 
differentiability of the distance function to convex bodies, with another suitable one related to prox-regular 
sets. Also we want to mention Mazade PhD Thesis [16], in which local prox-regularity was profoundly 
studied in a quantified sense.

The paper is organized as follows. In Section 2 we fix the notation, recall some fundamental results in 
Nonsmooth Analysis and formulate the problem of extension of Holmes’ theorem (see Theorem 2.4) formally. 
Section 3 contains some variational results of submanifolds of Hilbert spaces that we will need. Some results 
of that section are probably known but explicit formulations of them are hard to find in the literature. In 
Section 4, we establish first a main result concerning the smoothness of the metric projection, and then we 
derive Theorem 2.4. In Section 5, we show how that theorem allows us, for any manifold, to get similar 
differentiability results on a suitable quantified neighborhood. We end this work with some final comments 
on possible future works and some comparisons with other related results in the literature.

2. Variational concepts and problem formulation

In the following, X will be a Hilbert space endowed with the inner product 〈·, ·〉 and its induced norm ‖ · ‖.
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We will use the notation R = R ∪ {−∞, +∞} and R+ = [0, +∞[, and we will adopt the conventions 
0−1 = +∞ and (+∞)−1 = 0. Unless otherwise specified, p will be an integer with p ≥ 1.

We will identify the dual space X∗ with X, using the Riesz’s representation theorem. For x ∈ X and 
δ > 0 we will write BX(x, δ) and BX [x, δ] to denote the open and closed δ-ball centered at x, respectively. 
Also, we will write BX and SX to denote the unit ball BX [0, 1] and the unit sphere BX [0, 1] \ BX(0, 1). 
For x ∈ X, we will write NX(x) to denote the family of neighborhoods of x. If there is no confu-
sion we may omit the space X in the preceding notation. We use idX to denote the identity map 
of X.

For a set S ⊆ X, we will put Sc := X \ S and we will write intS, clS and bdS to denote its interior, 
its closure and its boundary, respectively. When S is included in a subset U of X, the latter topological 
concepts relative to the induced topology on U will be indexed with U , for example, bdU S will stand for 
the boundary of S in U ; it will be convenient to denote also by S the closure of S in the whole space X. The 
set S will be called a closed body (relative to X) near x0 ∈ bdS provided there exists an open connected 
neighborhood U of x0 such that U ∩ S = U ∩

(
intS

)
and U ∩ intS is connected; note that in such a case 

U ∩ S is in turn connected. When U = X, that is, S = intS and intS is connected, we will say that S is a 
closed body (relative to X).

By So we will mean the (negative) polar set of S, namely,

So = {h ∈ X : 〈h, x〉 ≤ 1, ∀x ∈ S}.

As usual (if S �= ∅), we will denote by dS : X → R+ its distance function, namely,

dS : X → R+

x �→ inf
y∈S

{‖x− y‖}.

In some occasions, it will be useful to write d(·; S) instead of dS(·). Also, for x ∈ X we will denote by 
ProjS(x) the set of all nearest points of x onto S; that means,

ProjS(x) = {y ∈ S : ‖x− y‖ = dS(x)}.

Whenever ProjS(x) is a singleton, we say that the point ȳ ∈ ProjS(x) is the (metric) projection of x onto 
S and it is denoted by PS(x).

If Y is a closed subspace of X, we denote by ΠY the orthogonal projection from X onto Y . It is known 
that ΠY is a continuous linear operator (therefore, of class C∞) and for each x ∈ X, ΠY (x) coincides with 
the metric projection of x onto Y .

Also, if Y and Z are two closed topologically complement subspaces of X, we will denote by πY and 
πZ the parallel projections onto Y and onto Z, respectively, associated to the decomposition X = Y ⊕ Z. 
Recall that Z = Y ⊥ if and only if πY and ΠY coincide. In the case when X = Y × Z, we will simply write 
πY and πZ instead of πY×{0} and πZ×{0}, respectively.

If Y is another Hilbert space and T : X → Y is a continuous linear operator, we will denote by T ∗ : Y → X

its adjoint operator, namely, the unique continuous linear operator that satisfies

〈y, Tx〉 = 〈T ∗y, x〉, ∀(x, y) ∈ X × Y.

It is known that the map ∗ : L(X; Y ) → L(Y ; X) (where L(E; F ) denotes the Banach space of continuous 
linear operators between the two Banach spaces E and F ) which to any T ∈ L(X; Y ) assigns the adjoint 
operator T ∗, is linear and continuous and therefore, a mapping of class C∞. In particular, for every mapping 
A : V ⊆ E → L(X; Y ) of class Cp, where V is an open set of a Banach space E, one has that the mapping 
v �→ A(v)∗ is also of class Cp.
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Below we will adopt the notation in [8,9]. For a set S ⊆ X and a point x0 ∈ S, we will consider the 
Clarke tangent cone of S at x0 and the Bouligand tangent cone (or contingent cone) of S at x0 defined 
as

TC(S;x0) = Liminf
S�u→x0; t↓0

1
t
(S − u)

TB(S;x0) = Limsup
t↓0

1
t
(S − x0),

where Liminf and Limsup denote the Peano–Painlevé–Kuratowski inferior and superior limit of sets. Par-
ticularly, the first equality means that h ∈ TC(S; x0) if and only for any sequence (xn)n in S converging 
to x0 and any sequence (tn)n of positive reals tending to 0, there is a sequence (hn)n in X converging to h
such that

xn + tnhn ∈ S for all integers n ≥ 1. (1)

We will say that S is tangentially regular at x0 if TC(S; x0) = TB(S; x0). Also, we will consider the interior 
tangent cone of S at x0 given by

I(S;x0) = {h ∈ X : ∃ε > 0, U ∈ NX(x0) and V ∈ NX(h) such that U ∩ S+ ]0, ε[V ⊂ S} .

It is known that if I(S; x0) �= ∅ then

TC(S;x0) = I(S;x0) and I(S;x0) = int[TC(S;x0)]. (2)

Note that I(S; x0) could be empty even if int[TC(S; x0)] isn’t. Nevertheless, when X is finite dimensional 
one always has I(S; x0) = int[TC(S; x0)]. For the proofs of the latter statements, we refer the reader to [22, 
Theorem 2 and Counterexample 1]. While the statement of [22, Theorem 2] is posed in the finite dimensional 
setting, the proof of sufficiency (which entails equation (2)) remains the same in the infinite dimensional 
case.

Given a subset U of X and a function f : U → R, we recall the epigraph (resp. strict epigraph) and 
hypograph (resp. strict hypograph) are the sets

epi f := {(x, r) ∈ X × R : x ∈ U, f(x) ≤ r} (resp. epis f := {(x, r) ∈ X × R : x ∈ U, f(x) < r}),
hypo f := {(x, r) ∈ X × R : x ∈ U, f(x) ≥ r} (resp. hypos f := {(x, r) ∈ X × R : x ∈ U, f(x) > r}).

The graph of f will be denoted by gph f , that is,

gph f := {(x, r) ∈ X × R : x ∈ U, f(x) = r}.

A set S of X is said to be epi-Lipschitz at x0 ∈ S in a nonzero direction h ∈ X if there exists a neighborhood 
U ∈ NX(x0), a closed complement vector subspace Z of Rh, and a Lipschitz continuous function f : Z → R

such that, writing X = Z ⊕ Rh, one has

U ∩ S = {z + rh ∈ U : (z, r) ∈ epi f}.

We simply say that S is epi-Lipschitz at x0 if there exists h ∈ X \ {0} such that S is epi-Lipschitz at x0 in 
the direction h.

It is known that S is epi-Lipschitz at x0 if and only if I(S; x0) �= ∅. In such a case, for every nonzero 
h ∈ I(S; x0), one has that S is epi-Lipschitz at x0 in the direction h (see, e.g., [22, Section 4], which stated 
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this result in the finite dimensional setting, but its proof remains the same in the general case). When S is epi-
Lipschitz at x0, the Clarke tangent cone of bdS at x0 ∈ bdS is related to that of S by the equality (see [10])

TC(bdS;x0) = TC(S;x0) ∩ −TC(S;x0). (3)

We will also consider the Clarke normal cone and the proximal normal cone of S at x0 as

NC(S;x0) = [TC(S;x0)]o (the negative polar of the Clarke tangent cone)

NP (S;x0) = {ζ ∈ X : ∃t > 0, x0 ∈ ProjS(x0 + tζ)}.

For a bijective continuous linear mapping A : X → Y from X onto a Banach space Y and S′ ⊂ Y such that 
S = A−1(S′), it is known (see, e.g., [19, Proposition 5.27]) that

NC(S;x0) = NC(A−1(S′);x0) = A∗(NC(S′;A(x0))
)

:= {A∗(ξ) : ξ ∈ NC(S′;A(x0))}. (4)

More generally, given a C1-diffeomorphism ϕ : U → ϕ(U) ⊂ Y from an open set U of X and a point 
x0 ∈ U ∩ ϕ−1(S′), it is easily seen through the sequential characterization (1) that

TC
(
ϕ−1(S′);x0

)
= Dϕ(x0)−1(TC(S′;ϕ(x0))

)
. (5)

From this it is clear, under the C1-diffeomorphism property, that

NC
(
ϕ−1(S′);x0

)
= Dϕ(x0)∗

(
NC(S′;ϕ(x0))

)
. (6)

Besides the above geometrical definition of the proximal normal cone, it is worth mentioning the vari-
ational description saying that a vector ζ ∈ NP (S; x0) if and only if there is a real constant σ ≥ 0 and a 
neighborhood U of x0 such that

〈ζ, x− x0〉 ≤ σ‖x− x0‖2, for all x ∈ U ∩ S. (7)

From this we also see that, for a bijective continuous linear mapping A : X → Y from X onto another 
Hilbert space Y and S′ ⊂ Y with x0 ∈ A−1(S′) one has

NP (A−1(S′);x0) = A∗(NP (S′;A(x0))
)
. (8)

Recall that one always has

NP (S;x0) ⊂ NC(S;x0).

When the equality holds, that is, NP (S; x0) = NC(S; x0), we will say that S is normally regular at x0. 
Whenever the proximal normal cone of a set S at a point x0 has the form

NP (S;x0) = {tν : t ≥ 0},

for some unit vector ν ∈ SX , we will define (for λ > 0) the sets:

Rayx0
(S) = {x0 + tν : t > 0}

Rayx0,λ(S) = {x0 + tν : t ∈ ]0, λ[ },

which we call the open normal ray and the λ-truncated open normal ray of S at x0, respectively.
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With the two previous normal cones are associated two notions of subdifferential. For a proper lower 
semicontinuous function f : X → R and a point x0 ∈ X where f is finite, we define the Clarke subdifferential
of f at x0 and the proximal subdifferential of f at x0 as

∂Cf(x0) = {ζ ∈ X : (ζ,−1) ∈ NC
(
epi f, (x0, f(x0))

)
}

∂P f(x0) = {ζ ∈ X : (ζ,−1) ∈ NP
(
epi f, (x0, f(x0))

)
}.

We will then say that f is tangentially regular (resp. normally regular) at x0 if epi f is tangentially 
regular (resp. normally regular) at (x0, f(x0)). When f is C1 near x0, one has (see, e.g., [8, Proposi-
tion 2.2.4])

∂Cf(x0) = {∇f(x0)} and NC
(
epi f ; (x0, f(x0))

)
= {λ(∇f(x0),−1) : λ ≥ 0},

and if in addition the gradient ∇f is Lipschitz near x0 (that is, f is C1,1 near x0), then f is normally regular 
at x0 and

∂Cf(x0) = ∂P f(x0) = {∇f(x0)} and NP
(
epi f ; (x0, f(x0))

)
= {λ(∇f(x0),−1) : λ ≥ 0}.

For further properties related to these objects, we refer to [8,9] and [17]. Let us now recall the definitions 
of some types of prox-regularity for sets.

Definition 2.1. Given an extended real r ∈ ]0, +∞] and a real α > 0, we say that a closed set S of X
is (r, α)-prox-regular at x0 ∈ S if for every x ∈ S ∩ BX(x0, α) and every ζ ∈ NP (S; x) ∩ BX we have 
that

x ∈ ProjS(x + tζ), for every real t ∈ [0, r]. (9)

We say that S is r-prox-regular at x0 ∈ S if it is (r, α)-prox-regular at x0 for some α > 0 and we simply say 
that S is prox-regular at x0 if there exists r ∈ ]0, +∞] such that S is r-prox-regular at x0.

Consequently, we say that S is r-prox-regular (resp. prox-regular) if it is r-prox-regular (resp. prox-regular) 
at every point x ∈ S.

It is clear that if S is (r, α)-prox-regular at x0, then it is also (r′, α′)-prox-regular at x0 for every α′ ∈ ]0, α]
and every r′ ∈ ]0, r].

It is known (see, e.g., [9]) that S is prox-regular if and only if there exists a continuous function ρ : S →
]0, +∞] (that we will call prox-regularity function) such that for every x ∈ S and every ζ ∈ NP (S; x) ∩ BX

one has

x ∈ ProjS(x + tζ), for every real t ∈ [0, ρ(x)].

It is also known (see, e.g., [9, Chapter 3, Propositions 4 and 11]) that whenever S is ρ(·)-prox-regular, 
the enlargement of S

Uρ(·)(S) := {u ∈ X : ∃y ∈ ProjS(u) with dS(u) < ρ(y)}

is an open set, PS is well-defined on Uρ(·)(S) and d2
S(·) is of class C1 on Uρ(·)(S).

In the paper [20], Poliquin, Rockafellar and Thibault studied the local prox-regularity of a set S. We 
summarize their results (those that we will need) in the following theorem:
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Theorem 2.2 (PRT, 2000). Let S be a closed set of X and x0 ∈ S. The following assertions are equivalent:

(i) S is prox-regular at x0;
(ii) There exists O ∈ NX(x0) such that PS is well defined and locally Lipschitz continuous in O;
(iii) There exist two real constants σ ≥ 0, δ > 0 such that for every x ∈ S ∩ BX(x0, δ) and every ζ ∈

NP (S; x) ∩ BX , one has

〈ζ, y − x〉 ≤ σ

2 ‖y − x‖2, ∀y ∈ S ∩BX(x0, δ);

(iv) There exists O ∈ NX(x0) such that dS is continuously differentiable in O \ S.

Moreover, if S is prox-regular at x0, then S is tangentially and normally regular at x0 and there exists 
a neighborhood O ∈ NX(x0) for which PS is well defined in O, dS is Fréchet differentiable in O \ S and its 
gradient is given by

∇dS(u) = u− PS(u)
dS(u) , ∀u ∈ O \ S. (10)

In the PhD thesis [16] of M. Mazade, quantified versions are provided for the characterizations of lo-
cal prox-regularity given in the PRT theorem. To do so, for r ∈ ]0, +∞] and α > 0 the following local 
enlargements of the set S at a point x0 ∈ S are introduced:

RS(x0, r, α) :=
{
x + tv : x ∈ S ∩BX(x0, α), t ∈ [0, r[, v ∈ NP (S;x) ∩ BX

}
,

WS(x0, r, α) := {u ∈ X : ProjS(u) ∩BX(x0, α) �= ∅, dS(u) < r} .

We summarize the results in [16] that we will use in the following theorem (see [16, Theorem 2.3.3 and 
Theorem 2.3.4]):

Theorem 2.3 ([16]). Let S be a closed set of X, x0 ∈ S, r ∈ ]0, +∞] and α > 0. The following assertions 
are equivalent:

(i) S is (r, α)-prox-regular at x0;
(ii) The set WS(x0, r, α) is open and PS is well-defined and locally Lipschitz continuous on WS(x0, r, α);
(iii) The set WS(x0, r, α) is open and dS is continuously differentiable on WS(x0, r, α) \ S with ∇dS(u) =

u−PS(u)
dS(u) for all u ∈ WS(x0, r, α) \ S;

(iv) For any x ∈ S ∩B(x0, α) and ζ ∈ NP (S; x) one has

〈ζ, x′ − x〉 ≤ ‖ζ‖
2r ‖x′ − x‖2 for all x′ ∈ S.

Moreover, if S is (r, α)-prox-regular at x0, then RS(x0, r, α) and WS(x0, r, α) coincide.

Recall that we consider an integer p ≥ 1. A set M ⊆ X is said to be a Cp-submanifold of X at m0 ∈ M

(see, e.g., [2, Ch. 9]) if there exists an open set U ∈ NX(m0), a closed subspace Z of X and a mapping 
ϕ : U → ϕ(U) ⊂ X such that

1. ϕ is a Cp-diffeomorphism, that is, ϕ(U) is an open set of X, ϕ : U → ϕ(U) is bijective and ϕ, ϕ−1 are 
both mappings of class Cp;

2. ϕ(m0) = 0 and ϕ(U ∩M) = ϕ(U) ∩ Z.
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In such a case, we call Z the model subspace. We say that M is a Cp-submanifold of X if it is a Cp-submanifold 
at every point m0 ∈ M with the same model space Z. We say that a set S has Cp-smooth boundary (resp. 
Cp-smooth boundary at x0 ∈ bdS) if bdS is a Cp-submanifold of X (resp. Cp-submanifold of X at x0).

For a Cp-submanifold M of X at m0 ∈ M , the tangent (vector) space of M at m0 is defined as

Tm0M :=
{
h ∈ X : ∃γ : ] − 1, 1[→ M C1-curve with γ(0) = m0, γ

′(0) = h
}
.

For M and m0 as above, it is known (see, e.g., [19, Propositions 2.88 and 5.26]) that

TC(M ;m0) = TB(M ;m0) = Tm0M,

and that, if ϕ and Z are the Cp-diffeomorphism and the model space of the definition of submanifold, one 
has

Dϕ−1(0)Z = Tm0M,

independently of the chosen diffeomorphism.
Now, in order to extend Holmes’ theorem to the nonconvex setting we will study the sets S which are 

closed and such that

(i) S is a closed body relative to the subspace Y = aff(S);
(ii) Considering S as a subset of Y , it has a Cp+1-smooth boundary.

It is not hard to realize that for each x ∈ X we have that

ProjS(x) = ProjS(ΠY (x)),

since, for each v ∈ S, ‖x − v‖2 = ‖x − ΠY (x)‖2 + ‖ΠY (x) − v‖2. Thus, if we define the sets

OX = {x ∈ X : PS is well-defined and it is of class Cp near x}
OY =

{
y ∈ Y : PS

∣∣
Y

is well-defined and it is of class Cp near y
}

(which are open, relative to X and Y respectively), we get that Π−1
Y (OY ) ⊂ OX . Indeed, for every 

x ∈ Π−1
Y (OY ) we have

PS(x) = PS

∣∣
Y
◦ ΠY (x),

and therefore, the inclusion Π−1
Y (OY ) ⊂ OX is direct. On the other hand, let x ∈ OX . Noting that for every 

y ∈ Y and every v ∈ S we have that ΠY (x) + y − v ∈ Y , we can write

‖x + y − v‖2 = ‖x− ΠY (x)‖2 + ‖ΠY (x) + y − v‖2

and so, we get that PS

∣∣
Y

(ΠY (x) + y) = PS(x + y) for every y ∈ Y such that x + y ∈ OX , or equivalently

PS

∣∣
Y

(w) = PS(x + w − ΠY (x)) for all w ∈ Y with x + w − ΠY (x) ∈ OX .

By definition of OX choose a real ε > 0 such that PS is well defined on x + BX(0, ε) and of class Cp

therein. Consider the mapping � : ΠY (x) + BY (0, ε) → X defined by �(w) := w + x − ΠY (x) for all 
w ∈ ΠY (x) + BY (0, ε). Clearly, �

(
ΠY (x) + BY (0, ε)

)
⊂ x + BX(0, ε), hence PS ◦ � is well defined on 
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ΠY (x) + BY (0, ε) and of class Cp therein. Since PS

∣∣
Y

(w) = (PS ◦ �)(w) for every w ∈ ΠY (x) + BY (0, ε), 
the mapping PS

∣∣
Y

is of class Cp near ΠY (x). This tells us that ΠY (x) ∈ OY , or equivalently x ∈ Π−1
Y (OY ). 

We derive that OX ⊂ Π−1
Y (OY ), which combined with the previous above inclusion gives the equality 

OX = Π−1
Y (OY ).

Based on the latter equality and the above observations, the smoothness of PS is characterized by the 
smoothness of PS

∣∣
Y

, and so our target problem can be reduced to prove the following extension of Holmes’ 
theorem:

Theorem 2.4. Let S ⊆ X be a closed body near x0 ∈ bdS and let an integer p ≥ 1. Assume that there exist 
r ∈ ]0, +∞] and α > 0 such that BX(x0, α) ∩ bdS is a Cp+1-submanifold and that S is r-prox-regular at x0. 
Then there exists a neighborhood V of Rayx0,r(S) such that

• dS is of class Cp+1 on V ;
• PS is of class Cp on V .

Furthermore, if the set S is (r, α)-prox-regular at x0, then

• dS is of class Cp+1 on WS(x0, r, α) \ S;
• PS is of class Cp on WS(x0, r, α) \ S.

3. Variational and prox-regularity properties of submanifolds

We start this section with a property related to the codimension of the tangent space to the boundary 
when the latter is a smooth submanifold.

Proposition 3.1. Let S ⊆ X and x0 ∈ bdS such that x0 ∈ intS. If bdS is a Cp-submanifold of X at x0, 
then Tx0(bdS) is a closed subspace of X of codimension 1; that is, there exists a closed subspace Z of 
codimension 1, an open neighborhood U of x0 in X and a Cp-diffeomorphism ϕ : U → ϕ(U) ⊂ X such that 
ϕ(U ∩ bdS) = Z ∩ ϕ(U).

Proof. Let U be an open neighborhood of x0 such that M := U ∩ bdS is a Cp-submanifold of X. Without 
loss of generality, we may assume that U is connected and also, that there exists a Cp-diffeomorphism 
ϕ : U → ϕ(U) ⊂ X and a closed subspace Z of X such that ϕ(x0) = 0 and

ϕ(U ∩M) = ϕ(U) ∩ Z.

Denote V = ϕ(U). As recalled above, we know that Tx0(bdS) = Tx0M = Dϕ−1(0)Z. It is enough to show 
that Z is a subspace of codimension 1. Assume the contrary and consider two distinct vectors v1, v2 ∈ V \Z. 
Without loss of generality, we may assume that there exists δ > 0 such that V = B(0, δ). Denoting by HZ

a Hamel basis of Z, we can distinguish two cases:

(I) The set HZ ∪ {v1, v2} is linearly independent: Then, for each t ∈ [0, 1], putting

γ(t) = tv1 + (1 − t)v2 ∈ V \ Z,

the mapping γ : [0, 1] → V \ Z defines a continuous curve with γ(0) = v1 and γ(1) = v2.
(II) The set HZ ∪ {v1, v2} is not linearly independent: Since codim[Z] ≥ 2, there exists v3 ∈ V \ Z such 

that both sets HZ ∪ {v1, v3} and HZ ∪ {v2, v3} are linearly independent. Then, using the latter part, 
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we can construct two continuous curves γ1 : [0, 1/2] → V \ Z and γ2 : [1/2, 1] → V \ Z such that 
γ1(0) = v1, γ1(1/2) = γ2(1/2) = v3 and γ2(1) = v2. Then, considering the mapping γ : [0, 1] → V \ Z
given by

γ(t) =
{
γ1(t) t ∈ [0, 1/2]
γ2(t) t ∈ (1/2, 1],

we arrive at the same conclusion as (I).

Since v1 and v2 are two arbitrary distinct points of V \Z, the existence of such a continuous curve γ entails 
that V \Z is path-connected, and therefore is connected. Then, since ϕ−1 : V → U is continuous, we derive 
that U \M = ϕ−1(V \Z) is connected too. This is clearly a contradiction since the two open sets (intS) ∩U

and Sc ∩ U are nonempty (according to the assumptions x0 ∈ intS and x0 ∈ bdS), and they satisfy the 
equality

U \M =
(
(intS) ∩ U

)
∪ (Sc ∩ U).

The proof is therefore complete. �
The next proposition shows that a closed body whose boundary is a Cp-submanifold can be represented 

locally as the epigraph of a Cp-function.
Before proving the proposition we need some features for epi-Lipschitz sets whose boundaries are smooth. 

So, suppose that S is epi-Lipschitz at x ∈ bdS and that bdS is a Cp-submanifold at x. We first note that 
TC(S; x) is a half-space. Indeed, by the epi-Lipschitz property we know (see (3)) that int

(
TC(S;x)

)
�= ∅

and

TC(bdS;x) = TC(S;x) ∩ −TC(S;x).

Taking an orthogonal unit vector n̂Z of Z(x) := Tx(bdS), Proposition 3.1 and the equality (6) tell us that

NC(bdS;x) = Rn̂(x),

where n̂(x) := Dϕ(x)∗n̂Z/‖Dϕ(x)∗n̂Z‖. It ensues that

TC(S;x) ∩ −TC(S;x) = TC(bdS;x) = {h ∈ X : 〈n̂(x), h〉 = 0}.

Since the interior of the closed convex cone TC(S; x) is nonempty, it results that

either TC(S;x) = {h ∈ X : 〈n̂(x), h〉 ≤ 0} or TC(S;x) = {h ∈ X : 〈n̂(x), h〉 ≥ 0},

which confirms that TC(S; x) is a half-space. We may suppose that n̂Z is chosen so that the second latter 
equality holds true. We then derive that

NC(S;x) = {−tn̂(x) : t ≥ 0}. (11)

The vector n̂(x) is called the unit interior normal vector of bdS at x, since it is orthogonal to Z(x) and 
it “aims” to intS. It is worth noting that n̂(x) doesn’t depend on the diffeomorphism nor the model space 
chosen to describe bdS as submanifold, since it is fully determined by Z(x) and TC(S; x). In what follows, 
we will preserve the notation Z(x) and n̂(x) to denote the tangent space and the unit interior normal vector, 
respectively.
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In view of the proof of the proposition we also state the following simple lemma.

Lemma 3.2. Let S be a subset of X and U an open set of X.
(a) The following equalities hold:

intU (U ∩ S) = U ∩ intS, clU (U ∩ S) = U ∩ clS, bdU (U ∩ S) = U ∩ bdS.

(b) If S = intS, then

U ∩ S = clU
(
intU (U ∩ S)

)
= clU (U ∩ intS).

Proof. The first two equalities in (a) easily follow from the openness of U and the third is a consequence of 
the former equalities. Finally, if S = intS, then we see from (a) that

clU
(
intU (U ∩ S)

)
= clU (U ∩ intS) = U ∩ cl(intS) = U ∩ S. �

Proposition 3.3. Let S ⊆ X be a closed body near x0 ∈ bdS. Assume that bdS is a Cp-submanifold at 
x0 with p ≥ 1 and denote by Z(x0) := Tx0(bdS) the tangent space to the boundary of S at x0. Then S is 
epi-Lipschitz at x0, and there exist a neighborhood U0 ∈ NX(x0) and a function f : πZ(x0)(U0) ⊆ Z(x0) → R

such that f is of class Cp on πZ(x0)(U0), ∇f(πZ(x0)(x0)) = 0 and

U0 ∩ S = {z + tn̂(x0) ∈ U0 : z ∈ Z(x0), f(z) ≤ t},

where n̂(x0) denotes the unit interior normal vector of bdS at x0. Furthermore, endowing Z(x0) × R with 
the inner product

〈(z, t), (z′, t′)〉 = 〈z, z′〉 + tt′,

if in addition S is r-prox-regular at x0, then epi f is also r-prox-regular at (z0, f(z0)).

Proof. By Proposition 3.1 choose an open neighborhood U of x0, a Cp-diffeomorphism ϕ : U → ϕ(U) ⊂ X, 
and a closed subspace Z of X of codimension 1 such that ϕ(x0) = 0 and

ϕ(U ∩ bdS) = Z ∩ ϕ(U).

By replacing ϕ by Dϕ−1(0) ◦ ϕ, we can choose Z = Z(x0) and Dϕ(x0) = idX . Let ν be a unit vector 
of X orthogonal to Z. We have that Rν is a topological vector subspace complement of Z in X, that is, 
X = Z ⊕ Rν. Noticing that Z = {x ∈ X : 〈ν, x〉 = 0}, we see that, for z + tν ∈ U with z ∈ Z and t ∈ R,

z + tν ∈ U ∩ bdS⇔〈ϕ(z + tν), ν〉 = 0.

Consider the open set W := {(z, t) ∈ Z ×R : z + tν ∈ U} in Z ×R, where Z is equipped with the induced 
norm, and consider also the Cp function F : W → R defined by

F (z, t) := 〈ϕ(z + tν), ν〉 , for all (z, t) ∈ W.

Write x0 = z0 + t0ν with z0 ∈ Z and t0 ∈ R, and note that F (z0, t0) = 0 and that the derivative with 
respect to the second variable t at (z0, t0) satisfies

D2F (z0, t0) = 〈Dϕ(z0 + t0ν)ν, ν〉 = 〈Dϕ(x0)ν, ν〉 = ‖ν‖2 = 1.
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We can apply the implicit function theorem to obtain a connected open neighborhood Q0 of z0 in Z, a real 
ε > 0 and a Cp function f : Q0 → ]t0 − ε, t0 + ε[ such that

U0 := {z + tν : z ∈ Q0, t ∈ ]t0 − ε, t0 + ε[ } ⊂ U

and such that, for z ∈ Z and t ∈ R

(
z + tν ∈ U0 ∩ bdS

)
⇔

(
z + tν ∈ U0 and F (z, t) = 0

)
⇔

(
z + tν ∈ U0 and t = f(z)

)
.

The set S being a closed body near x0, shrinking Q0 and ε if necessary we may and do suppose that U0∩intS
is connected and U0 ∩ S = U0 ∩

(
intS

)
. Furthermore, for any h ∈ Z we have

〈∇f(z0), h〉 = −D2F (z0, t0)−1 ◦D1F (z0, t0)h = −D1F (z0, t0)h = −〈Dϕ(x0)h, ν〉 = 0,

since D2F (z0, t0) = idR and Dϕ(x0)
∣∣
Z

= idZ . Thus, ∇f(z0) = 0.
With the linear isomorphism L : Z ×R → X defined by L(z, t) := z + tν, clearly (L−1(U0)) ∩ epis f and 

(L−1(U0)) ∩ hypos f are the two connected components of L−1(U0) \ gph f . It results that U0 ∩ L(epis f)
and U0 ∩ L(hypos f) are the two connected components of U0 \ bdS. Since U0 ∩ intS is a connected 
component of U0 \ bdS according to the above lemma, it ensures that either U0 ∩ intS = U0 ∩L(epis f) or 
U0 ∩ intS = U0 ∩ L(hypos f). Noticing that

U0 ∩ L(hyposf) = {z + tν : z ∈ Q0, t ∈ ]t0 − ε, t0 + ε[, t < f(z)}

= {z + t(−ν) : z ∈ Q0, t ∈ ] − t0 − ε,−t0 + ε[, (−f)(z) < t},

and changing ν by −ν and t0 by −t0 if necessary, we may suppose that the equality U0∩intS = U0∩L(epis f)
holds true. By the above lemma again we derive that U0 ∩ S = U0 ∩ L(epi f), which also says that S is 
epi-Lipschitz at any point in U0 ∩ S.

Let us denote A := L−1 and endow Z × R with the canonical inner product, that is,

〈(z, r), (z′, r′)〉Z×R := 〈z, z′〉 + rr′.

Writing any x ∈ X as x = πZ(x) + πR(x)ν with πZ(x) ∈ Z and πR(x) ∈ R, the bijective linear mapping 
A : X → Z × R satisfies A(x) := (πZ(x), πR(x)) and it is an isomorphism such that A(U0 ∩ S) = A(U0) ∩
(epi f). Since f is of class C1, at any z ∈ πZ(U0) we have ∂Cf(z) = {∇f(z)} and therefore

NC
(
epi f ; (z, f(z))

)
= {λ(∇f(z),−1) : λ ≥ 0}.

Further, taking the linear isomorphism A into account, we have for any x ∈ S ∩ U0 (see (4))

NC(S;x) = NC(U0 ∩ S;x) = A∗(NC(A(U0) ∩ (epi f);A(x))
)

= A∗(NC(epi f ;A(x))
)
,

where A∗ denotes the adjoint of A. This yields by (11)

{−λn̂(x0) : λ ≥ 0} = NC(S;x0) = {λA∗(∇f(z0),−1) : λ ≥ 0} = {A∗(0,−λ) : λ ≥ 0}.

Observing that A∗ = L, we get that n̂(x0) = ν, which finishes the first part of the proof.
For the second part of the proof, assume also that S is r-prox-regular at x0. Then, by Theorem 2.3 there 

exists δ > 0 such that for all x ∈ S ∩BX(x0, δ) and every ξ ∈ NP (S; x), one has
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〈ξ, x′ − x〉 ≤ 1
2r‖ξ‖‖x

′ − x‖2, ∀x′ ∈ S.

By shrinking U0 if necessary, we may and do assume that U0 ⊆ B(x0, δ). Now, fix (z, t) ∈ A(U0) ∩ (epi f)
and ζ ∈ NP

(
epi f ; (z, t)

)
∩BX = NP

(
epi f ; (z, t)

)
∩BX . For every (z′, t′) ∈ A(U0) ∩ (epi f), we have by (8)

that

〈ζ, (z′, t′) − (z, t)〉 = 〈(A∗)−1A∗ζ, (z′, t′) − (z, t)〉
= 〈A∗ζ, A−1(z′, t′) −A−1(z, t)〉

≤ 1
2r‖A

∗ζ‖‖A−1((z′, t′) − (z, t)
)
‖2

≤ 1
2r‖(z

′, t′) − (z, t)‖2,

where the last inequality follows from the equalities A−1 = A∗ and ‖A∗‖ = 1. Now, consider (z′, t′) ∈
(epi f) \A(U0). Since z′ ∈ Q0 (keep in mind that f is defined only on Q0) and since

A(U0) = Q0×]t0 − ε, t0 + ε[

we have necessarily that t′ /∈]t0 − ε, t0 + ε[ and in fact, t′ ≥ t0 + ε > t because t′ ≥ f(z′) > t0 − ε. 
Since max{t, f(z′)} < t0 + ε ≤ t′, we can define t′′ = max{t, f(z′)} and, noting that πR(ζ) ≤ 0 and 
(z′, t′′) ∈ A(U0) ∩ epi f , we can write by what precedes

〈ζ, (z′, t′) − (z, t)〉 = 〈ζ, (z′, t′′) − (z, t)〉 + 〈ζ, (0, t′ − t′′)〉

≤ 〈ζ, (z′, t′′) − (z, t)〉 ≤ 1
2r‖(z

′, t′′) − (z, t)‖2

= 1
2r

(
〈z′ − z, z′ − z〉 + (t′′ − t)2

)
≤ 1

2r
(
〈z′ − z, z′ − z〉 + (t′ − t)2

)
= 1

2r‖(z
′, t′) − (z, t)‖2,

where the last inequality is due to the fact that t ≤ t′′ < t′. We then obtain that, for all (z′, t′) ∈ epi f

〈ζ, (z′, t′) − (z, t)〉 ≤ 1
2r‖(z

′, t′) − (z, t)‖2.

Taking limits, we see that the inequality still holds for all (z′, t′) ∈ epi f . This justifies the r-prox-regularity 
of epi f at (z0, f(z0)) and finishes the proof. �
4. Smoothness of the metric projection onto nonconvex bodies

Theorem 4.1. Let O0 ⊆ X be an open set and f : O0 ⊆ X → R be a function of class Cp+1 (with p ≥ 1) 
near x0 ∈ X such that ∇f(x0) = 0. Assume that epi f is r-prox-regular at (x0, f(x0)). For the constant

λ = min
{
r,

(
−2 inf

{
〈u,D2f(x0)u〉 : u ∈ BX

})−1
}

there exists an open neighborhood W of Ray(x0,f(x0)),λ(epi f) such that

(a) depi f is of class Cp+1 on W ;
(b) Pepi f is of class Cp on W .
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Proof. Let us denote S = epi f , and πX : X × R → X, πR : X × R → R the parallel projections associated 
to the product X ×R. Also, for simplicity, we will write u = (u1, u2) for each u ∈ X ×R. According to the 
convention 0−1 = +∞ and noting that infu∈BX

〈u, D2f(x0)u〉 ≤ 0, one sees that λ > 0.
Since S is r-prox-regular at v0 := (x0, f(x0)), by Theorem 2.3 there exists α > 0 small enough for 

which, by denoting O := WS(v0, r, α), we have that O is open, πX(O) ⊆ O0 (so O ∩ S = O ∩ epi f), PS is 
single-valued on O, f is of class Cp+1 on πX(O), dS is continuously differentiable in O \ S and

∇dS(v) = v − PS(v)
dS(v) , ∀v ∈ O \ S. (12)

Also, since f is of class Cp+1, for x ∈ πX(O) we have that ∂P f(x) = {∇f(x)} and so

NP
(
S; (x, f(x))

)
= {t(∇f(x),−1) : t ≥ 0}. (13)

Since O coincides with RS(v0, r, α), we have that for each v ∈ S ∩O

PS

[(
v + NP (S; v)

)
∩O

]
= v, (14)

and that Rayv0,λ(S) ⊆ O. Let any u0 ∈ Rayv0,λ(S), and choose three convex neighborhoods U ∈ NX×R(u0)
and V, V ′ ∈ NX×R(v0) such that

• U ⊆ O \ S, V ′ ⊆ O, V ⊂ V ′;
• (v1, f(v1)) ∈ V ′ for every v1 ∈ πX(V );
• there exists δ > 0 such that U + ({0}× ] − δ, δ[ ) ⊆ O \ S; and
• diam(πR(V ′)) < δ.

From those assumptions, we have that for each v ∈ V , (v1, f(v1)) ∈ V ′ and U − (0, v2 − f(v1)) ⊆ O \S. Let 
us define the mapping

F : U × V → X × R

(u, v) �→ u− v − dS(u)ϕ(v),

where

ϕ(v) = (∇f(v1),−1)
‖(∇f(v1),−1)‖ for all v ∈ V.

We claim that F (u, v) = 0 if and only if v = PS(u). For the sufficiency, let us suppose that v = PS(u). 
Then, u − v ∈ NP (S; v) and by (13) and the definition of ϕ, there exists t ≥ 0 such that

u = v + tϕ(v).

Thus, noting that dS(u) = ‖u − PS(u)‖ = t‖ϕ(v)‖ = t, we conclude that F (u, v) = 0. On the other hand, 
to prove the necessity, let us suppose that F (u, v) = 0, so ‖u − v‖ = dS(u). Putting v′ = (v1, f(v1)) and 
noting that ϕ(v′) = ϕ(v), we can write

u = v + dS(u)ϕ(v) = v′ + dS(u)ϕ(v′) + (0, v2 − f(v1)).

Therefore, with u′ := u − (0, v2 − f(v1)), we have u′ − v′ ∈ NP (S; v′) and so, since v′ ∈ O ∩ S and 
u′ ∈

(
v′ + NP (S; v′)

)
∩O, by (14) we get PS(u′) = v′ and
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dS(u′) = ‖u′ − v′‖ = ‖u− v‖ = dS(u).

Define the mapping

g : ] − 1, 1 + δ′[ → O \ S, given by g(t) = u−
(
0, t(v2 − f(v1))

)
,

with some δ′ > 0 for which g is well-defined. Then,

(dS ◦ g)′(t) = −DdS(g(t))
(
0, v2 − f(v1)

)
= −πR

(
g(t) − PS(g(t))

dS(g(t))

)
(v2 − f(v1)).

Noting that g(t) − PS(g(t)) ∈ NP
(
S; PS(g(t))

)
and recalling that g(t) /∈ S, by (13) we obtain that 

πR

(
g(t)−PS(g(t))

dS(g(t))

)
< 0. Thus, sgn((dS ◦ g)′(t)) = sgn(v2 − f(v1)) for all t ∈ ] − 1, 1 + δ′[ (where sgn(·)

denotes the sign function on R \ {0}), and we get that if v2 �= f(v1), then

(dS ◦ g)(1) �= (dS ◦ g)(0), that is, dS(u′) �= dS(u),

since dS ◦ g is strictly monotone. Since dS(u) = dS(u′), we conclude that v2 = f(v1) and therefore u = u′

and v = v′. In particular, PS(u) = v, which proves our claim.
We would like now to apply the Implicit Function Theorem to F at (u0, v0), so we need to check that

D2F (u0, v0) = −idX×R − dS(u0) ·Dϕ(v0)

is an isomorphism. Let us define the mappings ϕ1 : (X × R) \ {0} → X × R and ϕ2 : X → X × R given by

ϕ1(y) = y

‖y‖ and ϕ2(x) = (x,−1).

We can write ϕ = ϕ1 ◦ ϕ2 ◦ ∇f ◦ πX . Recalling that for all h ∈ X × R

Dϕ1(y)h = ‖y‖h− 〈ϕ1(y), h〉y
‖y‖2

we have that

Dϕ(v0)h = Dϕ1((∇f(x0),−1)) ◦Dϕ2(∇f(x0)) ◦D2f(x0) ◦ πX(h)

= Dϕ1((0,−1))(D2f(x0)h1, 0)

= ‖(0,−1)‖−2
(
‖(0,−1)‖(D2f(x0)h1, 0) −

〈
(0,−1)

‖(0,−1)‖ , (D
2f(x0)h1, 0)

〉
(0,−1)

)

= (D2f(x0)h1, 0).

Thus, Dϕ(v0) = (D2f(x0) ◦ πX , 0). Let us then show that idX×R +dS(u0)Dϕ(v0) is bijective. We may 
assume that D2f(x0) �= 0, since otherwise the bijectivity is trivial.

• surjectivity: Let us consider h ∈ X × R with h �= 0. Since

(idX×R +dS(u0)Dϕ(v0))∗h = idX×R(h) + dS(u0)(Dϕ(v0))∗h,

it follows that
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‖(idX×R +dS(u0)Dϕ(v0))∗h‖2 = ‖h‖2 + 2dS(u0)〈(Dϕ(v0))∗h, h〉 + dS(u0)2‖(Dϕ(v0))∗h‖2

= ‖h‖2 + 2dS(u0)〈h1, D
2f(x0)h1〉 + dS(u0)2‖(Dϕ(v0))∗h‖2

≥ ‖h‖2 + 2dS(u0)
〈

h1
‖h‖ , D

2f(x0) h1
‖h‖

〉
‖h‖2

≥
(

1 + 2 inf
x∈BX

{〈x,D2f(x0)x〉}dS(u0)
)
· ‖h‖2

≥
(

1 − 1
λ
dS(u0)

)
· ‖h‖2, (15)

where the last inequality is due to the definition of λ. Since u0 ∈ Rayv0,λ(S) ⊂ WS(v0, λ, α), we have 
that c = 1 − λ−1dS(u0) > 0, and so, by for example [7, Theorem 2.20], the conclusion follows.

• injectivity: Let h ∈ X × R such that 
(
idX×R +dS(u0)Dϕ(v0)

)
h = 0. Then necessarily h2 = 0, provided 

πR (Dϕ(v0)h) = 0, and so, recalling that infx∈BX
{〈x, D2f(x0)x〉} ≤ 0, we can write

2 inf
x∈BX

{〈x,D2f(x0)x〉}‖h‖2 ≤ 〈h1, D
2f(x0)h1〉 = 〈h, (D2f(x0)h1, 0)〉 = 〈h,Dϕ(x0)h〉

= dS(u0)−1〈h, dS(u0)Dϕ(v0)h〉 = −dS(u0)−1‖h‖2,

where the last equality is due to the fact that we have supposed that 
(
idX×R +dS(u)Dϕ(v0)

)
h = 0. But 

since −dS(u0)−1 < −λ−1 ≤ 2 infx∈BX
{〈x, D2f(x0)x〉}, we have that necessarily h = 0, which proves the 

injectivity.

Now, we can apply the Implicit Function Theorem in the following way. Since dS is of class C1 in U , we 
have that F is of class C1 in U × V . Therefore, there exist two neighborhoods U1 ∈ N (u0) and V1 ∈ N (v0)
and a mapping φ : U1 → V1 such that

(i) φ is of class C1;
(ii) For each u′ ∈ U1, F (u′, φ(u′)) = 0;
(iii) For each (u′, v′) ∈ U1 × V1, F (u′, v′) = 0 ⇒ v = φ(u′).

Then, by (ii) and (iii) we get that PS = φ in U1, and therefore, PS is of class C1 on U1, according to (i). 
Now, looking at the formula (12), we get that dS is of class C2 on U1 and so is F on U1 × V1. We can apply 
recursively this argument as follows:

dS is of class C2 in U1 =⇒ F is of class C2 on U1 × V1

=⇒
IFT ∃U2 ∈ N (u0), PS is of class C2 on U2

...

=⇒ F is of class Cp on Up−1 × Vp−1

=⇒
IFT ∃Up ∈ N (u0), PS is of class Cp on Up

=⇒ dS is of class Cp+1 on Up.

Since ∇f is of class Cp, the argument ends at this iteration, since we can’t ensure that F is of class Cp+1. 
The proof is finished considering W as the union of the Up obtained by this way for each u0 ∈ Rayv0,λ(S), 
and noting that PS and Pepi f coincide on W since W ⊆ O. �
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Remark 4.2. Observe from the preceding proof that, for the point u0 ∈ Rayv0,λ(S) we have

DPS(u0) = −[D2F (u0, v0)]−1 ◦D1F (u0, v0)

= −[D2F (u0, v0)]−1 ◦
(

idX −
〈
u0 − PS(u0)

ds(u0)
, ·
〉

u0 − PS(u0)
dS(u0)

)

= −[D2F (u0, v0)]−1 ◦ ΠX×{0}.

Also, note that −D2F (u0, v0) maps X × {0} onto X × {0}. In particular, we have that DPS(u0) restricted 
to X × {0} is invertible as a mapping from X × {0} to X × {0}.

The following lemma will be crucial in the development below.

Lemma 4.3. Let U be an open set of X and f : U ⊆ X → R be a function of class Cp+1 near x0 ∈ X such 
that ∇f(x0) = 0. Assume that epi f is r-prox-regular at (x0, f(x0)). Then, one has

inf
{
〈u,D2f(x0)u〉 : u ∈ BX

}
≥ −1

r
.

Proof. Let us denote O := BX×R((x0, f(x0)), α) with α > 0 small enough such that πX(O) ⊆ U , f is of 
class Cp+1 at πX(O) and epi f is (r, α)-prox-regular at (x0, f(x0)). Then, for every (x, s) ∈ O ∩ epi f , and 
every ξ ∈ NP (epi f ; (x, s)) = NP (epi f ; (x, s)) we have that

〈ξ, (x′, s′) − (x, s)〉 ≤ 1
2r‖ξ‖‖(x

′, s′) − (x, s)‖2, ∀(x′, s′) ∈ epi f. (16)

Fix h ∈ X. Since for every x ∈ πX(O), we have that

NP
(
epi f ; (x, f(x))

)
= {t(∇f(x),−1) : t ≥ 0},

so using the equality ∇f(x0) = 0 we can write

〈h,D2f(x0)h〉 = lim
t↘0

〈
th,

∇f(x0 + th) −∇f(x0)
t2

〉

= lim
t↘0

〈(
th, f(x0 + th) − f(x0)

)
,

(
∇f(x0 + th),−1

)
− (0,−1)

t2

〉

= lim
t↘0

〈(
x0 + th, f(x0 + th)

)
−

(
x0, f(x0)

)
,

(
∇f(x0 + th),−1

)
t2

〉
+ f(x0 + th) − f(x0)

t2
,

thus, according to equation (16), we can write

〈h,D2f(x0)h〉 ≥ lim
t↘0

− 1
2rt2 ‖

(
∇f(x0 + th),−1

)
‖
∥∥(th, f(x0 + th) − f(x0)

)∥∥2 + f(x0 + th) − f(x0)
t2

= lim
t↘0

− 1
2r‖

(
∇f(x0 + th),−1

)
‖
∥∥∥∥
(
h,

f(x0 + th) − f(x0)
t

)∥∥∥∥
2

+ f(x0 + th) − f(x0)
t2

= − 1
2r‖

(
∇f(x0),−1

)
‖
∥∥(h,Df(x0)h

)∥∥2 + lim
t↘0

f(x0 + th) − f(x0) − tDf(x0)h
t2

= − 1
2r

∥∥(h,Df(x0)h
)∥∥2 + 1

2 〈h,D
2f(x0)h〉 = − 1

2r‖h‖
2 + 1

2 〈h,D
2f(x0)h〉,
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where the last equality follows from the facts that Df(x0)h = 0 and ‖(h, 0)‖2 = ‖h‖2. The conclusion 
follows. �

Another lemma is needed before proving Theorem 2.4.

Lemma 4.4. Let S ⊆ X be a closed body near x0 ∈ bdS. Assume that there exist r ∈ ]0, +∞] and α > 0
such that BX(x0, α) ∩bdS is a Cp+1-submanifold (with p ≥ 1) and that S is r-prox-regular at x0. Then, for 
r′ = r/2, there exists a neighborhood V of Rayx0,r′(S) such that

• dS is of class Cp+1 on V ;
• PS is of class Cp on V .

Furthermore, if the set S is (r, α)-prox-regular at x0, then

• dS is of class Cp+1 on WS(x0, r′, α) \ S;
• PS is of class Cp on WS(x0, r′, α) \ S.

Proof. Shrinking α, we may suppose that S is r-prox-regular at each point in BX(x0, α) ∩ bdS. Let x̄ ∈
BX(x0, α) ∩bdS. Recalling that Z(x̄) := Tx̄(bdS) and applying Proposition 3.3, there exist a neighborhood 
U ∈ NX(x̄) and a function f : πZ(x̄)(U) ⊆ Z(x̄) → R such that, denoting z̄ := πZ(x̄)(x̄), f is of class Cp+1

in πZ(x̄)(U), ∇f(z̄) = 0,

U ∩ S = {z + tn̂(x̄) ∈ U : z ∈ Z(x̄), f(z) ≤ t},

and also, epi f is r-prox-regular at (z̄, f(z̄)); keep in mind that n̂(x̄) denotes the unit interior normal of bdS

at x̄. We may and do assume that U ⊆ BX(x0, α). By Theorem 4.1 and the inequality of Lemma 4.3, we 
have that Pepi f is of class Cp on a neighborhood W of Ray(z̄,f(z̄)),r′(epi f).

Choose δ ∈ ]0, α[ small enough such that BX(x̄, δ) ⊆ U and S is (r, δ)-prox-regular at x̄. Let 
L : Z(x̄) × R → X be the canonic isomorphism given by L(z, t) = z + tn̂(x̄). Noting by (11) that

Rayx̄,r′(S) = {x̄− tn̂(x̄) : t ∈ (0, r′)} = L
(
{(z̄, f(z̄)) + t(0,−1) : t ∈ (0, r′)}

)
= L

(
Ray(z̄,f(z̄)),r′(epi f)

)
,

we have that W ′ := W ∩ L−1(WS(x̄, r′, δ)) is also an open neighborhood of Ray(z̄,f(z̄)),r′(epi f). Since L is 
an isometry, we have that for each w ∈ W ′, PS(L(w)) ∈ U ∩ S and so

‖L(w) − PS(L(w))‖ = ‖w − L−1(PS(L(w))
)

≥ ‖w − Pepi f (w)‖ = ‖L(w) − L(Pepi f (w))‖ ≥ ‖L(w) − PS(L(w))‖.

Therefore, for each v ∈ Vx̄ := L(W ′), we have that

PS(v) = (L ◦ Pepi f ◦ L−1)(v),

hence PS is well-defined on Vx̄ and it is of class Cp on Vx̄. Further, since W can be assumed to be open, the 
set Vx̄ is an open neighborhood of Rayx̄,r′(S), proving the first part of the theorem.

The second part follows directly noting that WS(x0, r′, α) \ S ⊆
⋃
{Vx : x ∈ BX(x0, α) ∩ bdS}, since 

WS(x0, r′, α) and RS(x0, r′, α) coincide and since we can write

RS(x0, r
′, α) \ S =

⋃{
Rayx,r′(S) : x ∈ BX(x0, α) ∩ bdS

}
. �



R. Correa et al. / J. Math. Anal. Appl. 457 (2018) 1307–1332 1325
From Remark 4.2, we see that, in the proof of the preceding lemma, for each u0 ∈ Rayx̄,r′(S), the operator 
DPepi f (L−1(u0)) restricted to Z(x̄) ×{0} is invertible as a mapping from Z(x̄) ×{0} onto Z(x̄) ×{0}. From 
this observation, we can conclude that the operator

DPS(u0) = L ◦DPepi f (L−1(u0)) ◦ L−1

restricted to Z(x̄) also is invertible as a mapping from Z(x̄) onto Z(x̄). This yields the following proposition, 
which will be useful in the study of the converse of Theorem 2.4. (See comments on Section 6.)

Proposition 4.5. Under the assumptions and notation of Lemma 4.4, for each u0 ∈ Rayx0,r′(S), the operator 
DPS(u0) is invertible as a mapping from Z(x0) onto Z(x0).

Furthermore, if S is (r, α)-prox-regular, then for each u ∈ WS(x0, r′, α) \ S, the operator DPS(u) is 
invertible as a mapping from Z(PS(u)) onto Z(PS(u)).

Now, to prove Theorem 2.4, we will also need the following submanifold property of level sets. Let U0 be 
an open set of X with x̄ ∈ U0 and g be a mapping of class Cp (with p ≥ 1) from U0 into a Banach space Y
such that Dg(x̄) is surjective. With ȳ := g(x̄), the level set M := {x ∈ U0 : g(x) = ȳ} is a Cp-submanifold 
of X at x̄.

Indeed, supposing (without loss of generality) ȳ = 0, we know by the Local Submersion theorem (see, 
e.g., [1, Theorem 2.5.13]) that, denoting by X1 an orthogonal subspace of X2 := KerA with A := Dg(x̄), 
there exist an open neighborhood U ⊂ U0 of x̄ in X, an open neighborhood V of 

(
g(x̄), πX2(x̄)

)
in Y ×X2, 

and a Cp-diffeomorphism ψ : V → U from V onto U such that g ◦ ψ(v1, v2) = v1 for all (v1, v2) ∈ V . 
The continuous linear mapping A0 : X1 → Y with A0(x1) := A(x1) for all x1 ∈ X1 is bijective, hence an 
isomorphism from X1 to Y by the closed graph theorem, so the mapping j : X1 ⊕X2 → Y ×X2 defined by 
j(x1⊕x2) =

(
A0(x1), x2

)
is also an isomorphism. Let jV : j−1(V ) → V the bijective restriction from j−1(V )

onto V and consider the Cp-diffeomorphism ϕ := j −1
V ◦ ψ−1 from U onto j −1

V (V ). Then, with πi := πXi
we 

have

x ∈ ϕ(U ∩M) ⇔ ψ ◦ jV (x) ∈ U and g ◦ ψ(jV (x)) = 0 ⇔ ψ ◦ jV (x) ∈ U and g ◦ ψ
(
A0 ◦ π1(x), π2(x)

)
= 0

⇔ ψ ◦ jV (x) ∈ U and A0 ◦ π1(x) = 0 ⇔ ψ ◦ jV (x) ∈ U and π1x = 0 ⇔ x ∈ ϕ(U) ∩X2,

which means that ϕ(U ∩M) = ϕ(U) ∩X2 and justifies that M is a Cp-submanifold of X.
We can now proceed to the proof of Theorem 2.4:

Proof of Theorem 2.4. Let U be an open connected neighborhood of x0 such that U ∩ intS is connected 
and U ∩ S = U ∩

(
intS

)
. Since S is r-prox-regular at x0, there exist α′ ∈ ]0, α[ such that B(x0, α′) ⊂ U

and S is (r, α′)-prox-regular at x0. We will show inductively that for every n ∈ N, dS is of class Cp+1 on 
WS(x0, rn, α′) \ S with rn :=

∑n
k=1 2−kr. Noting that

Rayx0,r(S) ⊆ W(x0, r, α
′) \ S =

∞⋃
n=1

W(x0, rn, α
′) \ S,

and taking into account that PS(u) = (u −∇dS(u))/dS(u) for every u ∈ W(x0, r, α′) \ S, proving the latter 
assertion is enough to conclude the first part of the theorem.

The case n = 1 is contained in Lemma 4.4, so we only need to prove the inductive step. Consider then 
n ≥ 2 and assume that dS is already of class Cp+1 on WS(x0, rn−1, α′) \ S. It only rests to prove that dS is 
of class Cp+1 near each point of

WS(x0, rn, α
′) \WS(x0, rn−1, α

′) = {u ∈ WS(x0, rn, α
′) : rn−1 ≤ dS(u) < rn}.
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Fix ū ∈ WS(x0, rn, α′) \ S with rn−1 ≤ dS(ū) < rn = rn−1 + 2−nr. Let us denote x̄ = PS(ū) and choose 
λ ∈]0, rn−1[ such that dS(ū) − λ < 2−nr. Note by definition of WS(x0, rn, α′) that x̄ ∈ B(x0, α′).

Let us consider the set Sλ := {x ∈ X : dS(x) ≤ λ} and the point ȳ := x̄ − λn̂(x̄) in bdSλ (where 
we recall that n̂(x̄) denotes the unit interior normal vector of bdS at x̄, which is well-defined since bdS

is a Cp+1-submanifold at x̄). Since λ < rn−1 and x̄ ∈ B(x0, α′), we have that ȳ ∈ WS(x0, rn−1, α′), 
and so, by hypothesis, dS is of class Cp+1 near ȳ. Choose δ ∈ ]0, α′[ small enough such that BX(ȳ, δ) ⊂
WS(x0, rn−1, α

′) \ S. We claim that

BX(ȳ, δ) ∩ {dS < λ} = BX(ȳ, δ) ∩ int(Sλ). (17)

Denoting the second member by V it is clear that it contains the first member. Suppose there is some 
u0 ∈ V which is not in the first member. Then dS(u0) = λ, hence u0 is a maximizer of dS on the open set V , 
which yields ∇dS(u0) = 0, contradicting the equality ‖∇dS(u0)‖ = 1. The claim is then justified. This says 
in particular that BX(ȳ, δ) ∩ bd (Sλ) = BX(ȳ, δ) ∩ {dS = λ}. Further, dS is of class Cp+1 on B(ȳ, δ) and 
∇dS(y) is surjective from X into R since ‖∇dS(y)‖ = 1 for all y ∈ BX(ȳ, δ). The set bd(Sλ) is then a 
Cp+1-submanifold of X as seen above for such a level set.

Furthermore, for every y ∈ BX(ȳ, δ) ∩ bdSλ, the C1,1-property of dS near y gives ∂P dS(y) = {∇dS(y)}
and by [6, Theorem 4.3] we know that

∂P dS(y) = NP (Sλ; y) ∩ SX ,

so it follows that

NP (Sλ; y) = {t∇dS(y) : t ≥ 0} = {−tn̂(PS(y)) : t ≥ 0}. (18)

Fix y ∈ BX(ȳ, δ) ∩ bdSλ and denote x := PS(y). Noting that λ + t < r for every t ∈
]
0, r

2n−1

]
and recalling 

that S is r-prox-regular at x, we have

dS(y − tn̂(x)) = dS(x− (λ + t)n̂(x)) = λ + t.

Noting also that

dSλ
(u) = dS(u) − λ, ∀u ∈ X \ Sλ, (19)

we can write dSλ
(y− tn̂(x)) = t, and so y ∈ ProjSλ

(y− tn̂(x)) for every t ∈
]
0, r

2n−1

]
. In particular, by (18), 

for every ζ ∈ NP (Sλ; y) ∩ BX ,

y ∈ ProjSλ
(y + tζ), ∀t ∈

]
0, r

2n−1

]
.

Since this last inclusion holds for every y ∈ Sλ ∩ BX(ȳ, δ) (the case of y ∈ int(Sλ) is trivial since 
NP (Sλ; y) = 0), we conclude that Sλ is 

(
r

2n−1 , δ
)
-prox-regular at ȳ according to Definition 2.1.

Since BX(ȳ, δ) ⊆ WS(x0, rn−1, α′), we have that for all y′ ∈ BX(ȳ, δ), PS(y′) ∈ U . We derive that, for 
any y′ ∈ BX(ȳ, δ) ∩ {dS < λ} we have y′ ∈ PS(y′) + BX(0, λ) with PS(y′) ∈ S ∩ U , thus

BX(ȳ, δ) ∩ {dS < λ} = BX(ȳ, δ) ∩
⋃

u∈U∩S

(
u + BX(0, λ)

)
= BX(ȳ, δ) ∩

⋃
u∈U∩int S

(
u + BX(0, λ)

)
, (20)

where the second equality is due to the fact U ∩S = U ∩ intS. Taking any yi in the latter set with i = 1, 2, 
there are xi ∈ U∩intS and bi ∈ BX(0, λ) such that yi = xi+bi. The set U∩intS being arc-wise connected as 
an open connected set in the normed space X, there exists a continuous mapping γ : [0, 1] → U ∩ intS with 
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γ(0) = x1 and γ(1) = x2. The mapping γ0 : [0, 1] → BX(ȳ, δ) ∩ {dS < λ} with γ0(t) = γ(t) + (1 − t)b1 + tb2
is well defined (by (20)) and continuous, and further γ1(0) = y1 and γ0(1) = y2. This tells us that the set 
BX(ȳ, δ) ∩ int(Sλ) = BX(ȳ, δ) ∩ {dS < λ} is (arc-wise) connected.

To see that Sλ is a closed body near ȳ it remains to show that BX(ȳ, δ) ∩ Sλ = BX(ȳ, δ) ∩ int(Sλ). 
The second member is obviously included in the first. Take any y′ ∈ BX(ȳ, δ) with dS(y′) = λ. Putting 
v = ∇dS(y′) ∈ SX , for t > 0 small enough we have

dS(y′ − tv) = dS(y′) − t
(
〈∇dS(y′), v〉 + ε(t)

)
= λ− t

(
1 + ε(t)

)
,

where ε(t) → 0 as t ↓ 0, so for t > 0 small enough

y′ − tv ∈ BX(ȳ, δ) ∩ {dS < λ} = BX(ȳ, δ) ∩ int(Sλ),

where the equality is due to (17). This entails that y′ ∈ BX(ȳ, δ) ∩ int(Sλ), hence the desired equality 
BX(ȳ, δ) ∩ Sλ = BX(ȳ, δ) ∩ int(Sλ) is justified. The set Sλ is then a closed body near ȳ.

We can then apply the second part of Lemma 4.4 to Sλ at ȳ to get that dSλ
is of class Cp+1 on 

WSλ
(ȳ, δ, 2−nr) \ Sλ. Finally, by (19), we conclude that dS itself is of class Cp+1 on WSλ

(ȳ, δ, 2−nr) \ Sλ

and in particular, it is so near ū. The induction (and therefore the proof of the first part of the theorem) is 
then completed.

The second part of the theorem follows directly from the first one, following the last observations of the 
proof of Lemma 4.4. �

The first corollary is concerned with ρ(·)-prox-regular closed bodies.

Corollary 4.6. Let S ⊆ X be a closed body such that bdS is a Cp+1-submanifold with p ≥ 1. If S is 
ρ(·)-prox-regular, then

• dS is of class Cp+1 on Uρ(·)(S) \ S;
• PS is of class Cp on Uρ(·)(S) \ S.

Proof. Fix u ∈ U := Uρ(·)(S) \ S. Since S is ρ(·)-prox-regular, we have that there exists y ∈ ProjS(u)
such that dS(u) < ρ(y). Let us fix a real r with dS(u) < r < ρ(y). Since ρ is continuous, there exists a 
neighborhood V ∈ NX(y) on which ρ(v) > r for each v ∈ S∩V . Therefore, by properties related to Uρ(·)(S)
recalled in Section 2 and by Theorem 2.3 the set S is r-prox-regular at y. Then, by Theorem 2.4 there exists 
α > 0 small enough such that PS is well-defined on WS(y, r, α) \ S and it is of class Cp on this open set. 
Noting that

u ∈ (WS(y, r, α) \ S) ∩ U ⊆ U,

and that both sets WS(y, r, α) \ S and U are open, we conclude that PS is well-defined near u and it is of 
class Cp near u. Since u is arbitrary, the conclusion follows. �

In the case that S is a convex body, recalling that all convex closed sets are (+∞)-prox-regular, we can 
recuperate Holmes’ theorem as corollary of Theorem 2.4:

Corollary 4.7 (Holmes, 1973). Let K ⊆ X be a convex body and suppose that bdK is a Cp+1-submanifold 
at a point x0 ∈ bdK, with p ≥ 1. Then there exists an open neighborhood W of Rayx0

(K) such that

• dS is of class Cp+1 on W ;
• PS is of class Cp on W .
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5. Smoothness of the metric projection onto submanifolds

In their work of 1984, J-B. Poly and G. Raby proved that if a closed subset M of a finite dimensional 
Euclidean space is a Cp+1-submanifold at m0 ∈ M , then the function d2

M (·) is of class Cp+1 near m0 (see 
[21, Section 1]).

In their proof, they used the finite dimensional assumption only to ensure that, when M is a 
Cp+1-submanifold at m0, the set-valued mapping ProjM (·) is nonempty near m0 (which is provided by 
the local compactness of M). Nevertheless, in every Hilbert space X, if a closed subset M of X is a 
Cp+1-submanifold at m0 ∈ M with p ≥ 1, then it is prox-regular at m0.

Indeed, consider a neighborhood U of m0, a Cp+1-diffeomorphism ϕ : U → ϕ(U) and a closed subspace Z
of X such that ϕ(m0) = 0 and ϕ(U∩M) = ϕ(U) ∩Z. Let us denote S := ϕ(U) ∩ Z. Clearly, for z ∈ Z∩ϕ(U)
we have NC(S; z) = Z⊥, so 〈ξ, z′ − z〉 = 0 for all ξ ∈ NP (S; z) ⊆ NC(S; z) and z′ ∈ S. Theorem 2.2(ii) 
tells us that S is prox-regular at ϕ(m0) = 0. Choose a real δ > 0 such that S′ := S ∩ B(0, δ) ⊆ ϕ(U). We 
can apply equality (6) to get that for each m ∈ M ∩ ϕ−1(B(0, δ)) = ϕ−1(S′)

NP (ϕ−1(S′);m) ⊂ NC(ϕ−1(S′);m) = Dϕ(m)∗
(
NC(S′;ϕ(m))

)
= Dϕ(m)∗

(
Z⊥) .

Shrinking δ if necessary, we can suppose that ϕ is Lipschitz on ϕ−1(B(0, δ)) with a Lipschitz constant γ ≥ 0
and that, for all z, z′ ∈ B(0, δ)

‖ϕ−1(z′) − ϕ−1(z) −Dϕ−1(z)(z′ − z)‖ ≤ C‖z′ − z‖2

for some constant C > 0. Thus, for any m, m′ ∈ ϕ−1(S′) and ζ ∈ NP (ϕ−1(S′); m) ∩ BX we conclude that

〈ζ,m′ −m〉 = 〈ζ, ϕ−1(ϕ(m′)
)
− ϕ−1(ϕ(m)

)
〉

≤ 〈ζ,Dϕ−1(ϕ(m))(ϕ(m′) − ϕ(m))〉 + γ2C‖m′ −m‖2

= 〈(Dϕ(m)∗)−1ζ, ϕ(m′) − ϕ(m)〉 + γ2C‖m′ −m‖2

= γ2C‖m′ −m‖2

which, by Theorem 2.2(iii), proves the prox-regularity of M at m0. Therefore, in order to follow the proof 
of Poly and Raby, the finite-dimensional assumption is not needed. So, we can reformulate the main result 
of [21] as follows:

Theorem 5.1 (See Poly and Raby [21]). Let M be a closed subset of a Hilbert space X and let m0 ∈ M . Given 
an integer p ≥ 1, if the set M is a Cp+1-submanifold at m0, then there exists a neighborhood U ∈ NX(m0)
such that

(i) d2
M (·) is of class Cp+1 on U ;

(ii) PM is well-defined on U and it is of class Cp therein.

Based on this theorem, we will prove an analogous version of Theorem 2.4 when S is itself a 
Cp+1-submanifold, instead of a nonconvex body with Cp+1-smooth boundary.

Lemma 5.2. Let M be a closed set of X such that M is a C1-submanifold at m0 ∈ M . If M is r-prox-regular 
at m0, then for every λ ∈ ]0, r[, the set

Mλ := {x ∈ X : dM (x) ≤ λ}
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is a closed body near each point y0 := m0 + λv, where v ∈ NP (M ; m0) ∩ SX , and there exists δ > 0 such 
that

BX(y0, δ) ∩ {dM < λ} = BX(y0, δ) ∩ int(Mλ) and BX(y0, δ) ∩Mλ = BX(y0, δ) ∩ int(Mλ).

Proof. Note first that y0 ∈ Mλ and dM (y0) = λ by the r-prox-regularity of M . Since M is a 
C1-submanifold at m0, there exist a closed subspace Z of X, an open convex neighborhood U ∈ N (0)
and a C1-diffeomorphism ϕ : U → ϕ(U) such that ϕ(0) = m0 and

ϕ(U ∩ Z) = ϕ(U) ∩M.

Since U ∩ Z is arc-wise connected (as a convex set), we get that ϕ(U) ∩ M is also arc-wise connected. 
Now, choose α, δ > 0 small enough such that BX(m0, α) ⊆ ϕ(U), M is (r, α)-prox-regular at m0 and 
BX(y0, δ) ⊆ WM (m0, r, α). As in the proof of Theorem 2.4, we have that

BX(y0, δ) ∩ {dM < λ} = BX(y0, δ) ∩ int(Mλ).

Now, since for each y ∈ BX(y0, δ) we have that PM (y) ∈ ϕ(U), we can write

BX(y0, δ) ∩ {dM < λ} = BX(y0, δ) ∩
⋃

u∈ϕ(U)∩M

(u + BX(0, λ)). (21)

Taking any y1, y2 ∈ BX(y0, δ) ∩ {dM < λ}, we can find m1, m2 ∈ ϕ(U) ∩ M and b1, b2 ∈ BX(0, λ) such 
that yi = mi + bi for i = 1, 2. Since ϕ(U) ∩ M is arc-wise connected, there exists a continuous mapping 
γ : [0, 1] → ϕ(U) ∩M with γ(0) = m1 and γ(1) = m2. Thus, the mapping γ0 : [0, 1] → BX(y0, δ) ∩{dM < λ}
given by γ0(t) = γ(t) + (1 − t)b1 + tb2 is well-defined by (21), is continuous, γ0(0) = y1 and γ0(1) = y2. We 
get that the set BX(y0, δ) ∩ {dM < λ} = BX(y0, δ) ∩ int(Mλ) is therefore (arc-wise) connected.

We can show that BX(y0, δ) ∩Mλ = BX(y0, δ) ∩ int(Mλ) following the same argument as in the end of 
the proof of Theorem 2.4. The proof is now complete. �
Theorem 5.3. Let M be a closed set of X which is a Cp+1-submanifold at m0 ∈ M with p ≥ 1. If M is 
r-prox-regular at m0, then there exists α > 0 such that

• d2
M (·) is of class Cp+1 on WM (m0, r, α);

• PM is of class Cp on WM (m0, r, α).

Proof. By Theorem 5.1, there exists ε > 0 small enough such that d2
M (·) is of class Cp+1 on BX(m0, ε). 

Choose then α ∈ ]0, ε[ such that M is (r, α)-prox-regular at m0 and choose also λ ∈]0, r[ such that α+λ < ε. 
In particular, we have that WM (m0, λ, α) ⊆ BX(m0, ε). Fix u ∈ WM (m0, r, α) \ BX(m0, ε). We have that 
λ < dM (u) < r.

By definition of WM (m0, r, α) we can take m ∈ BX(m0, α) ∩ M and ν ∈ NP (M ; m) ∩ SX such that 
u = m + dM (u)ν. Put y = m + λν. Defining Mλ as in Lemma 5.2 we have that y ∈ bdMλ and Mλ is a 
closed body near y, and for some real δ > 0 we have BX(y, δ) ⊂ WM (m0, r, α) along with

BX(y, δ) ∩ bdMλ = BX(y, δ) ∩ {dM = λ} and BX(y, δ) ∩Mλ = BX(y, δ) ∩ int(Mλ).

Fix any y′ ∈ BX(y, δ) ∩ bdMλ. By the remarks preceding the proof of Theorem 2.4, we also know that 
bdMλ is a Cp+1-submanifold at y′, since dM is of class Cp+1 near y′ with ∇dM (y′) �= 0. Further, by 
[6, Theorem 4.3], we have that
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{∇dM (y′)} = ∂P dM (y′) = NP (Mλ; y′) ∩ SX ,

so setting ν′ := ∇dM (y′), it follows that NP (Mλ; y′) = {tν′ : t ≥ 0}. Note that, setting m′ := PM (y′) so 
we can write y′ = m′ + λν′, and hence

dM (y′ + tν′) = dM (m′ + (t + λ)ν′) = t + λ, ∀t ∈ [0, r − λ[.

Also, noting that

dMλ
(x) = dM (x) − λ, ∀x ∈ X \Mλ, (22)

we conclude that dMλ
(y′ + tν′) = t for every t ∈ [0, r − λ[. In particular, fixing r′ ∈ ]dM (u) − λ, r − λ[, we 

have that for all y′ ∈ BX(y, δ) ∩ bdMλ and ζ ∈ NP (Mλ; y′) ∩ BX ,

y′ ∈ ProjMλ
(y′ + tζ), ∀t ∈ [0, r′],

and so, Mλ is (r′, δ)-prox-regular at y. Applying Theorem 2.4 it results that, for α′ := δ, the function dMλ

is of class Cp+1 on WMλ
(y, r′, α′) \Mλ. By equation (22) and since u ∈ WMλ

(y, r′, α′) \Mλ, it ensues that 
dM (·) (and therefore d2

M (·)) is of class Cp+1 near u. Since the function d2
M is also of class Cp+1 on BX(m0, ε), 

we conclude that it is of class Cp+1 on the whole open set WM (m0, r, α). �
Observing the proof of Corollary 4.6, we can establish the following direct result from Theorem 5.3:

Corollary 5.4. Let M be a closed set of X. Assume that M is a Cp+1-submanifold. If M is ρ(·)-prox-regular, 
then

• d2
M (·) is of class Cp+1 on Uρ(·)(M);

• PM is of class Cp on Uρ(·)(M).

6. Final comments

The study of differentiability properties of the metric projection onto convex sets was not limited to 
the work of Holmes in 1973. Before him, for a closed convex subset K of a Hilbert space X, a conical 
differentiabilty of PK at x0 ∈ K was established by Zarantonello [24], and earlier J. B. Kruskal [15] provided 
examples of closed convex sets K for which the differentiability of PK fails. After Holmes’ paper, the study of 
the differentiability of PK was continued by Fitzpatrick and Phelps [12] and Noll [18] for closed convex sets 
with smooth boundary. Even further, some approaches to the nonconvex case were made by Shapiro [23], 
whose paper is in fact one of the fundamental contributions to the modern theory of prox-regular sets. 
Under the light of our results, we would like to do some comments about those works.

First of all, when we work with general closed bodies, the hypothesis of C2-smooth boundary seems to be 
crucial in order to get differentiability of the metric projection in the usual sense: In [12], Fitzpatrick and 
Phelps gave a counterexample of a convex body such that the boundary is C1,1, but the metric projection 
is nowhere Fréchet differentiable. In that sense, our result (Theorem 2.4) cannot be improved.

Secondly, the Fréchet differentiability of the metric projection is not enough to guarantee the smoothness 
of the boundary of the set: In [12, Section 4], we can find a construction of polar convex sets which 
have nonsmooth boundary (not even C1) and such that their metric projections are of class C1 outside 
them. Nevertheless, in the same paper a converse of Holmes’ theorem is established under an additional 
qualification hypothesis:
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Theorem 6.1 (Fitzpatrick and Phelps, 1982). Let K be a closed convex set of a Hilbert space X with intK �= ∅, 
and let x ∈ X \K. Then, bdK is a Cp+1-submanifold at PK(x) if and only if PK is of class Cp near x and 
DP (x)

∣∣
H[x] : H[x] → H[x] is invertible, where H[x] denotes the hyperplane

H[x] := {y ∈ X : 〈x− PK(x), y〉 = 0}.

Unfortunately, we still lack a converse for Theorem 2.4. Clearly, it will not be enough to have the 
smoothness of the metric projection, since we already have counterexamples in the convex case, but The-
orem 6.1 is rather suggestive of what to look for. In fact, when bdS is a Cp+1-submanifold we have that 
H[x] = TPS(x)(bdS). This entails, by the remark after the proof of Lemma 4.4, that the invertibility of 
DPS(x) as a function from H[x] onto H[x] for x close enough to PS(x) is already a necessary condition for 
bdS to be a Cp+1-submanifold at PS(x).

In the same line, we have that Poly and Raby also proved the converse of Theorem 5.1 in the finite 
dimensional setting (see [21, Section 3]), but this part of their proof cannot be directly extended to the 
infinite dimensional setting (at least to our knowledge). The converses of Theorem 2.4 and Theorem 5.1
require quite long developments and will be carried out in another paper.

In other direction, Noll studied in [18] a weaker notion of second-order smoothness of the metric projection 
onto convex sets. Namely, he was interested in knowing whether the function f : X → R+ given by 
f(x) = 1

2‖x‖2+ 1
2d

2
K(x) has a second-order Taylor expansion. He focused his work on the second-order Mosco 

differentiability of f , which is sufficient for Taylor expansions, even when PK is not Fréchet differentiable. 
Even though this notion of second-order smoothness is weaker, prox-regularity is not enough to guarantee it. 
Indeed, in his celebrated paper [15], Kruskal provided a counterexample of a closed convex set in R3 such that 
its metric projection fails to be one-side directionally differentiable at some points, and, following [12,18,23], 
a minimal condition to have second-order approaches is the existence of directional derivatives of the metric 
projection. We are then encouraged to follow this idea and search for other notions of smoothness in the 
nonconvex case. This could also allow us to study second-order conditions when the space X is assumed to 
be uniformly convex instead of being Hilbertian.

Implicitly, our work strongly uses the fact that the norm in a Hilbert space is infinitely differentiable off 
zero (which is necessary to ensure the smoothness of the function ϕ in the proof of Theorem 4.1). This is 
lost beyond the Hilbert setting. Nevertheless, the theory of prox-regular sets in uniformly convex spaces has 
been widely developed by Bernard, Thibault and Zlateva [3,4] and therefore, the smoothness of the metric 
projection deserves to be studied in this context as well. Extending the results of [18] to the nonconvex 
case and using them to further develop the theory in the uniformly convex setting will be one of our next 
objectives.

Finally, we believe that the study of smoothness of the metric projection can be developed as well in 
the Riemannian manifold setting. Recent works [5,14] have shown that proximal calculus and prox-regular 
theory can be developed when the Hilbert space X is replaced by a Riemannian submanifold, since the 
basic ingredients that are the differential calculus and the distance notion are both well-posed. We would 
like to obtain similar versions of Theorems 2.4 and 5.3 in this context. Also, we think that Theorem 5.3
can be improved. For example, if we consider the unit sphere S2 in R2 endowed with the Euclidean norm, 
Theorem 5.3 guarantees that the metric projection PS2 is C∞ on the set

U1(S2) = {x ∈ R
2 : dS2(x) < 1} = {x ∈ R

2 : 0 < ‖x‖ < 2}.

Further, using the convexity of the unit ball B2 and applying Holmes’ theorem (Corollary 4.7), we also get 
that PS2 is C∞ on R2 \B2. Therefore, the actual set of smoothness of PS2 is R2 \ {0}; of course this can also 
be seen in a direct way. This asymmetry comes from the observation that the best prox-regularity function 
of S2 doesn’t depend only on the point x ∈ S2 considered, but also on which direction of NP (S2; x) we 
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are following. In a future work we will study Theorems 2.4 and 5.3 in Riemannian Manifolds and we will 
provide an improvement of Theorem 5.3.
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