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Abstract Sherali and Adams (SIAM J Discrete Math 3:411–430, 1990) and Lovász
and Schrijver (SIAM J Optim 1:166–190, 1991) developed systematic procedures to
construct the hierarchies of relaxations known as lift-and-projectmethods. They have
been proven to be a strong tool for developing approximation algorithms, matching
the best relaxations known for problems like Max-Cut and Sparsest-Cut. In this work
we provide lower bounds for these hierarchies when applied over the configuration
LP for the problem of scheduling identical machines to minimize the makespan. First
we show that the configuration LP has an integrality gap of at least 1024/1023 by
providing a family of instances with 15 different job sizes. Then we show that for any
integer n there is an instance with n jobs in this family such that after Ω(n) rounds of
the Sherali–Adams (SA) or the Lovász–Schrijver (LS+) hierarchy the integrality gap
remains at least 1024/1023.

Keywords Identical machine scheduling · Configuration LP · Sherali–Adams ·
Lovász–Schrijver

Supported by the Swiss National Science Foundation project 200020-144491/1 “Approximation
Algorithms for Machine Scheduling Through Theory and Experiments,” by Sciex Project 12.311, by DFG
Grant MO 2889/1-1, and by CONICYT-PCHA/Doctorado Nacional/2014-21140930.

B Victor Verdugo
vicverdu@gmail.com

1 Dalle Molle Institute for Artificial Intelligence Research, Lugano, Switzerland

2 Département d’informatique, CNRS UMR 8548, PSL Research University, École Normale
Supérieure, Paris, France

3 Department of Computer Science, Saarland University, Saarbrücken, Germany

4 Department of Industrial Engineering, Universidad de Chile, Santiago, Chile

5 Max Planck Institute for Informatics, Saarbrücken, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-017-1152-5&domain=pdf


232 A. Kurpisz et al.

Mathematics Subject Classification 68W25 · 90C05 · 90C22

1 Introduction

Scheduling

Machine scheduling is a classical family of problems in combinatorial optimization.
In this paper we study the problem, known as P||Cmax, of scheduling a set J of n
jobs on a set M of identical machines to minimize the makespan, i. e., the maximum
completion time of a job, where each job j ∈ J has a processing time p j . A job cannot
be preempted nor migrated to a different machine, and every job is released at time
zero. This problem admits a polynomial-time approximation scheme (PTAS) [17] and
even an EPTAS [2], which is the best possible approximation result since the problem
is strongly NP-hard [13]. However, there is no algorithm known based on convex
relaxations that meets the results in [2] and [17].

Assignment LP A straightforward way to model P||Cmax with a linear program (LP)
is the assignment LP which has a variable xi j for each combination of a machine
i ∈ M and a job j ∈ J , modeling whether job j is assigned to machine i . The
goal is to minimize a variable T (modeling the makespan) for which we require that∑

j∈J xi j · p j ≤ T for each machine i .

[Assign] : min T
∑

i∈M
xi j ≥ 1 for every j ∈ J

∑

j∈J

xi j p j ≤ T for every i ∈ M

T ≥ p j for every j ∈ J

xi j ≥ 0 for every i ∈ M, j ∈ J.

Configuration LP The assignment LP is dominated by the configuration LP which
is, to the best of our knowledge, the strongest relaxation for the problem studied in
the literature. Suppose we are given a value T > 0 that is an estimate on the optimal
makespan, e. g., given by a binary search framework. A configuration corresponds
to a multiset of processing times C ⊆ {p j : j ∈ J } such that

∑
p∈C p ≤ T , i. e.,

it is a feasible assignment for a machine when the time availability is equal to T .
Let, for given T , C denotes the set of all feasible configurations. The multiplicity
function m(p,C) indicates the number of times that the processing time p appears
in the multiset C . For each combination of a machine i and a configuration C the
configuration LP has a variable yiC that models whether we want to assign exactly
jobs with processing times in configuration C to machine i . Letting n p denote the
number of jobs j ∈ J with processing time p j = p, we can write:
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[clp(T )] :
∑

C∈C
yiC = 1 for every i ∈ M ,

∑

i∈M

∑

C∈C
m(p,C)yiC = n p for every p ∈ {p j : j ∈ J },

yiC ≥ 0 for every i ∈ M,C ∈ C.

We remark that in another common definition [29], a configuration is a subset, not of
processing times but of jobs. We can solve that LP to a (1+ε)-accuracy in polynomial
time [29] and similarly our LP above. The definition in terms of multisets makes sense
since we are working in a setting of identical machines.

Integrality gap The configuration LP clp(T ) does not have an objective function and
insteadwe seek to determine the smallest valueT forwhich it is feasible. In this context,
for a convex relaxation K (T ) we define the integrality gap to be the supremum value
Topt(I )/T ∗(I ) over all problem instances I , where Topt(I ) is the optimal value to the
underlying combinatorial problem and T ∗(I ) is theminimum value T for which K (T )

is feasible. With the additional constraint that T ≥ max j∈J p j , the Assignment LP
relaxation has an integrality gap of 2. This can be shown using the analysis of the list
scheduling algorithm, see e. g., [30]. On the other hand a lower bound of 2 − 1/|M |
can be easily shown for the instance of |M | + 1 jobs of unit size. Here we prove that
the configuration LP has an integrality gap of at least 1024/1023 (Theorem 1(i)).

Linear programming and semi-definite programming hierarchies

Hierarchies An interesting question is whether other convex relaxations have better
integrality gaps. Convex hierarchies, parametrized by a number of levels or rounds,
are systematic approaches to design improved approximation algorithms by gradu-
ally tightening the relaxation, at the cost of increased running time. Popular among
these methods are the Sherali–Adams (SA) hierarchy [27] (Definition 1), the Lovász–
Schrijver hierarchy (LS) and its semi-definite counterpart (LS+) [23], (Definition 4)
and the Lasserre/Sum-Of-Squares hierarchy [20,24], which is the strongest of the
three. The level r relaxations are known to be solvable in time nO(r), where n is the
number of variables, provided some assumptions over the ground polytope. In partic-
ular, when r is constant, the complexity of solving the relaxation becomes polynomial
on the program size. This is relevant when looking for an approximation algorithm
based on this relaxation. For a comparison between them and their algorithmic impli-
cations we refer to [11,21,25]. In some settings, for example the Independent Set
problem in sparse graphs [5], a mixed SA has also been considered.

Positive results For many problems the approximation factors of the best algorithms
known match the integrality gap after performing a constant number of rounds of
these hierarchies. For example, Alekhnovich, Arora, and Tourlakis [1] show that one
round of LS+ yields the Goemans-Williamson [15] relaxation for Max-Cut, and the
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third level of LS+ is at least as strong as the ARV relaxation for Sparsest-Cut [4]. In
both cases, the base relaxation over which the hierarchy is applied corresponds to the
metric defining linear program. Also for Max-Cut, Fernandez de la Vega and Mathieu
[28] prove that the integrality gap of the SA hierarchy drops to 1 + ε after f (1/ε)
rounds for dense graphs. For general constraint satisfaction problems (CSP) in its
approximation version, Chan et al. [8] show that polynomial-sized linear programs
are as powerful as programs arising from constant rounds of SA. In that sense, this
hierarchy captures the best integrality gaps obtained by linear programming in CSP’s
like Max-Cut and Max-3-Sat. For the Knapsack problem, Chlamtac, Friggstad, and
Georgiou [10] show that 1/ε3 levels of LS+ yield an integrality gap of 1 + ε and
prove that it is possible to approximate Set-Cover using the linear relaxations of LS
when the objective function is lifted into the constraints. In the scheduling context, for
minimizing the makespan on two machines in the setting of unit size jobs and prece-
dence constraints, Svensson solves the problem optimally with only one level of the
linear LS hierarchy (published in [25, Section 3.1], personal communication between
Svensson and the author of [25]). Furthermore, for a constant number of machines,
Levey and Rothvoss give a (1+ ε)-approximation algorithm using (log(n))Θ(log log n)

rounds of SA hierarchy [22]. For minimizing weighted completion time on unrelated
machines, one round of LS+ leads to the current best algorithm [6]. Thus, hierarchies
are a strong tool for approximation algorithms.

Negative results Nevertheless, there are known limitations on these hierarchies. Lower
bounds on the integrality gap of LS+ are known for Independent Set [12], Vertex Cover
[3,9,14,26], Max-3-Sat and Hypergraph Vertex Cover [1], and k-Sat [7]. For the
Max-Cut problem, there are lower bounds for the SA [28] and LS+ [26]. For the Min-
Sum scheduling problem (i. e., scheduling with job dependent cost functions on one
machine) the integrality gap is unbounded even after O(

√
n) rounds of Lasserre [19].

In particular, that holds for the problem of minimizing the number of tardy jobs even
though that problem is solvable in polynomial time, thus SDP hierarchies sometimes
fail to reduce the integrality gap even on easy problems.

Our results

Our key question in this paper is: is it possible to obtain a polynomial time (1 +
ε)-approximation algorithm based on applying the SA or the LS+ hierarchy to one
of the known LP-formulations of our problem? This would match the best known
(polynomial time) approximation factor we know [2,17].

We answer this question in the negative. We prove that even after Ω(n) rounds of
SA or LS+ to the configuration LP, where n is the number of jobs in the instance,
the integrality gap of the resulting relaxation is still at least 1 + 1/1023. Since the
configuration LP dominates1 the assignment LP, our result also holds if we apply
Ω(n) rounds of SA or LS+ to the assignment LP.

1 The description of the projection of the configuration LP onto the assignment space corresponds to the
assignment LP stranghtened with additional constraints [29].
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Theorem 1 Consider the problem of scheduling identical machines to minimize the
makespan, P||Cmax. For each n ∈ N there exists an instance with n jobs such that:

(i) the configuration LP has an integrality gap of at least 1024/1023.
(ii) after applying r = Ω(n) rounds of the SA hierarchy to the configuration LP the

obtained relaxation has an integrality gap of at least 1024/1023.
(iii) after applying r = Ω(n) rounds of the LS+ hierarchy to the configuration LP

the obtained relaxation has an integrality gap of at least 1024/1023.

Since polynomial time approximations schemes are known [2,17] for P||Cmax,
Theorem 1 implies that the SA and the LS+ hierarchies do not yield the best possible
approximation algorithms. We remark that for the hierarchies studied in Theorem 1,
a number of rounds equal to the number of variables in clp(T ) suffice to bring the
integrality gap down to exactly 1.

We prove Theorem 1 by defining a family of instances {Ik}k∈N constructed from the
Petersen graph (see Fig. 1). The size of instance Ik , given by the number of machines
and jobs, is Θ(k) and the number of jobs is Θ(k) as well. In Sect. 2 we prove that the
configuration LP is feasible for T = 1023 while the integral optimum has a makespan
of at least 1024. In Sect. 3, we show for each instance Ik that using the hypergeometric
distributionwe can define a fractional solution that is feasible for the polytope obtained
by applying Ω(k) rounds of SA to the configuration LP parametrized by T = 1023.
In Sect. 4 we prove the same for the semidefinite relaxations obtained with the LS+
hierarchy, and we study the matrices arising in the lower bound proof.

The hard instances

To prove the integrality gaps of 1024/1023, for each odd k ∈ Nwe define an instance Ik
that is inspired by the Petersen graph G (see Fig. 1) with vertex set V = {0, 1, . . . , 9}.
For each edge e = {u, v} ofG, in Ik we introduce k copies of a job j{uv} of size 2u+2v .
Thus Ik has 15k jobs. (If n is not an odd multiple of 15, let n = 15k + � where k is the
greatest odd integer such that 15k < n. In this case we simply add to the instance �

jobs that each have processing time equal to zero.) We define the number of machines
for Ik to be 3k. For simplicity, in the following we do not distinguish between jobs and
their sizes. The graph G has exactly six perfect matchings M̄1, M̄2, . . . , M̄6. Since the
sum of the job sizes in a perfect matching M̄� is

∑

e∈M̄�

p je =
∑

0≤u≤9

2u = 1023,

M̄� corresponds to a configurationC� that contains one job corresponding to each edge
in M̄� and has makespan 1023. The configurations C1, . . . ,C6 are called matching
configurations and we denote them by D = {C1, . . . ,C6}.

2 Integrality gap of the configuration LP (Theorem 1(i))

Lemma 1 clp[1023] is feasible for Ik .
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Fig. 1 The Petersen graph and its six perfect matchings (dashed lines)

Proof To define the fractional solution, for every machine i and each � ∈ {1, 2, . . . , 6}
we set yiC�

= 1/6. For all other configurations C we set yiC = 0.
The first set of constraints in clp(T ) (for the machines) is clearly satisfied. For

the second set of constraints (for the job sizes), let p be such a job size and let e be
the corresponding edge in G. The Petersen graph is such that there are exactly two
perfect matchings M̄�, M̄�′ containing e, thus we get

∑3k
i=1(yiC�

+ yiC�′ ) = k and y
is feasible. 	


Lemma 2 The optimal makespan for Ik is at least 1024.

Proof Assume, for a contradiction, that clp[1023] for Ik has an integer solution y.
Since the total size of jobs is k ·3 ·1023 and there are 3k machines, only configurations
C with makespan exactly equal to 1023 may have yiC �= 0. In particular, the optimal
integral makespan for Ik is at least 1023.

Consider such a configuration C . Since 1023 = ∑9
u=0 2

u , considering the binary
representation of 1023, by induction on u it must be that for every u, configuration
C contains an odd number of jobs corresponding to edges adjacent to vertex u in G.
Furthermore, since the sum does not exceed 1023, that odd number must be exactly
1. Thus C exactly corresponds to a perfect matching of G, and so the integer solution
y corresponds to a 1-factorization of the multigraph Gk obtained by taking k copies
of each edge in the Petersen graph.

Let M̄1 be the perfect matching of the Petersen graph consisting of the five edges
{0, 5}, {1, 6}, {2, 7}, {3, 8}{4, 9}, called spokes. Let � = ∑

i yiC1 . Since each spoke,
which appears in exactly one other perfect matching M̄ j ( j > 1), must be contained
in k matchings in total, we must have

∑
i yiC j = k − � for each j ∈ [2, 6]. Thus∑

i,C yiC = 5(k−�)+� = 5k−4�.However, that sum equals 3k, the total number of
machines, and so � = k/2. Since k is odd and � an integer, the contradiction follows.
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3 Integrality gap for SA (Theorem 1(ii))

We show that for the family of instances {Ik}k∈N defined in Sect. 2, if we apply O(k)
rounds of SA to the configuration LP for T = 1023, then the resulting relaxation is
feasible. Thus, after Ω(k) rounds of SA the configuration LP still has an integrality
gap of at least 1024/1023 on an instance with O(k) jobs andmachines. First, we define
the polytope SAr (P) obtained after r rounds of SA to a polytope P that is defined via
equality constraints.2

Definition 1 (Polytope SAr (P)) Consider a polytope P ⊆ [0, 1]E defined by equality
constraints. For every constraint

∑
i∈E ai,�yi = b� and every H ⊆ E such that

|H | ≤ r , the constraint
∑

i∈E ai,�yH∪{i} = b�yH is included in SAr (P), the level r of
the Sherali–Adams hierarchy applied to P . The polytope SAr (P) lives in R

Pr+1(E),
where Pr+1(E) = {A ⊆ E : |A| ≤ r + 1}.

For the configuration LP clp(T ) the variables set is E = M × C. Since it is defined
by equality constraints, the polytope SAr (clp(T )) corresponds to

[SAr (clp(T ))] : (1)
∑

C∈C
yH∪{(i,C)} = yH ∀ i ∈ M , ∀ H ⊆ E : |H | ≤ r, (2)

∑

i

∑

C∈C
m(p,C)yH∪{(i,C)} = n p yH ∀ p ∈ {p j : j ∈ J }, ∀ H ⊆ E : |H | ≤ r, (3)

yH ≥ 0 ∀ H ⊆ E : |H | ≤ r + 1, (4)

y∅ = 1. (5)

Intuitively, the configuration LP computes a set of edges in a complete bipartite
graph with vertex sets U, V where U is the set of machines and V is the set of
configurations. The edges are selected such that they form a U -matching, i.e., such
that each node in U is incident to at most one selected edge.

Definition 2 Given two sets U, V and F ⊆ U × V , the F-degree of u ∈ U is
δF (u) = |{v : (u, v) ∈ F}|, and δF (v) = |{u : (u, v) ∈ F}| if v ∈ V . We say that F
is an U -matching if δF (u) ≤ 1 for every u ∈ U . An element u ∈ U is incident to F
if δF (u) = 1.

In the following we consider the family of instances {Ik : k ∈ N, k is odd} as in
Sect. 2 and T = 1023. For any set S we define P(S) to be the power set of S. We

2 This definition is slightly different from the one in Sherali and Adams [27]; for simplicity we give a
definition that, in the case of equality constraints, is equivalent. Indeed, note that if for every variable
xk there exist a set of variables’ indices Sk , k ∈ Sk and a constant ck ≥ 1 such that the constraint∑

�∈Sk x� = ck is valid for the starting polytope P , then for every subsets I, K ⊆ [n], |I ∪̇K | ≤ r and every

constraint of P ,
∑

a j x j −b ≥ 0 the generated SA constraintL
(
(
∑

a j x j − b)
∏

i∈I xi
∏

k∈K (1 − xk )
) ≥

0 can be replaced with L

(
(
∑

a j x j − b)
∏

i∈I xi
∏

k∈K (
∑

�∈Sk\{k} x� + ck − 1)
)

≥ 0. The operator L

corresponds to the linearization of the polynomial products.
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want to define a solution to SAr (clp(T )) for T = 1023. To this end, we need to define
a value yA for each set A ∈ Pr+1(M × C). These values are given by the function φ

defined below.

Definition 3 Let φ : P(M × D) → R be such that

φ(A) = 1

(3k)|A|

∏

j∈[6]
(k/2)δA(C j )

if A is an M-matching, and zero otherwise, where (x)a = x(x − 1) · · · (x − a + 1),
for integer a ≥ 1, is the lower factorial function.

To get some understanding about how the φ works, the following lemma intuitively
shows the following: suppose that we know that a set A is chosen (i.e., we condition
on this), then the conditional probability that also a pair (i,C j ) is chosen equals
k/2−δA(C j )

3k−|A| , assuming that A ∪ {(i,C j )} forms an M-matching.

Lemma 3 Let A ⊆ M ×D be an M-matching of size at most 3k − 1. If i ∈ M is not

incident to A, then φ(A ∪ {(i,C j )}) = φ(A)
k/2−δA(C j )

3k−|A| .

Proof Given that i is not incident to A, we have |A∪{(i,C j )}| = |A|+1. Furthermore,
for � �= j we have that δA∪{(i,C j )}(C�) = δA(C�) and δA∪{(i,C j )}(C j ) = δA(C j ) + 1.

Therefore,
φ(A∪{(i,C j )})

φ(A)
= k/2−δA(C j )

3k−|A| . 	


The feasible solution We are ready now to define our solution to SAr (clp(T )). It is
the vector yφ ∈ R

Pr+1(E) defined such that yφ
A = φ(A) if A is an M-matching in

M × D, and zero otherwise.

Lemma 4 For every odd k, yφ is a feasible solution for SAr (clp(T )) for the instance
Ik when r = �k/2� and T = 1023.

Proof We first prove that yφ ≥ 0. Consider some H ⊆ E . Since yφ
H = φ(H),

using Definition 3, it is easy to check that the lower factorial stays non-negative for
r = �k/2�.

We next prove that yφ satisfies the machine constraints (2) in SAr (clp). If i is a
machine incident to H , then all terms in the left-hand summation are 0 except for the
unique pair (i,C) that belongs to H , so the sum equals yφ

H . If i is not incident to H ,
then by Lemma 3 we have

∑

C

yφ

H∪{(i,C)} = φ(H)

3k − |H |
∑

j∈[6]
(k/2 − δH (C j )) = φ(H) = yφ

H ,

since 6 · k/2 = 3k and
∑

j∈[6] δH (C j ) = |H |.
Finally we prove that yφ satisfies the set of constraints (3) for every processing

time. Fix p and H . Since yφ is supported by six configurations, we have

∑

i∈M

∑

C∈C
m(p,C)yφ

H∪{(i,C)} =
∑

i∈M

∑

j∈[6]
m(p,C j )φ(H ∪ {(i,C j )}).
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There are exactly two configurations C p
1 ,C p

2 ∈ D such that

m(p,C p
1 ) = m(p,C p

2 ) = 1,

and for the others it is zero, so

∑

j∈[6]
m(p,C j )φ(H ∪ {(i,C j )}) = φ

(
H ∪ {(i,C p

1 )}) + φ
(
H ∪ {(i,C p

2 )}) .

Let πM (H) = {i ∈ M : δH (i) = 1} be the subset of machines incident to H . We split
the sum over i ∈ M into two parts, i ∈ πM (H) and i /∈ πM (H). For the first part,

∑

i∈πM (H)

(φ(H ∪ {(i,C p
1 )}) + φ(H ∪ {(i,C p

2 )})) = φ(H)(δH (C p
1 ) + δH (C p

2 ))

since φ(H ∪ {(i,C p
1 )}) is either φ(H) or 0 depending on whether (i,C p

1 ) ∈ H , and
the same holds for C p

2 .
For the second part, using Lemma 3 we have that

∑

i /∈πM (H)

(
φ(H ∪ {(i,C p

1 )}) + φ(H ∪ {(i,C p
2 )}))

= φ(H)

3k − |H |
∑

i /∈πM (H)

(k/2 − δH (C p
1 ) + k/2 − δH (C p

2 ))

= φ(H)(k/2 − δH (C p
1 ) + k/2 − δH (C p

2 )),

since |H \ πM (H)| = 3k − |H |. Thanks to cancellations, we get precisely what we
want by adding:

∑

i∈M

∑

C∈C
m(p,C)yφ

H∪{(i,C)} = kφ(H) = n p y
φ
H .

	

Proof of Theorem 1(ii) Consider instance Ik as defined before, T = 1023 and r =
�k/2�. By Lemma 4 the vector yφ ∈ SAr (clp(T )). 	


We note that in the above proof, the projection of yφ onto the space of the config-
uration LP is the fractional solution from the proof of Lemma 1.

4 Integrality gap for LS+ (Theorem 1(iii))

Given apolytope P ⊆ R
d ,we consider the convex coneQ = {(a, x) ∈ R

∗×P : x/a ∈
P}. We define an operator N+ on convex cones R ⊆ R

d+1 as follows: y ∈ N+(R) if
and only if there exists a symmetric matrix Y ⊆ R

(d+1)×(d+1), called the protection
matrix of y, such that
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1. y = Ye∅ = diag(Y ),
2. for all i , Yei ,Y (e∅ − ei ) ∈ R,
3. Y is positive semidefinite,

where ei denotes the vector with a 1 in the ith coordinate and 0’s elsewhere.

Definition 4 For any r ≥ 0 and polytope P ⊆ R
d , level r of the LS+ hierar-

chy, Nr+(Q) ⊆ R
d+1, is defined recursively by: N 0+(Q) = Q and Nr+(Q) =

N+(Nr−1+ (Q)).

To prove the integrality gap for LS+ we follow an inductive argument. We start
from P = clp(T ). Along the proof, we use a special type of vectors that are integral
in a subset of coordinates and fractional in the others.
The feasible solution. Let A be an M-matching in M × D. The partial schedule
y(A) ∈ R

M×C is the vector such that for every i ∈ M and j ∈ {1, 2, . . . , 6}, y(A)iC j =
φ(A ∪ {(i,C j )})/φ(A), and zero otherwise. Here is the key Lemma.

Lemma 5 Let k be an odd integer and r ≤ �k/2�. Let Qk be the convex cone of
clp(T ) for instance Ik and T = 1023. Then, for every M-matching A of cardinality
�k/2� − r in M × D, we have y(A) ∈ Nr+(Qk).

Before proving Lemma 5, let us see how it implies the Theorem.

Proof of Theorem 1(iii) Consider instance Ik defined in Sect. 2, T = 1023 and r =
�k/2�. By Lemma 5 for A = ∅ we have y(∅) ∈ Nr+(Qk). 	


In the following two helper lemmaswe describe structural properties of every partial
schedule.

Lemma 6 Let A be an M-matching in M × D, and let i be a machine incident to A.
Then, y(A)iC ∈ {0, 1} for all configuration C.

Proof If C /∈ D then y(A)iC = 0 by definition. If (i,C j ) ∈ A then y(A)iC j =
φ(A ∪ {(i,C j )})/φ(A) = φ(A)/φ(A) = 1. For � �= j , the set A ∪ {(i,C�)} is not an
M-matching and thus y(A)iCk = 0. 	

Lemma 7 Let A be an M-matching in M × D of cardinality at most �k/2�. Then,
y(A) ∈ clp(T ).

Proof We note that y(A)iC = yφ

A∪{(i,C)}/y
φ
A, and then the feasibility of y(A) in clp(T )

is implied by the feasibility of yφ in SAr (clp(T )), for r = �k/2�. 	

Given a partial schedule y(A), let Y (A) ∈ R

(|M×C|+1)×(|M×C|+1) be the matrix
such that its principal submatrix indexed by {∅} ∪ (M × D) equals

(
1 y(A)�

y(A) Z(A)

)

,

where Z(A)iC j ,�Ch = φ(A ∪ {(i,C j ), (�,Ch)})/φ(A). All the other entries of the
matrix Y (A) have value equal to zero. The matrix Y (A) provides the protection matrix
we need in the proof of the key Lemma.
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Theorem 2 For every M-matching A in M × D such that |A| ≤ �k/2�, the matrix
Y (A) is positive semidefinite.

We postpone the proof of Theorem 2 to Sect. 4.1.

Lemma 8 Let A be an M-matching in M × D and i a non-incident machine to A.
Then,

∑
j∈[6] Y (A)eiC j = Y (A)e∅.

Proof Let S be the index of a row of Y (A). If S /∈ {0} ∪ (M × D) then that row is
identically zero, so the equality is satisfied. Otherwise,

e�
S

∑

j∈[6]
Y (A)eiC j =

∑

j∈[6]

φ(A ∪ {(i,C j )} ∪ S)

φ(A)
.

If A∪ S is not an M-matching then φ(A∪ S∪{i,C j }) = 0 for all i and j ∈ [6], and
e�
S Y (A)e∅ = φ(A ∪ S) = 0, so the equality is satisfied. If A ∪ S is an M-matching,
then

∑

j∈[6]

φ(A ∪ {(i,C j )} ∪ S)

φ(A)
= φ(A ∪ S)

φ(A)

∑

j∈[6]

φ(A ∪ S ∪ {(i,C j )})
φ(A ∪ S)

= e�
S Y (A)e∅

∑

j∈[6]

yφ

A∪S∪{(i,C j )}
yφ
A∪S

= e�
S Y (A)e∅,

since yφ is a feasible solution for the SA hierarchy. 	

Having previous two results we are ready to prove the key Lemma.

Proof of Lemma 5 We proceed by induction in r . The base case r = 0 is implied by
Lemma 7, and now suppose that it is true for r = t . Let y(A) be a partial schedule
of A of cardinality �k/2� − t − 1. We prove that the matrix Y (A) is a protection
matrix for y(A). It is symmetric by definition, y(A)e∅ = diag(y(A)) = y(A) and
thanks to Theorem 2 the matrix Y (A) is positive semidefinite. Let (i,C) be such that
y(A)iC ∈ (0, 1). In particular, by Lemma 6 we have (i,C) /∈ A and C ∈ D. We claim
that Y (A)eiC/y(A)iC is equal to the partial schedule (1, y(A∪{(i,C)})). If S indexes
a row not in M × D then the respective entry in both vectors is zero, so the equality
is satisfied. Otherwise,

e�
S Y (A)eiC
y(A)iC

= φ(A ∪ {(i,C)} ∪ S)

φ(A ∪ {(i,C)}) = y(A ∪ {(i,C)})S .

The cardinality of the M-matching A ∪ {(i,C)} is equal to |A| + 1 = �k/2� − t ,
and therefore by induction we have that Y (A)eiC/y(A)iC = (1, y(A ∪ {(i,C)})) ∈
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Nt+(Qk). Now we prove that the vectors Y (A)(e∅ − eiC )/(1 − y(A)iC ) are feasible
for Nt+(Qk). By Lemma 8 we have that for every � ∈ {1, 2, . . . , 6},

Y (A)(e∅ − eiC�
)

1 − y(A)iC�

=
∑

j∈[6]\{�}

(
y(A)iC j∑

j∈[6]\{�} y(A)iC j

)

y(A ∪ {(i,C j )}),

and then Y (A)(e∅ −eiC�
)/(1− y(A)iC�

) is a convex combination of the partial sched-
ules {y(A∪{(i,C j )}) : j ∈ {1, 2, . . . , 6} \ {�}} ⊂ Nt+(Qk), concluding the induction.

	


4.1 The matrix Y(A) is positive semidefinite

In this section we provide a full proof of Theorem 2. To prove that Y (A) is a positive
semidefinite matrix we perform several transformations of the original matrix that
preserve the property of being positive semidefinite or not.

We start with a short summary of the proof.We prove that Y (A) is positive semidefi-
nite by performing several transformations that preserve this property. First, we remove
all those zero columns and rows. Then, Y (A) is positive semidefinite if and only if
its principal submatrix indexed by {∅} ∪ (M × D) is positive semidefinite. We then
construct the matrix Cov(A) by taking the Schur’s Complement of Y (A) with respect
to the entry ({∅}, {∅}). The resulting matrix is positive semidefinite if and only if
Y (A) is positive semidefinite. After removing null rows and columns in Cov(A) we
obtain a new matrix, Cov+(A), which can be written using Kronecker products as
I ⊗ Q + (J − I ) ⊗ W , with Q,W ∈ R

6×6, Q = αW for some α ∈ (−1, 0) and
I, J being the identity and the all-ones matrix, respectively. By applying a lemma
about block matrices in [16], Y (A) is positive semidefinite if and only ifW is positive
semidefinite. ThematrixW is of the form Du−uu�, with u ∈ R

6 and Du is a diagonal
matrix such that diag(Du) = u. By Jensen’s inequality with the function t (y) = y2 it
follows that W is positive semidefinite.

We now continue with the full argument.

Lemma 9 A symmetric matrix X ∈ R
E×E is psd if and only if the principal submatrix

of non-null columns and rows is psd.

Proof Let X̃ ∈ R
F×F be the matrix obtained by removing the null rows and columns

of x . Then, z�Xz = ∑
i, j∈E Xi j zi z j = ∑

i, j∈F Xi j zi z j = z�F X̃ zF , where zF ∈ R
F

is the restriction of Z to the variables in F . It follows that z�Xz ≥ 0 if and only if
z�F X̃ zF . 	


Therefore, in order to prove that a matrix is positive semidefinite we can remove in
advance those null rows and columns. In the following Lemma we describe the next
transformation, based on a congruent transformation of a matrix known as Schur’s
complement.
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Lemma 10 Let X =
(

N B
B� C

)

be a symmetric matrix, with N invertible. The Schur’s

complement of N in X is the matrix S = C − B�N−1B. If N is positive definite, then
X is positive semidefinite if and only if S is positive semidefinite.

A proof of this fact can be found in [18, Theorem 7.7.9 on p. 496]. We apply the
previous transformations to Y (A) as described in the following lemma.

Lemma 11 For every partial schedule y(A), the matrix Y (A) is positive semidefinite
if and only if Z(A) − y(A)y(A)� is positive semidefinite, where

Z(A)iC j ,�Ch = φ(A ∪ {(i,C j ), (�,Ch)})/φ(A).

Proof Thanks to Lemma 9 the matrix Y (A) is positive semidefinite if and only if its
principal submatrix indexed by {∅}∪{M×D} is positive semidefinite, since every other
rowand column is null. TheSchur’s complement of the entryY (A)∅,∅ = 1 corresponds
to Z(A) − y(A)y(A)�. By a direct application of Lemma 10 it follows that Y (A) is
positive semidefinite if and only if Z(A) − y(A)y(A)� is positive semidefinite. 	


We denote by Cov(A) the matrix Z(A) − y(A)y(A)�, the covariance matrix of
y(A). In the proof of Lemma 11 we removed first all those null rows and columns in
Y (A). In fact, in the new matrix Cov(A) there are null rows and columns that can be
removed of the matrix, so we can perform this operation again.

Lemma 12 Let Cov+(A) be the principal submatrix of Cov(A) obtained by remov-
ing every row and column indexed by E(πM (A)) = {(i,C j ) : i ∈ πM (A), j ∈
{1, 2, . . . , 6}}. Then, Y (A) is positive semidefinite if and only if Cov+(A) is positive
semidefinite.

Proof Recall that πM (A) is the set of machines incident to A. We prove that for every
(i,C j ) ∈ E(πM (A)), Cov(A)eiC j = 0. By the definition of the covariance matrix we
have

e�
�Ck

Cov(A)eiC j = φ(A ∪ {(�,Ck), (i,C j )})
φ(A)

− y(A)iC j y(A)�Ck .

By Lemma 6, if i is an incident machine to A we have y(A)iC j = 1{(i,C j )∈A}, and
by the definition of the function φ we have that it is supported over M-matchings only.
Then, φ(A ∪ {(�,Ck), (i,C j )}) = φ(A ∪ (�,Ck)})1{(i,C j )∈A}, and

e�
�Ck

Cov(A)eiC j =
(

φ(A ∪ {(�,Ck)})
φ(A)

− y(A)�Ck

)

1{(i,C j )∈A} = 0,

because of the definition of the partial schedule y(A). The Lemma follows by a direct
application of Lemma 9. 	
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Note that if i is not an incident machine to A, the value y(A)iC j does not depend
on the machine. This motivates the definition of a vector β(A) ∈ R

6 such that

β(A) j = k/2 − δA(C j )

3k − |A| ,

for j ∈ {1, 2, . . . , 6}. If y(A) is a partial schedule, for every machine incident to A
the entries yiC j are in {0, 1}, which is in total 3|A| entries.
Definition 5 Let A ∈ R

p×q and B ∈ R
r×s . Then, the Kronecker product, A ⊗ B, is

the matrix

⎛

⎜
⎝

a11B . . . a1q B
...

. . .
...

ap1B . . . apq B

⎞

⎟
⎠ ∈ R

pr×qs .

Then, the fractional part of y(A) corresponds to 1⊗ β(A), where 1 is the vector in
R
3k−|A| with every entry equal to 1. Furthermore, the value Z(A)iC j ,�C�

= γ (A) j� is
independent of the machines when i, � are not incident to A,

γ (A) j� =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(k/2 − δA( j))(k/2 − δA(�))

(3k − |A|)(3k − |A| − 1)
if j �= �,

(k/2 − δA( j))(k/2 − δA( j) − 1)

(3k − |A|)(3k − |A| − 1)
if j = �.

Then, we can express the matrix Cov+(A) in terms of Kronecker products,

I ⊗ Dβ(A) + (J − I ) ⊗ γ (A) − (1 ⊗ β(A))(1 ⊗ β(A))�, (6)

where I is the (3k−|A|) dimensional identity matrix, J is the (3k−|A|) dimensional
all-ones matrix and Dβ(A) ∈ R

6×6 is such that Dβ(A) j j = β(A) j for j ∈ {1, . . . , 6},
and Dβ(A) jh = 0 when j �= h.

Definition 6 Amatrix X ∈ R
rn×rn belongs to the (r, n)-block symmetry setBS(r, n)

if there exist matrices A, B ∈ R
r×r such that X = I ⊗ A + (J − I ) ⊗ B, namely,

X =

⎛

⎜
⎜
⎜
⎝

A B . . . B
B A . . . B
...

...
. . .

...

B B . . . A

⎞

⎟
⎟
⎟
⎠

.

Lemma 13 (Gvozdenovic andLaurent [16])Let X = I⊗A+(J− I )⊗B ∈ BS(r, n).
Then, X is positive semidefinite if and only if i) A − B is positive semidefinite and ii)
A + (n − 1)B is positive semidefinite.
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Previous lemma characterizes the subset of positive semidefinite matrices for
BS(r, n). In particular, the following lemma proves that Cov+(A) belongs to a block
symmetry set by using (6).

Lemma 14 For every M-matching A in M × D, the covariance matrix Cov+(A)

belongs to BS(3k − |A|, 6) and it is equal to

I ⊗ Δ(A) − (J − I ) ⊗ 1

3k − |A| − 1
Δ(A),

where Δ(A) = Dβ(A) − β(A)β(A)�.

Proof By expanding the Kronecker product we can see that

(1 ⊗ β(A))(1 ⊗ β(A))� = J ⊗ (β(A)β(A)�).

Replacing this in the expression in (1) we get

Cov+(A) = I ⊗ Dβ(A) + (J − I ) ⊗ γ (A) − J ⊗ (β(A)β(A)�)

= I ⊗ Dβ(A) − β(A)β(A)�) + (J − I ) ⊗ (γ (A) − β(A)β(A)�)

= I ⊗ Δ(A) + (J − I ) ⊗ (γ (A) − β(A)β(A)�).

This proves that Cov(A)+ ∈ BS(3k − |A|, 6). It remains to check that γ (A) −
β(A)β(A)� = −Δ(A)/(3k − |A| − 1). Consider two configurations C j �= C�. Then,
a non diagonal element is equal to

γ (A) j� − β(A) jβ(A)� = (k/2 − δA( j))(k/2 − δA(�))

(3k − |A|)(3k − |A| − 1)
− β(A) jβ(A)�

= 3k − |A|
3k − |A| − 1

β(A) jβ(A)� − β(A) jβ(A)�

= 1

3k − |A| − 1
β(A) jβ(A)�

= − 1

3k − |A| − 1
Δ(A) j�.

For a diagonal element, we have

γ (A) j j − β(A)2j = (k/2 − δA( j))(k/2 − δA( j) − 1)

(3k − |A|)(3k − |A| − 1)
− β(A)2j

= 3k − |A|
3k − |A| − 1

(

β(A)2j − 1

3k − |A|β(A) j

)

− β(A)2j

= − 1

3k − |A| − 1
(β(A) j − β(A)2j )

= − 1

3k − |A| − 1
Δ(A) j j .
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In addition with Lemma 13 we have the ingredients to prove that Cov+(A) is a
positive semidefinite matrix when |A| ≤ �k/2�.
Proof of Theorem 2 By Lemma 14, Cov+(A) ∈ BS(3k − |A|, 6) and then we can
apply Lemma 13. Therefore, the matrix Cov+(A) is positive semidefinite if and only
if i) Δ(A) − 1

3k−|A|−1Δ(A) = 3k−|A|
3k−|A|−1Δ(A) is positive semidefinite, and ii) Δ(A) −

(3k − |A| − 1) · 1
3k−|A|−1Δ(A) = 0 is positive semidefinite. The last condition is

trivially satisfied, and then Cov+(A) is positive semidefinite if and only if Δ(A) is
positive semidefinite. Given any vector x ∈ R

6, we have

x�Δ(A)x =
6∑

j=1

β(A) j x
2
j −

⎛

⎝
6∑

j=1

β(A) j x j

⎞

⎠

2

.

Thevectorβ(A) ∈ R
6 is non-negative if |A| ≤ �k/2�. As it satisfies that ‖β(A)‖1 =

1, by applying Jensen’s inequality with the function φ(w) = w2 the latter expression
is non-negative for every x ∈ R

6. Then, Cov+(A) is positive semidefinite, and thanks
to Lemma 12 we conclude that Y (A) is positive semidefinite. 	


5 Discussion

What happens if we try to extend the results of Theorem 1?

Other hierarchies One obvious open problem is whether the Lasserre hierarchy is
any more successful for P||Cmax. The family of instances {Ik} used in our proofs of
Theorems 1(ii) and (iii) may or may not be useful. A proof of feasibility requires
proving that a matrix derived from the SA solution is positive semi-definite. However,
it is unclear for the authors how to handle the calculations for that case.

Other basic relaxations We also do not know the integrality gap of the hierarchies if
we use variants of the basic LP relaxation clp, for example, when a configuration is a
set of jobs (instead of a multiset of processing times) and the constraints guaranteeing
that each job is assigned are equality constraints, one for each job (instead of inequality
constraints, one for each processing time).

Other scheduling problems What about a related scheduling problem that is even
simpler than P||Cmax, namely, when the numberm ofmachines is fixed? This problem
is denoted Pm||Cmax. We consider the LS linear hierarchy, defined in the same way
that LS+, but the requirement of having a positive semidefinite protection matrix
is removed. The following theorem tells that a number of rounds equal to number
of machines are enough to reach the convex hull of the integral solutions for the
scheduling problem P||Cmax.

Theorem 3 The relaxation obtained by applying a number of rounds of LS equal to
the number of machines over the configuration LP has an integrality gap of 1.
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Proof Let S be the set of integer solutions in clp(T ) and let m be the number of
machines in the scheduling instance. Let y ∈ Nm(clp(T )) and (i,C) such that 0 <

yiC < 1. Then, there exists a protection matrix Y such that Ye0 = diag(Y ) = y, and
YeiC/yiC ,Y (e0 − eiC )/(1 − yiC ) ∈ Nm−1(clp(T )). Then, y can be written as

y = yiC · YeiC
yiC

+ (1 − yiC ) · Y (e0 − eiC )

1 − yiC
,

and YeiC/yiC ,Y (e0 − eiC )/(1 − yiC ) are integral on variable (i,C). Furthermore,
these vectors are integral for every variable (i, L) with L ∈ C, since ∑

L∈C yi L = 1.
If the vectors are not integral, we repeat this step on each vector by selecting a new
fractional variable. We notice that after applying the step the set of fractional variables
is the same for every vector in the convex combination, and then the same fractional
variable can be taken for all of them. As a consequence, every time we perform this
step at least one machine is scheduled integrally. Therefore, we perform at most m
steps until we reach a convex combination of integral vectors. 	

Corollary 1 Consider the problem of scheduling identical machines to minimize the
makespan Pm||Cmax wth a fixed number of machines. Then, applying r = O(1)
rounds of LS hierarchy to the configuration LP clp, the relaxation obtained, Nr (clp),
has an integrality gap equal to 1.

In particular, as LS is the weakest of all hierarchies, this result also holds for SA
and LS+.

On the other hand, for the harder problem of scheduling to minimize makespan
on unrelated machines, R||Cmax, the best known algorithm is a 2-approximation,
matching the best known integrality gap of a relaxation (the configurationLP),whereas
the strongest lower bound is 3/2. Is it possible that one of the LP or SDP hierarchies
starting from the configuration LP gives an integrality gap strictly less than 2? This
would open the way to designing an improved approximation algorithms for R||Cmax,
a major open question.
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