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1. Introduction

This work is devoted to the study of self-contracted curves on Riemannian manifolds M.

Definition 1.1 (Self-contracted curve). Let M be a Riemannian manifold and let dg denote its geodesic 
distance. Given an interval I = [0, T∞) with T∞ ∈ (0, ∞) ∪{∞}, a curve γ : I → M is called self-contracted, 
if for every t1 ≤ t2 ≤ t3 in I we have

dg(γ(t1), γ(t3)) ≥ dg(γ(t2), γ(t3)). (1.1)

In other words, for every τ ∈ [0, T∞) the function t �→ dg(γ(t), γ(τ)) is nonincreasing on [0, τ ].

Self-contracted curves were introduced in [3, Definition 1.2.]. The motivation of this definition comes 
from the following example.

Example 1.2. If f : Rn → R+ is a C1-smooth convex function and if γ : (0, +∞) → Rn is smooth and 
satisfies γ′(t) = −∇f

(
γ(t)
)

for all t > 0, then γ is a self-contracted curve.

Indeed, observe first that 
(
f(γ(t))

)′ = −‖∇f
(
γ(t)
)
‖2 ≤ 0, thus the function t �→ f

(
γ(t)
)

is nonincreasing. 
Therefore, since f is convex, if τ ≥ t, then

d

dt

(1
2‖γ(τ) − γ(t)‖2

)
= 〈γ(τ) − γ(t),∇f(γ(t))〉 ≤ f(γ(τ)) − f(γ(t)) ≤ 0.

This proves that the function t �→ ‖γ(t) − γ(τ)‖ is nonincreasing on [0, τ ].
One of the main interests in studying self-contracted curves lies in its applications. Rectifiability of 

self-contracted curves has been applied in different areas, including continuous and discrete dynamical 
systems, optimization and convergence of algorithms. See for example [3] and [4].

The definition of self-contractedness is purely metric: if ϕ is a nondecreasing function from an interval J
onto I, then γ ◦ ϕ is also self-contracted, so this notion does not depend on the particular parametrization 
of the oriented graph {γ(t); t ∈ I}. Self-contractedness does not require prior smoothness or continuity 
assumption on the curve as shown by the following example.

Example 1.3. Let γ : R → C defined by γ(t) = t if t ≤ −1, γ(t) = −t if −1 < t ≤ 0 and γ(t) = it if t > 0. 
The curve γ is self-contracted, is not smooth at t = 0, is discontinuous at t = −1, and moreover does not 
admit a continuous self-contracted extension, i.e. there exists no continuous self-contracted curve Γ : R → C

such that {Γ(t) : t ∈ R} ⊃ {γ(t) : t ∈ R}.

In a Euclidean setting it has been established in [4, Section 3] (and independently in [8] for continuous 
curves) that bounded self-contracted curves have finite length. In both cases the proof was based on an old 
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result of Manselli–Pucci [10] which allows to deduce that all self-contracted curves lying in a given ball have 
lengths which are uniformly bounded. Applications of this fact have been discussed in [4, Section 4], [2], [9].

The results of [9,10,3,4,8] are all heavily based on the Euclidean structure. In [7] the author establishes 
rectifiability for planar curves in the non-Euclidean case, while in [5] the authors consider (under a different 
terminology) absolutely continuous self-contracted curves in a bounded convex subset of a two-dimensional 
complete surface of constant Gaussian curvature, and provide an upper bound for the length, but in case 
of a surface of positive curvature (sphere), they made the additional assumption that the diameter of this 
subset was strictly less than π/2.

In this work we establish that any self-contracted curve in a compact set of a smooth Riemannian manifold 
has finite length. This result generalizes the results mentioned above. In particular, comparing to [5] it does 
not require any assumption on the curvature or on the dimension of the manifold. Moreover, our result 
holds in the case of discontinuous self-contracted curves.

2. Main result

2.1. Statement of the main result

Let (M, g) be a smooth complete Riemannian manifold whose geodesic distance is denoted by dg. Given 
an interval I = [0, T∞) with T∞ ∈ [0, ∞) ∪ {∞}, the length of a curve γ : I → M is defined as

�(γ) := sup
{

m−1∑
i=0

dg(γ(ti), γ(ti+1))
}
, (2.1)

where the supremum is taken over all finite increasing sequences t0 < t1 < · · · < tm that lie in the interval I. 
We say that a (possibly discontinuous) curve γ : I → M has finite length if �(γ) is finite. Any continuous 
curve γ : I → M with finite length can be reparameterized into a Lipschitz curve on [0, �(γ)] with speed of 
constant norm a.e. equal to 1. The following extends previous results by [5,4,8].

Theorem 2.1 (Main result). Let (M, g) be a smooth Riemannian manifold, K be a compact subset of M and 
γ : I → K be a self-contracted curve. Then γ has finite length.

This result cannot further extend to an infinite dimensional setting.

Example 2.2. Let γ : [1, +∞) → L2(R) given by γ(t)(s) = 1√
s

if s ∈ (t, t + 1) and 0 otherwise. It is easy to 
see that γ is a self-contracted curve, its closure is equal to {γ(t); t ∈ [1, +∞)} ∪{0} (therefore it is compact 
in L2(R)) and its length is infinite (indeed, since ‖γ(n + 1) − γ(n)‖2 =

√
ln(1 + 2/n) ≥ 1/n, the series 

(
∑

‖γ(n + 1) − γ(n)‖2) diverges).

The rest of the paper is devoted to the proof of Theorem 2.1.

2.2. Notation and sketch of the proof

The symbol M will always stand for a smooth manifold of dimension n ≥ 2 whose tangent bundle 
is denoted by TM. Elements of TM are denoted by ξ = qy = (y, q) with q ∈ TyM. Given a smooth 
Riemannian metric g, we denote the metric at x ∈ M by 〈·, ·〉x and its norm by | · |x. We sometimes omit 
x if no ambiguity arises. The geodesic distance is denoted by dg and the open geodesic ball centered at x
of radius r ≥ 0 is denoted by Bg(x, r). For every x ∈ M, we denote by expx : TxM → M the exponential 
mapping at x. We denote by B̂x the balls in TxM (with respect to the Euclidean metric in TxM). We 
denote the unit tangent bundle associated with g by UM, that is,
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UM := {ux ∈ TM : |u|x = 1} .

If K is a compact subset of M, then

UK := {ux ∈ TM : x ∈ K and |u|x = 1}

is a compact subset of UM. We consider a canonical Riemannian metric on the unit bundle, whose associated 
distance is denoted by Dg. We may assume that for every px, qy in UM it holds

Dg(px, qy) ≥ dg(x, y). (2.2)

We refer to [1,6] for prerequisites on Riemannian manifolds.
We now present the strategy of proof of the main theorem. Every self-contracted curve has left limit 

and right limit at each point. We show that if such a curve is contained in a compact subset of M, then 
the set of points of large discontinuities (i.e. the set of points where the oscillation of γ is greater than 
some fixed threshold η > 0) is finite and its cardinal depends only on K. Then we do a detailed study 
of the local behaviour of the curve around points of continuity and/or points of small discontinuity. The 
main tool here is a uniform cosine law for small triangles having one vertex in the compact K. This study 
allows us to construct an element pa ∈ UM, called almost secant, such that the curve γ grows in this 
direction around the point x = γ(τ). Finally, we consider an η-net F of UK. For ξ := qy ∈ F and for 
z ∈ M such that dg(z, y) is sufficiently small, we define the local width of γ at x = γ(τ) with respect to qy
by Wξ(τ) := diam

{
〈q, exp−1

y (γ(t))〉y : t ≥ τ, γ(t) ∈ Bg(y, 2η)
}
. Notice that τ �→ Wξ(τ) is a nonincreasing 

(Lyapunov) function. We deduce from the study of the local behaviour of γ, that if τ is not a point of 
large discontinuity and if s, t are in a neighborhood of τ and s ≤ τ ≤ t, then at least one of the Lyapunov 
functions Wξ (ξ ∈ F) satisfies Wξ(s) −Wξ(t) ≥ αdg(γ(s), γ(t)), where

α = 1
32(n + 1)2 (n = dimM). (2.3)

Since the curve γ is contained in the compact set K, all functions Wξ are bounded. This together with the 
above inequality, implies the rectifiability of γ.

2.3. Exponential map – cosine law – external functions

We introduce here a few tools from Riemannian manifolds. We first notice that for every x ∈ M, there 
exists r > 0, such that the exponential function expx is a smooth diffeomorphism between the open ball 
B̂x(0, r) of TxM onto the open geodesic ball Bg(x, r) in M. The following lemma is an easy consequence 
of the compactness of K and the smoothness of the geodesic flow.

Lemma 2.3. There exists ρ > 0 such that for every x ∈ K, expx is a smooth diffeomorphism from the ball 
B̂x(0, 2ρ) to its image Bg(x, 2ρ).

Thus, we can define, for any x ∈ K and z ∈ Bg(x, ρ),

ux(z) := exp−1
x (z)∣∣exp−1
x (z)

∣∣
x

∈ UxM (provided z �= x). (2.4)

By construction, exp−1
x (z) is the initial velocity of the geodesic θ : [0, 1] → M joining x to z, so we have ∣∣exp−1

x (z)
∣∣ = dg(x, z).
x
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Fig. 1. Cosine law in Riemannian manifolds.

Recall that if x, y, z lie in a Euclidean space, the law of cosines asserts that

‖y − z‖2 = ‖y − x‖2 + ‖z − x‖2 − 2〈y − x, z − x〉 .

The following result asserts that small geodesic triangles in a Riemannian manifold almost satisfy the 
law of cosines, see Fig. 1 for an illustration.

Lemma 2.4 (Cosine law in manifolds). There exists K > 0 such that for every x ∈ K and every y, z ∈
B(x, ρ), ∣∣d2

g(y, z) − d2
g(x, y) − d2

g(x, z) + 2〈exp−1
x (y), exp−1

x (z)〉x
∣∣ ≤ Kdg(x, y)2dg(x, z)2 . (2.5)

Proof. By Lemma 2.3, there exist t1, t2 ∈ (−ρ, ρ), v, w ∈ UxM such that y = expx(t1v) and z = expx(t2w), 
precisely t1 = dg(x, y) = |exp−1

x (y)|x and t2 = dg(x, z) = |exp−1
x (z)|x. For fixed x ∈ K and v, w ∈ UxM, we 

consider the function Φ : (−ρ, ρ)2 → R defined by

Φ(t1, t2) = dg(expx(t1v), expx(t2w))2 .

We check easily that for every t1, t2 ∈ (−ρ, ρ),

Φ(t1, 0) = t21 , Φ(0, t2) = t22 ,

and

∂Φ
∂t1

(0, t2) = −2 t2 〈v, w〉x ,
∂Φ
∂t2

(t1, 0) = −2 t1 〈v, w〉x .

Then we infer that

∂2Φ
∂t1∂t2

(0, 0) = −2 〈v, w〉x

and for every integer k ∈ {2, 3},

∂k+1Φ
∂tk1∂t2

(0, 0) = ∂k+1Φ
∂t1∂tk2

(0, 0) = 0.

The Taylor expansion formula of order 4 for the function Φ shows that there exists K > 0 (depending on 
the fourth derivative of the exponential mapping at x) such that
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∣∣Φ(t1, t2) − t21 − t22 + 2 t1 t2 〈v, w〉x
∣∣ ≤ K t21 t

2
2 , ∀ t1, t2 ∈ (−ρ, ρ).

By the definition of the exponential map, we have Φ(t1, t2) = dg(y, z)2, t1 = dg(x, y), t2 = dg(x, z), 
t1v = exp−1

x (y) and t2w = exp−1
x (z) so the above formula implies equation (2.5). The compactness of UK

shows that the constant K can be chosen independently of x, v, w. �
Remark 2.5 (Adapting the constant ρ). Let K > 0 be given by Lemma 2.4 and α > 0 be given by (2.3). We 
may always shrink ρ > 0 of Lemma 2.3 to ensure

4K ρ2 ≤ α . (2.6)

In the following result, we introduce a parameter η that will be fixed throughout the paper, and we give a 
control of the difference of the growths of the mappings z �→ 〈p, exp−1

x (z)〉x and z �→ 〈q, exp−1
y (z)〉y around 

x whenever Dg(px, qy) < η.

Lemma 2.6. Let α > 0 be given by (2.3). Then there exists η ∈ (0, ρ/4) such that for every x ∈ K, 
y ∈ Bg(x, ρ), z ∈ Bg(y, 2η) and for every px ∈ UK, qy ∈ BDg

(px, η) (Riemannian ball in the unit bundle 
UM) we have ∣∣〈q, exp−1

y (z)〉y − 〈q, exp−1
y (x)〉y − 〈p, exp−1

x (z)〉x
∣∣ ≤ αdg(x, z) .

Proof. Let us denote bpx
(z) := 〈p, exp−1

x (z)〉x and bqy(z) := 〈q, exp−1
y (z)〉y. We first claim that for every px

in UK,

∇bpx
(x) = p ∈ TxM .

Since the differential D exp−1
x (x) is the identity mapping on TxM it follows by the chain rule that Dbpx

(x) =
〈p, ·〉x. This proves the claim. Since the mapping

(qy, x) �→ Dbqy (x) = 〈q,D exp−1
y (x)(·)〉y

is continuous, we deduce easily from the compactness of K and UK and the claim that there exists η > 0
such that for all px, qy in UK satisfying Dg(px, qy) < η we have

∣∣∇bqy (x) −∇bpx
(x)
∣∣
x

=
∣∣∇bqy (x) − p

∣∣
x
<

α

2 . (2.7)

We claim now that there exists L > 0 such that for every qy ∈ UK and x, z ∈ Bg(y, ρ) it holds∣∣bqy (z) − bqy (x) − 〈∇bqy (x), exp−1
x (z)〉x

∣∣ ≤ L| exp−1
x (z)|2x .

Indeed, the mapping

(qy, x) �→ bqy (x) := 〈q, exp−1
y (x)〉y

is smooth (whenever it is well-defined, that is, dg(x, y) ≤ 2ρ). The exact Taylor expansion of order 2 for 
the function z �→ bqy (z) at the point x, together with the compactness of K and UK and a standard 
argument gives the above inequality. We now shrink η > 0 if necessary to ensure that η ≤ α/6L. Pick any 
z ∈ Bg(y, 2η) ⊂ Bg(y, ρ). It follows from (2.2) that if Dg

(
px, qy

)
< η, then dg(x, y) < η, and so dg(x, z) < 3η. 

Since | exp−1
x (z)|x = dg(x, z) < 3η ≤ α/2L the above inequality becomes
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∣∣bqy (z) − bqy (x) − 〈∇bqy (x), exp−1
x (z)〉x

∣∣ ≤ α

2 dg(x, z) . (2.8)

Equation (2.7) implies 
∣∣〈∇bqy (x) − p, exp−1

x (z)〉x
∣∣ ≤ (α/2) dg(x, z). This inequality combined with (2.8)

yields the inequality of Lemma 2.6. �
3. Geometrical description of self-contracted maps

3.1. Dealing with discontinuities

Let γ : I → M be a self-contracted curve such that γ(I) ⊂ K with K compact. The results of this 
sub-section are valid assuming only that M is a metric space. For every τ ∈ I, we denote by γ(τ−) the left 
limit of γ at τ , that is,

γ(τ−) := lim
s<τ,s→τ

γ(s).

Proposition 3.1. The above limit always exists.

Proof. Otherwise, by compactness, there would exist at least two accumulation points x1 and x2 with 
l = dg(x1, x2) > 0. Let t1 < t2 < t3 < τ be such that dg(γ(t1), x1) < l/4, dg(γ(t2), x2) < l/4 and 
dg(γ(t3), x1) < l/4. Since γ is self-contracted, we have

l/2 > dg(γ(t1), γ(t3)) ≥ dg(γ(t2), γ(t3)) > l/2

which is a contradiction. �
We denote by D− := {τ ∈ I : γ(τ) �= γ(τ−)} the set of points where γ is not left-continuous. We fix η > 0
satisfying Lemma 2.6, and we set:

(left-η-threshold) D−(η) :=
{
τ ∈ I : dg(γ(τ), γ(τ−)) ≥ η

}
. (3.1)

In the following lemma, the cardinality of a set S is denoted by |S|.

Proposition 3.2 (Cardinality of D−(η)). Let γ : I → M be a self-contracted map such that γ(I) ⊂ K. If 
N(η) is the minimal number of balls of radius η/2 that can cover K, we have∣∣D−(η)

∣∣ = ∣∣γ(D−(η))
∣∣ ≤ N(η). (3.2)

In particular, since D− =
⋃

n∈N D−(1/n), D− is at most countable.

Proof. We first claim that for any x ∈ M we have:∣∣γ(D−(η)) ∩Bg (x, η/2)
∣∣ ≤ 1.

Let τ1, τ2 ∈ D−(η) with τ1 < τ2, be such that {γ(τ1), γ(τ2)} ⊂ Bg(x, η2 ). Set xi = γ(τi) and x′
i = γ(τ−i ), 

i ∈ {1, 2}. It follows that {x1, x2} ⊂ Bg(x, η2 ) and {x′
1, x

′
2} ⊂ M \Bg(x, η2 ). The fact that γ is self-contracted 

yields the following inequalities:

η ≤ dg(x′
2, x2) ≤ dg(x1, x2) ≤ dg(x1, x) + dg(x, x2) < η .

This contradiction proves the claim.
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Fig. 2. sec−(τ) ⊆ Nexp−1
x

(ΓU (τ)) (x).

As a consequence of self-contractedness, the sets D−(η) (subset of I) and γ(D−(η)) (subset of K) have the 
same cardinality, for every η > 0. The claim yields that this cardinality is bounded by N(η). Compactness 
of K guarantees that this latter is finite. �
Remark 3.3 (Cardinality of D+(η)). Analogous results hold for right discontinuities. Let η > 0, and let us 
consider the set of points of I where γ has a large right discontinuity:

(right-η-threshold) D+(η) :=
{
τ ∈ I : dg(γ(τ), γ(τ+)) ≥ η

}
. (3.3)

Then the cardinality of the set D+(η) is bounded by N(η).

3.2. Describing backward secants

Let us fix τ ∈ (0, T∞) and let us define the set of all possible limits of backward secants at x = γ(τ) as 
follows (recall notation (2.4)):

sec−(τ) :=
{
p ∈ UxM : p = lim

sk→τ,sk<τ
ux

(
γ(sk)

)}
.

Notice that sec−(τ) �= ∅ for every τ > 0 (cf. compactness of the unit sphere).
For every τ ∈ I, we define the set Γ(τ) (tail of γ at x = γ(τ)) by

Γ(τ) :=
{
γ(t) : t ≥ τ

}
,

and, given an open neighborhood U of x = γ(τ), we define the U-truncated tail of γ at x by

ΓU (τ) := Γ(τ) ∩ U . (3.4)

The cone in TxM generated by {ux(z) : z ∈ ΓU (τ)} will be denoted Cx,U . The next result asserts that 
every backward secant at a point x = γ(τ) where the curve is left-continuous, is normal to Cx,U .

Lemma 3.4 (Backward secants). Let U be an open neighborhood of x = γ(τ) with diamU ≤ ρ. (I) If γ is 
left-continuous at τ , then (Fig. 2)

sec−(τ) ⊂ Nexp−1
x (ΓU (τ)) (x) (3.5)

that is,

〈p, ux(z)〉x ≤ 0 , for all p ∈ sec−(τ) and z ∈ ΓU (τ) \ {x}.
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Fig. 3. sec−(τ) := {ux(γ(τ−))} � Nexp−1
x

(ΓU (τ)) (x).

(II) If x �= γ(τ−) and γ(τ−) ∈ Bg(x, 2ρ) then

sec−(τ) = {ux(γ(τ−))}.

Proof. (I) Let p ∈ sec−(τ). Then for some sk ↗ τ we have

p := lim
k→∞

exp−1
x (γ(sk))

|exp−1
x (γ(sk))|x

(in TxM).

Clearly U ⊂ Bg(x, 2ρ). We may also assume that ΓU(τ) \ {x} �= ∅ (else the conclusion follows trivially) and 
{γ(sk)}k ⊂ U . Pick any z ∈ ΓU (τ) \ {x}. Applying the cosine law (2.5) we have∣∣dg(γ(sk), z)2 − dg(x, z)2 − dg(x, γ(sk))2 + 2〈exp−1

x (γ(sk)), exp−1
x (z)〉x

∣∣ ≤ Kd(x, γ(sk))2d(x, z)2.

On the other hand, since γ is self-contracted, we have

dg (γ(sk), z) ≥ dg
(
x, z
)
,

thus

−dg(x, γ(sk))2 + 2 dg(x, z) 〈exp−1
x (γ(sk)), ux(z)〉x ≤ K dg(x, γ(sk))2 dg(x, z)2.

Dividing by |exp−1
x (γ(sk))|x = dg(x, γ(sk)) and passing to the limit as k → ∞ we conclude easily.

(II) It is straightforward since x �= γ(τ−) and γ(τ−) is the limit of γ(s) as s ↗ τ . �
Remark 3.5. Notice that for τ ∈ D−, the backward secant is unique (cf. Lemma 3.4 (II)), but (3.5) may 
fail. An illustration is given in Fig. 3.

3.3. Aperture of the truncated tail

Given any subset C of the unit sphere of Rn, its aperture A(C) is defined as follows:

A(C) := inf { 〈u1, u2〉 : u1, u2 ∈ C } . (3.6)

For every y ∈ M and Γ ⊂ Bg(x, 2ρ), we define (the aperture of Γ ⊂ M at y ∈ M):

Ay(Γ) := inf
{
〈uy(z1), uy(z2)〉y : z1, z2 ∈ Γ \ {y}

}
. (3.7)

Roughly speaking, the aperture of a subset Γ of a manifold M (with respect to a point y ∈ M) intends 
to measure the size of the cone generated by the unit tangents u ∈ TyM at y corresponding to all points 
z ∈ Γ \ {y} via the mapping exp−1

y .
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The aperture will play a major role in the sequel. The set Γ will be taken to be the (truncated) tail ΓU(τ)
of the self-contracted curve γ, see (3.4), and the point y ∈ M at which the aperture is taken will be either:

(i) the point x = γ(τ) if the curve γ is continuous at τ ; or
(ii) a point x̄ lying in the minimal geodesic joining x = γ(τ) to x′ = γ(τ−), if γ is left discontinuous at τ .

3.3.1. Left-continuous case
Proposition 3.6 (Aperture of ΓU (τ) at x). Let U be any nonempty open subset of M with diamU ≤ ρ. Then 
for every τ ∈ (0, T∞) with x = γ(τ) ∈ U the following property holds:

Ax(ΓU (τ)) ≥ −α. (3.8)

Proof. Set x := γ(τ) and for i ∈ {1, 2} let zi = γ(ti) ∈ ΓU (τ) \ {x} with τ < t1 ≤ t2. Applying the law of 
cosines (2.5) we deduce

dg(z1, z2)2 − dg(x, z1)2 − dg(x, z2)2 + 2〈exp−1
x (z1), exp−1

x (z2)〉x ≥ −Kd(x, z1)2d(x, z2)2.

Self-contractedness of γ yields that dg(x, z2) ≥ dg(z1, z2), thus

2〈exp−1
x (z1), exp−1

x (z2)〉x ≥ −Kd(x, z1)2d(x, z2)2.

Dividing by |exp−1
x (z1)|x|exp−1

x (z2)|x = dg(x, z1)dg(x, z2), and then using (2.6) we obtain

〈ux(z1), ux(z2)〉x ≥ −Kρ2

2 ≥ −α/8 ≥ −α. �
Remark 3.7. The above result, in combination with forthcoming Lemma 3.14, will assert that the cone 
generated by the U-truncated tail ΓU(τ) at TxM has angle almost equal (a bit more than) π/2, for any 
open neighborhood U of x of sufficiently small diameter. This is the Riemannian analogue of [10, Section 3, 
Formula (2)] (see also [4, Fig. 1]).

3.3.2. Left-discontinuous case
Let τ ∈ D− (that is, γ is left-discontinuous at x = γ(τ)). In this case, for reasons that will become 

transparent in Section 3.4 (see also Remark 3.5), we need to consider the aperture of the truncated tail 
ΓU (τ) with respect to a different point x̄ (other than x = γ(τ)). This point will be taken on the minimal 
geodesic joining x to x′ and relatively close to x′ := γ(τ−). To define this geodesic, notice that p := ux(x′)
is the unique left secant of γ at τ (cf. Lemma 3.4 (II)), that is, the initial velocity of the unit speed geodesic 
θ : [0, dg(x, x′)] → M joining x to x′. We fix

β = α/8 (3.9)

and we denote

x̄ = θ ((1 − β) dg(x, x′)) and p̄ = θ̇ ((1 − β) dg(x, x′)) = ux̄(x′). (3.10)

Notice that the value of β which determines the exact location of the point x̄ is the same for all τ ∈
D−\D−(η).

Proposition 3.8 (Aperture of ΓU (τ) at x̄). Let τ ∈ D− and set x = γ(τ), x′ = γ(τ−) and x̄ defined by (3.10). 
Then for every open subset U of M with diamU ≤ ρ and {x, ̄x, x′} ⊂ U we have

Ax̄(ΓU (τ)) ≥ −α.
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Fig. 4. Calculating the aperture ΓU (τ) at x̄.

The proof of the above proposition will not be an easy task though. Indeed, since x̄ is not a point of γ, 
the previous argument (cf. proof of Proposition 3.6), based on self-contractedness, is no longer valid. Our 
new task will require several technical estimations (see forthcoming Lemma 3.10 and Lemma 3.11), as well 
as estimating the aperture of ΓU(τ) at the point x′ (Fig. 4) (which might not be a point of the curve, but 
belongs to its closure).

Lemma 3.9 (Aperture of ΓU (τ) at x′). Let U be an open subset of M with diamU ≤ ρ and let τ ∈ D− be 
such that both x = γ(τ) and x′ := γ(τ−) are in U . Then

Ax′(ΓU (τ)) ≥ −α/8. (3.11)

Proof. By Lemma 3.6 (and more precisely, using the estimate of the last line of its proof), the estimation 
Aγ(s)(ΓU (τ)) ≥ − α/8 holds true for all s ∈ (0, τ) point of continuity of γ sufficiently close to τ so that 
U ⊂ Bg(γ(s), ρ). Since x′ := lims↗τ γ(s) is a limit of points of continuity of γ, we conclude easily by a 
standard continuity argument. �

We now fix notations that will be used in Lemma 3.13, Lemma 3.11 and Proposition 3.12. Let τ ∈ D−

and set x = γ(τ), x′ = γ(τ−) and x̄ = θ ((1 − β) dg(x, x′)) satisfying (3.9) and (3.10). We also fix an open 
U of M with diamU < ρ and {x, ̄x, x′} ⊂ U . If z ∈ ΓU (τ), we denote:

σ := dg(x, x′), d̄ = dg(x̄, z) and d′ = dg(x′, z).

Lemma 3.10 (Technical estimations – I). For every z ∈ ΓU (τ) one has:

σ

d̄
≤ 2

1 − 2β (3.12)

and

d′

d̄
≤ 1

1 − 2β . (3.13)

Proof. Since γ is self-contracted, we have dg(x, z) ≤ dg(x′, z). Therefore

dg(x, x′) ≤ dg(x, z) + dg(x′, z) ≤ 2dg(x′, z).

It follows by (3.10) that dg(x̄, x′) = βdg(x, x′) = βσ. Thus, we deduce
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σ

2 = 1
2dg(x, x

′) ≤ dg(x′, z) ≤ dg(x̄, z) + dg(x̄, x′) = d̄ + βσ,

which yields (3.12). We now deduce from (3.12) that

d′ = dg(x′, z) ≤ dg(x′, x̄) + dg(x̄, z) ≤ βσ + d̄ ≤
(

1
1 − 2β

)
d̄.

This proves (3.13). �
Lemma 3.11 (Technical estimations – II). For every z ∈ ΓU (τ) we have

d̄2 − d′ 2 ≥ −2(βσ)2 − 2βσd̄, (3.14)

and

d̄2 − d′ 2 ≤ 2(βσ)2 + βσd′α/4. (3.15)

Proof. Let z ∈ ΓU (τ). By the law of cosines (Lemma 2.4)∣∣dg(x′, z)2 − dg(x̄, x′)2 − dg(x̄, z)2 + 2〈exp−1
x̄ (x′), exp−1

x̄ (z)〉x̄
∣∣ ≤ Kdg(x̄, x′)2dg(x̄, z)2.

Therefore, recalling that dg(x̄, x′) = βσ,

d̄2 − d′ 2 ≥ −(βσ)2
[
1 + Kdg(x̄, z)2

]
+ 2〈exp−1

x̄ (x′), exp−1
x̄ (z)〉x̄

Since x̄, z ∈ U , we have dg(x̄, z) ≤ ρ, so using (2.6), we have Kdg(x̄, z)2 ≤ 1. On the other hand, by the 
Cauchy–Schwarz inequality, we have also 〈exp−1

x̄ (x′), exp−1
x̄ (z)〉x̄ ≥ −dg(x̄, x′)dg(x̄, z). Thus (3.14) holds.

To establish (3.15), we use again the law of cosines:∣∣dg(x̄, z)2 − dg(x̄, x′)2 − dg(x′, z)2 + 2〈exp−1
x′ (x̄), exp−1

x′ (z)〉x′
∣∣ ≤ Kdg(x̄, x′)2dg(x′, z)2. (3.16)

Since x ∈ ΓU (τ) and x �= x′ we deduce by Lemma 3.9 that

〈ux′(x̄), ux′(z)〉x′ = 〈ux′(x), ux′(z)〉x′ ≥ −α/8,

hence

〈exp−1
x′ (x̄), exp−1

x′ (z)〉x′ = dg(x̄, x′)dg(x′, z)〈ux′(x), ux′(z)〉x′ ≥ −βσd′α/8 .

Combining this inequality with (3.16) and recalling that dg(x̄, x′) = βσ, we get

d̄2 − d′ 2 ≤ (1 + Kdg(x′, z)2)(βσ)2 + βσd′α/4.

Since dg(x′, z) ≤ ρ and Kρ2 ≤ 1 (cf. (2.6)) we conclude easily. �
Proof of Proposition 3.8. Since x′ /∈ ΓU (τ) we deduce by Lemma 3.9 that for every z1, z2 ∈ ΓU (τ),

〈ux′(z1), ux′(z2)〉x′ ≥ −α/8 . (3.17)

In order to simplify notation, let us set σ := dg(x, x′) and
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⎧⎪⎨⎪⎩
di := dg(x, zi)
d̄i := dg(x̄, zi)
d′i := dg(x′, zi)

for i ∈ {1, 2}.

Applying the law of cosines and setting

e := dg(z1, z2)

we obtain ∣∣e2 − d′21 − d′22 + 2 d′1 d′2 〈ux′(z1), ux′(z2)〉x′
∣∣ ≤ Kd′21 d′22 , (3.18)

and ∣∣e2 − d̄2
1 − d̄2

2 + 2d̄1d̄2〈ux̄(z1), ux̄(z2)〉x̄
∣∣ ≤ Kd̄2

1d̄
2
2. (3.19)

Combining (3.17), (3.18) and (3.19) we deduce

2d̄1d̄2〈ux̄(z1), ux̄(z2)〉x̄ ≥ −d′1d
′
2α/4 −K

(
d̄2
1d̄

2
2 + d′21 d

′2
2
)

+ d̄2
1 − d′21 + d̄2

2 − d′22 ,

thus in particular

〈ux̄(z1), ux̄(z2)〉x̄ ≥ −
(
d′1d

′
2

d̄1d̄2

)
α

8 − K

2 d̄1d̄2

(
1 +
(
d′1d

′
2

d̄1d̄2

)2
)

+ d̄2
1 − d′21
2 d̄1 d̄2

+ d̄2
2 − d′22
2 d̄1 d̄2

. (3.20)

To proceed, we need to bound the last two terms of (3.20). Applying Lemma 3.11 we obtain

d̄2
i − d′2i ≥ −2 (βσ)2 − 2 (βσ) d̄i , for i ∈ {1, 2} ,

thus, dividing by 2 d̄1d̄2 we deduce in view of (3.12) and (2.6) that

d̄2
i − d′2i
2 d̄1d̄2

≥ − 4β2

(1 − 2β)2 − 2β
1 − 2β = − 2β

(1 − 2β)2 .

Using the above estimation, together with (3.12) and (3.13), we deduce from (3.20) that

〈ux̄(z1), ux̄(z2)〉x̄ ≥ − 1
(1 − 2β)2

α

8 − K

2 ρ2
(

1 + 1
(1 − 2β)4

)
− 4β

(1 − 2β)2

≥ − α

8

(
1 + 5

(1 − 2β)2 + 1
(1 − 2β)4

)
.

Since 2β = α

4 ≤ 1
512 , we obtain 〈ux̄(z1), ux̄(z2)〉x̄ ≥ −α. �

The following result is the analogue of Lemma 3.4 (I) for the left-discontinuous case. Roughly speaking, 
the result (almost) remedies the failure illustrated in Remark 3.5 by moving the point x = γ(τ) (where γ
is left-discontinuous) to x̄ := θ ((1 − β) dg(x, x′)) (see (3.10)) and making a parallel transportation of the 
secant p := ux(x′) at x to p̄ = ux̄(x′) ∈ Tx̄M along the geodesic θ joining x to x̄.

Proposition 3.12 (Transported secant). Under the above notation and under the assumptions given before
Lemma 3.10,

〈p̄, ux̄(z)〉x̄ := 〈ux̄(x′), ux̄(z)〉x̄ < α, for all z ∈ ΓU (τ).
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Proof. Let z ∈ ΓU (τ), and recall that σ := dg(x, x′), d̄ = dg(x̄, z) and d′ = dg(x′, z). We again apply the 
law of cosines to get

d′2 − (βσ)2 − d̄2 + 2βσ d̄ 〈ux̄(x′), ux̄(z)〉x̄ ≤ K (βσ)2 d̄2. (3.21)

Notice that (3.15) yields

d̄2 − d′2

2βσ d̄
≤ βσ

d̄
+
(
d′

d̄

)
α

8 . (3.22)

Combining (3.21) with (3.22) and using (3.12) and (3.13) we deduce (recall that βσ ≤ ρ and d̄ ≤ ρ) we get

〈ux̄(x′), ux̄(z)〉x̄ ≤ K

2 ρ2 + 3βσ
2d̄

+
(
d′

d̄

)
α

8 ≤ α

8 + 3β
1 − 2β +

(
1

1 − 2β

)
α

8 .

So 〈ux̄(x′), ux̄(z)〉x̄ < 4 β + α

2 ≤ α. �
3.4. Estimations involving “almost secants”

We now show that at each point of left-continuity as well as at each point of left-discontinuity up to a 
certain discontinuity jump, a self-contracted curve grows backwards (with a uniform quantitative estimate) 
in some direction. We call this direction pa an almost secant (because it is a modification of a secant p).

Theorem 3.13 (Measuring growth using “almost secants”). Let γ : [0, T∞) → M be a self-contracted curve 
and let us fix x = γ(τ) with τ ∈ (0, T∞).

(i) If γ is continuous at τ , for every p ∈ sec−(τ), there exists pa ∈ UxM such that for every open subset 
U of M with x ∈ U and diamU ≤ ρ, and every z ∈ ΓU (τ),

〈pa, ux(z)〉x ≤ −3α and 〈pa, p〉x ≥ 4α .

(ii) If τ ∈ D−\D−(η), if we denote p̄ = ux̄(x′) the transported secant at x̄, there exists pa ∈ Ux̄M such that 
for every open subset U of M with {x, ̄x, x′} ⊂ U and diamU ≤ ρ, and every z ∈ ΓU (τ),

〈pa, ux̄(z)〉x̄ ≤ −3α and 〈pa, p̄〉x̄ ≥ 4α .

We need a separation lemma for subsets of the unit sphere of Rn with a controlled aperture.

Lemma 3.14 (Strong separation lemma). Let C be a nonempty subset of the unit sphere of Rn satisfying

A(C) ≥ −δ, (3.23)

where

δ = 1
2(n + 1) . (3.24)

Then

conv (C)
⋂

B(0, δ) = ∅ . (3.25)
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Proof of Lemma 3.14. Let us assume, towards a contradiction, that for some u ∈ conv(C) we have ||u|| < δ. 
By Caratheodory’s lemma there exist λ0, . . . , λn ∈ [0, 1] with 

∑n
i=0 λi = 1 and unit vectors u0, . . . , un ∈ C

such that ∥∥∥∥∥
n∑

i=0
λiui

∥∥∥∥∥ < δ.

Let i0 ∈ {0, . . . , n} be such that λi0 ≥ λi for any i ∈ {0, . . . , n}. Then λi0 ≥ 1/(n + 1) and by the 
Cauchy–Schwarz inequality

δ > 〈ui0 ,
n∑

i=0
λiui〉 =

n∑
i=0

λi 〈ui0 , ui〉 = λi0 +
∑
i	=i0

λi 〈ui0 , ui〉

>
1

n + 1 − δ

⎛⎝∑
i	=i0

λi

⎞⎠ >
1

n + 1 − δ = δ,

a clear contradiction. Thus the assertion holds true. �
Proof of Theorem 3.13. Both assertions follow by the same arguments and estimations. In order to present 
a common proof let us proceed to the following identification:

– If x = γ(τ) = γ(τ−), we identify the tangent space TxM equipped with the scalar product 〈·, ·〉x with 
the Euclidean space Rn.

– If x = γ(τ) �= γ(τ−), we identify the tangent space Tx̄M equipped with the scalar product 〈·, ·〉x̄ with 
the Euclidean space Rn.

In the sequel, we shall denote (in both cases) this scalar product by 〈·, ·〉. We further set

C = {ux(z) : z ∈ ΓU (τ)} (respectively C = {ux̄(z) : z ∈ ΓU (τ)}).

Since α = δ2/8 ≤ δ, Proposition 3.6 and Proposition 3.8 imply that A(C) ≥ −δ. Applying Lemma 3.14, we 
obtain that the projection of 0 to conv(C), denoted by c ∈ TxM, satisfies for every u ∈ C

||c|| ≥ δ and 〈−c, u− c〉 ≤ 0.

It follows

〈−c, u〉 ≤ −||c||2 ≤ −δ2 = −8α. (3.26)

(i) Let τ ∈ (0, T∞) \ D− and fix any backward secant p ∈ sec−(τ) ∈ TxM ≡ Rn and set

pa := p− c

||p− c|| .

By Lemma 3.4 (I) we get 〈p, u〉 ≤ 0, for all u ∈ C. Then for every u ∈ C (unit vector) in view of (3.26) we 
deduce

〈pa, u〉 = 〈p, u〉 + 〈−c, u〉
||p− c|| ≤ 0 − ||c||2

||p− c|| ≤ −8α
||p− c|| ≤ −3α,

where the fact that ||p − c|| ≤ 2 is used. Finally, if u ∈ UxM and ||p − u|| < α,
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〈pa, p〉 ≥ ||p||2 + 〈−c, p〉
||p− c|| ≥ 1 + 0

2 ≥ 4α.

(ii) Let τ ∈ D− and consider the transported secant p̄ = ux̄(x′) ∈ TxM ≡ Rn at x̄. In an analogous 
manner to the above, we set

pa := p̄− c

||p̄− c|| .

By Proposition 3.12 we get

〈p̄, u〉 ≤ α, for all u ∈ C . (3.27)

Since c ∈ C we deduce

||p̄− c||2 = ||p̄||2 + ||c||2 − 〈p̄, c〉 ≥ 1 + δ2 − α ≥ 1.

In particular

1 ≤ ||p̄− c|| ≤ 2 .

For every u ∈ C (unit vector) in view of (3.26) and (3.27) we deduce

〈pa, u〉 ≤ 〈p̄, u〉 + 〈−c, u〉
||p̄− c|| ≤ α− 8α

||p̄− c|| ≤
−7α

2 ≤ −3α.

On the other hand, if u ∈ UxM and ||p̄− u|| < α, using again (3.27), we get

〈pa, p̄〉 ≥ ||p̄||2 + 〈−c, p̄〉
||p̄− c|| ≥ 1 − α

||p̄− c|| ≥
1 − α

2 ≥ 4α.

This concludes the proof of the assertion. �
4. Proof of the main result

4.1. Width estimates via external functions

From now on, η is given by Lemma 2.6, F is a fixed finite η-net of UK, and for each ξ = qy ∈ F , 
Uξ := Bg(y, 2η). We recall that a finite subset F of UK is an η-net if F has a nonempty intersection with 
any ball (for the distance Dg) of radius η centered at a point of UK. The existence of the finite η-net F
follows from the compactness of UK.

If γ is a self-contracted map defined on [0, +∞) and if τ ∈ (0, +∞)\D−(η), we define an element ξa ∈ UK
as follows. We denote pa the almost secant given by Theorem 3.13, and we consider two cases:

• If τ is a point of left-continuity of γ, for every backward secant p ∈ sec−(τ) at x = γ(τ) we associate 
the almost secant pa ∈ UxK and we set

ξa := pax =(x, pa) . (4.1)

Notice that different secants at x might give rise to different pa ∈ UxK (therefore to different elements 
ξa ∈ UK).
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• If τ ∈ D− \ D−(η), then the backward secant p := ux(x′) at x = γ(τ) is unique. Using the notation of 
(3.10), the almost secant associated to p̄ is pa ∈ Ux̄K. We set:

ξa := pax̄ =(x̄, pa). (4.2)

The following result is crucial for our purposes. Roughly speaking it will be used to associate to each ξa, 
constructed above, an element ξ from the finite set F . In this way, instead of controlling the growth of γ by 
the infinite set of “almost secants”, we shall control this growth by the finite set of external functions.

Lemma 4.1 (Controlling the local growth of γ by external functions). Let F be a finite η-net of UK, and, 
for each ξ = qy ∈ F , let us denote Uξ := Bg(y, 2η). Then:

(I) Let τ ∈ (0, T∞) \ D− and p ∈ sec−(τ), let ξa := pax be defined as in (4.1), and let ξ ∈ F be such that 
Dg(ξa, ξ) < η. If γ(s) ∈ Uξ, |p − ux(γ(s))|x ≤ α and z ∈ ΓUξ

(τ), then:

〈q, exp−1
y (γ(s))〉y ≥ 〈q, exp−1

y (z)〉y + 2αdg(γ(s), z). (4.3)

(II) Let τ ∈ D−�D−(η), let ξa := pax̄ be defined by (4.2), and let ξ ∈ F be such that Dg(ξa, ξ) < η. If 
γ(s) ∈ Uξ, |p̄− ux̄(γ(s))|x̄ ≤ α and z ∈ ΓUξ

(τ), then:

〈q, exp−1
y (γ(s))〉y ≥ 〈q, exp−1

y (z)〉y + 2αdg(γ(s), z). (4.4)

Proof. Recall that ρ satisfies (2.6) and that η ∈ (0, ρ/4) is given by Lemma 2.6, so diam(Uξ) < ρ.
We shall first consider the case τ ∈ (0, T∞) \ D−. We fix p ∈ sec−(τ) and set ξa := pax. Let ξ =

qy ∈ BDg
(ξa, η). We know from Theorem 3.13 (i) that for all z ∈ ΓUξ

(τ) \ {x}, 〈pa, ux(z)〉x ≤ −3α and 
〈pa, p〉x ≥ 4α. If γ(s) ∈ Uξ and |p − ux(γ(s))|x ≤ α, we obtain from Lemma 2.6:

〈q, exp−1
y (γ(s))〉y − 〈q, exp−1

y (x)〉y ≥ (〈pa, ux(γ(s))〉x − α) dg(x, γ(s))

≥ (〈pa, p〉x − 2α) dg(x, γ(s)) ≥ 2αdg(x, γ(s)).

On the other hand, if z ∈ ΓUξ
(τ), we deduce from Lemma 2.6 that

〈q, exp−1
y (x)〉y − 〈q, exp−1

y (z)〉y ≥ (−〈pa, ux(z)〉x − α) dg(x, z) ≥ 2αdg(x, z).

Summing up these two inequalities, we obtain (4.3).
The case τ ∈ D−�D−(η) is treated similarly. Theorem 3.13 (ii) gives that for all z ∈ ΓUξ

(τ) \ {x}, 
〈pa, ux̄(z)〉x̄ ≤ −3α and 〈pa, p̄〉x̄ ≥ 4α. If γ(s) ∈ Uξ and |p̄− ux̄(γ(s))|x̄ ≤ α, Lemma 2.6 gives:

〈q, exp−1
y (γ(s))〉y − 〈q, exp−1

y (x)〉y ≥ (〈pa, ux̄(γ(s))〉x̄ − α) dg(x, γ(s))

≥ (〈pa, p̄〉x̄ − 2α) dg(x, γ(s)) ≥ 2αdg(x, γ(s)).

On the other hand, if z ∈ ΓUξ
(τ), Lemma 2.6 implies that

〈q, exp−1
y (x)〉y − 〈q, exp−1

y (z)〉y ≥ (−〈pa, ux̄(z)〉x̄ − α) dg(x, z) ≥ 2αdg(x, z).

Summing up these two inequalities, we obtain (4.4). �
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For each ξ ∈ F , we define the local width of γ at x = γ(τ) with respect to ξ as follows:

Wξ(τ) := diam
{
〈q, exp−1

y (z)〉y : z ∈ ΓUξ
(τ)
}
, (4.5)

using the convention that diam ∅ = 0. We are now ready to establish our fundamental result, which states 
that the growth of the length of a self-contracted curve is locally controlled by the decay of one of the 
functions Wξ.

Theorem 4.2. Let γ : [0, T∞) → M be a self-contracted map such that its range is included in the compact K, 
let F be a finite η-net of UK, and, for each ξ = qy ∈ F , let us denote Uξ := Bg(y, 2η). Let τ ∈ (0, T∞) \(
D−(η) ∪D+(η)

)
. There exists δ > 0 such that, for all s, t satisfying τ − δ < s < τ < t < τ + δ, there exists 

ξ ∈ F such that:

Wξ(s) −Wξ(t) ≥ αdg(γ(s), γ(t)) . (4.6)

Proof. (i). Let τ ∈ (0, T∞) \ D− (point of left-continuity) and set x = γ(τ). Since sec−(τ) is the set of 
accumulation points of the subset {ux(γ(s))} of UxM as s ↗ τ , and since UxM is compact, there exists 
δ > 0 such that for every s ∈ (τ − δ, τ), there exists ps ∈ sec−(τ) such that |ps − ux(γ(s))|x < α. Applying 
Lemma 4.1 (for x = γ(τ) and ps ∈ sec−(τ)) we get that for all s ∈ (τ − δ, τ), there exists ξ ∈ F such that:

∀z ∈ ΓUξ
(τ) 〈q, exp−1

y (γ(s))〉y − 〈q, exp−1
y (z)〉y ≥ 2αdg(γ(s), z). (4.7)

(ii). Let us now assume τ ∈ D− \ D−(η), set x = γ(τ), x′ = γ(τ−) and x̄ := θ ((1 − β) dg(x, x′)). Since 
p̄ := ux̄(x′) and x′ = lims↗τ γ(s), there exists δ > 0 such that if s ∈ (τ − δ, τ), then |p̄− ux̄(γ(s))|x̄ < α. In 
this case, Lemma 4.1 yields that, there exists ξ ∈ F such that for all s ∈ (τ − δ, τ),

∀z ∈ ΓUξ
(τ) 〈q, exp−1

y (γ(s))〉y − 〈q, exp−1
y (z)〉y ≥ 2αdg(γ(s), z). (4.8)

Let us finally assume (in both cases (i) and (ii)) that τ /∈ D+(η), that is, dg(γ(τ), γ(τ+)) < η. Shrinking 
if necessary δ, we can assume that for all t ∈ (τ, τ +δ), we have dg(γ(τ), γ(t)) < η. This implies dg(y, γ(t)) ≤
dg(y, γ(τ)) + dg(γ(τ), γ(t)) < 2η and so γ(t) ∈ Uξ and ΓUξ

(t) �= ∅. The first inequality below follows from 
(4.7) and (4.8) and the fact that ΓUξ

(t) is included in ΓUξ
(τ) whenever t > τ , while the second one comes 

from the triangle inequality and the fact that γ is self-contracted. For all s ∈ (τ − δ, τ), there exists ξ ∈ F
such that, for all t ∈ (τ, τ + δ) and for all z ∈ ΓUξ

(t):

〈q, exp−1
y (γ(s))〉y − 〈q, exp−1

y (z)〉y ≥ 2αdg(γ(s), z) ≥ αdg(γ(s), γ(t)).

Hence Wξ(s) ≥ Wξ(t) + αdg(γ(s), γ(t)). �
4.2. Proof of finite length

Let F ⊂ UK be the finite η-net defined in the previous section. Then for any ξ = qy ∈ F , the function 
z �→ 〈q, exp−1

y (z)〉y is well defined on

Uξ := Bg(y, 2η) ⊂ Bg(y, 2ρ).

We recall that Wξ(τ) := diam
{
〈q, exp−1

y (z)〉y : z ∈ ΓUξ
(τ)
}
. Notice that for τ1 ≤ τ2 we have ΓUξ

(τ2) ⊂
ΓUξ

(τ1), therefore Wξ(τ2) ≤ Wξ(τ1). In other words, the function τ �−→ Wξ(τ) is nonincreasing on [0, T∞)
for every ξ ∈ F . Let us now consider the (decreasing) aggregate function
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WF (τ) :=
∑
ξ∈F

Wξ(τ).

The following result holds.

Proposition 4.3. Let [a, b] ⊂ (0, T∞)� (D−(η) ∪ D+(η)). Then for every partition

a = t0 < t1 < . . . < tm = b

of [a, b],

m∑
j=1

dg(γ(ti−1), γ(ti)) ≤
1
α

(WF (a) −WF (b)) . (4.9)

Proof. If τ /∈ D−(η) ∪ D+(η) and x = γ(τ), Theorem 4.2 tells us that there exists δτ > 0 such that 
(τ − δτ , τ + δτ ) ∩ (D−(η) ∪ D+(η)) is empty and for all s, t ∈ (τ − δτ , τ + δτ ) with s ≤ τ ≤ t, there exists 
ξ ∈ F satisfying Wξ(s) ≥ Wξ(t) + α dg(γ(s), γ(t)). We deduce easily from the definition of WF that:

WF (s) −WF (t) ≥ αdg(γ(s), γ(t)) . (4.10)

Using a standard compactness argument, for every fixed i ∈ {1, . . . , m}, there exists a subdivision {si,j}jij=0
of [ti−1, ti] such that (4.10) is true for s = si,j−1 and t = ti,j . Summing up these inequalities for all j and 
using the triangular inequality, we obtain that (4.10) is true for s = ti−1 and t = ti. Summing up these 
inequalities for all i we obtain (4.9). �

We are now ready to conclude the proof of Theorem 2.1 (Main result).

Proof of Theorem 2.1. Let γ : [0, T∞) → M be a self-contracted curve. Set N := D−(η) ∪D+(η) and denote 
by |N | its cardinality. Fix T < T∞ and denote by γT the restriction of γ to the compact interval [0, T ]. We 
shall prove that γT is rectifiable and its length is bounded by WF(0) + |N | Σ, where Σ is a strict upper 
bound for the maximal left or right jump of γ, that is,

Σ > max
{

max
σ∈D̂

dg(γ(σ), γ(σ−)) , max
σ∈D+(η)

dg(γ(σ), γ(σ+))
}
.

By Proposition 3.2, N is finite (and the right and left limits exist at every point), so there exists δ′ > 0
such that for any σ ∈ N and any s, t ∈ (σ − δ′, σ + δ′) with s ≤ σ ≤ t it holds

dg(γ(s), γ(t)) < Σ . (4.11)

Notice that the compact set [0, T ] \
⋃

σ∈N (σ − δ′, σ + δ′) is a finite union of intervals [ai, bi], for each of 
which Proposition 4.3 applies. We deduce easily that

�(γT ) ≤ 1
α
WF (0) + |N |Σ .

Since the above bound is independent of T , passing to the limit as T → +∞ we obtain that the length of 
γ is bounded by the same constant. �
Remark 4.4. Proposition 3.2 tells us that |N | ≤ |D−(η)| + |D+(η)| ≤ 2N(η), where N(η) is the min-
imal number of balls of radius η/2 that can cover K. On the other hand, for every ξ ∈ F , Wξ(0) ≤
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sup{|exp−1
y (z1) − exp−1

y (z2)|y; z1, z2 ∈ Uξ} ≤ 4η, so WF (0) ≤ 4η|F|. Finally, Σ ≤ 2diam(K). Therefore, the 
above proof shows that the upper bound for the length of any self-contracted curve γ : [0, T∞) → K only 
depends on the dimension of the manifold and the compact set K.

References

[1] W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edition, Pure Appl. Math., 
vol. 120, Academic Press, 1986.

[2] A. Daniilidis, D. Drusvyatskiy, A.S. Lewis, Orbits of geometric descent, Canad. Math. Bull. 58 (2015) 44–50.
[3] A. Daniilidis, O. Ley, S. Sabourau, Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex 

functions, J. Math. Pures Appl. 94 (2010) 183–199.
[4] G. David, A. Daniilidis, E. Durand-Cartagena, A. Lemenant, Rectifiability of self-contracted curves in the euclidean space 

and applications, J. Geom. Anal. 25 (2015) 1211–1239.
[5] C. Giannotti, A. Spiro, Steepest descent curves of convex functions on surfaces of constant curvature, Israel J. Math. 191 

(2012) 279–306.
[6] J. Lee, Manifolds and Differential Geometry, Grad. Stud. Math., vol. 107, American Mathematical Society, Providence, 

RI, 2009.
[7] A. Lemenant, Rectifiability of non Euclidean planar self-contracted curves, Confluentes Math. 8 (2017) 23–38.
[8] M. Longinetti, P. Manselli, A. Venturi, On steepest descent curves for quasiconvex families in Rn, Math. Nachr. 288 (2015) 

420–442.
[9] P. Manselli, C. Pucci, Uniqueness results for evolutes and self-evolvents, Boll. Unione Mat. Ital. A 5 (1991) 373–379.

[10] P. Manselli, C. Pucci, Maximum length of steepest descent curves for quasi-convex functions, Geom. Dedicata 38 (1991) 
211–227.

http://refhub.elsevier.com/S0022-247X(17)30365-7/bib426F6F74686279s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib426F6F74686279s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib43424Ds1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib444C53s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib444C53s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib4444444Cs1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib4444444Cs1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib475332303132s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib475332303132s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib4C6565s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib4C6565s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib4C32303136s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib6974616C69656E73s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib6974616C69656E73s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib4D503139393161s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib4D5031393931s1
http://refhub.elsevier.com/S0022-247X(17)30365-7/bib4D5031393931s1

	Self-contracted curves in Riemannian manifolds
	1 Introduction
	2 Main result
	2.1 Statement of the main result
	2.2 Notation and sketch of the proof
	2.3 Exponential map - cosine law - external functions

	3 Geometrical description of self-contracted maps
	3.1 Dealing with discontinuities
	3.2 Describing backward secants
	3.3 Aperture of the truncated tail
	3.3.1 Left-continuous case
	3.3.2 Left-discontinuous case

	3.4 Estimations involving "almost secants"

	4 Proof of the main result
	4.1 Width estimates via external functions
	4.2 Proof of ﬁnite length

	References


