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1. Introduction

This work is devoted to the study of self-contracted curves on Riemannian manifolds M.

Definition 1.1 (Self-contracted curve). Let M be a Riemannian manifold and let d, denote its geodesic
distance. Given an interval I = [0, Tw,) with T € (0,00)U{o0}, a curve v : I — M is called self-contracted,
if for every t; < t9 < t3 in I we have

dg(v(t1),7(t3)) = dg(v(t2), 7(t3))- (1.1)

In other words, for every 7 € [0,Tw) the function ¢ — dg4(v(¢),y(7)) is nonincreasing on [0, 7].

Self-contracted curves were introduced in [3, Definition 1.2.]. The motivation of this definition comes
from the following example.

Example 1.2. If f : R® — RT is a C'-smooth convex function and if v : (0,+00) — R" is smooth and
satisfies 7/(t) = =V f(v(t)) for all ¢ > 0, then 7 is a self-contracted curve.

Indeed, observe first that (f('y(t)))/ = —[[Vf(7(®))]|* < 0, thus the function ¢ — f(y(t)) is nonincreasing.
Therefore, since f is convex, if 7 > t, then

& (S1() ~ 1 OI7) = () = 4(6), T70) < Fr(7)) — F(a(8) < 0.

This proves that the function ¢ — ||y(¢) — v(7)] is nonincreasing on [0, 7].

One of the main interests in studying self-contracted curves lies in its applications. Rectifiability of
self-contracted curves has been applied in different areas, including continuous and discrete dynamical
systems, optimization and convergence of algorithms. See for example [3] and [4].

The definition of self-contractedness is purely metric: if ¢ is a nondecreasing function from an interval J
onto I, then o ¢ is also self-contracted, so this notion does not depend on the particular parametrization
of the oriented graph {~(t); t € I}. Self-contractedness does not require prior smoothness or continuity
assumption on the curve as shown by the following example.

Example 1.3. Let v : R — C defined by y(¢t) =t if t < -1, v(t) = =t if —1 <t <0 and v(¢t) =it if ¢ > 0.
The curve 7« is self-contracted, is not smooth at ¢ = 0, is discontinuous at ¢ = —1, and moreover does not
admit a continuous self-contracted extension, i.e. there exists no continuous self-contracted curve I' : R — C
such that {T'(¢) : t e R} D {(t) : t € R}.

In a Euclidean setting it has been established in [4, Section 3| (and independently in [8] for continuous
curves) that bounded self-contracted curves have finite length. In both cases the proof was based on an old
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result of Manselli-Pucci [10] which allows to deduce that all self-contracted curves lying in a given ball have
lengths which are uniformly bounded. Applications of this fact have been discussed in [4, Section 4], [2], [9].

The results of [9,10,3,4,8] are all heavily based on the Euclidean structure. In [7] the author establishes
rectifiability for planar curves in the non-Euclidean case, while in [5] the authors consider (under a different
terminology) absolutely continuous self-contracted curves in a bounded convex subset of a two-dimensional
complete surface of constant Gaussian curvature, and provide an upper bound for the length, but in case
of a surface of positive curvature (sphere), they made the additional assumption that the diameter of this
subset was strictly less than /2.

In this work we establish that any self-contracted curve in a compact set of a smooth Riemannian manifold
has finite length. This result generalizes the results mentioned above. In particular, comparing to [5] it does
not require any assumption on the curvature or on the dimension of the manifold. Moreover, our result
holds in the case of discontinuous self-contracted curves.

2. Main result
2.1. Statement of the main result

Let (M, g) be a smooth complete Riemannian manifold whose geodesic distance is denoted by d,. Given
an interval I = [0, T, ) with T € [0,00) U {o0}, the length of a curve v : I — M is defined as

£(7) i=sup { 3 dyfath) v(tm»} 7 1)

where the supremum is taken over all finite increasing sequences ty < t; < --- < t,, that lie in the interval I.
We say that a (possibly discontinuous) curve v : I — M has finite length if £(v) is finite. Any continuous
curve v : I — M with finite length can be reparameterized into a Lipschitz curve on [0, £()] with speed of
constant norm a.e. equal to 1. The following extends previous results by [5,4,8].

Theorem 2.1 (Main result). Let (M, g) be a smooth Riemannian manifold, K be a compact subset of M and
v : I — K be a self-contracted curve. Then v has finite length.

This result cannot further extend to an infinite dimensional setting.

Example 2.2. Let v : [1,+00) — L?(R) given by (¢)(s) = % if s € (t,t 4+ 1) and 0 otherwise. It is easy to
see that ~ is a self-contracted curve, its closure is equal to {y(t); t € [1,4+00)}U{0} (therefore it is compact
in L2(R)) and its length is infinite (indeed, since |[y(n + 1) — v(n)|la = /In(1 +2/n) > 1/n, the series
(S Ih(n + 1) = 7() ) diverges).

The rest of the paper is devoted to the proof of Theorem 2.1.
2.2. Notation and sketch of the proof

The symbol M will always stand for a smooth manifold of dimension n > 2 whose tangent bundle
is denoted by T'M. Elements of T'M are denoted by { = ¢, = (y,¢) with ¢ € T, M. Given a smooth
Riemannian metric g, we denote the metric at x € M by (-, ), and its norm by |- |,. We sometimes omit
z if no ambiguity arises. The geodesic distance is denoted by d, and the open geodesic ball centered at x
of radius r > 0 is denoted by By(z,r). For every z € M, we denote by exp, : T, M — M the exponential
mapping at x. We denote by Em the balls in T, M (with respect to the Euclidean metric in T, M). We
denote the unit tangent bundle associated with g by UM, that is,
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UM :={u, € TM: |u|], = 1}.
If K is a compact subset of M, then
UK :={u; € TM:z €K and |u|, = 1}

is a compact subset of U M. We consider a canonical Riemannian metric on the unit bundle, whose associated
distance is denoted by D,. We may assume that for every p,, g, in UM it holds

Dy(pz:ay) = dg(,y). (2.2)

We refer to [1,6] for prerequisites on Riemannian manifolds.

We now present the strategy of proof of the main theorem. Every self-contracted curve has left limit
and right limit at each point. We show that if such a curve is contained in a compact subset of M, then
the set of points of large discontinuities (7.e. the set of points where the oscillation of v is greater than
some fixed threshold n > 0) is finite and its cardinal depends only on K. Then we do a detailed study
of the local behaviour of the curve around points of continuity and/or points of small discontinuity. The
main tool here is a uniform cosine law for small triangles having one vertex in the compact K. This study
allows us to construct an element p* € UM, called almost secant, such that the curve v grows in this
direction around the point x = (7). Finally, we consider an n-net F of UK. For £ := ¢, € F and for
z € M such that d,(z,y) is sufficiently small, we define the local width of vy at & = y(7) with respect to g,
by We(r) := diam {(g,exp, ' (7(£)))y : t > 7, 7(t) € By(y,2n)}. Notice that 7 — W () is a nonincreasing
(Lyapunov) function. We deduce from the study of the local behaviour of +, that if 7 is not a point of
large discontinuity and if s,¢ are in a neighborhood of 7 and s < 7 < t, then at least one of the Lyapunov
functions We (§ € F) satisfies We(s) — We(t) > adg(y(s),v(t)), where

1

= = d. . 2.3

o) SICESIE (n = dim M) (2.3)

Since the curve 7y is contained in the compact set IC, all functions W, are bounded. This together with the
above inequality, implies the rectifiability of ~.

2.3. Exponential map — cosine law — external functions

We introduce here a few tools from Riemannian manifolds. We first notice that for every x € M, there
exists r > 0, such that the exponential function exp, is a smooth diffeomorphism between the open ball
B, (0,7) of T, M onto the open geodesic ball By(z,r) in M. The following lemma is an easy consequence

of the compactness of K and the smoothness of the geodesic flow.

Lemma 2.3. There exists p > 0 such that for every x € K, exp, is a smooth diffeomorphism from the ball

~

B, (0,2p) to its image By(z,2p).

Thus, we can define, for any « € K and z € By(z, p),
Ug(2) i = ————— € U, M (provided z # x). (2.4)

By construction, exp, !(z) is the initial velocity of the geodesic 6 : [0,1] — M joining = to z, so we have
lexp; ! ()|, = dy(a, 2).
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Fig. 1. Cosine law in Riemannian manifolds.

Recall that if x, y, z lie in a Euclidean space, the law of cosines asserts that
ly =21 = lly — z|* + |z — z[* = 2(y — 2,2 — 2).

The following result asserts that small geodesic triangles in a Riemannian manifold almost satisfy the
law of cosines, see Fig. 1 for an illustration.

Lemma 2.4 (Cosine law in manifolds). There exists K > 0 such that for every x € K and every y,z €
Bz, p),

|d5(y, =) — dg (2, y) — dg(=, 2) + 2(exp; (), expy ' (2))o| < Kdy(,y)*dg(w, 2)* . (2.5)
Proof. By Lemma 2.3, there exist 1,12 € (—p, p), v,w € UzM such that y = exp,(t1v) and z = exp, (tow),

precisely ¢, = dg(x,y) = |expy ' (y)|» and t2 = dy(z,2) = |exp; ! (2)|,. For fixed x € K and v,w € U, M, we
consider the function ® : (—p, p)? — R defined by

®(t1,t2) = dy(exp, (t1v), exp, (taw))? .
We check easily that for every t1,t2 € (—p, p),

O(t1,0) =13, ®(0,ty) =13,

and
o0d oD
92 0,ty) = —2t o L0 = 24 (0, w), .
o, (0,2) 2 (v, w) 6t2( 1,0) 1 (v, w)
Then we infer that
9%2P
T2 0,0) = —2 (v, w),
at,0t, 0 (v, w)

and for every integer k € {2, 3},

6k:+1(1) 8k+1q>

—(0.0) =
8t’f8t2( '0) o0tk

(0,0) = 0.

The Taylor expansion formula of order 4 for the function ® shows that there exists K > 0 (depending on
the fourth derivative of the exponential mapping at x) such that
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|D(t1,t2) — 87 — 3 + 2t1ta (v, w),| < K tt3,  Viti,ta € (—p,p).

By the definition of the exponential map, we have ®(t1,t2) = dy(y,2)?, t1 = dy(z,y), t2 = dy(z,2),
t1v = exp; (y) and taw = exp, !(z) so the above formula implies equation (2.5). The compactness of UK
shows that the constant K can be chosen independently of z,v,w. O

Remark 2.5 (Adapting the constant p). Let K > 0 be given by Lemma 2.4 and a > 0 be given by (2.3). We
may always shrink p > 0 of Lemma 2.3 to ensure

4K p* < a. (2.6)

In the following result, we introduce a parameter 7 that will be fixed throughout the paper, and we give a
control of the difference of the growths of the mappings z — (p, exp; (2)), and z — (g, exp;l(z»y around
x whenever Dy (pz,qy) < 7.

Lemma 2.6. Let « > 0 be given by (2.3). Then there exists n € (0,p/4) such that for every x € K,
y € By(x,p), z € By(y,2n) and for every p, € UK, q, € Bp,(pe,n) (Riemannian ball in the unit bundle
UM ) we have

(@ exp, " (2))y — (@ exp,* (2))y — (p,exp, ' (2))a] < adg(x, 2).

Proof. Let us denote by, (z) := (p,exp,'(2)). and by, (2) := (g, exp, ' (2)),. We first claim that for every p,
in UK,

Vb, (x)=peT,M.

Since the differential D exp; !(z) is the identity mapping on T,,M it follows by the chain rule that Db, (z) =
(p, ). This proves the claim. Since the mapping

(gy,x) — Dbg, (x) = (q, Dexp, ' (z)(-))y

is continuous, we deduce easily from the compactness of K and UK and the claim that there exists n > 0
such that for all p,, ¢, in UK satisfying Dy(ps, qy) < 1 we have

Vb, (@) = Wby, (@)], = [Vby, (2) = p], < 5. (2.7)
We claim now that there exists L > 0 such that for every ¢, € UK and ,z € By(y, p) it holds
|bg, (2) = by, () = (Vby, (2),exp; ' (2))s| < Llexpz'(2)]7
Indeed, the mapping

(vax) = bqy (z) = <Qanp;1(x)>y

is smooth (whenever it is well-defined, that is, dgy(x,y) < 2p). The exact Taylor expansion of order 2 for
the function z + by, (2) at the point z, together with the compactness of K and UK and a standard
argument gives the above inequality. We now shrink n > 0 if necessary to ensure that n < a/6L. Pick any
z € By(y,2n) C By(y, p). It follows from (2.2) that if Dy (ps, qy) < 1, then dg(z,y) < n, and so dy(z,z) < 3.
Since | exp; ' (2)]: = dy(x, 2) < 3n < a/2L the above inequality becomes



A. Daniilidis et al. / J. Math. Anal. Appl. 457 (2018) 1333-1352 1339

b, (2) = by, () = (Vby, (@), exp; " (2))e| < Sdy(a,2). (2:8)

Equation (2.7) implies |(Vbg, (x) — p,exp;*(2))a| < (@/2)dy(x, 2). This inequality combined with (2.8)
yields the inequality of Lemma 2.6. O

3. Geometrical description of self-contracted maps
8.1. Dealing with discontinuities

Let v : I — M be a self-contracted curve such that v(I) C K with K compact. The results of this
sub-section are valid assuming only that M is a metric space. For every 7 € I, we denote by ~v(77) the left
limit of v at 7, that is,

(7)) := lim 4(s).

s<T,8—T

Proposition 3.1. The above limit always exists.

Proof. Otherwise, by compactness, there would exist at least two accumulation points x; and zo with
Il = dg(z1,22) > 0. Let t1 < to < t3 < 7 be such that dg(y(t1),z1) < /4, dg(v(t2),z2) < 1/4 and
dg(v(t3),z1) < l/4. Since v is self-contracted, we have

1/2 > dg(y(t1),7(t3)) > dg(v(t2),v(t3)) > 1/2

which is a contradiction. O

We denote by D~ := {7 € I : v(7) # v(77)} the set of points where 7 is not left-continuous. We fix n > 0
satisfying Lemma 2.6, and we set:

(left-n-threshold) D (n):={rel: dy(v(r),v(77)) =n}. (3.1)
In the following lemma, the cardinality of a set S is denoted by |S].

Proposition 3.2 (Cardinality of D~ (n)). Let v : I — M be a self-contracted map such that v(I) C K. If
N(n) is the minimal number of balls of radius n/2 that can cover IC, we have

D™ ()] = (D~ ()| < N(n). (3.2)

In particular, since D~ =, .y P~ (1/n), D~ is at most countable.

neN

Proof. We first claim that for any = € M we have:

(D™ (n)) N By (z,1/2)| < 1.

Let 71,70 € D™ (n) with 7y < 7, be such that {y(71),7(72)} C By(z, 2). Set z; = (7)) and z; = v(7;7),
i € {1,2}. It follows that {z1, 72} C By(z, 5) and {2}, x5} C M\ By(z, Z). The fact that + is self-contracted
yields the following inequalities:

N < dg(xh, w2) < dg(w1,72) < dg(x1, %) + dg(x,2) < 7.

This contradiction proves the claim.
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p € sec (7)

Fig. 2. SeCi(T) g NeXPfl(FM(TW (l‘)

As a consequence of self-contractedness, the sets D~ (n) (subset of T) and v(D~(n)) (subset of K) have the
same cardinality, for every n > 0. The claim yields that this cardinality is bounded by N(n). Compactness
of K guarantees that this latter is finite. 0O

Remark 3.3 (Cardinality of D (n)). Analogous results hold for right discontinuities. Let n > 0, and let us
consider the set of points of I where v has a large right discontinuity:

(right-n-threshold) Dt :={rel: dy(y(r),v(v")) =n}. (3.3)
Then the cardinality of the set D¥(5) is bounded by N(n).
8.2. Describing backward secants

Let us fix 7 € (0,T) and let us define the set of all possible limits of backward secants at x = v(7) as
follows (recall notation (2.4)):

S —T,Se<T

sec (1) = {p CUM: p= lim uw(’y(sk))} .

Notice that sec™ (1) # @ for every 7 > 0 (cf. compactness of the unit sphere).
For every 7 € I, we define the set I'(7) (tail of v at = (7)) by

I(r):= {’y(t) Dt > T},
and, given an open neighborhood U of z = (), we define the U-truncated tail of v at = by
Ty(r):=T(r)NU. (3.4)

The cone in T, M generated by {u,(z) : z € I'y(7)} will be denoted C, 1. The next result asserts that
every backward secant at a point x = (1) where the curve is left-continuous, is normal to Cj 4.

Lemma 3.4 (Backward secants). Let U be an open neighborhood of x = ~(7) with diamU < p. (I) If v is
left-continuous at T, then (Fig. 2)

sec” (T) C Nyt (ry () (%) (3.5)

that is,

P, uz(2))e <0, forallp€sec™ (1) and z € Ty (1) \ {z}.
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u .M »

e

)

-
ex
Pz exp, ' (Ty(7)) Cx,u

Fig. 3. sec™ (1) := {uz(v(77))} € Nexp-1(Ty () (@)-
(II) If  #~v(77) and ¥(17) € By(z,2p) then

sec™ (1) = {uz (v(77))}-

Proof. (I) Let p € sec™ (7). Then for some s, 7 we have

eprly(s)
= 1m — 1n x-/\/t
P e s M)

Clearly U C By(x,2p). We may also assume that I'y(7) \ {x} # 0 (else the conclusion follows trivially) and
{7v(sk)}, CU. Pick any z € T'y(7) \ {z}. Applying the cosine law (2.5) we have

|dg(v(sk), 2)? — dg(z, 2)* — dg(z,v(sk))* + 2(exp; ' (Y(sk)), exp; ' (2))e| < Kd(z,7(sk))*d(z, 2)*.
On the other hand, since -y is self-contracted, we have
dg (v(sk), 2) > dy(x, 2),
thus
—dy(x, (k) + 2dg(x, 2) (expy " (V(sk)), a(2))e < K dg(x,v(s8))? dg(, 2)°.

Dividing by |exp, ! (v(sk))|z = dg(z,v(sk)) and passing to the limit as k — co we conclude easily.
(IT) Tt is straightforward since x # (77 ) and v(77) is the limit of y(s) as s /7. O

Remark 3.5. Notice that for 7 € D™, the backward secant is unique (¢f. Lemma 3.4 (II)), but (3.5) may
fail. An illustration is given in Fig. 3.

3.3. Aperture of the truncated tail
Given any subset C of the unit sphere of R", its aperture A(C) is defined as follows:
A(C) :=1inf { (u1,u2) : ug,us € C'}. (3.6)
For every y € M and I C By(z,2p), we define (the aperture of I' C M at y € M):
Ay () = inf (g (1), 1y (22)y + 21,22 €T\ {y}}. (3.7)
Roughly speaking, the aperture of a subset I' of a manifold M (with respect to a point y € M) intends

to measure the size of the cone generated by the unit tangents u € T, M at y corresponding to all points
z €T\ {y} via the mapping exp, .
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The aperture will play a major role in the sequel. The set T" will be taken to be the (truncated) tail I'y(7)
of the self-contracted curve 7, see (3.4), and the point y € M at which the aperture is taken will be either:

(i) the point x = «(7) if the curve v is continuous at 7; or

(ii) a point Z lying in the minimal geodesic joining = = v(7) to ' = v(77), if v is left discontinuous at 7.

8.3.1. Left-continuous case
Proposition 3.6 (Aperture of I'y/(7) at x). Let U be any nonempty open subset of M with diamU < p. Then
for every T € (0,T) with x = (1) € U the following property holds:

A (Ty(r)) > —a. (3.8)

Proof. Set = := «(7) and for ¢ € {1,2} let z; = v(t;) € Ty (7) \ {z} with 7 < t; < to. Applying the law of
cosines (2.5) we deduce

dy(z1,22)° = dg(z,21)” — dg(, 22)° + 2{exp; ' (21), exp; ' (22))0 > —Kd(z, 21)d(, 22)*.
Self-contractedness of v yields that dg(z, 22) > dg(21, 22), thus
2(exp, H(21), expy (22))e > —Kd(x, 21)d(x, 20)%.

Dividing by |exp; ! (21)|x|expy 1 (22)]x = dy(x, 21)dg(x, 22), and then using (2.6) we obtain

(uz(21),uz(22)), > ——— > —a/8 > —a. =]

Remark 3.7. The above result, in combination with forthcoming Lemma 3.14, will assert that the cone
generated by the U-truncated tail T'y(7) at T, M has angle almost equal (a bit more than) 7/2, for any
open neighborhood U of z of sufficiently small diameter. This is the Riemannian analogue of [10, Section 3,
Formula (2)] (see also [4, Fig. 1]).

8.8.2. Left-discontinuous case

Let 7 € D~ (that is, v is left-discontinuous at & = ~(7)). In this case, for reasons that will become
transparent in Section 3.4 (see also Remark 3.5), we need to consider the aperture of the truncated tail
Ty (7) with respect to a different point & (other than x = ~(7)). This point will be taken on the minimal
geodesic joining z to z’ and relatively close to x’ := v(77). To define this geodesic, notice that p := u,(z’)
is the unique left secant of v at 7 (¢f. Lemma 3.4 (II)), that is, the initial velocity of the unit speed geodesic
6 :[0,dg(z,2")] = M joining z to z’. We fix

B=a/8 (3.9)
and we denote
T=0((1-pB)dy(z,2")) and p=0((1—p)dy(z,2") = uz(z). (3.10)

Notice that the value of 8 which determines the exact location of the point z is the same for all 7 €
D\D~ (n).

Proposition 3.8 (Aperture of Ty (1) at Z). Let 7 € D~ and set x = (1), ' = v(77) and & defined by (3.10).
Then for every open subset U of M with diamU < p and {x,Z,2'} CU we have

Az Ty (1)) > —au
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Fig. 4. Calculating the aperture I'y/(7) at Z.

The proof of the above proposition will not be an easy task though. Indeed, since  is not a point of =,
the previous argument (cf. proof of Proposition 3.6), based on self-contractedness, is no longer valid. Our
new task will require several technical estimations (see forthcoming Lemma 3.10 and Lemma 3.11), as well
as estimating the aperture of T'y/(7) at the point 2’ (Fig. 4) (which might not be a point of the curve, but
belongs to its closure).

Lemma 3.9 (Aperture of Ty(7) at x’). Let U be an open subset of M with diamU < p and let 7 € D~ be
such that both x = (1) and &’ :=~v(77) are inU. Then

Ay (Ty(1)) > — afs. (3.11)

Proof. By Lemma 3.6 (and more precisely, using the estimate of the last line of its proof), the estimation
ATy (7)) > —a/8 holds true for all s € (0,7) point of continuity of v sufficiently close to 7 so that
U C By((s),p). Since 2’ := lim, », y(s) is a limit of points of continuity of v, we conclude easily by a
standard continuity argument. O

We now fix notations that will be used in Lemma 3.13, Lemma 3.11 and Proposition 3.12. Let 7 € D~
and set x = (1), 2’ = v(77) and z = 0 ((1 — B) dy(x,2")) satisfying (3.9) and (3.10). We also fix an open
U of M with diaml < p and {z,z,2'} CU. If z € Ty(7), we denote:

oi=dy(z,2'), d=dy(z,2) and d =d,(2’,2).

Lemma 3.10 (Technical estimations — I). For every z € Ty (1) one has:

2

o
~ < 12
d-1-28 (3.12)
and
d’ 1
— < . .
i51-28 (3.13)

Proof. Since v is self-contracted, we have dy(z, z) < dgy(2’, z). Therefore
dg(z,2") < dg(z,2) + dg(2', 2) < 2dy(2’, 2).

It follows by (3.10) that dy(Z,z") = fdy(x,2") = Bo. Thus, we deduce
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1 —
% - Edg(xvxl) <dg(2',2) < dg(7,2) + dyg(2,2") = d + o,

which yields (3.12). We now deduce from (3.12) that

d' = dy(a',2) < dy(«',®) + dy(2,2) < fo +d < (1 126) ¢

This proves (3.13). O
Lemma 3.11 (Technical estimations — II). For every z € T'y(7) we have

d?> —d'? > —-2(Bo)* - 2p0d, (3.14)
and

d? —d'? < 2(Bo)* + Bod a/4. (3.15)
Proof. Let z € T'y(7). By the law of cosines (Lemma 2.4)

|dg(2',2)? — dg(Z,2")* — dg(Z, 2)* + 2(exp; ' (z), expgl(z)ﬁ’ < Kd,(7,2")?d,(z,2)*
Therefore, recalling that d,(z,2") = fo,
d* —d'? > —(Bo)*[1 + Kdy(Z,2)*] + 2(exp; ' (2'), exp; " (2))z
Since 7, z € U, we have d,(7,z) < p, so using (2.6), we have Kdy(Z,z)? < 1. On the other hand, by the
Cauchy-Schwarz inequality, we have also (exp; ' ('), exp; ' (2))z > —dy(Z,2")d, (%, z). Thus (3.14) holds.
To establish (3.15), we use again the law of cosines:

|dg (7, 2)? = dy(@,27)* = dg(a', 2)* + 2exp, ! (7), expy! (2))ar

< Kdgy(z,2')?dy (2, 2)*. (3.16)
Since z € I'y/(7) and = # 2’ we deduce by Lemma 3.9 that

(ugr(T), tar (2))ar = (Uar (2), e (2))2r = — /8,
hence

(exp ! (2), expyt (2))ar = dy (7,2 )dy (2, 2) (ug (), upr (2))0r > —Bod'a/8.

Combining this inequality with (3.16) and recalling that dy(z,z") = Bo, we get

d? —d'? < (14 Kdy(z',2)*)(B0)? + Bod a /4.
Since dy(z',z) < p and Kp? <1 (cf. (2.6)) we conclude easily. O
Proof of Proposition 3.8. Since 2’ ¢ I'y/(7) we deduce by Lemma 3.9 that for every z1, 2o € I'y/(7),

(ugr (1), uar (22))ar > — /8. (3.17)

In order to simplify notation, let us set o := d4(x, 2’) and



A. Daniilidis et al. / J. Math. Anal. Appl. 457 (2018) 1333-1352 1345

di = dg(a:,z,;)
l; == dy(z,2;) forie {1,2}.
d; = dgy(a', 2)

Applying the law of cosines and setting
e:=dgy(z1,22)
we obtain

le* — d? — df +2d) db (ugr (1), ua (22))ar | < Kd d, (3.18)

and
|le* — d} — d3 + 2d1da(uz(21), uz(22))s| < Kdids. (3.19)
Combining (3.17), (3.18) and (3.19) we deduce
2d1da(uz(21), uz(22))z > —didha/4 — K (dids + d2d5) + di — d + d5 — d7,

thus in particular

dad’z> a K- (dad’2>2 & —d? 3 —df
uz(21),uz(22))z 2 — | == | g — 5did2 | 1+ | == todd,  edd 320
(uz(21), uz(22)) <d1d2 8 9 172 didy 2d; do 2dy da ( )

To proceed, we need to bound the last two terms of (3.20). Applying Lemma 3.11 we obtain
4} —d? > -2(B0)® = 2(Bo)d;, foric{1,2},

thus, dividing by 2 d;ds we deduce in view of (3.12) and (2.6) that

2did, — (1-26)2 1-28  (1-2B)%

Using the above estimation, together with (3.12) and (3.13), we deduce from (3.20) that

d? —d? - 432 23 23

1 o K 1 43
(uz(21),uz(22))z > —mg - 5,02 (1 + i 25)4> - (1—25)
> -2 (1 TR E— )
-8 (1-26)2  (1-28)*
Since 283 = % < 5T12’ we obtain (uz(21),uz(22))z > —a. O

The following result is the analogue of Lemma 3.4 (I) for the left-discontinuous case. Roughly speaking,
the result (almost) remedies the failure illustrated in Remark 3.5 by moving the point = v(7) (where
is left-discontinuous) to Z := 0 ((1 — ) dy(x, ")) (see (3.10)) and making a parallel transportation of the
secant p := u,(2') at x to p = uz(z') € Tz M along the geodesic 0 joining z to .

Proposition 3.12 (Transported secant). Under the above notation and under the assumptions given before
Lemma 3.10,

(Pyuz(2))z = (uz(2'),uz(2))z < o, for all z € Ty (7).
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Proof. Let z € Ty(7), and recall that o := dy(z,2'), d = d,(z,z) and d’ = dy(2’,z). We again apply the
law of cosines to get

d? — (B0)* — d* + 280 d (uz (), uz(2))z < K (Bo)* . (3.21)
Notice that (3.15) yields
d?—d?  fo d\ «a

Combining (3.21) with (3.22) and using (3.12) and (3.13) we deduce (recall that fo < p and d < p) we get

’ K , 3Bc d"\ o @ 36 ! @
(uz(2),uz(2))z < 507 + = + (g) 8 s 1 25" <1—25> 8’

@
So (uz(x'),uz(2))z <48+ 5Sa O
3.4. Estimations involving “almost secants”

We now show that at each point of left-continuity as well as at each point of left-discontinuity up to a
certain discontinuity jump, a self-contracted curve grows backwards (with a uniform quantitative estimate)
in some direction. We call this direction p® an almost secant (because it is a modification of a secant p).

Theorem 3.13 (Measuring growth using “almost secants”). Let 7 : [0,To) — M be a self-contracted curve
and let us fir x = (1) with 7 € (0, Teo).

(i) If 7 is continuous at T, for every p € sec™ (), there exists p® € U, M such that for every open subset
U of M with x €U and diamU < p, and every z € T'y (1),

(p*, uz(2))e < —3c and P*,p)e > da.

(ii) If 7 € D™\D(n), if we denote p = uz(x’) the transported secant at T, there exists p* € Uz M such that
for every open subset U of M with {x,Z,2'} CU and diamU < p, and every z € T'y (1),

(" uz(2))z < =3 and (p*,p)z > da.
We need a separation lemma for subsets of the unit sphere of R™ with a controlled aperture.
Lemma 3.14 (Strong separation lemma). Let C be a nonempty subset of the unit sphere of R™ satisfying
A(C) > =4, (3.23)
where

o= E T (3.24)

Then

conv (C) () B(0,6) = 0. (3.25)
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Proof of Lemma 3.14. Let us assume, towards a contradiction, that for some u € conv(C') we have ||u|| < 4.
By Caratheodory’s lemma there exist Ag,..., A, € [0,1] with }* jA\; = 1 and unit vectors ug, ..., u, € C
such that

< 4.

n
E Aiu
i=0

Let i9 € {0,...,n} be such that A;, > X; for any ¢ € {0,...,n}. Then A\;; > 1/(n + 1) and by the
Cauchy—Schwarz inequality

n

6> <ui0,zn: )\lu1> = Z i <ui0, ui> = /\io + Z i <’U,i0, ui>
=0

i=0 i#i0
1 1
> -9 i | > —6=4,
n+1 Z n+1

i#ig
a clear contradiction. Thus the assertion holds true. O

Proof of Theorem 3.13. Both assertions follow by the same arguments and estimations. In order to present
a common proof let us proceed to the following identification:

— If x = v(7) = v(v7), we identify the tangent space T, M equipped with the scalar product (-,-), with
the Euclidean space R".

— If £ = (1) # v(77), we identify the tangent space Tz M equipped with the scalar product (-,-)z with
the Euclidean space R™.

In the sequel, we shall denote (in both cases) this scalar product by (-,-). We further set
C ={uz(2): z€Ty(r)} (respectively C = {uz(z): z € Ty(1)}).

Since o = §2/8 < §, Proposition 3.6 and Proposition 3.8 imply that A(C) > —§. Applying Lemma 3.14, we
obtain that the projection of 0 to tonv(C), denoted by ¢ € T, M, satisfies for every u € C

]| > 8 and (—c,u—c) <0.
It follows
(—c,u) < —||c|]* € =% = —8a. (3.26)
(i) Let 7 € (0,T) \ D~ and fix any backward secant p € sec™ (1) € T, M = R™ and set

a . p—cC

p¥ = .
llp — ¢l

By Lemma 3.4 (I) we get (p,u) <0, for all u € C. Then for every u € C (unit vector) in view of (3.26) we
deduce

(pow) +(—cu) _0—|le]® _ —8a _
lp—cl = llp—cl ~llp—cll =

(p",u) = 3a,

where the fact that ||p — c|| < 2 is used. Finally, if u € U, M and ||p — u|| < a,
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2 _
Ipll? + {—e.p) _ 140

> > 4o
llp — | 2

(p*,p) >

(ii) Let 7 € D~ and consider the transported secant p = uz(z') € T,,M = R™ at Z. In an analogous
manner to the above, we set

a p—c
pt = —.
[lp — |
By Proposition 3.12 we get
(p,u) <a, forallueC. (3.27)

Since ¢ € C we deduce
1B —cll> = [IplI* + llel[* = (p.e) 2146 —a > 1
In particular
L<|p—dl < 2.

For every u € C' (unit vector) in view of (3.26) and (3.27) we deduce

(P, u) + (—c,u) < a — 8« —To

— < — < —3a.
el 1p — ¢l 2

(P, u) <

On the other hand, if u € U, M and |[p — u|| < «, using again (3.27), we get

IBlP + (-ep) . 1-a _1-a

(p*,p) > = > — > >
|1p — ] Ip — ] 2

This concludes the proof of the assertion. O
4. Proof of the main result
4.1. Width estimates via external functions

From now on, 7 is given by Lemma 2.6, F is a fixed finite n-net of UK, and for each £ = ¢q, € F,
Ug := B,y(y,2n). We recall that a finite subset F of UK is an np-net if F has a nonempty intersection with
any ball (for the distance Dy) of radius n centered at a point of UK. The existence of the finite n-net F
follows from the compactness of UK.

If 7 is a self-contracted map defined on [0, +00) and if 7 € (0, +00)\D~ (1), we define an element £* € UK
as follows. We denote p* the almost secant given by Theorem 3.13, and we consider two cases:

o If 7 is a point of left-continuity of v, for every backward secant p € sec™ (1) at x = v(7) we associate
the almost secant p® € U, K and we set

£ == pi = (x,p"). (4.1)

Notice that different secants at « might give rise to different p* € U, K (therefore to different elements
&, € UK).
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o If 7 € D=\ D (n), then the backward secant p := u,(x’) at © = v(7) is unique. Using the notation of
(3.10), the almost secant associated to p is p® € UzK. We set:

§" = pi =(z,p"). (4.2)

The following result is crucial for our purposes. Roughly speaking it will be used to associate to each £¢,
constructed above, an element £ from the finite set F. In this way, instead of controlling the growth of v by
the infinite set of “almost secants”, we shall control this growth by the finite set of external functions.

Lemma 4.1 (Controlling the local growth of v by external functions). Let F be a finite n-net of UK, and,
for each & = q, € F, let us denote Ug := Bgy(y,2n). Then:

(I) Let 7 € (0,Too) \ D~ and p € sec™ (1), let £ := p2 be defined as in (4.1), and let £ € F be such that
Dgy(£%,&) <. If y(s) € Ue, |p — uz(7(s))|e < @ and z € Ty, (1), then:

(. exp,  (7(5))y = (@ exp, (2))y + 20dy(7(s), 2). (4.3)

(II) Let 7 € D™N\D~ (1), let £&* := p% be defined by (4.2), and let & € F be such that Dy(£%, &) < n. If
1(5) € Ue, |5 — us(1(5))lz < @ and 2 € Ly (7), then:

(g, exp, ™ (7(5)))y > (g, exp, " (2))y + 2ady(1(5), 2). (4.4)

Proof. Recall that p satisfies (2.6) and that n € (0, p/4) is given by Lemma 2.6, so diam(U) < p.

We shall first consider the case 7 € (0,T5) \ D~. We fix p € sec™(7) and set £* := pg. Let £ =
qy € Bp,(§%,n). We know from Theorem 3.13 (i) that for all z € Ty, (1) \ {z}, (P us(2))s < —3a and
(p* p)a > 4. If y(s) € Ue and |p — uz(7(s))]e < @, we obtain from Lemma 2.6:

(g, expy  (7(5))y — (g expy " (2))y = (% ua(V(5)))a — @) dy(,%(s))
> (P, p)a — 20) dy(,7(5)) = 2ady(z,7(s))-

On the other hand, if z € Ty, (7), we deduce from Lemma 2.6 that
(@, expy ())y — (@ expy ' (2))y = (= (0% ua(2))e — @) dg(, 2) 2 20dy(z, 2).
Summing up these two inequalities, we obtain (4.3).

The case 7 € D™\D™(n) is treated similarly. Theorem 3.13 (ii) gives that for all z € Ty, (7) \ {z},
(", uz(2))z < —3a and (p*, p)z > da. If y(s) € Ue and |p — uz(v(s))|z < o, Lemma 2.6 gives:

(g, exp,  (7(5)))y — (g expy " (2))y = (% uz(v(5)))z — @) dy(,%(s))
> ((p* Pz — 20) dy(,7(s)) = 2ady(z,7(s)).

On the other hand, if z € Ty, (), Lemma 2.6 implies that

(g, exp, " (2))y = (@, expy " (2))y > (= (0%, uz(2))z — @) dy(@, 2) > 20dy(x, 2).

Summing up these two inequalities, we obtain (4.4). O
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For each £ € F, we define the local width of v at © = ~(7) with respect to £ as follows:

We(7) := diam {(q,exp;1(2)>y 1z €Ty (1)}, (4.5)

using the convention that diam () = 0. We are now ready to establish our fundamental result, which states
that the growth of the length of a self-contracted curve is locally controlled by the decay of one of the
functions We.

Theorem 4.2. Let v : [0,To,) — M be a self-contracted map such that its range is included in the compact IC,
let F be a finite n-net of UK, and, for each £ = q, € F, let us denote Ue := By(y,2n). Let 7 € (0,T) \
(D= (n)UD™(n)). There exists § > 0 such that, for all s,t satisfying T —6 < s <7 <t <T+0, there ewists
& € F such that:

We(s) — We(t) = adg(y(s),7(#)) - (4.6)

Proof. (i). Let 7 € (0,T) \ D~ (point of left-continuity) and set = (7). Since sec™(7) is the set of
accumulation points of the subset {uy(v(s))} of Uy M as s /' 1, and since U, M is compact, there exists
0 > 0 such that for every s € (7 — §, 7), there exists p® € sec™ (7) such that |p® — u,(v(s))|s < a. Applying
Lemma 4.1 (for = v(7) and p® € sec™ (7)) we get that for all s € (7 — §, 7), there exists £ € F such that:

Vz € Ty (1) (g,exp,  (7(5)))y — (g, expy, ' (2))y > 2ady(7(5), 2). (4.7)

(ii). Let us now assume 7 € D~ \ D~ (n), set © = (1), 2’ = v(77) and = := 6 ((1 — B) dg(z,2")). Since
P :=ug(z') and &’ = lim, ~, y(s), there exists 6 > 0 such that if s € (7 — §,7), then |p — uz(7(s))|z < @. In
this case, Lemma 4.1 yields that, there exists £ € F such that for all s € (1 — §, 1),

Vz € Ly (1) (g, expy (7(5)))y — (g, expy " (2))y = 20dy(y(s), 2). (4.8)

Let us finally assume (in both cases (i) and (ii)) that 7 ¢ D*(n), that is, dy(y(7),7(7")) < 7. Shrinking
if necessary 0, we can assume that for all t € (7,74 0), we have dg(y(7),v(t)) < n. This implies d,(y, v(t)) <
dg(y, (7)) + dg(7(7),7(t)) < 2n and so ¥(t) € Ug and Ty, (t) # 0. The first inequality below follows from
(4.7) and (4.8) and the fact that I'y,(¢) is included in I'y, (1) whenever ¢ > 7, while the second one comes
from the triangle inequality and the fact that v is self-contracted. For all s € (7 — §,7), there exists £ € F
such that, for all ¢ € (7,7 4 ¢) and for all z € I'y, (¢):

(@, exp, " (1(3)))y — (@ expy " (2))y = 2ady(1(s), 2) = ady(y(s),7(t))-
Hence We(s) > We(t) + adg(v(s),y(t)). O
4.2. Proof of finite length

Let 7 C UK be the finite n-net defined in the previous section. Then for any § = ¢, € F, the function
z > (g, exp, ! (2))y is well defined on

Ue == By(y,2n) C By(y,2p).

We recall that We(7) := diam {(g,exp,'(2))y : 2 € [y () }. Notice that for 7y < 75 we have Iy, (12) C
Iy, (11), therefore We(72) < We(71). In other words, the function 7 +—— We(7) is nonincreasing on [0, T)
for every £ € F. Let us now consider the (decreasing) aggregate function
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Wr(r) = Z We(T).

EeF

The following result holds.
Proposition 4.3. Let [a,b] C (0, Ts)\ (D~ (n) UDT(n)). Then for every partition
a=tg<t1 <...<t, =0

of [a,b],

m

S dy(y(tim), (1) <

j=1

(W(a) = Wr(b)). (4.9)

SEES

Proof. If 7 ¢ D~ (n) UD*(n) and & = ~(7), Theorem 4.2 tells us that there exists d, > 0 such that
(1= 07,74 0;) N (D~ (n) UDT(n)) is empty and for all s,t € (7 — &,,7 + 0,) with s < 7 < ¢, there exists
& € F satisfying We(s) > We(t) + a dg(y(s),v(t)). We deduce easily from the definition of Wx that:

Wr(s) = Wr(t) = adg(y(s).7(1)). (4.10)

Using a standard compactness argument, for every fixed i € {1,...,m}, there exists a subdivision {s; ; };;0
of [ti—1,t;] such that (4.10) is true for s = s; j_1 and ¢ = ¢; ;. Summing up these inequalities for all j and
using the triangular inequality, we obtain that (4.10) is true for s = ¢;_1 and ¢ = t;. Summing up these
inequalities for all ¢ we obtain (4.9). O

We are now ready to conclude the proof of Theorem 2.1 (Main result).

Proof of Theorem 2.1. Let v : [0, Ts) — M be a self-contracted curve. Set N := D~ (n)UD™(n) and denote
by |V its cardinality. Fix T < T, and denote by yr the restriction of  to the compact interval [0, 7T]. We
shall prove that v is rectifiable and its length is bounded by Wx(0) + |NV|X, where ¥ is a strict upper
bound for the maximal left or right jump of ~, that is,

¥ > max {glsgdg(v(o)m(a‘)), L nax dg(v(a),v(rf*))}

By Proposition 3.2, A is finite (and the right and left limits exist at every point), so there exists §' > 0
such that for any o € N and any s,t € (0 — ¢',0 + ¢") with s < o < ¢ it holds

dg(v(s),7(t)) < 2. (4.11)

Notice that the compact set [0,7]\ Uyep(0 — 6,0 +§') is a finite union of intervals [a;, b;], for each of
which Proposition 4.3 applies. We deduce easily that

1
tyr) < —Wr(0) + M.

Since the above bound is independent of T, passing to the limit as T — 400 we obtain that the length of
v is bounded by the same constant. O

Remark 4.4. Proposition 3.2 tells us that [N| < |D~(n)| + |D*(n)| < 2N(n), where N(n) is the min-
imal number of balls of radius n/2 that can cover K. On the other hand, for every & € F, W(0) <



1352 A. Daniilidis et al. / J. Math. Anal. Appl. 457 (2018) 1833-1352

sup{lexp, ' (z1) — exp, *(22)|y; 21,22 € U} < 4n, so Wx(0) < 4n|F|. Finally, ¥ < 2diam(K). Therefore, the
above proof shows that the upper bound for the length of any self-contracted curve 7 : [0,T) — K only
depends on the dimension of the manifold and the compact set K.
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