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a b s t r a c t

We consider a generalisation of the classical Ramsey theory setting to a setting where each
of the edges of the underlying host graph is coloured with a set of colours (instead of just
one colour). We give bounds for monochromatic tree covers in this setting, both for an
underlying complete graph, and an underlying complete bipartite graph. We also discuss a
generalisation of Ramsey numbers to our setting and propose some other new directions.

Our results for tree covers in complete graphs imply that a stronger version of Ryser’s
conjecture holds for k-intersecting r-partite r-uniform hypergraphs: they have a transver-
sal of size at most r − k. (Similar results have been obtained by Király et al., see below.)
However, we also show that the bound r − k is not best possible in general.

© 2017 The Author(s). Published by Elsevier B.V.

1. Introduction

1.1. Set-colourings

We consider complete (and complete bipartite) graphs Gwhose edges are each coloured with a set of k colours, chosen
among r colours in total. That is, we consider functions ϕ : E(G) →

(
[r]
k

)
, where

(
[r]
k

)
is the set of k-element subsets of

[r] := {1, 2, . . . , r}. We call any such ϕ an (r, k)-colouring (so, the usually considered r-colourings for Ramsey problems are
(r, 1)-colourings). Colourings of this type, and related concepts, appeared in [20], and in [2,3,14], respectively. We consider
Ramsey-type problems for (r, k)-coloured host graphs.

1.2. Tree covers in complete graphs

The first problem we consider is the tree covering problem. In the traditional setting [8,10,13], one is interested in
the minimum number tcr (Kn) such that each r-colouring of E(Kn) admits a cover with tcr (Kn) monochromatic trees (not
necessarily of the same colour). The following conjecture has been put forward by Gyárfás:

Conjecture 1.1 (Gyárfás [10]). For all n ≥ 1, we have tcr (Kn) ≤ r − 1.

Note that this conjecture becomes trivial if we replace r−1with r , as for any colouring, allmonochromatic stars centred at
any fixed vertex coverKn. Also, the conjecture is tightwhen r−1 is a primepower, aswewill show in Section 2. Conjecture 1.1
holds for r ≤ 5, due to results fromDuchet [7] and Gyárfás [10], through a connection to Ryser’s conjecture. We shall discuss
this connection at the end of the introduction.
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In our setting, for a given graph G we define the tree cover number tcr,k(G) as the minimum number m such that each
(r, k)-colouring of E(G) admits a cover with m monochromatic trees. In this context, a monochromatic tree in G is a tree
T ⊆ G such that there is a colour i which, for each e ∈ E(T ), belongs to the set of colours assigned to e.

Note that deleting k − 1 fixed colours from all edges, and, if necessary, deleting some more colours from some of the
edges, we can produce an (r − k + 1)-colouring from any given (r, k)-colouring. So, Conjecture 1.1, if true, implies that
tcr,k(Kn) ≤ r − k.

Conjecture 1.2. For all n ≥ 1 and r > k ≥ 1, we have tcr,k(Kn) ≤ r − k.

Clearly, the bound fromConjecture 1.2 is tight for k = r−1, and it is also tight for k = r−2, as a consequence of Lemma2.7
(see Section 2). In [18], Király proved this bound for k > r/2. Lemmas 5.3 and 5.4 confirm the bound from Conjecture 1.2 for
k ≥ r/2−1. After the original version of the present paper was submitted, Király and Tóthmérész [19] confirmed the bound
for k > r/4.

But in general, the bound r − k is not tight. The smallest example (in terms of r and k) corresponds to r = 5 and k = 2,
and will be discussed in Section 5.

Theorem 1.3. For all n ≥ 4, we have tc5,2(Kn) = 2.

1.3. Tree covers in complete bipartite graphs

Tree coverings have also been studied for complete bipartite graphs Kn,m. Chen, Fujita, Gyárfás, Lehel and Tóth [4]
proposed the following conjecture.

Conjecture 1.4 ([4]). If r > 1 then tcr,1(Kn,m) ≤ 2r − 2, for all n,m ≥ 1.

Notice that Conjecture 1.4 is equivalent to the same statement with n = m, since adding copies of some vertex in the
smaller part does not modify the tree cover number. It is shown in [4] that Conjecture 1.4 is tight; that it is true for r ≤ 5;
and that tcr,1(Kn,m) ≤ 2r − 1 for all r, n,m ≥ 1. Thus, in our setting, we can use the argument from above, deleting k − 1
fixed colours, to see that tcr,k(Kn,m) ≤ 2r − 2k + 1 (see Section 2 for details). But we can do better than this:

Theorem 1.5. For all r, k, n,m,

tcr,k(Kn,m) ≤

{r − k + 1, if k ≥ r/2
2r − 3k + 1, if r/2 > k ≥ 2r/5
2r − 3k + 2, otherwise.

For the case k ≥ r/2, our bound is sharp for large graphs:

Theorem 1.6. For each r, k with r > k there is m0 such that if n ≥ m ≥ m0 then tcr,k(Kn,m) ≥ max{r − k+ 1, r − k+⌊
r
k⌋− 1}.

Theorems 1.5 and 1.6 will be proved in Sections 3 and 4, respectively.

1.4. Set-Ramsey numbers

Classical Ramsey problems naturally extend to (r, k)-colourings. Define the set-Ramsey number rr,k(H) of a graphH as the
smallest n such that every (r, k)-colouring of Kn contains a monochromatic copy of H . (As above, a monochromatic subgraph
H of G is a subgraphH ⊆ G such that there is a colour i that appears on each e ∈ E(H).) So the usual r-colour Ramsey number
of H equals rr,1(H). Note that rr,k(H) is increasing in r if H and k are fixed, and decreasing in k if H and r are fixed.

There is a connection between the set-Ramsey number rr,k(H) and another Ramsey-type concept, which was introduced
by Erdős, Hajnal and Rado in [9]. Let fr (H) be the smallest number n such that every r-colouring of the edges of Kn contains
a copy of H whose edges use at most r − 1 colours. Note that each (r, r − 1)-colouring ϕ of Kn corresponds to an r-colouring
ϕ′ of Kn, by giving each edge the colour it does not have in ϕ. Moreover, observe that ϕ contains a monochromatic copy of H
if and only if ϕ′ contains a copy of H that uses at most r − 1 colours. So rr,r−1(H) = fr (H).

Alon, Erdős, Gunderson and Molloy [1] study the asymptotic behaviour of fr (Kn). See also [12] for related results. Chung
and Liu [5], and Xu et al. [20], study f3(Kt ) = r3,2(Kt ) for small n.

We determine r4,2(K3) in Corollary 6.3. This makes use of lower bounds for rr,k(Cℓ) for cycles Cℓ of odd length ℓ given in
Theorem 6.2 (another bound is given in Proposition 7.4).

We also determine forwhich values of r, k, t wehave rr,k(Kt ) = t and give upper bounds for rr,k(Kt ) using Turán’s theorem
(see Proposition 6.1 and the discussion before the proposition). All of these results can be found in Section 6.
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1.5. Other directions

In Section 7, we summarise all open problems regarding the topics discussed so far (tree covers in complete and complete
bipartite graphs for set-colourings, and set-Ramsey numbers for complete graphs and for cycles). Furthermore, we propose
several new directions that could be studied for set-colourings. Those are tree partition problems, path partition problems,
and cycle partition problems. We also include some basic observations. In particular, and perhaps unexpectedly, the cycle
partition number for (3, 2)-coloured complete graphs turns out to be 2 (see Section 7.3 for a definition of this number).

1.6. Tree covers and Ryser’s conjecture

Finally, let us explain the connection between Conjecture 1.1 and Ryser’s conjecture [15]. The latter conjecture states that
τ (H) ≤ (r − 1)ν(H) for each r-partite r-uniform hypergraph H with r > 1, where τ (H) is the size of a smallest transversal
(vertex set intersecting every edge) of H, and ν(H) is the size of a largest matching in H.

Now, each r-partite r-uniform hypergraph H gives rise to a graph G on vertex set E(H), whose edges are coloured with
subsets of colours in [r]: If hyperedges v, w of H intersect, say in partition classes i1, . . . , iℓ, then the edge vw of G carries
all colours i1, . . . , iℓ, and if hyperedges v, w do not intersect, then vw is not an edge of G. Note that all monochromatic
components ofG are complete.Moreover, this is a 1-to-1 correspondence, aswe can also construct fromany graphG coloured
in this way a unique (up to isomorphism) r-partite r-uniform hypergraph H. It is easy to observe that τ (H) equals the
minimum number of monochromatic trees covering V (G).

Because of this correspondence, Conjecture 1.1 is equivalent to Ryser’s conjecture for intersecting hypergraphs (those
with ν(H) = 1). Namely, for these hypergraphs, every two hyperedges intersect, and thus G is complete. From the given set-
colouring, we can get to an r-colouring by simply deleting colours on some of the edges (note that it does not matter if this
disconnects some of the monochromatic components), and thus, Conjecture 1.1 implies Ryser’s conjecture for intersecting
hypergraphs. For the other direction, given an r-colouring of Kn, we can add colours on some of the edges, making the
monochromatic components complete. Note that this does not affect the sizes of themonochromatic components. So, Ryser’s
conjecture for intersecting hypergraphs implies Conjecture 1.1.

2. r-colourings and (r, k)-colourings

This section contains several easy bounds on tree cover numbers for (r, k)-colourings, often in terms of bounds on tree
cover numbers for r-colourings. We start with the trick mentioned in the introduction.

Lemma 2.1. For every graph G, if there exists f (r) such that tcr,1(G) ≤ f (r), then tcr,k(G) ≤ f (r − k + 1).

Proof. Given any (r, k)-colouring ϕ of G, we can construct an edge-colouring ϕ′ of G by arbitrarily fixing k − 1 colours,
deleting them from every edge of G, and, if necessary, deleting some more colours from the edges until we are left with a
(r − k + 1)-colouring. Each monochromatic component of ϕ′ is contained in a monochromatic component of ϕ. □

So, the trivial upper bound tcr,1(Kn) ≤ r implies that tcr,k(G) ≤ r − k + 1, and this bound drops to r − k if Conjecture 1.1
is true. Similarly, Conjecture 1.4, if true, or the above mentioned bound of 2r − 1 from [4], combined with Lemma 2.1, yield
bounds for tcr,k(Kn,m), which, however, are improved by our Theorem 1.5.

For the following lemma, notice that in an (r, k)-coloured graph, every set of r − k + 1 colours from [r] contains at least
one colour from each edge.

Lemma 2.2. Let ϕ be an (r, k)-colouring of K1,n, and let C ⊆ [r] with |C| = r − k + 1. Then we can cover the vertices of K1,n by
r − k + 1 monochromatic stars, each using a different colour from C.

An easy lower bound on tcr,k(G) can be obtained by splitting colours.

Lemma 2.3. If there exists a function f (r) such that tcr,1(G) ≥ f (r), then tcr,k(G) ≥ f (⌊r/k⌋).

Proof. It is enough to observe that, with no effect on the number of monochromatic components needed to cover G, we can
modify any r-colouring of G to an (rk, k)-colouring by replacing each colour with a set of k new colours. □

Let us now see how a given (r, k)-colouring of a graph can be extended to a larger graph, without affecting the tree cover
number. To this end, for an (r, k)-colouring ϕ of a graph G we define tc(G, ϕ) as the minimum number of monochromatic
trees induced by ϕ needed to cover the vertices of G.

Lemma 2.4. Let ϕ be an (r, k)-colouring of Kn,m. Then for all n′
≥ n, m′

≥ m there is an (r, k) -colouring ϕ′ of Kn′,m′ such that
tc(Kn′,m′ , ϕ′) = tc(Kn,m, ϕ).
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Proof. Duplicate any vertex x, together with its incident edges and their colours, to obtain an (r, k)-colouring of Kn+1,m (or of
Kn,m+1). Since all monochromatic components have stayed the same, modulo a possible duplication of x, the new colouring
of Kn+1,m (or of Kn,m+1) cannot be covered with fewer than tc(Kn,m, ϕ) monochromatic trees. By applying induction, we are
done. □

In the same way, we obtain the analogous statement for the complete graph (the edge between the two copies of x can
receive any set of colours).

Lemma 2.5. Let ϕ be an (r, k)-colouring of Kn. Then for each n′
≥ n there is an (r, k)-colouring ϕ′ of Kn′ such that tc(Kn′ , ϕ′) =

tc(Kn, ϕ).

It is well known that Ryser’s conjecture, if true, is tight for infinitely many values of r . Namely1 , if r −1 is a prime power,
then K(r−1)2 has an r-colouring ϕ with tc(K(r−1)2 , ϕ) ≥ r − 1. So, using Lemmas 2.3 and 2.5 we get the following:

Lemma 2.6. Let r ≥ k with r − 1 a prime power, and let n ≥ (r − 1)2. Then there is an (r, k)-colouring ϕ of Kn with
tc(Kn, ϕ) ≥ ⌊r/k⌋ − 1.

We close this section with another consequence of Lemma 2.5.

Lemma 2.7. For every r ≥ 3 and n ≥ r, we have that tcr,r−2(Kn) ≥ 2.

Proof. Define an (r, r − 2)-colouring of Kr (on vertices v1, . . . , vr ) by assigning vivj colours [r] \ {i, j}. Then no colour is
connected. By Lemma 2.5, we are done. □

3. Upper bounds for complete bipartite graphs

In this section we prove Theorem 1.5. We split the proof into two parts, covered by the following two lemmas.

Lemma 3.1. For all n,m, we have that tcr,k(Kn,m) ≤ r − k + 1, if k ≥ r/2, and tcr,k(Kn,m) ≤ 2r − 3k + 2 otherwise.

Lemma 3.2. If r/2 > k ≥ 2r/5, then tcr,k(Kn,m) ≤ 2r − 3k + 1 for all n,m.

We first prove the easier Lemma 3.1.

Proof of Lemma 3.1. Let ϕ be an (r, k)-colouring of Kn,m and fix an edge vw ∈ E(Kn,m). By Lemma 2.2, we can cover Kn,m
using r − k + 1 stars centred at v and r − k + 1 stars centred at w. Since we can choose the same r − k + 1 colours for both
sets of stars, the edge vw, which has k colours, connects min{k, r − k + 1} of the stars.

This bounds tcr,k(Kn,m) by 2r − 3k + 2 in the case that k ≤ r − k + 1, and if r < 2k − 1, we get a bound of r − k + 1.
For the case r = 2k, let U be the set of vertices not covered by the k components in colours ϕ(vw) containing the edge vw.

Since ϕ(ux) = [r]\ϕ(vw) for every u ∈ U and x ∈ {u, v}, we can cover the vertices of U with at most two stars Sv, Sw centred
at v and w, respectively, by using any colour in [r] \ ϕ(vw). If there is an edge in the complete bipartite graph induced by
U with a colour c ∈ [r] \ ϕ(vw), then Sv and Sw are connected and we can cover all the vertices with k + 1 = r − k + 1
monochromatic trees. If not, then every edge induced by U is coloured by ϕ(vw) so we can choose any of these colours to
cover U with just one monochromatic component, obtaining k + 1 = r − k + 1 monochromatic components covering the
vertices of Kn,m as well. □

We now turn to the less straightforward proof of Lemma 3.2. We need two preliminary lemmas.

Lemma 3.3. Suppose k < r/2 and let an (r, k)-colouring of Kn,m be given. If there is a vertex v and a set C of k colours such that
no edge incident with v has exactly the colours of C, then there is a set C′ of k colours such that

(a) no edge incident with v has exactly the colours of C′, and
(b) there is an edge incident with v that has no colour of C′.

Proof. Let v be as in the lemma. Let Ev be the set of edges incident with v. Assume there is no set C′ as required for the
lemma. Then, we use induction to prove that for all i = 0, 1, . . . , k it holds that no edge in Ev has exactly i colours from C.

Note that the base case i = 0 of our induction follows from the assumption that C is not the desired set C′. So assume the
assertion holds for i− 1, our aim is to show that it also holds for i. If the assertion does not hold for i, then there is an edge ei
that has exactly i colours from C. Let Ci be the set of all colours not on ei. Let C′

i be a k-subset of Ci that has exactly i elements

1 The construction is as follows. Consider the complete graph Kn on the point set of an affine plane of order r − 1 (with r − 1 a prime power). Colour uv
with colour i if the ith partition is the unique partition Pu,v which has a block covering both u and v. As each monochromatic component of Kn corresponds
to a block of the affine plane, and thus has r − 1 = n/(r − 1) vertices, we need at least r − 1 monochromatic trees to cover V (Kn).
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from [r] \ C (such a subset exists, since r ≥ 2k and i ≤ k). Since we assume that C′

i is not the desired set C′, it follows that
there is an edge e′

i in Ev that has exactly the colours in C′

i .
Let C′′

i be a k-set of colours not on e′

i such that C′′

i has exactly i− 1 elements from C (such a subset exists, since r > 2k and
i ≤ k). Since we assume that C′′

i is not the desired set C′, it follows that there is an edge in Ev that has exactly the colours in
C′′

i . But such an edge cannot exist, since we assume the inductive assertion to hold for i−1. This finishes the inductive proof.
Now, observe that since C is not as desired, no edge in Ev has colours that form a subset of [r]\C. Moreover, as we showed

above, no edge in Ev has k or fewer colours from C. This implies that Ev has no edges at all, a contradiction. □

Lemma 3.4. Suppose k < r/2 and let an (r, k)-colouring ϕ of Kn,m be given. If there is a vertex v and a set C of k colours such
that no edge incident with v has exactly the colours of C, then tc(Kn,m, ϕ) ≤ 2r − 3k + 1.

Proof. Apply Lemma 3.3, for simplicity, let us call the obtained set C′ still C. Let vw be the edge given by Lemma 3.3(b). We
now proceed similarly to the proof of Lemma 3.1, the only difference being that now we only take r − k stars at vertex v
(instead of taking r − k + 1 as in the proof of Lemma 3.1). The colours we choose for the stars at v are exactly the colours
not in C. For the stars at w, we choose the same colours, plus one more colour, arbitrarily chosen from C. Note that since vw
has no colours from C, it can be used to connect k pairs of stars. Hence we obtain a cover with 2r − 3k + 1 monochromatic
trees, as desired. □

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. Let A, B be the bipartition classes of Kn,m, and fix an edge vw ∈ E(Kn,m) with v ∈ A and w ∈ B. Let C0
be the set of vertices covered by the union of the k monochromatic components that contain the edge vw.

If A′
:= A \ C0 is empty, then consider the star with centre v and leaves B \ C0, with its inherited (r − k, k)-colouring.

By Lemma 2.2, this star can be covered with at most r − 2k + 1 monochromatic stars. Thus, we can cover all of Kn,m using
k + (r − 2k + 1) = r − k + 1 < 2r − 3k + 1 monochromatic components in total. So assume A′

̸= ∅, and by symmetry, also
B′

:= B \ C0 ̸= ∅.
We claim that there is an edge v′w′ with v′

∈ A′, w′
∈ B′ such that

|ϕ(v′w′) \ ϕ(vw)| ≥ 2(r − 2k). (1)

For the proof of (1), start by choosing any vertex v′
∈ A′. Observe that by Lemma 3.4, v′ is incident with an edge v′x that has

exactly colours ϕ(vw). Since v′
̸∈ C0, we know that x ̸∈ C0, and thus x ∈ B′. Take a subset of 2(r − 2k) colours of ϕ(vw) (note

that 2(r − 2k) ≤ k since r ≤ 5k/2), and consider the corresponding monochromatic components that contain v′x. If these
components cover all of A′

∪ B′, then we have found the desired cover of size k + 2(r − 2k) < 2r − 3k + 1. So assuming the
contrary, there is a vertex w′

∈ B′ not covered by these components. Then v′w′ avoids the 2(r − 2k) colours of ϕ(vw) we
chose above. Hence, v′w′ has 2(r − 2k) colours that are not from ϕ(vw), which is as desired for (1).

So, let v′w′ be as in (1), choose a set Cv′w′ of 2(r − 2k) colours from ϕ(v′w′), and let C1 be the set of vertices covered by
the union of the 2(r − 2k) monochromatic components in these colours that contain the edge v′w′. Let C̄ = C0 ∪ C1. Since
k + 2(r − 2k) = 2r − 3k, we can assume that (A ∪ B) \ C̄ is non empty.

By symmetry, assume A′′
:= A\ C̄ ̸= ∅, and let v′′

∈ A′′. Since v′′
̸∈ C1, each colour from Cv′w′ can appear on at most one of

the edges v′′w, v′w. Moreover, since v′, v′′
̸∈ C0, no colour fromϕ(vw) appears on the edges v′′w, v′w. So, as each of the edges

v′′w, v′w has k colours, there are at least 2k − 2(r − 2k) = 6k − 2r appearances of some colour of C := [r] \ (ϕ(vw) ∪ Cv′w′ )
on the edges v′′w, v′w. As |C| = 3k − r , all colours of C have to appear on both edges v′′w, v′w.

In particular, we obtain that all of A′′ can be covered with a single star. Hence we may from now on assume that also
B′′

:= B \ C̄ ̸= ∅ (as otherwise we are done). Note that by a symmetric argument to the one given above, also for each
w′′

∈ B′′ all colours of C appear on both edges vw′′, vw′.
Noting that v′′ was chosen arbitrarily in A′′, we can resume our observations as follows. For each v′′

∈ A′′, and each
w′′

∈ B′′,

all colours of C appear on each of the edges v′′w, v′w, vw′′, vw′. (2)

If there is an edge between A′′ and B′′ that has one of the colours from C, then, by (2), we can cover all of Kn,m with
k + 2(r − 2k) + 1 = 2r − 3k + 1 monochromatic components, and are done. So we may assume that

no colour of C appears on an edge between A′′ and B′′. (3)

Similarly, if there is an edge e between A′′ and w′ that has some colour i ∈ C, we can find the desired cover (as then e,
together with the edge vw′, connects the two stars in colour i that cover {v}∪B′′ and {w}∪A′′). We can repeat this argument
for edges between v′ and B′′. Therefore, and as by definition A′′ and B′′ avoid C1, we may assume that

all edges from w′ to A′′ and from v′ to B′′ have colours ϕ(vw). (4)

So, if there are vertices v′′
∈ A′′ and w′′

∈ B′′ such that ϕ(v′′w′′) ∩ ϕ(vw) ̸= ∅, then we can connect the two stars given
by (4) using the edge v′′w′′, and obtain the desired cover. Thus,

no colour of ϕ(vw) appears on an edge between A′′ and B′′. (5)
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Finally, putting (3) and (5) together, we see that all edges between A′′ and B′′ must have colours from Cv′w′ . Since we
assume that r ≤ 5k/2, this means that in fact, all of the 2(r − 2k) ≤ k colours from Cv′w′ appear on each edge between A′′

and B′′. Thus we can easily cover all of A′′
∪ B′′ with one more monochromatic tree, and are done. □

4. Lower bounds for complete bipartite graphs

This section is devoted to the proof of Theorem 1.6. The theorem follows directly from Lemma 4.1 and 4.2, combinedwith
Lemma 2.4.

Lemma 4.1. For every r, k, n,m with r > k and n =
(r
k

)
, there exists an (r, k)-colouring ϕ of Kn,m such that tc(Kn,m, ϕ) ≥

r − k + 1.

Proof. Consider the complete bipartite graph with vertex sets A =
(
[r]
k

)
and any set B. Assign each edge uv, with u ∈ A

and v ∈ B, the k-set of colours u. Then no set of r − k or fewer monochromatic connected components in colours
i1, . . . , il, l ≤ r − k, can cover the vertices a ∈ Awhich are subset of [r] \ {i1, . . . , il}. □

The proof of the second bound is a bit more involved, using a similar technique as in [4] by Chen, Fujita, Gyárfás, Lehel
and Tóth.

Lemma4.2. For every r, kwith r > k and for n ≥
( r
k

)
·
( r−k

k

)
·
( r−2k

k

)
· · ·

( r−⌊r/k⌋k
k

)
, m ≥ ⌊r/k⌋−1, there exists an (r, k)-colouring

ϕ of Kn,m such that tc(Kn,m, ϕ) ≥ r − k + ⌊r/k⌋ − 1.

Proof. By Lemma 2.4 it suffices to prove the case for n =
( r
k

)
·
( r−k

k

)
·
( r−2k

k

)
· · ·

( r−⌊r/k⌋k
k

)
and m = ⌊r/k⌋ − 1. Let A = [m]

and

B = {x ∈

(
[r]
k

)m

: xi ∩ xj = ∅ if i ̸= j}.

We define an (r, k)-edge-colouring ϕ of the complete bipartite graph on vertices A ∪ B as follows: for i ∈ A and x ∈ B, set
ϕ(ix) = xi.

It is easy to see that every monochromatic connected component can be viewed as a star centred at some vertex in A.
Hence, in order to prove Lemma 4.2, all we need to show is that any set S of stars with their centres in A that cover A∪ B has
cardinality at least r − k + m = r − k + ⌊r/k⌋ − 1.

So fix such a set S. For i ∈ A, let ai be the number of stars of S centred at i. Observe that we may assume

1 ≤ a1 ≤ · · · ≤ am. (6)

We claim that there is a vertex i ∈ A such that

ai ≥ r − k(m − i + 1) + 1. (7)

Indeed, otherwise, we have am ≤ r − k, am−1 ≤ r − 2k, . . . , a1 ≤ r − mk. This means that we can choose a set Cm of k
colours such that no star from S centred at am uses a colour of Cm. Moreover, for am−1 there is a set Cm−1 of k colours such
that Cm ∩ Cm−1 = ∅ and such that no star from S centred at am−1 uses a colour of Cm−1. Continuing in this manner, define
sets Ci for all i ≤ m. Then, the vertex (C1, . . . , Cm) ∈ B is not covered by S, contradicting the fact that S covers A ∪ B.

Using (6) and (7), we calculate that
m∑
j=1

aj ≥

i−1∑
j=1

1 +

m∑
j=i

ai

≥ (i − 1) + (m − i + 1)(r − k(m − i + 1) + 1)

= r − k + m + (m − i)(r − 2k) − k(m − i)2

≥ r − k + m,

where the last inequality holds since ⌊r/k⌋ − i ≤ r/k − 1. Thus, S contains at least r − k + m = r − k + ⌊r/k⌋ − 1 stars,
which is as desired. □

Observe that the colouring ϕ from Lemma 4.2 attains the bound r − k + ⌊r/k⌋ − 1 = r − k + m for the size of the cover.
That is, A∪ B can be covered by r − k+mmonochromatic stars: just take r − k+ 1 stars centred at vertex 1 ∈ A, in addition
to m − 1 stars covering the vertices in A \ {1}.
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5. Complete graphs

In this section we prove Theorem 1.3 and confirm Conjecture 1.2 for k ≥ r/2−1. On the road to Theorem 1.3, we prove a
result of possible independent interest, Theorem 5.2, which bounds the number of vertices in a minimal graph that requires
2, or 3, monochromatic components in its cover for some (r, k)-colouring.

We say a vertex sees a colour if it is incident to an edge that carries this colour.

Lemma 5.1. Let ϕ be an (r, k)-colouring of Kn such that tc(Kn, ϕ) = t and every vertex sees each colour. Then k
(n
2

)
≤

r
(
t − 1 +

(n−2(t−1)
2

))
.

Proof. Since every edge has k colours it follows that the total number of colours used in ϕ, with repetitions allowed, is k
(n
2

)
.

On the other hand, since tc(Kn, ϕ) = t , every colour i has at least t components. Each of these components has at least two
vertices, by our assumption on ϕ. So at most t − 1 +

( n−2(t−1)
2

)
edges have colour i (as in the ‘worst’ case colour i has t − 1

single-edge components and is complete on the remaining vertices). □

We say that a r-colouring ϕ of a graph G is t-critical if tc(G, ϕ) = t and for each v ∈ V (Kn), the graph G\{v} can be covered
by t − 1 monochromatic components.

Theorem 5.2. Let ϕ be a t-critical (r, k)-colouring of Kn, for t ∈ {2, 3}. If t = 2 then n ≤ r, and if t = 3 then n ≤ r +
(r
2

)
.

Moreover, if in ϕ every vertex sees each colour, then t = 3 and n ≤
(r
2

)
.

We remark that for the proof of Theorem 1.3, we only need Theorem 5.2 for the special case of colourings ϕ where every
vertex sees each colour, and thus t = 3. But as the proof of the whole statement does not require any extra effort, we prefer
to state our result as above.

Before we prove Theorem 5.2, we need some notation. For a given t-critical r-colouring ϕ of Kn we will say that the
function f : V (Kn) → ∪ℓ<t

(
[r]
ℓ

)
is t-critical for ϕ if f satisfies the following properties:

(1) If f (v) = {i1, . . . , iℓ} then it is possible to cover all vertices but v by t − 1 monochromatic components in colours
i1, . . . , iℓ.

(2) It holds that |f (v)| ≤ |f ′(v)| for all functions f ′ satisfying (1).

Clearly, for every t-critical r-colouring ϕ of Kn there is a t-critical function. Moreover, note that for any given vertex v, the
monochromatic components considered in (1) are non trivial, because otherwise, we can cover the vertices of Kn by t − 1
monochromatic components, one of which is given by the edge between v and the trivial component.

Proof of Theorem 5.2. The first part of Theorem 5.2 follows from proving injectivity of t-critical functions, for t = 2, 3,
respectively, since then n is at most the cardinality of the image of injection f . The second assertion of the theorem will
follow as a by-product of our proof.

Suppose u ∈ V (Kn) with f (u) = {i}. Then, depending on whether t = 2 or t = 3, there are one or two monochromatic
components in colour i covering every vertex other than u. Hence, no edge incident with u can have colour i (as we need t
components to cover Kn). Also, every vertex v ∈ V (Kn) other than u has an incident edge that uses colour i. Thus f (v) ̸= {i}
for all v ̸= u.

Notice that if every vertex sees each colour, then vertex u from the previous paragraph cannot exist. Thus, in that case,
we have f (u) ̸= {i} for all u ∈ V (Kn) and all i ∈ [r]. In particular, t = 3.

It remains to consider vertices u ∈ V (Kn) with f (u) = {i, j}, for i ̸= j, and t = 3. By (1), there exists monochromatic
components Iu, Ju in colours i, j, respectively, covering every vertex of Kn other than u. Assume, for the sake of contradiction,
that there is a vertex v ̸= u with f (v) = f (u) = {i, j}, and let Iv, Jv the monochromatic components on colours i, j,
respectively, covering every vertex of Kn \ {v}. W.l.o.g., we may assume that v ∈ Iu.

Note that monochromatic components Iu and Iv are vertex-disjoint (as otherwise they would be identical, but we know
that v ̸∈ Iv). A second observation is that there is a vertex w ∈ Ju \ (Iu ∪ Iv) with w ̸= v. If not, Iu ∪ Iv covers Kn \ {u},
contradicting that the colouring is 3-critical.

These observations imply that Ju = Jv, because w ∈ Ju ∩ Jv . Hence, Ju covers every vertex of Kn other than u and v. But any
monochromatic component induced by the edge uv covers u and v, so Kn is coverable by two monochromatic components,
a contradiction. Thus f (v) ̸= {i, j} for all vertices v other than u. □

It isworth noting that the proof of Theorem5.2makes no use of the fact that all edges have the same number of colours. So
the theorem is still valid for a generalised notion of edge-colourings, where each edge is assigned a subset of [r] of arbitrary
size.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 2.7, we already know that tc5,2(Kn) ≥ tc4,2(Kn) ≥ 2. So we only need to show that
tc5,2(Kn) ≤ 2.
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For the sake of contradiction, assumeKn has a (5, 2)-colouringϕ with tc(Kn, ϕ) = 3.We can assumeϕ is 3-critical. Observe
that every triangle is contained in a monochromatic component, since in every triangle there are at least two edges sharing
a colour.

We claim that

each vertex sees each colour. (8)

For this, assume that u ∈ V (Kn) does not see colour 5. Let U1,U2 be monochromatic components in colours 1, 2,
respectively, both of them containing u. Every edge from u to any vertex v ∈ V (Kn) \ (U1 ∪ U2) has the colour set {3, 4}.
Such a vertex v must exist, since tc(Kn, ϕ) = 3. Let U3,U4 be monochromatic components in colours 3, 4, respectively, both
of them containing v. Since tc(Kn, ϕ) = 3, there is a vertex w not covered by U3 ∪ U4. Then ϕ(uw) = {1, 2}. Hence, vw does
not have any of the colours 1, 2, 3 and 4, because v ̸∈ U1 ∪U2 and w ̸∈ U3 ∪U4. This contradicts the fact that every edge has
two colours, thus proving (8).

Now, on the one hand, Theorem 5.2 and (8) imply that n ≤ 10. On the other hand, Lemma 5.1 with r = 5, k = 2, t = 3,
together with (8), gives that n > 10. We thus reached the desired contradiction. □

We conclude this section confirming Conjecture 1.2 for some special cases, namely, when k ≥ r/2− 1. The proof follows
by combining Lemma 5.3 and 5.4 below, and observing that tc4,1(Kn) ≤ 3 (see [7,10]).

Lemma 5.3. If k ≥ (r − 1)/2 then tcr,k(Kn) ≤ r − k.

Proof. Given an (r, k)-coloured Kn, consider the complete bipartite subgraph between any fixedmonochromatic component
and the rest of Kn. Since this graph inherits an (r − 1, k)-colouring, and since r − 1 ≤ 2k, Theorem 1.5 yields a cover by
(r − 1) − k + 1 = r − kmonochromatic components. □

Lemma 5.4. If k = r/2 − 1 and k ≥ 2, then tcr,k(Kn) ≤ r − k.

Proof. Let A be the vertices covered by any fixedmonochromatic component in colour 2k+2, and let (A, B) be the complete
bipartite graph with partitions A and B = V (Kn) \ A, with its inherited (r − 1, k)-colouring. We can assume B ̸= ∅.

Fix an edge vw ∈ E(A, B) with v ∈ A and w ∈ B, coloured in {1, . . . , k}, say. Let A′
⊆ A and B′

⊆ B be the sets of vertices
not covered by the union of the k monochromatic components in colours 1, . . . , k that contain the edge vw. Note that the
star centred at v with leaves B′ inherits a (k + 1, k)-colouring and thus, we can cover B′ with two monochromatic stars at v.
So, since k + 2 = r − k, we can assume that A′

̸= ∅, and by symmetry, also B′
̸= ∅.

Assume that there is a vertex w′
∈ B′ such that

edges vw′ and ww′ share at least a colour, (9)

say this colour is k+ 1. Then, there are at least k+ 1 monochromatic components, in colours 1, . . . , k+ 1, that contain both
v and w. Let A′′

⊆ A′ and B′′
⊆ B′ be the sets of vertices not covered by these components.

Observe that every edge between v and B′′, or betweenw and A′′ has colours {k+2, . . . , 2k+1}. So, if there is an edge from
A′′ to B′′ using one of the colours in {k+2, . . . , 2k+1}, thenwe can cover all of A′′

∪B′′ with onemonochromatic component.
Combined with the k + 1 components from above, we obtain a cover with k + 2 = r − k monochromatic components. So
we may assume that every edge between A′′ and B′′ avoids colours {k + 2, . . . , 2k + 1}. In other words, each of these edges
has colours [k], and again, we can cover A ∪ Bwith k + 2 = r − k monochromatic components.

So from now on, assume that (9) does not hold. Then k = 2 (and thus, r = 6). For i ∈ {3, 4, 5} let Bi := {w′
∈ B′

: i ̸∈

ϕ(vw′)}. Then ww′ is coloured by {i, 6} if w′
∈ Bi. Hence, it is possible to cover B′

= B3 ∪ B4 ∪ B5 with one monochromatic
component in colour 6. Together with the component A, and the k components from above, we obtain a cover of A ∪ Bwith
k + 2 = r − k components, as desired. □

6. Ramsey numbers for (r, k)-colourings

In this section, we discuss the set-Ramsey number rr,k(H) as defined in the introduction. We can bound rr,k(H) with the
help of the usual r-colour Ramsey number rr (H). In fact, in the same way as we obtained our bounds on tcr,k in Section 2,
one can prove (see also [20]) that for every graph H and integers r > k > 0,

rr−k+1(H) ≥ rr,k(H) ≥ r⌊ r
k ⌋(H). (10)

Both bounds are not best possible as already the example of r = 3, k = 2 and H = K3, or H = K4, shows. Namely, it is not
difficult to show that r3,2(K3) = 5, and the value r3,2(K4) = 10 follows from the results of [5]. Also for r4,2(K3) the bounds
from (10) are not sharp. Corollary 6.3 near the end of the present section states that r4,2(K3) ≥ 9, and as we shall see next,
this bound is sharp:

r4,2(K3) ≤ 9. (11)
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Indeed, in order to see (11), let a (4, 2)-colouring ofK9 be given. First suppose for somevertex v there is a colour i appearing
on 5 edges vw1, . . . , vw5. If no triple vwiwj is an i-coloured triangle, then w1, . . . , w5 span a (3, 2)-colouring, which has a
monochromatic triangle as r3,2(K3) = 5.

So we can assume every vertex is incident with exactly 4 edges of each colour. That is, every colour spans a 4-regular
graph on 9 vertices. We claim each such graph has a triangle. Indeed, fixing any edge uv, if uv lies in no triangle, then
N(u) ∩ N(v) = ∅. There is a vertex w ̸∈ N(u) ∪ N(v), and w has neighbours u′

∈ N(u), v′
∈ N(v). Since u′, v′ have degree 4,

either we find a triangle, or we have N(u′) − w = N(v) − v′ and N(v′) − w = N(u) − u′. As w has two more neighbours, we
find a triangle. This proves (11).

Furthermore, it is not overly difficult to calculate the values of r, k, t for which rr,k(Kt ) equals the most trivial bound from
below, t .

rr,k(Kt ) = t if and only if r > (r − k)
(
t
2

)
. (12)

For this, observe that each edge misses r − k colours. If r > (r − k)
( t
2

)
holds, then, even if each edge misses disjoint

sets of colours, there is still some colour appearing on all edges. So there must be a monochromatic Kt . On the other hand, if
(r − k)

( t
2

)
≤ r we have enough edges to have them miss disjoint sets of colours, and thus rr,k(Kt ) > t .

Observe that in particular, for t = 3, observation (12) immediately gives that

rr,k(K3) = 3 if and only if k > 2r/3.

So for instance, r4,3(K3) = 3.
See Section 7.4 for a summary of small set-Ramsey numbers.
Bounds for arbitrary r and k (not necessarily small) can be obtained by density arguments. More precisely, if k

r surpasses
t−2
t−1 , we can estimate rr,k(Kt ) using Turán’s Theorem:

Proposition 6.1. Let ε ∈ (0, 1), let t ≥ 2 and let r > k > 0. If t−2
t−1 = (1 − ε) kr , then rr,k(Kt ) ≤

1
ε

+ 1. This bound is sharp if
k = r − 1 = t − 1 is a prime power, in which case rr,k(Kt ) = k2 + 1.

Proof. For the first part, consider any (r, k)-colouring of Kn withoutmonochromatic Kt . Since every colour has atmost t−2
t−1 ·

n2
2

edges, we know that k
(n
2

)
≤ r t−2

t−1 ·
n2
2 and thus, n ≤

1
ε
.

For the second part, let P = (P,L) be an affine plane of order r and the complete graph K = Kk2 with V (K ) = P . Colour
edge p1p2 ∈ E(K ) with [r] \ {i} if the line containing p1, p2 ∈ P is in the ith parallel class Li of L. Since for every i ∈ [r] the
ith parallel class Li consists of k lines, every set of k+ 1 = r points in P contains at least two points that are contained in the
same line l ∈ Li, which proves that the defined colouring contains no monochromatic Kr . □

We conclude this section with lower bounds on the set-Ramsey number for odd cycles. The next result provides, in
particular, the lower bound for (11). We remark that for k fixed, and r large enough, the bounds from Theorem 6.2 can
be improved, based on recent results from [6] (see Proposition 7.4).

Theorem 6.2. If ℓ ≥ 3 is odd and k ≥ 2, then rr,k(Cℓ) > max{2
r−1
k−1 , 2⌊

r
k ⌋−1(ℓ − 1)}.

Before we turn to the proof of Theorem 6.2, let us note that by using (11), Theorem 6.2 has the following immediate
corollary.

Corollary 6.3. We have r4,2(K3) = 9.

Proof of Theorem 6.2. To prove rr,k(Cℓ) > 2⌊r/k⌋−1(ℓ − 1) we use induction on ⌊r/k⌋. If ⌊r/k⌋ = 1, the assertion is trivial,
as any (r, k)-colouring of Kℓ−1 will do. For larger values of ⌊r/k⌋, it suffices to take two copies of any (r − k, k)-coloured
K2⌊r/k⌋−2(ℓ−1) withoutmonochromatic Cℓ (such a colouring exists by induction), and give k previously unused colours to every
edge between the two copies.

For the bound rr,k(Cℓ) > n := 2
r−1
k−1 , it suffices to find an (r, k)-colouring of Kn in which every colour induces a bipartite

graph. Such a colouring can be encoded in an n-subset Sn,r,k of {0, 1}r where any two v, w ∈ Sn,r,k differ in at least k entries.
(Just consider the complete graph on Sn,r,k, where we assign colour i to an edge vw if v and w differ at the ith entry. If an
edge receives more than k colours, just delete some.)

A set Sn,r,k as above clearly exists for n = 2 and r = k, and one can construct a set S2n,r+k−1,k from Sn,r,k inductively. Do
this by duplicating all members of Sn,r,k, adding k−1 extra entries 0 to the ‘original’ members, and adding k−1 extra entries
1 to the ‘clones’ (new members). Also, we switch the rth entry of each clone: If it was a 0, we make it a 1, and if it was a 1,
we make it a 0. Then the new set S2n,r+k−1,k is as desired: every pair of original members and every pair of clones differ in
at least k entries because of the properties of the set Sn,r,k; every original member differs from its clone in the k − 1 extra
entries and in the switched entry; and finally, every original member differs from all other clones in the k − 1 extra entries
and in at least k − 1 ≥ 1 of the original entries (only k − 1 as one of them might be the one we switched). □
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7. Concluding remarks

7.1. Tree covers

As seen in Section 2, the best lower bound for the tree cover number of complete graphs we know is tcr,k(Kn) ≥ ⌊
r
k⌋ − 1,

for n ≥ (r−1)2 (Lemma 2.6). On the other hand Conjecture 1.2 holds for large n, although, even if true for all n, the conjecture
is not tight. The positive results leave us with the interval [⌊ r

k⌋ − 1, r − k], if n is large. We believe that for large values of k
the tree cover number should be closer to the lower bound of this interval.

Problem 7.1. Determine tcr,k(Kn) for all r, k, n.

For complete bipartite graphs, for r < 2kwe do not knowmore about the true value of tcr,k(Kn,m) than the bounds given
in Theorems 1.5 and 1.6.

Problem 7.2. Determine tcr,k(Kn,m) for all r, k, n,m.

7.2. Tree partitions

In the traditional setting for r-coloured complete graphs, Erdős, Gyárfás and Pyber [8] conjectured a stronger version of
Conjecture 1.1, namely, they conjectured that a partition into r − 1 monochromatic trees should exist. A weaker version
of the latter conjecture, which replaces r − 1 trees with r trees, was confirmed by Haxell and Kohayakawa [13], for n
sufficiently large compared to r . It would be interesting to explore the tree partition problem for the more general setting
of set-colourings. Note that the same easy arguments as employed here give that the minimum number of trees needed to
partition any (r, k)-coloured graph lies in the interval [⌊ r

k⌋ − 1, r − k + 1], if n is large.
One could also study a version this problem for set-colourings of underlying complete multipartite graphs. For k = 1,

this problem was addressed by Kaneko, Kano and Suzuki in [17].

7.3. Path/Cycle partitions

Another recently very active area involving monochromatic substructures concerns path and cycle covers (see the
survey [11]). Let us state the problem here only in a version already adapted to set-colourings of Kn. The goal is to find
the minimum number pp(r, k) such that in every (r, k)-colouring of Kn there are pp(r, k) disjoint monochromatic paths
which together cover all the vertices. The number pp(r, k) is often called the path partition number. We can ask the same
question replacing paths with cycles, the respective minimum cp(r, k) is then called the cycle partition number. Clearly,
pp(r, k) ≤ cp(r, k), and pp(r, r) = cp(r, r) = 1.

For k = 1, the following values are known: pp(2, 1) = 2 = cp(2, 1), pp(3, 1) = 3 < cp(3, 1), pp(4, 1) ≤ 8 and it has been
conjectured that pp(r, 1) = r , while cp(r, 1) ≥ r + 1, and it is known that cp(r, 1) is bounded from above by a function in r
(see [11]).

Now, the same trick as used for Lemma 2.1 (deleting k − 1 colours from all edges) gives that

pp(r, k) ≤ pp(r − k + 1, 1) and cp(r, k) ≤ cp(r − k + 1, 1). (13)

In particular, these numbers are bounded by functions in r . For (r, r − 1)-colourings, we obtain from (13) that

pp(r, r − 1) ≤ cp(r, r − 1) ≤ cp(2, 1) = 2.

Hence, pp(r, r − 1), cp(r, r − 1) ∈ {1, 2}. At first glance, one might think that at least for pp(3, 2), the answer might be one,
and not two, but the following proposition shows that the correct answer is always two.

Proposition 7.3. For r ≥ 2, we have that cp(r, r − 1) = pp(r, r − 1) = 2.

Proof. By (13), we only have to show that pp(r, r − 1) ≥ 2. For this, consider the following construction.
Let V1, . . . , Vr be pairwise disjoint sets such that |Vi| >

∑
j<i|Vj|+1, for i ∈ {2, 3, . . . , r}. We define an (r, r−1)-colouring

ϕ of Kn on the vertex set ∪i∈[r]Vi as follows: ϕ(uv) = [r] \ {i} if u ∈ Vi, v ∈ Vj and i < j; or if u, v ∈ Vi. Notice that the only
edges with colour i and at least one endpoint in Vi are those having their other endpoint in some set Vj, with j < i. So, since
|∪j<iVj| + 1 < |Vi|, no path of colour i can cover all of Vi. □

7.4. Set-Ramsey numbers for complete graphs

In the set-Ramsey numbers setting, let us give a short summary of what is know for K3. For r = 2, there is nothing
interesting to say, since obviously r2,2(K3) = r2,1(K3) = 3. For r = 3 it is clear that r3,3(K3) = 3, it is easy to see that
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r3,2(K3) = 5, and it is well-known that r3,1(K3) = 6. For r = 4, we have r4,4(K3) = r4,3(K3) = 3 and r4,2(K3) = 9, as shown in
Section 6, and r4,1(K3) is the usual 4-coloured Ramsey number for triangles, which is not known.

Therefore, the smallest unknown set-Ramsey number for K3, in terms of r and k, is r5,2(K3). We also do not know r5,3(K3),
while r5,4(K3) = 3 by (12). Considering K4, as r3,2(K4) = 10 by results of [5], the smallest unknown values correspond to
r4,2(K4) and r4,3(K4).

7.5. Set-Ramsey numbers for cycles

The Bondy–Erdős conjecture states that rr (Cℓ) = 2r−1(ℓ − 1) + 1 for every odd ℓ ≥ 3. Recently, Jenssen and Skokan [16]
proved that the Bondy–Erdős conjecture holds for fixed r and sufficiently large odd n. However, Day and Johnson [6] disprove
the Bondy–Erdős conjecture by showing that for every odd ℓ ≥ 3 there exist ε > 0 and sufficiently large r such that
rr (Cℓ) > (2 + ε)r−1(ℓ − 1). We can imitate their construction to see that, analogously:

Proposition 7.4. For all k ≥ 2 and odd ℓ there are ε = ε(ℓ) > 0 and f = f (ℓ) > 1 such that for sufficiently large r we have
rr,k(Cℓ) > (2 + ε)r−f (ℓ − 1).

We include a sketch of the proof of Proposition 7.4 for readers who are familiar with the construction of Day and Johnson
in [6].

Sketch of a proof for Proposition 7.4. Let k ≥ 2 be fixed. As in [6] one can show the existence of (r, k)-colourings of K2r+1
with arbitrarily long odd girth. Let f ′ be the smallest integer such that there is an (f ′, k)-colouring ϕ1 of K2f ′+1 with odd
girth strictly greater than ℓ. Let ϕ2 be the (c + 1, k)-colouring of the complete graph on 2⌊c/k⌋(ℓ − 1) vertices avoiding a
monochromatic Cℓ, as given by Theorem 6.2. If r = mf ′

+ c , with f ′ > c ≥ 0, then, following the construction in [6], one can
define an (r, k)-colouring of the complete graph on (2f ′

+ 1)m · 2⌊c/k⌋(ℓ − 1) > (2 + ε)r−f vertices. □
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