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Abstract
Intrinsic random fields of order k, defined as random fields whose high-order increments (generalized increments of order

k) are second-order stationary, are used in spatial statistics to model regionalized variables exhibiting spatial trends, a

feature that is common in earth and environmental sciences applications. A continuous spectral algorithm is proposed to

simulate such random fields in a d-dimensional Euclidean space, with given generalized covariance structure and with

Gaussian generalized increments of order k. The only condition needed to run the algorithm is to know the spectral measure

associated with the generalized covariance function (case of a scalar random field) or with the matrix of generalized direct

and cross-covariances (case of a vector random field). The algorithm is applied to synthetic examples to simulate intrinsic

random fields with power generalized direct and cross-covariances, as well as an intrinsic random field with power and

spline generalized direct covariances and Matérn generalized cross-covariance.

Keywords Non-stationary random fields � Generalized direct and cross-covariances � Generalized increments of order k �
Spectral density

1 Introduction

In geostatistical applications, regionalized variables

exhibiting a spatial trend may not be modeled with second-

order stationary random fields, i.e., random fields whose

first and second-order moments exist and are invariant

through a translation in space, nor with random fields

whose increments are second-order stationary (intrinsic

random fields of order 0, also known as stationary intrinsic

random fields). This is the case, for instance, in geothermal

reservoir modeling, where the temperature and the pressure

tend to increase with depth, whereas porosity and

permeability tend to decrease (Chilès and Gable 1984). In

petroleum reservoir modeling, geometrical characteristics

or petrophysical properties such as rock porosity often

present trends that cannot be dealt with stationarity

hypotheses (Chilès and Gable 1984; Dimitrakopoulos

1990). In ore body modeling, the distribution of geological

properties such as rock types, mineral types or alteration

types, also exhibit spatial zonations and trends, depending

on the geological setting and paragenesis of the ore body,

making difficult the representation of these properties with

second-order stationary or intrinsic stationary random

fields (Madani and Emery 2017).

The theory of intrinsic random fields of order k (for

short, IRF-k) has been introduced when the assumption of

second-order stationarity is not satisfied, but generalized

increments filter out the trend and fulfill the assumptions of

second-order stationarity (Chilès and Delfiner 2012;

Christakos 1992; Matheron 1973). These random fields

have been used in the past decades for spatial prediction

purposes in geothermal fields (Chilès and Gable 1984;

Suárez Arriaga and Samaniego 1998), oil reservoirs (Haas

and Jousselin 1976), aquifers (Dong et al. 1990; Kitanidis

1999), soil (Buttafuoco and Castrignano 2005) and
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environmental sciences (Christakos and Thesing 1993),

among other applications.

Apart from prediction, there is a growing interest in

quantifying the uncertainty at locations with no direct

observation, or jointly over several locations, for which

conditional simulation techniques have been developed

(Chilès and Delfiner 2012). In this respect, several algo-

rithms have been proposed to simulate intrinsic random

fields of order k, under the assumption that their generalized

increments have multivariate-Gaussian distributions (Ar-

royo and Emery 2015; Chilès and Delfiner 2012; Christakos

1992; Dimitrakopoulos 1990; Emery and Lantuéjoul

2006, 2008; Pardo-Igúzquiza andDowd 2003). Among these

algorithms, the continuous spectral and turning bands

approaches have proved to be successful in accurately

reproducing the spatial correlation structure of the general-

ized increments, while being computationally efficient.

However, they are still limited to the simulation of scalar

random fields and are therefore not suitable for multivariate

applications. The aim of this paper is to extend the contin-

uous spectral algorithm to the simulation of vector random

fields representing co-regionalized variables.

The outline of the paper is the following: Sect. 2 is

devoted to an overview of the IRF-k theory, Sect. 3

introduces the spectral simulation algorithms for generat-

ing non-conditional simulations of an univariate IRF-k and

of a vector IRF-k. Section 4 is devoted to applications to

synthetic case studies. Conclusions follow in Sect. 5.

2 Concepts and notations

In IRF-k theory, the spatial trend is represented by a

combination of basic drift functions ff lgl20;...;L that are

monomials of the spatial coordinates. The number L of

such basic functions depends on the degree k of the drift

and on the dimension d of the working space.

A generalized increment of order k, also referred to as an

authorized linear combination of order k (for short, ALC-

k), of a spatial random field Y is defined as a weighted sum

of the form
P

i2I kiYðxiÞ for a system of weights and

locations k ¼ fki; xigi2I such that, for any basic drift

function f l, one has
X

i2I
kif

lðxiÞ ¼ 0: ð1Þ

In the following, the set of weights and locations k ¼
fki; xigi2I fulfilling Eq. (1) will be denoted as Kk and the

ALC-k will be denoted as YðkÞ.
A random field defined in the d�dimensional Euclidean

space, say Y ¼ fYðxÞ : x 2 Rdg, is an intrinsic random

field of order k if its ALC-k have zero mean and are

second-order stationary, i.e., if the following conditions are

satisfied for any k ¼ fki; xigi2I 2 Kk and l ¼ flj; x0jgj2J 2
Kk (Chilès and Delfiner 2012):

(1) E YðkÞf g ¼ 0

(2) Cov YðkÞ; YðlÞf g ¼
X

i2I

X

j2J
kiljKðxi � x0jÞ,

where K is a generalized covariance function defined up to

an even polynomial of degree less than or equal to 2k.

A property of generalized covariances is that they are k-

conditionally positive definite, that is, for any

k ¼ fki; xigi2I 2 Kk, one has
X

i2I

X

j2I
kikjKðxi � xjÞ� 0:

The generalized covariance has the following spectral

representation (Chilès and Delfiner 2012):

KðhÞ ¼
Z

Rd

cos 2phh; uið Þ � 1BðuÞPkð2phh; uiÞ

4p2kuk2
� �kþ1

vðduÞ þ QkðhÞ;

where:

Pk is the Taylor expansion of the cosine up to order 2k,

that is

PkðxÞ ¼ 1� x2

2!
þ � � � þ ð�1Þk x2k

ð2kÞ! ; x 2 R

1BðuÞ is the indicator function of an arbitrary neighbor-

hood B of u0 ¼ 0

vðduÞ is a positive symmetric measure, with no atom at

the origin (that is, vðf0gÞ ¼ 0) and satisfying
Z

Rd

vðduÞ

1þ 4p2kuk2
� �kþ1

\1

Qk is an arbitrary even polynomial of degree � 2k.

Without loss of generality, one can choose B ¼ Rd and

Qk ¼ 0, which simplifies the spectral representation as

follows:

KðhÞ ¼
Z

Rd

cos 2phh; uið Þ � Pkð2phh; uiÞ

4p2kuk2
� �kþ1

vðduÞ: ð2Þ

This representation is the generalization of Bochner’s

theorem (Bochner 1933) according to which a continuous

function is positive definite (thus, an ordinary covariance

function) if and only if it is the Fourier transform of a

positive bounded symmetric measure. A representation

similar to Eq. (2) exists for the variogram of a stationary

intrinsic random field, which corresponds to the case of an

IRF-0 (k ¼ 0 and Pk = 1) (Chilès and Delfiner 2012).
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If vðduÞ is absolutely continuous, the previous repre-

sentation can be rewritten as follows:

KðhÞ ¼
Z

cos 2phh; uið Þ � Pkð2phh; uiÞ½ �f ðuÞ du; ð3Þ

with

f ðuÞ du ¼ vðduÞ

4p2kuk2
� �kþ1

� 0:

In the following, f will be referred to as the spectral density

of the generalized covariance K. Unless Y is a second-

order stationary random field (i.e., K is an ordinary

covariance function), f is not integrable, so it is not a

genuine probability density function.

Another tool used for modeling the spatial structure of

an intrinsic random field of order k is the generalized

variogram of order k, defined as (Chilès and Delfiner 2012)

� ðhÞ ¼ 1

Mk

Var Dkþ1
h YðxÞ

� �
ð4Þ

with,

Mk ¼
2k þ 2

k þ 1

� �

Dkþ1
h YðxÞ ¼ ð�1Þkþ1

Xkþ1

q¼0

ð�1Þq
k þ 1

q

� �

Yðxþ qhÞ:

Dkþ1
h YðxÞ is the generalization of the forward finite dif-

ference Yðxþ hÞ � YðxÞ.
In the same way that the variogram is related to the

covariance in the case of second-order stationary random

fields, the generalized variogram of order k is related to the

generalized covariance of order k, as follows (Chilès and

Delfiner 2012):

� ðhÞ ¼ 1

Mk

Xkþ1

q¼�ðkþ1Þ
ð�1Þq

2k þ 2

k þ 1þ q

� �

KðqhÞ: ð5Þ

3 Non-conditional simulation

This section focuses on the non-conditional simulation of

intrinsic scalar and vector random fields of order k. In the

presence of conditioning data, any non-conditional real-

ization can be converted into a conditional one (i.e., a

realization that reproduces the conditioning data, in addi-

tion to the desired generalized covariance model) by means

of a post-processing step based on intrinsic kriging (uni-

variate case) or cokriging (multivariate case) with the same

generalized covariance model and basic drift functions

(Chilès and Delfiner 2012; de Fouquet 1994; Emery 2010).

3.1 Univariate case

To simulate an intrinsic scalar random field of order k (-

denoted as Y) with a generalized covariance function K

associated with the spectral density f , let us consider a

random field YS defined as

8 x 2 Rd; YSðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 f ðUÞ
gðUÞ

s

cosð2phx;Ui þ /Þ; ð6Þ

where h ; i represents the inner product in Rd, U is a ran-

dom vector (frequency) with probability density g : Rd !
Rþ with a support containing that of f and / is a random

scalar (phase) uniformly distributed over the interval

0; 2p½ Þ. The demonstration that YS is an IRF-k with K as its

generalized covariance function of order k is deferred to the

next subsection, which addresses the more general case of

intrinsic vector random fields.

Based on the central limit theorem, to obtain an intrinsic

random field of order k with the same generalized covari-

ance K and approximately Gaussian generalized incre-

ments of order k, it suffices to add and to rescale many of

such independent random fields:

8 x 2 Rd; YSðxÞ ¼
1
ffiffiffiffi
N

p
XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 f ðUnÞ
gðUnÞ

s

cosð2phx;Uni þ /nÞ;

ð7Þ

where N is a large integer, fUn : n ¼ 1; . . .;Ng are mutu-

ally independent random vectors with probability density g

and f/n : n ¼ 1; . . .;Ng are mutually independent random

variables uniformly distributed in ½0; 2pÞ, independent of
fUn : n ¼ 1; . . .;Ng. Without loss of generality, one can

also shift the random field by a constant, so that its value is

zero at the origin x ¼ 0:

8 x 2 Rd; YSðxÞ ¼
1
ffiffiffiffi
N

p
XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 f ðUnÞ
gðUnÞ

s

cosð2phx;Uni½

þ/nÞ � cosð/nÞ�:
ð8Þ

A particular case of this algorithm has been proposed in

Emery and Lantuéjoul (2008) for simulating IRF-k with

power or spline generalized covariances. In contrast, the

algorithm presented here (Eq. 8) is applicable to any gen-

eralized covariance model whose spectral density is abso-

lutely continuous.

3.2 Multivariate case

One can extend the previous spectral algorithm to the sim-

ulation of an intrinsic vector random field of order k (de-

noted as Y) with P cross-correlated scalar components, by

considering a P� P matrix of spectral densities f (a
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Hermitian, positive semi-definite matrix) instead of a scalar

spectral density f. In the case when this matrix is real-valued,

it is associated with a P� P matrix K containing the gen-

eralized direct and cross-covariances of the components of

Y, in a way similar to Eq. (3) (Cassiani and Christakos 1998;

Chilès and Delfiner 2012; Christakos 1992), that is:

KðhÞ ¼
Z

Rd

cos 2phh; uið Þ � Pkð2phh; uiÞ½ �fðuÞdu; ð9Þ

wherePk is the Taylor expansion of the cosine up to order 2k.

Specifically, let us define a vector random field as follows:

YSðxÞ ¼
XP

p¼1

apðUpÞ cosð2phx;Upi þ /pÞ; ð10Þ

where Up : p ¼ 1; . . .;P
	 


are mutually independent ran-

dom vectors with probability density g : Rd ! Rþ,

/p : p ¼ 1; . . .;P
	 


are mutually independent random

variables uniformly distributed over the interval ½0; 2pÞ,
independent of the Up, and ap : p ¼ 1; . . .;P

	 

are vector-

valued mappings (to be determined) with P real-valued

components.

Considering k ¼ fki; xigi2I 2 Kk, one can define an ALC-

k of the simulated vector random field YSðkÞ as follows:

YSðkÞ ¼
X

i2I
ki
XP

p¼1

apðUpÞ cosð2phxi;Upi þ /pÞ: ð11Þ

Accounting for the fact that /p : p ¼ 1; . . .;P
	 


are inde-

pendent and uniformly distributed in ½0; 2pÞ, the condi-

tional expectation of YSðkÞ given Up ¼ up is

E YSðkÞjUp ¼ up
� �

¼ 0:

Therefore, the prior expectation is

E YSðkÞ½ � ¼ E E YSðkÞjUp

� �	 


¼ 0:

Now, consider k ¼ fki; xigi2I 2 Kk and

l ¼ flj; x0jgj2J 2 Kk. If it exists, the matrix of direct and

cross-covariances between YSðkÞ and YSðlÞ is

E YSðkÞYSðlÞ½ � ¼ E
X

i2I

X

j2J

XP

p¼1

XP

q¼1

kiljapðUpÞaTq ðUqÞ cosð2phxi;Upi
"

þ/pÞ cosð2phx0j;Uqi þ /qÞ
i

¼ E
X

i2I

X

j2J

XP

p¼1

XP

q¼1

kiljapðUpÞaTq ðUqÞ
"

� 1

2
cosð2phxi;Upi þ 2phx0j;Uqi þ /p þ /qÞ
h

þ cosð2phxi;Upi � 2phx0j;Uqi þ /p � /qÞ
ii
:

Accounting for the fact the phases f/p; p ¼ 1; . . .;Pg are

independent and uniformly distributed in ½0; 2pÞ, all the

cosine terms have a zero expectation except when p ¼ q, so

that the previous equation simplifies into

E YSðkÞYSðlÞ½ � ¼ 1

2
E
X

i2I

X

j2J

XP

p¼1

kiljapðUpÞaTp ðUpÞ
"

� cosð2phxi þ x0j;Upi þ 2/pÞ þ cosð2phxi � x0j;UpiÞ
h ii

:

ð12Þ

The first cosine term has a zero expectation because /p is

uniform on ½0; 2pÞ and is independent of Up, for all

p ¼ 1; . . .;P. Therefore, Eq. (12) reduces to

E YSðkÞYSðlÞ½ �

¼ E
X

i2I

X

j2J
kilj

XP

p¼1

apðUpÞaTp ðUpÞ
cosð2phxi � x0j;UpiÞ

2

" #

¼
Z

Rd

X

i2I

X

j2J
kilj

XP

p¼1

apðuÞaTp ðuÞ
cosð2phxi � x0j; uiÞ

2
gðuÞ du

¼
Z

Rd

X

i2I

X

j2J
kilj

AðuÞATðuÞ
2

cosð2phxi � x0j; uiÞgðuÞ du;

where AðuÞ is the P� P matrix whose p-th column is

apðuÞ.
Since the weights fkigi2I and fljgj2J filter out the

polynomials of degree less than or equal to 2k (Eq. 1), one

can subtract the Taylor expansion Pk of the cosine without

modifying the integrand, as follows:

E YSðkÞYSðlÞ½ � ¼
Z

Rd

X

i2I

X

j2J
kilj

AðuÞATðuÞ
2

� cosð2phxi � x0j; uiÞ � Pkð2phxi � x0j; uiÞ
h i

gðuÞ du:

ð13Þ

For the simulated vector random field YS to be an intrinsic

vector random field of order k with a matrix of generalized

direct and cross-covariances K associated with the spectral

density matrix f (Eq. 9), it suffices that the following

condition is satisfied for any frequency vector u:

AðuÞATðuÞ
2

gðuÞ ¼ fðuÞ;

or, equivalently,

AðuÞATðuÞ ¼ 2fðuÞ
gðuÞ : ð14Þ

This condition, which is analogous to that found for the

simulation of intrinsic vector random fields of order 0 (Ar-

royo and Emery 2017), ensures that the improper integral

AðuÞATðuÞ
2

Z

Rd

cosð2phxi � x0j; uiÞ � Pkð2phxi � x0j; uiÞ
h i

gðuÞ du

is convergent, insofar as it coincides with the spectral

representation of the generalized covariance Kðxi � x0jÞ.
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The summations and integral signs in Eq. (13) can there-

fore be permuted, which yields

E YSðkÞYSðlÞ½ � ¼
X

i2I

X

j2J
kilj

AðuÞATðuÞ
2

�
Z

Rd

cosð2phxi � x0j;uiÞ � Pkð2phxi � x0j;uiÞ
h i

gðuÞ du

¼
X

i2I

X

j2J
kiljKðxi � x0jÞ:

For instance, AðuÞ can be chosen as the principal square

root matrix of
2fðuÞ
gðuÞ . The knowledge of AðuÞ determines the

vector-valued mappings ap : p ¼ 1; . . .;P
	 


to be used in

Equation (10), which completes the specification of the

algorithm.

Finally, based on the central limit theorem, to obtain an

intrinsic vector random field with approximately Gaussian

increments of order k and with zero value at the origin

x ¼ 0, it suffices to shift, add and rescale many of such

independent random fields:

YSðxÞ ¼
1
ffiffiffiffi
N

p
XN

n¼1

XP

p¼1

apðUn;pÞ cosð2phx;Un;pi þ /n;pÞ � cosð/n;pÞ
� �

;

ð15Þ

where N is a large integer, fUn;p : n ¼ 1; . . .;N; p ¼
1; . . .;Pg are mutually independent random vectors with

probability density g and f/n;p : n ¼ 1; . . .;N; p ¼
1; . . .;Pg are mutually independent random variables uni-

formly distributed as /p.

This algorithm (Eq. 15) generalizes the ones proposed in

Emery et al. (2016) and in Arroyo and Emery (2017),

which are restricted to the simulation of stationary and

intrinsic vector random fields of order k ¼ 0, respectively.

The density g can be chosen freely, provided that its sup-

port contains the support of each component of the spectral

density matrix f (this necessary condition is implied by

Eq. 14). Note that the spectral representation under con-

sideration (Eq. 9) is restricted to generalized cross-co-

variances that are even functions of the lag vector h. A

more general representation allowing the incorporation of

an odd component is presented in Chilès and Delfiner

(2012) for the case when k ¼ 0 and in Huang et al. (2009)

for any non-negative integer k. The design of non-even

generalized cross-covariance models together with algo-

rithms for simulating vector IRF-k with such covariance

models is a topic of further research.

4 Examples

In this section, the proposed spectral algorithm is tested to

simulate random fields on a set of 250, 000 locations on a

regular two-dimensional grid G with a unit mesh along

each coordinate axis (d ¼ 2). The simulation is performed

by using N ¼ 500 basic random fields in Eqs. (8) or (15).

The density g is chosen as the spectral density of a sta-

tionary isotropic Matérn covariance with a unit sill (Lan-

tuéjoul 2002):

Mðh; a; mÞ ¼ 21�m

CðmÞ
khk
a

� �m

Km
khk
a

� �

; ð16Þ

that is:

gðu; a; mÞ ¼
ð2paÞdC mþ d

2

� �

CðmÞpd=2
1

1þ ð2paÞ2kuk2
� �mþd=2

;

ð17Þ

where Cð�Þ is the gamma function and Kmð�Þ is the modified

Bessel function of the second kind of order m.
In the following, the scale parameter will be set to a ¼

30 and the shape parameter to m ¼ minða1; a2Þ=2, where a1
and a2 will be defined in each example. These values of a

and m correspond to a heuristic choice that provides a good

sampling of both large and small frequencies when gen-

erating the random vectors fUn : n ¼ 1; . . .;Ng (Eq. 8) or

fUn;p : n ¼ 1; . . .;N; p ¼ 1; . . .;Pg (Eq. 15). However, as

proved in the previous sections, the algorithm is applicable

with any other choice for these scale and shape parameters,

insofar as the support of the Matérn density is the whole

space Rd.

4.1 Example 1: Simulating a scalar random field
with power generalized covariance in Rd

Let us consider the simulation of a scalar intrinsic random

field with a power generalized covariance of the form

8 h 2 Rd; KðhÞ ¼ ð�1Þ1þba=2c h

b



















a

;

where b�c is the floor function, b is a positive real number

and a is a positive real number different from an even

integer. The order of the intrinsic random field with such a

generalized covariance is k ¼ ba=2c.
The spectral density of KðhÞ is (Chilès and Delfiner

2012):

8 u 2 Rd; fPðu; b; aÞ ¼
bdC a

2
þ 1

� �
C aþd

2

� �

C a
2
� k

� �
C 1� a

2
þ k

� �
paþd=2kbukaþd

:

ð18Þ

As an example, Fig. 1 (left) shows the map of one real-

ization obtained by using Eq. (8) with a ¼ 5 (therefore,

k ¼ 2) and b ¼ 100. The simulated field (an IRF-2) exhi-

bits a quadratic drift, which makes difficult to visually

assess whether or not the desired spatial correlation
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structure is accurately reproduced. Since this structure is

related to the generalized increments of order 2, one option

to unveil it is to focus on the generalized variogram of

order 2 of the simulated field, that is (Eq. 4):

� ðhÞ ¼ 1

20
E Yðxþ 3hÞ � 3Yðxþ 2hÞ þ 3Yðxþ hÞ � YðxÞ½ �2
n o

:

ð19Þ

� ðhÞ can be expressed as a function of the generalized

covariance KðhÞ (Eq. 5). Experimentally, it can be esti-

mated for each realization yðxÞ : x 2 Gf g by replacing the

expectation in the previous equation by an average of the

form

�̂ ðhÞ ¼ 1

20

X

x2G\G�h\G�2h\G�3h

yðxþ 3hÞ � 3yðxþ 2hÞ þ 3yðxþ hÞ � yðxÞ½ �2

card G \ G�h \ G�2h \ G�3hf g ;

ð20Þ

where G�h;G�2h and G�3h stand for the grid G shifted by

vector �h;�2h and �3h, respectively, while cardf:g
indicates cardinality. Such an experimental generalized

variogram is expected to fluctuate without bias around the

theoretical generalized variogram (Chilès and Delfiner

2012). Accordingly, on average over a large set of real-

izations (so that statistical fluctuations become negligible),

it is expected that the experimental generalized variogram

matches the theoretical generalized variogram. This

effectively happens when considering one hundred real-

izations (Fig. 1 right), confirming that the simulated field

accurately reproduces the target power generalized

covariance.

4.2 Example 2: Simulating a vector random field
with power generalized direct and cross-
covariances

Let us now simulate an intrinsic vector random field Y with

P ¼ 2 components with the following 2� 2 matrix of

generalized direct and cross-covariances:

8 h 2 Rd; KðhÞ

¼
ð�1Þ1þba1=2c h

b1



















a1

q ð�1Þ1þba12=2c h

b12



















a12

q ð�1Þ1þba12=2c h

b12



















a12

ð�1Þ1þba2=2c h

b2



















a2

0

B
B
B
@

1

C
C
C
A
;

ð21Þ

where q 2 R, ðb1; b2; b12; a1; a2; a12Þ 2 ðR�
þÞ

6
, such that a1

and a2 are not even integers. The orders of the first and

second components of the vector random field are k1 ¼
ba1=2c and k2 ¼ ba2=2c, respectively, while the overall

order of the intrinsic vector random field is

k ¼ maxðk1; k2Þ.
The corresponding spectral density matrix for a given

frequency vector u 2 Rd is:

fðuÞ ¼
fPðu; b1; a1Þ q fPðu; b12; a12Þ

q fPðu; b12; a12Þ fPðu; b2; a2Þ

� �

: ð22Þ

The conditions under which this matrix is Hermitian pos-

itive semi-definite for any u 2 Rd are detailed in ‘‘Ap-

pendix 1’’.

As an illustration, Fig. 2 shows the map of one real-

ization obtained by using Eq. (15) with a1 ¼ 2:5 (k1 ¼ 1),

a2 ¼ 4:5 (k2 ¼ k ¼ 2), a12 ¼ 3:5, b1 ¼ 100, b2 ¼ 90,

Fig. 1 Left: map of one realization of an IRF-2 with power

generalized covariance of exponent a ¼ 5 and scale factor b ¼ 100.

Right: experimental generalized variograms of order 2 of 100

realizations (green dashed lines) calculated for lag separation vectors

oriented along the abscissa axis, average of experimental generalized

variograms (blue stars) and theoretical generalized variogram

(black solid line)
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b12 ¼ 70 and q ¼ 0:4. Figure 3 compares the experimental

generalized direct and cross-variograms of order 2 of one

hundred realizations with the theoretical generalized direct

and cross-variograms of order 2. The generalized cross-

variogram is defined by substituting the covariance or the

product of generalized increments for the variance (Eq. 4)

or the squared value (Eqs. 19, 20) of generalized incre-

ments. As for the previous subsection, on average over the

realizations, the experimental generalized variograms

match the theoretical generalized variograms, which cor-

roborates that the proposed spectral simulation algorithm

accurately reproduces the spatial correlation structure of

the desired vector random field.

4.3 Example 3: Simulating a vector random field
with power and spline generalized direct
covariances and Matérn generalized cross-
covariance

Let us now simulate an intrinsic vector random field of

order k, Y, with P ¼ 2 components by using the following

2� 2 matrix of generalized direct and cross-covariances:

8 h 2 Rd; KðhÞ

¼
ð�1Þ1þba1=2c h

b1



















a1

qMðh; a12; m12Þ

qMðh; a12; m12Þ ð�1Þ1þk2 h

b2



















a2

ln
h

b2



















� �

0

B
B
B
@

1

C
C
C
A
;

ð23Þ

where q 2 R, ðb1; b2; a1; a12; m12Þ 2 ðR�
þÞ

5
such that a1 is not

an even integer, k2 2 N� and a2 ¼ 2k2. The orders of the first

and second components of the vector random field are k1 ¼
ba1=2c and k2, respectively, while the overall order of the

intrinsic vector random field is k ¼ maxðk1; k2Þ.

Mðh; a12; m12Þ is the stationaryMatérn covariancewith sill q,
scale parameter a12 and shape parameter m12 (Lantuéjoul

2002); therefore, this is also a valid generalized covariance

for any order k (Chilès and Delfiner 2012).

The corresponding spectral density matrix for a given

frequency vector u 2 Rd is:

fðuÞ ¼
fPðu; b1; a1Þ q gðu; a12; m12Þ

q gðu; a12; m12Þ fSðu; b2; k2Þ

� �

; ð24Þ

where fSðu; b2; k2Þ is the spectral density of the spline

generalized covariance ð�1Þ1þk2k h
b2
k2k2 ln k h

b2
k

� �
. The

expression of this spectral density can be obtained by

considering the spline generalized covariance as the limit,

as � tends to zero, of a power generalized covariance of

exponent 2k2 þ � divided by � (Emery and Lantuéjoul

2008). This implies

8 u 2 Rd; fSðu; b2; k2Þ ¼ lim
�!0

fPðu; b2; 2k2 þ �Þ
�

� �

¼
bd2C k2 þ 1ð ÞC 2k2þd

2

� �

2p2k2þd=2kb2uk2k2þd
:

ð25Þ

The conditions under which the spectral density matrix in

Eq. (24) is Hermitian positive semi-definite for any u 2 Rd

(therefore, the defined generalized direct and cross-co-

variances constitute a valid model) are indicated in ‘‘Ap-

pendix 2’’.

As an illustration, Fig. 4 shows the map of one real-

ization obtained by using Eq. (15) with a1 ¼ 3 (k1 ¼ 1),

a2 ¼ 2 (k2 ¼ 1), b1 ¼ 180, b2 ¼ 100, a12 ¼ 80, m12 ¼ 1:25

and q ¼ 0:55. Figure 5 compares the experimental gener-

alized direct and cross-variograms of order 1 of one hun-

dred realizations with the theoretical generalized direct and

cross-variograms of order 1. On average over the

Fig. 2 Realizations of a bivariate intrinsic random field whose first

component is an IRF-1 (on the left) and the second component is an

IRF-2 (on the right). Generalized direct and cross-covariances are

power models with a1 ¼ 2:5 (k1 ¼ 1), a2 ¼ 4:5 (k2 ¼ 2), a12 ¼ 3:5,
b1 ¼ 100, b2 ¼ 90, b12 ¼ 70 and q ¼ 0:4
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Fig. 3 Experimental generalized variograms of order 2 for 100

realizations (green dashed lines) calculated for lag separation vectors

oriented along the abscissa axis, average of experimental generalized

variograms (blue stars) and theoretical models (black solid lines).

From left to right and top to bottom: generalized direct variograms for

first component, generalized direct variograms for second component,

and generalized cross-variograms. Generalized direct and cross-

covariances are power models with a1 ¼ 2:5 (k1 ¼ 1), a2 ¼ 4:5
(k2 ¼ 2), a12 ¼ 3:5, b1 ¼ 100, b2 ¼ 90, b12 ¼ 70 and q ¼ 0:4

Fig. 4 Realizations of a bivariate intrinsic random field whose

components are IRF-1 (first component on the left, second component

on the right). Generalized direct and cross-covariances are power,

spline and Matérn models with a1 ¼ 3 (k1 ¼ 1), a2 ¼ 2 (k2 ¼ 1),

b1 ¼ 180, b2 ¼ 100, a12 ¼ 80, m12 ¼ 1:25 and q ¼ 0:55
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realizations, the experimental generalized variograms

match the theoretical generalized variograms, corroborat-

ing that the spatial correlation structure of the target vector

random field is accurately reproduced.

5 Conclusions

This paper presented an algorithm for simulating intrinsic

vector random fields of order k with given generalized

direct and cross-covariances and multivariate Gaussian

generalized increments. The algorithm relies on the spec-

tral decomposition of the generalized covariances, in order

to reproduce the spatial correlation structure of the desired

random field, and on the central limit theorem, in order to

obtain generalized increments whose finite-dimensional

distributions are approximately Gaussian.

The implementation of the algorithm is straightforward,

with no restriction on the number of components of the

vector random field, space dimension, number and

positions of the locations targeted for simulation, or num-

ber of desired realizations, other than hardware and soft-

ware capacities. The presented examples show the

versatility of the algorithm and its applicability to simulate

random fields with a complex covariance structure.
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Appendix 1: Existence conditions
for Example 2

The spectral density matrix fðuÞ defined in Eq. (22) is

Hermitian since it is real-valued and symmetric, with

positive diagonal entries. It is positive semi-definite for any

u 2 Rd (therefore, the associated generalized direct and

Fig. 5 Experimental generalized variograms of order 1 for 100

realizations (green dashed lines) calculated for lag separation vectors

oriented along the abscissa axis, average of experimental generalized

variograms (blue stars) and theoretical models (black solid lines).

From left to right and top to bottom: generalized direct variograms for

first component, generalized direct variograms for second component,

and generalized cross-variograms. Generalized direct and cross-

covariances are power, spline and Matérn models with a1 ¼ 3

(k1 ¼ 1), a2 ¼ 2 (k2 ¼ 1), b1 ¼ 180, b2 ¼ 100, a12 ¼ 80, m12 ¼ 1:25
and q ¼ 0:55
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cross-covariances constitute a valid model) if and only if its

determinant is non-negative, that is:

fPðu; b1; a1Þ � fPðu; b2; a2Þ� q2f 2P ðu; b12; a12Þ;

with fP the spectral density of the power generalized

covariance (Eq. 18).

Now, if q is different from zero, the determinant is

negative for large kuk if a12\ a1þa2
2

and for small kuk if

a12 [ a1þa2
2

; a necessary condition for positive semi-defi-

niteness is therefore that the exponent of the cross-co-

variance is the arithmetic average of the exponents of the

direct covariances, i.e., a12 ¼ a1þa2
2

. Under this condition,

the sign of the determinant is the same as the sign of

C a1
2
þ 1

� �
C a1þd

2

� �

C a1
2
� ba1=2c

� �
C 1� a1

2
þ ba1=2c

� �
ba11

C a2
2
þ 1

� �
C a2þd

2

� �

C a2
2
� ba2=2c

� �
C 1� a2

2
þ ba2=2c

� �
ba22

� q
C a12

2
þ 1

� �
C a12þd

2

� �

C a12
2
� ba12=2c

� �
C 1� a12

2
þ ba12=2c

� �
ba1212

 !2

:

Accordingly, positive semi-definiteness is ensured if, and

only if, either q ¼ 0 or the two following constraints are

fulfilled:

1. a12 ¼
a1 þ a2

2
2.

Appendix 2: Existence conditions
for Example 3

As for the previous example, the spectral density matrix

fðuÞ defined in Eq. (24) is positive semi-definite if and only

if its determinant is non-negative, i.e.:

fPðu; b1; a1Þ � fSðu; b2; k2Þ� q2g2ðu; a12; m12Þ;

where fP and fS are the spectral densities of the power and

spline generalized covariances, respectively. When q ¼ 0,

the positivity condition is fulfilled irrespective of the values

of b1, a1, b2 and k2. In contrast, when q 6¼ 0, the following

necessary and sufficient condition is found:

uðkukÞ :¼ ð2pa12Þ2dkuka1þ2k2þ2d

1þ ð2pa12Þ2kuk2
� �2m12þd

� j
q2

; ð26Þ

with

j ¼
C a1

2
þ 1

� �
C a1þd

2

� �
C k2 þ 1ð ÞC 2k2þd

2

� �
C2ðm12Þ

2ba11 b
2k2
2 pa1þ2k2C a1

2
� ba1=2c

� �
C 1� a1

2
þ ba1=2c

� �
C2 m12 þ d

2

� � :

The mapping u : Rþ ! R is unbounded if

a1 þ 2k2 [ 4m12, in which case inequality (26) cannot be

satisfied. In the converse case ða1 þ 2k2 � 4m12Þ, the max-

imum of u is

umax ¼
ða1 þ 2k2 þ 2dÞða1þ2k2Þ=2þdð4m12 � a1 � 2k2Þ2m12�ða1þ2k2Þ=2

ð4m12 þ 2dÞ2m12þdð2pa12Þa1þ2k2
:

Therefore, when q 6¼ 0, the following two necessary and

sufficient conditions must be fulfilled for the spectral

density matrix fðuÞ to be positive semi-definite for all

u 2 Rd:

1. a1 þ 2k2 � 4m12

2. q2 � q2max ¼
j

umax

.

In the specific case when a1 þ 2k2 ¼ 4m12, umax ¼
ð2pa12Þ�ða1þ2k2Þ and the upper bound of q2 is given by

q2 �
C2 a1þ2k2

4

� �

C2 a1þ2k2
4

þ d
2

� �
2a12

b1

� �a1 2a12

b2

� �2k2

�
C a1

2
þ 1

� �
C k2 þ 1ð ÞC a1þd

2

� �
C 2k2þd

2

� �

2C a1
2
� ba1=2c

� �
C 1� a1

2
þ ba1=2c

� � :

The above bivariate model and conditions of validity bear a

resemblance to the non-stationary models proposed in

Arroyo and Emery (2017) and in Maleki and Emery

(2017), in which the spline generalized direct covariance is

replaced by a power or by a Matérn covariance, and, to a

lesser extent, to the stationary bivariate Matérn covariance

model (Gneiting et al. 2010; Apanasovich et al. 2012).
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