
Gradual Program Verification

Johannes Bader1, Jonathan Aldrich2, and Éric Tanter3

1 Microsoft Corporation, Redmond, USA,
jobader@microsoft.com

2 Institute for Software Research, Carnegie Mellon University, Pittsburgh, USA
jonathan.aldrich@cs.cmu.edu

3 PLEIAD Lab, Computer Science Dept (DCC), University of Chile, Santiago, Chile
etanter@dcc.uchile.cl

Abstract. Both static and dynamic program verification approaches
have significant disadvantages when considered in isolation. Inspired by
research on gradual typing, we propose gradual verification to seam-
lessly and flexibly combine static and dynamic verification. Drawing on
general principles from abstract interpretation, and in particular on the
recent Abstracting Gradual Typing methodology of Garcia et al., we sys-
tematically derive a gradual verification system from a static one. This
approach yields, by construction, a gradual verification system that is
compatible with the original static system, but overcomes its rigidity by
resorting to dynamic verification when desired. As with gradual typing,
the programmer can control the trade-off between static and dynamic
checking by tuning the (im)precision of pre- and postconditions. The
formal semantics of the gradual verification system and the proofs of
its properties, including the gradual guarantees of Siek et al., have been
fully mechanized in the Coq proof assistant.

1 Introduction

Program verification techniques have the potential to improve the correctness
of programs, by exploiting pre- and postconditions specified in formulas drawn
from a given logic, such as Hoare logic [8]. Unfortunately, traditional approaches
to verification have a number of shortcomings, as illustrated next.

Example 1.
int withdraw (int balance , int amount)

requires (balance ≥ amount) ensures (balance ≥ 0) {
return balance - amount ; // returns the new balance

}

int balance : = 100;
balance : = withdraw (balance , 30);
balance : = withdraw (balance , 40);

c© Springer International Publishing AG 2018 25
I. Dillig and J. Palsberg (Eds.): VMCAI 2018, LNCS 10747, pp. 25–46, 2018.
https://doi.org/10.1007/978-3-319-73721-8_2

In this case, we reason about a variable balance representing some bank account.
The contract (pre- and postconditions) of withdraw specifies that it may only be
called if the balance is high enough to withdraw the given amount, ensuring that
no negative balance is reached. There are a number of ways to verify Example 1.
We briefly discuss static and dynamic verification, including hybrid approaches.
We then introduce gradual verification as an approach that has the potential to
overcome a number of their shortcomings.

Static verification. Formal methods like Hoare logic are used to establish
statically that a program is valid, i.e. satisfies its specification. In Example 1, the
static verifier proves both that withdraw itself complies with its contract and
that the three statements below are valid, e.g. that the precondition of withdraw
is satisfied prior to both calls.

A lack of detailed contracts may prevent the verifier from establishing that a
program is valid. In Example 1, verification of the second call to withdraw in fact
fails: after the first call, the verifier knows from the postcondition that (balance
≥ 0), which is insufficient to justify that (balance ≥ 40) as required for the
second call. Deriving such knowledge would require a stronger postcondition such
as balance = old(balance) - amount. However, this is not the postcondition
that was provided by the programmer, perhaps intentionally (e.g. if the intent
was to focus on some weaker correctness properties) or perhaps due to limited
expressiveness of the underlying logic (notation such as old(x) may not exist).
In general, a verification tool might also fail to prove program properties due to
undecidability of the underlying logic or practical limitations of the specific tool
implementation.

Hoare logic has been extended to more powerful logics like separation logic
[15] and implicit dynamic frames [20]. Yet, the requirement of rigorous an-
notation of contracts remains an issue in these settings. Due to space limi-
tations and to capture the core ideas of gradual verification, this paper fo-
cuses on a simple Hoare logic. We have formalized an extension to implicit
dynamic frames and implemented a prototype, which can both be found at
http://olydis.github.io/GradVer/impl/HTML5wp/

Dynamic verification. An alternative approach is to use dynamic verifica-
tion to ensure that a program adheres to its specification at runtime, by turning
the contract into runtime checks. A contract violation causes a runtime exception
to be thrown, effectively preventing the program from entering a state that con-
tradicts its specification. In Example 1, a dynamic verification approach would
not raise any error because the balance is in fact sufficient for both calls to
succeed. Note that because contracts are checked at runtime, one can even use
arbitrary programs as contracts, and not just formulas drawn from a logic [6].

Meyer’s Design by Contract methodology [12] integrated writing contracts in
this way as an integral part of the design process, with the Eiffel language au-
tomatically performing dynamic contract verification [11]. Dynamic verification
has also notably been used to check JML specifications [3], and has been ex-
tended to the case of separation logic by Nguyen et al. [14]. Note that unlike the
static approach, the dynamic approach only requires programmers to encode the

26 J. Bader et al.

properties they care about as pre- and postconditions, and does not require ex-
tra work for the sake of avoiding false negatives. However, the additional checks
impose runtime overhead that may not always be acceptable. Furthermore, vio-
lations of the specification are no longer detected ahead of time.

Hybrid approaches. Recognizing that static and dynamic checking have
complementary advantages, some approaches to combine them have emerged. In
particular, with the Java Modeling Language (JML) [2] and Code Contracts [5],
it is possible to use the same specifications for either static or dynamic veri-
fication. Additionally, Nguyen et al. explored a hybrid approach to reduce the
overhead of their approach to runtime checking for separation logic, by exploiting
static information [14].

Although useful, these techniques do not support a smooth continuum be-
tween static and dynamic verification. With the JML approach, engineers enable
static or dynamic verification; the two checking regimes do not interact. Nguyen
et al. use the static checker to optimize runtime checks, but do not try to report
static verification failures because it is difficult to distinguish failures due to con-
tradictions in the specification (which the developer should be warned about)
from failures due to leaving out parts of the specification (which could have been
intentional underspecification, and thus should not produce a warning). Their
runtime checking approach also requires the specification of heap footprints to
match in pre- and post-conditions, which like many static checking approaches
forces programmers to do extra specification work to avoid false negatives.

Gradual verification. Because this tension between static and dynamic
verification is reminiscent of the tension between static and dynamic type check-
ing, we propose to draw on research on gradual typing [18,17,7] to develop a
flexible approach to program verification, called gradual verification. Gradual
typing supports both static and dynamic checking and the entire spectrum in
between, driven by the precision of programmer annotations [19]. Similarly, grad-
ual verification introduces a notion of imprecise contracts, supporting a contin-
uum between static and dynamic verification. A static checker can analyze a
gradually-specified program and warn the programmer of inconsistencies be-
tween specifications and code, including contracts that are intended to be fully
precise but are not strong enough, as well as contracts that contradict one an-
other despite possible imprecision in each. On the other hand, the static checker
will not produce warnings that arise from a contract that is intentionally impre-
cise; in these cases, runtime checking is used instead. Programmers can rely on
a gradual guarantee stating that reducing the precision of specifications never
breaks the verifiability (and reduceability) of a program. This guarantee, orig-
inally formulated by Siek et al. in the context of gradual types [19], ensures
that programmers can choose their desired level of precision without artificial
constraints imposed by the verification technology.

It is worth noting that the similarly named work “The Gradual Verifier”
[1] focuses on measuring the progress of static verification. Their verification
technique “GraVy” is neither sound nor complete and does not comply with the
gradual guarantee.

Gradual Program Verification 27

Gradual verification is not only useful in cases of missing information (e.g.
when reusing a library that is not annotated) but also to overcome limitations
of the static verification system as motivated by Example 1. Furthermore, pro-
grammers can gradually evolve and refine static annotations. As they do so, they
are rewarded by progressively increased static correctness guarantees and pro-
gressively decreased runtime checking, supporting a pay-as-you-go cost model.

Specifically, we support imprecision by introducing an unknown formula
? that acts like a wildcard during static verification. Semantically, the static
checker will optimistically accept a formula containing ? as long as there exists
some interpretation of ? that makes the formula valid. As we learn more infor-
mation about the program state at runtime, the dynamic checker ensures that
some valid instantiation still exists. Crucially, the unknown formula can be com-
bined with static formulas, forming imprecise formulas. For instance, going back
to Example 1, we can write the imprecise postcondition (balance ≥ 0) /\ ? in
order to enable gradual reasoning, resulting in an optimistic interpretation of ?
as (balance ≥ 40) when statically proving the precondition of the second call.
At runtime, this interpretation is checked, to ensure soundness.

Note that the postcondition we suggest is only partially unknown, preserving
the static knowledge (balance ≥ 0). This not only allows us to prove certain
goals (e.g. (balance 6= -10)) without requiring any dynamic checks, but also
to statically reject programs that provably contradict this knowledge (e.g. if a
subsequent call had balance = -10 as precondition).

Contributions. This paper is the first development of the ideas of gradual typ-
ing in the context of program logics for verification. More precisely, we first
introduce a simple statically-verified language called SVL, along with its associ-
ated program logic. We then adapt the Abstracting Gradual Typing methodology
(AGT) [7] to the verification setting and show in section 3 how the static seman-
tics of a gradually-verified language GVL can be derived from SVL using prin-
ciples of abstract interpretation. Section 4 develops GVL’s dynamic semantics.
Here, we deviate from the AGT approach and instead propose injecting a min-
imal amount of runtime assertion checks, yielding a pay-as-you-go cost model.
Finally, Section 5 briefly discusses GVLIDF, an extension of our approach to
heap-allocated objects and an extended logic with implicit dynamic frames [20].

Limitations. Our approach for dynamic semantics requires assertions to be evalu-
able at runtime, naturally limiting the logic usable for annotations. The AGT
methodology (based on combining the proof-trees at runtime) is not restricted
that way, so it may be the ideal starting point for gradual verification in presence
of higher-order logic assertions.

The formal semantics of GVL and the proofs of its properties have been fully
mechanized in the Coq proof assistant and can be found at http://olydis.
github.io/GradVer/impl/HTML5wp/. The site also includes a report with the
formal treatment of the extended logic, as well as an interactive online prototype
of GVLIDF. Due to limited space, some figures contain only selected parts of
definitions. Complete definitions can be found online as well.

28 J. Bader et al.

program ::= procedure s

procedure ::= T m(T x) contract { s }

contract ::= requires φ ensures φ

T ::= int

⊕ ::= + | - | ...
� ::= = | =/ | < | ...

s ∈ Stmt ::= skip | s1; s2 | T x | x := e

| x := m(x) | assert φ

e ∈ Expr ::= v | x | (e ⊕ e)
x ∈ Var ::= result | ident | old(ident)

v ∈ Val ::= n

φ ∈ Formula ::= true | (e � e) | φ /\ φ

and syntactic sugar return e
def= result := e and T x := e

def= T x; x := e

Fig. 1. SVL: Syntax

2 SVL: Statically Verified Language

In the following sections, we describe a simple statically verified language called
SVL. We formalize its syntax, semantics and soundness.

2.1 Syntax

Figure 1 shows the syntax of SVL. Programs consist of a collection of procedures
and a designated statement resembling the entry point (“main procedure”). We
include the empty statement, statement sequences, variable declarations, vari-
able assignments, procedure calls, and assertions. All statements are in A-normal
form, which is not essential semantically but does simplify the formalism. Proce-
dures have contracts consisting of a pre- and postcondition, which are formulas.
Formulas can be the constant true, binary relations between expressions, and a
conjunction /\ . Expressions can occur within a formula or variable assignment,
and consist of variables, constants and arithmetic operations. 4

For the remainder of this work we only consider well-formed programs: vari-
ables are declared before use, procedure names are unique and contracts only
contain variables that are in scope. More specifically, a precondition may only
contain the procedure’s parameters xi, a postcondition may only contain the
special variable result and the dummy variables old(xi).

To simplify the presentation of semantics, we will give rules for procedures
that have exactly one parameter.

2.2 Dynamic Semantics

We now describe the dynamic semantics of SVL. SVL has a small-step semantics
· −→ · : State ⇀ State (see Fig. 2) that describes discrete transitions between
program states. Program states that are not in the domain of this partial function
are said to be stuck, which happens if an assertion does not hold or a contract is
4 Our approach is directly applicable to, say, further control structures, a richer type
system or formulas that are arbitrary boolean expressions.

Gradual Program Verification 29

violated before/after a call. In Section 2.3, we define a static verification system
whose soundness result implies that valid SVL programs do not get stuck.

Program states. Program states consist of a stack, i.e. State = Stack where:

S ∈ Stack ::= E · S | nil where E ∈ StackFrame = Env× Stmt

A stack frame consists of a local variable environment ρ ∈ Env = Var ⇀ Val
and a continuation statement.

Evaluation. An expression e is evaluated according to a big-step evaluation
relation ρ ` e ⇓ v, yielding value v using local variable environment ρ ∈ Env of
the top-most stack-frame. The definition is standard: variables are looked up in
ρ, and the resulting values are combined according to standard arithmetic rules.
Example: [x 7→ 3] ` x + 5 ⇓ 8

The evaluation of a formula in a given environment is specified by the pred-
icate · � · ⊆ Env × Formula. We assume standard evaluation semantics for
standard concepts like equality. We also say that a formula describes a certain
(infinite) set of environments (exactly the environments under which it holds),
yielding natural definitions for formula satisfiability and implication.

Definition 1 (Denotational Formula Semantics).
Let J·K : Formula→ P(Env) be defined as JφK def= { ρ ∈ Env | ρ � φ }

Definition 2 (Formula Satisfiability). A formula φ is satisfiable if and only
if JφK 6= ∅. Let SatFormula ⊂ Formula be the set of satisfiable formulas.

Definition 3 (Formula Implication). φ1 ⇒ φ2 if and only if Jφ1K ⊆ Jφ2K

Reduction rules. We define a standard small-step reduction semantics for state-
ments (Fig. 2). SsAssert ensures that assertions are stuck if the asserted for-
mula is not satisfied. SsCall sets up a new stack frame and makes sure that the
procedure’s precondition is satisfied by the newly set up context. Similarly, Ss-
CallExit ensures that the postcondition is satisfied before returning control to
the call site. Note our use of auxiliary functions procedure and mpost in order to
retrieve a procedure’s definition or postcondition using that procedure’s name.
Formally, we assume all rules and definitions are implicitly parameterized with
the “executing” program p ∈ Program from which to extract this information.
When required for disambiguation, we explicitly annotate reduction arrows with
the executing program p, as in −→p.

Note that SsCall also initializes old(x′), which allows assertions and most
importantly the postcondition to reference the parameter’s initial value. In re-
ality, no additional memory is required to maintain this value since it is readily
available as ρ(x), i.e. it lives in the stack frame of the call site. For a program to
be well-formed, it may not write to old(x′) in order to enable this reasoning.

30 J. Bader et al.

ρ � φ

〈ρ, assert φ〉 · S −→ 〈ρ, skip〉 · S
SsAssert

ρ ` e ⇓ v ρ′ = ρ[x 7→ v]
〈ρ, x := e〉 · S −→ 〈ρ′, skip〉 · S

SsAssign

procedure(m) = Tr m(T x′) requires φp ensures φq { r }
ρ ` x ⇓ v ρ′ = [x′ 7→ v, old(x′) 7→ v] ρ′ � φp

〈ρ, y := m(x); s〉 · S −→ 〈ρ′, r〉 · 〈ρ, y := m(x); s〉 · S
SsCall

post(m) = φq ρ′ � φq

〈ρ′, skip〉 · 〈ρ, y := m(x); s〉 · S −→ 〈ρ[y 7→ ρ′(result)], s〉 · S
SsCallExit

Fig. 2. SVL: Small-step semantics (selected rules)

WLP(skip, φ) = φ WLP(s1; s2, φ) = WLP(s1,WLP(s2, φ))
WLP(x := e, φ) = φ[e/x] WLP(assert φa, φ) = φa /\ φ

WLP(y := m(x), φ) = max
⇒
{ φ′ | y 6∈ FV(φ′) ∧

φ′ ⇒ mpre(m)[x/mparam(m)] ∧
(φ′ /\ mpost(m)[x, y/old(mparam(m)), result]) ⇒ φ }

Fig. 3. SVL: Weakest precondition (selected rules)

2.3 Static Verification

We define the static verification of SVL contracts through a weakest liberal pre-
condition calculus [4]. This syntax-directed approach (compared to, say, Hoare
logic, which has an existential in its sequence rule) will be useful for the dynamic
semantics of our gradual language (will be pointed out again later).
Definition 4 (Valid Procedure).
A procedure with contract requires φp ensures φq, parameter x and body s is
considered valid if φp ⇒ WLP(s, φq)[x/old(x)] holds.
We define WLP : Stmt×Formula ⇀ Formula as shown in Figure 3. WLP is
standard for the most part. The rule for calls computes a maximal formula φ′
(i.e. minimum information content) that is sufficient to imply both the proce-
dure’s precondition and the overall postcondition φ with the help of the proce-
dure’s postcondition.

Definition 5 (Valid Program). A program with entry point statement s is
considered valid if true ⇒ WLP(s, true) holds and all procedures are valid. 5

5 Note that one can demand more than true to hold at the final state by simply ending
the program with an assertion statement.

Gradual Program Verification 31

sWLP(s · nil, φ) = WLP(s, φ) · nil
sWLP(s · (y := m(x); s′) · s, φ) = WLP(s,mpost(m)) · sWLP((y := m(x); s′) · s, φ)

Fig. 4. Weakest precondition across call boundaries

Example 2 (Static Checker of SVL). We demonstrate the resulting behavior of
SVL’s static checker using example 1, but with varying contracts:

requires (balance ≥ amount)
ensures (result = old(balance) - old(amount))

withdraw is valid since the WLP of the body, given the postcondition, is
(balance - amount = old(balance) - old(amount)). Substitution gives
(balance - amount = balance - amount) which is trivially implied by
the precondition. The overall program is also valid since the main proce-
dure’s WLP is (100 ≥ 70) which is implied by true.

requires (balance ≥ amount) ensures (result ≥ 0) (as in example 1)
withdraw is valid since the body’s WLP is (balance - amount ≥ 0) which
matches the precondition. However, the program is not valid: The WLP of the
second call is (balance ≥ 40) which is not implied by the postcondition of
the first call. As a result, the WLP of the entire main procedure is undefined.

requires (balance ≥ 0) ensures (result ≥ 0)
Validating withdraw fails since the body’s WLP (same as above) is not im-
plied by the precondition.

2.4 Soundness

Verified programs should respect contracts and assertions. We have formulated
the runtime semantics of SVL such that they get stuck if contracts or assertions
are violated. As a result, soundness means that valid programs do not get stuck.
In particular, we can use a syntactic progress/preservation argument [22].

If the WLP of a program is satisfied by the current state, then execution
will not get stuck (progress) and after each step of execution, the WLP of the
remaining program is again satisfied by the new state (preservation). We use a
progress and preservation formulation of soundness not just because it allows us
to reason about non-terminating programs, but mainly because this will allow
us to naturally deal with the runtime checking needs of gradual verification.

To simplify reasoning about states with multiple stack frames, we extend
the definition of WLP to accept a stack of statements and return a stack of
preconditions, as shown in Figure 4. Note that WLP as defined previously can
only reason about procedure calls atomically since an element of Stmt cannot
encode intermediate states of an ongoing procedure call. In contrast sWLP works
across call boundaries by accepting a stack of statements and recursively picking
up the postconditions of procedures which are currently being executed.

32 J. Bader et al.

While before we defined what makes procedures as a whole valid, we can now
validate arbitrary intermediate program states, e.g. we can say that

sWLP


return balance - amount

·
b2 := withdraw(b1, a)

·
nil

, (b2 6= -1) /\ (a = 4)

 =

(balance - amount ≥ 0)
·

(b1 ≥ a) /\ (a = 4)
·

nil

where withdraw is defined as in example 1. If s are the continuations of some
arbitrary program state π ∈ State, then sWLP(s, true) is the precondition for
s. If sWLP(s, true) holds in the variable environments ρ of π, respectively, then
soundness guarantees that the program does not get stuck. In the following, we
extend the notion of validity to arbitrary intermediate program states in order
to formalize progress and preservation. Validity of states is an invariant that
relates the static and dynamic semantics of valid SVL programs.
Definition 6 (Valid state). We call the state 〈ρn, sn〉 · ... · 〈ρ1, s1〉 ·nil ∈ State
valid if ρi � sWLPi(sn · ... · s1 · nil, true) for all 1 ≤ i ≤ n. (sWLPi(s, φ) is the
i-th component of sWLP(s, φ))
Validity of the initial program state follows from validity of the program (Def. 5).
Proposition 1 (SVL: Progress). If π ∈ State is a valid state and π 6∈
{〈ρ, skip〉 · nil | ρ ∈ Env} then π −→ π′ for some π′ ∈ State.
Proposition 2 (SVL: Preservation). If π is a valid state and π −→ π′ for
some π′ ∈ State then π′ is a valid state.

3 GVL: Static Semantics

Having defined SVL, we can now derive its gradual counterpart GVL, which
supports gradual program verification thanks to imprecise contracts. We follow
the abstract interpretation perspective on gradual typing [7], AGT for short.
In this sense, we introduce gradual formulas as formulas that can include the
unknown formula, denoted ?:

φ̃ ::= φ | φ /\ ? and standalone formula ? as syntactic sugar for true /\ ?

We define F̃ormula as the set of all gradual formulas. The syntax of GVL
is unchanged save for the use of gradual formulas in contracts: contract ::=
requires φ̃ ensures φ̃. In Sections 3.2 to 3.4 we lift the predicates and functions
SVL uses for verification from the static domain to the gradual domain, yielding
a gradual verification logic for GVL.

3.1 Interpretation of Gradual Formulas
We call φ in φ /\ ? static part of the imprecise formula and define a helper
function static : F̃ormula→ Formula that extracts the static part of a gradual
formula, i.e. static(φ) = φ and static(φ /\ ?) = φ. Following the AGT approach,
a gradual formula is given meaning by concretization to the set of static formulas
that it represents.

Gradual Program Verification 33

Definition 7 (Concretization of gradual formulas).
γ : F̃ormula ⇀ PFormula is defined as:

γ(φ) = { φ }
γ(φ /\ ?) = { φ′ ∈ SatFormula | φ′ ⇒ φ } if φ ∈ SatFormula
γ(φ /\ ?) undefined otherwise

A fully-precise formula concretizes to the singleton set. Importantly, we only
concretize imprecise formulas to precise formulas that are satisfiable. Note that
the concretization of any gradual formula always implies the static part of that
formula. The notion of precision between formulas, reminiscent of the notion of
precision between gradual types [19], is naturally induced by concretization [7]:

Definition 8 (Precision). φ̃1 is more precise than φ̃2, written φ̃1 v φ̃2 if and
only if γ(φ̃1) ⊆ γ(φ̃2).

3.2 Lifting Predicates

The semantics of SVL makes use of predicates that operate on formulas, namely
formula implication and formula evaluation. As GVL must operate on grad-
ual formulas, these predicates are lifted in order to deal with gradual formulas
in a consistent way. We propose the following definitions of consistent formula
evaluation and implication.
Definition 9 (Consistent Formula Evaluation).
Let · �̃ · ⊆ Env× F̃ormula be defined as ρ �̃ φ̃ ⇐⇒ ρ � static(φ̃)

Definition 10 (Consistent Formula Implication).
Let · ⇒̃ · ⊆ F̃ormula× F̃ormula be defined inductively as

φ1 ⇒ static(φ̃2)
φ1 ⇒̃ φ̃2

ĨmplStatic

φ ∈ SatFormula
φ ⇒ φ1 φ ⇒ static(φ̃2)

φ1 /\ ? ⇒̃ φ̃2
ĨmplGrad

In rule ĨmplGrad, φ represents a plausible formula represented by φ1 /\ ?.

Abstract interpretation. Garcia et al. [7] define consistent liftings of predicates
as their existential liftings:
Definition 11 (Consistent Predicate Lifting). The consistent lifting P̃ ⊆
F̃ormula× F̃ormula of a predicate P ⊆ Formula×Formula is defined as:

P̃ (φ̃1, φ̃2) def⇐⇒ ∃φ1 ∈ γ(φ̃1), φ2 ∈ γ(φ̃2). P (φ1, φ2)

Our definitions above are proper predicate liftings.
Lemma 1 (Consistent Formula Evaluation and Implication).
· �̃ · (Def. 9) is a consistent lifting of · � · and · ⇒̃ · (Def. 10) is a
consistent lifting of · ⇒ · .

34 J. Bader et al.

3.3 Lifting Functions
Deriving gradual semantics from SVL also involves lifting functions that operate
on formulas, most importantly WLP (Definition 3). Figure 5 gives the definition
of W̃LP : Stmt × F̃ormula ⇀ F̃ormula, the consistent lifting of WLP. For

W̃LP(skip, φ̃) = φ̃ W̃LP(s1; s2, φ̃) = W̃LP(s1, W̃LP(s2, φ̃))

W̃LP(x := e, φ̃) = φ̃[e/x] W̃LP(assert φa, φ̃) = φa /\ φ̃

W̃LP(y := m(x), φ̃) =
{
φ′ if φ̃,mpre(m),mpost(m) ∈ Formula
φ′ /\ ? otherwise

where φ′ = max
⇒
{ φ′′ | y 6∈ FV(φ′′) ∧ (φ′′ ⇒̃ mpre(m)[x/mparam(m)]) ∧

(φ′′ /\ mpost(m)[x, y/old(mparam(m)), result]) ⇒̃ φ̃ }

Fig. 5. GVL: Weakest precondition (selected rules)

most statements W̃LP is defined almost identical to WLP, however, calls are more
complex. Note that for calls, W̃LP not only has to deal with the fact that φ̃ is a
gradual formula, but also that procedure m may now have imprecise contracts.
In a sense, the function is lifted w.r.t. three formula parameters, two of them
referenced through the procedure’s name. To accomplish this, we first determine
the static part φ′ of the result which is analogous to the WLP, but resorting to
lifted predicates. Next, we determine whether it would be sufficient to return φ′
unmodified, or whether it is plausible that the precondition must be stronger. If
all three influencing formulas are precise W̃LP should coincide with WLP, so φ′ is
returned. Otherwise, φ′ might have been chosen too weak, which is counteracted
by making it imprecise.

Abstract interpretation. Again, AGT [7] formalizes the notion of consistent func-
tions using an abstraction function α that maps a set of static formulas back to
the most precise gradual formula that represents this set, such that 〈γ, α〉 forms
a Galois connection.

Definition 12 (Abstraction of formulas). Let α : PSatFormula ⇀ F̃ormula
be defined as α(φ) = min

v
{ φ̃ ∈ F̃ormula | φ ⊆ γ(φ̃) }

α is partial since min
v

does not necessarily exist, e.g. α({(x 6= x), (x = x)})
is undefined. Using concretization for gradual parameters and abstraction for
return values one can consistently lift (partial) functions:
Definition 13 (Consistent Function Lifting). Given a partial function f :
Formula ⇀ Formula, its consistent lifting f̃ : F̃ormula ⇀ F̃ormula is
defined as f̃(φ̃) = α({ f(φ) | φ ∈ γ(φ̃) })

Gradual Program Verification 35

Lemma 2 (Consistent WLP). W̃LP is a consistent lifting of WLP.

3.4 Lifting the Verification Judgment

Gradual verification in GVL must deal with imprecise contracts. The static
verifier of SVL uses WLP and implication to determine whether contracts and
the overall program are valid (Def. 4, 5). Because contracts in GVL may be
imprecise, we have to resort to W̃LP (Fig. 5) and consistent implication (Def. 10).

Example 3 (Static Checker of GVL). Static semantics of SVL and GVL coincide
for precise contracts, so example 2 applies to GVL without modification. We
extend the example with imprecise contracts:

requires (balance ≥ amount) ensures (result ≥ 0) /\ ?
Note the similarity to the precise contract in example 1 which causes GVL’s
static checker to reject the main procedure. However, with the imprecise
postcondition we now have (balance ≥ 0) /\ ? ⇒̃ (balance ≥ 40).
As a result, the static checker optimistically accepts the program. At the
same time, it is not guaranteed that the precondition is satisfied at runtime
without additional checks. We expect GVL’s runtime semantics (Section 4)
to add such checks as appropriate. These runtime checks should succeed for
the main procedure of example 1, however they should fail if we modify the
main program as follows, withdrawing more money than available:
int b : = 100; b : = withdraw (b, 30); b : = withdraw (b, 80);

Static checking succeeds since (b ≥ 0) /\ ? ⇒̃ (b ≥ 80), but b’s value at
runtime will not satisfy the formula. Note that the presence of imprecision
does not necessarily imply success of static checking:
int b : = 100; b : = withdraw (b, 30); assert (b < 0);

It is implausible that this program is valid since (b ≥ 0) /\ ? ⇒̃ (b < 0)
does not hold. However, further weakening withdraw’s postcondition to ?
would again result in static acceptance but dynamic rejection.

requires ? ensures (result = old(balance) - old(amount)) /\ ?
This contract demonstrates that imprecision must not necessarily result in
runtime checks. The body’s W̃LP is ?, which is implied by the annotated
precondition ? without having to be optimistic (i.e. resort to the plausibility
interpretation). We expect that an efficient runtime semantics, like the one
we discuss in Section 4.3, adds no runtime overhead through checks here.

4 GVL: Dynamic Semantics

Accepting a gradually-verified program means that it is plausible that the pro-
gram remains valid during each step of its execution, precisely as it is guaranteed
by soundness of SVL. To prevent a GVL program from stepping from a valid

36 J. Bader et al.

state into an invalid state, we extend the dynamic semantics of SVL with (de-
sirably minimal) runtime checks. As soon as the validity of the execution is no
longer plausible, these checks cause the program to step into a dedicated error
state. Example 3 motivates this behavior.

Soundness. We revise the soundness definition of SVL to the gradual setting
which will guide the upcoming efforts to achieve soundness via runtime assertion
checks. Validity of states (Def. 6) relies on sWLP (Fig. 4) which itself consumes
postconditions of procedures. Hence, GVL uses a consistent lifting of sWLP which
we define analogous to Fig. 4, but based on W̃LP. Save for using sW̃LP instead
of sWLP, valid states of GVL are defined just like those of SVL.

We expect there to be error derivations π −̃→ error whenever it becomes
implausible that the remaining program can be run safely. Note that we do not
extend State, but instead define · −̃→ · ⊆ State × (State ∪ {error}). As a
result, we can leave Prop. 2 (Preservation) untouched.

In Section 4.1 we derive a naive runtime semantics driven by the soundness
criteria of GVL. We then examine the properties of the resulting gradually ver-
ified language. In Section 4.3 we discuss optimizing this approach by combining
W̃LP with strongest preconditions S̃P in order to determine statically-guaranteed
information that can be used to minimize the runtime checks ahead of time.

4.1 Naive semantics

We start with a trivially correct but expensive strategy of adding runtime as-
sertions to each execution step, checking whether the new state would be valid
(preservation), right before actually transitioning into that state (progress). 6

Let ρ′1..m, ρ1..n ∈ Env, s′1..m, s1..n ∈ Stmt
If 〈ρ′m, s′m〉 · ... · 〈ρ′1, s′1〉 · nil −→ 〈ρn, sn〉 · ... · 〈ρ1, s1〉 · nil holds7, then

〈ρ′m, s′m〉 · ... · 〈ρ′1, s′1〉 · nil −̃→


〈ρn, sn〉 · ... · 〈ρ1, s1〉 · nil if (ρn �̃ φ̃n) ∧ ... ∧ (ρ1 �̃ φ̃1)

where φ̃n · ... · φ̃1 · nil = sW̃LP(sn · ... · s1 · nil, true)
error otherwise

Before showing how to implement the above semantics, we confirm its sound-
ness: Progress of GVL follows from progress of SVL. The same is true for preser-
vation: in the first reduction case, validity of the resulting state follows from
preservation of SVL.
6 Note the difference between runtime assertions and the assert statement. The for-
mer checks assertions at runtime, transitioning into a dedicated exceptional state
on failure. The latter is a construct of a statically verified language, and is hence
implementable as a no-operation.

7 SsCall and SsCallExit as defined in Fig. 2 are not defined for gradual formulas.
Thus, we adjust those rules to use consistent evaluation �̃ instead of � . Since �̃
coincides with � for precise formulas, this is a conservative extension of SVL.

Gradual Program Verification 37

While we can draw the implementation of · −→ · from SVL, implementing
the case condition (ρn �̃ φ̃n)∧ ...∧ (ρ1 �̃ φ̃1) results in overhead. As a first step,
we can heavily simplify this check using inductive properties of our language:
Stack frames besides the topmost one are not changed by a single reduction, i.e.
ρn−1, ..., ρ1, sn−1, ..., s1 stay untouched. It follows that φ̃i for 1 ≤ i < n remains
unchanged since changes in sn do not affect lower components of sW̃LP (see
Fig. 4). As a result, it is sufficient to check ρn �̃ sW̃LPn(sn · ... · s1 · nil, true).

Recall how we argued that a weakest precondition approach is more suited
for the dynamic semantics of GVL than Hoare logic. Due to the syntax-directed
sequence rule, all potentially occurring sW̃LPn are partial results of statically
precomputed preconditions. Contrast this with a gradual sequence rule of Hoare
logic: {?}skip; skip{?} could be accepted statically by, say, instantiating the
existential with (x = 3), which is allowed if both premises of the rule are lifted
independently. However, the partial result {(x = 3)}skip{?} has no (guaran-
teed) relationship with the next program state since the existential was chosen
too strong. Any attempt to fix the gradual sequence rule by imposing additional
restrictions on the existential must necessarily involve a weakest precondition
calculus, applied to the suffix of the sequence.

4.2 Properties of GVL
Before discussing practical aspects of GVL, we turn to its formal properties:
GVL is a sound, gradual language. The following three properties are formalized
and proven in Coq.

Soundness. Our notion of soundness for GVL coincides with that of SVL, save
for the possibility of runtime errors. Indeed, it is up to the dynamic semantics
of GVL to make up for the imprecisions that weaken the statics of GVL.

Lemma 3 (Soundness of GVL). GVL is sound:
Progress If π ∈ State is a valid state and π 6∈ {〈ρ, skip〉 · nil | ρ ∈ Env} then

π −̃→ π′ for some π′ ∈ State or π −̃→ error.
Preservation If π is a valid state and π −̃→ π′ for some π′ ∈ State then π′

is a valid state.

We call the state 〈ρn, sn〉 · ... · 〈ρ1, s1〉 ·nil valid if ρi �̃ sW̃LPi(sn · ... ·s1 ·nil, true)
for all 1 ≤ i ≤ n.

Conservative extension. GVL is a conservative extension of SVL, meaning that
both languages coincide on fully-precise programs. This property is true by con-
struction. Indeed, the definition of concretization and consistent lifting captures
this property, which thus percolates to the entire verification logic. In order
for the dynamic semantics to be a conservative extension, GVL must progress
whenever SVL does, yielding the same continuation. This is the case since the
reduction rules of GVL coincide with those of SVL for fully-precise annotations
(the runtime checks succeed due to preservation of SVL, so we do not step to
error).

38 J. Bader et al.

Gradual guarantees. Siek et al. formalize a number of criteria for gradually-
typed languages [19], which we can adapt to the setting of program verification.
In particular, the gradual guarantee captures the smooth continuum between
static and dynamic verification. More precisely, it states that typeability (here,
verifiability) and reducibility are monotone with respect to precision. We say a
program p1 is more precise than program p2 (p1 v p2) if p1 and p2 are equivalent
except in terms of contracts and if p1’s contracts are more precise than p2’s
contracts. A contract requires φ1

p ensures φ1
q is more precise than contract

requires φ2
p ensures φ2

q if φ1
p v φ2

p and φ1
q v φ2

q.
In particular, the static gradual guarantee for verification states that a valid

gradual program is still valid when we reduce the precision of contracts.

Proposition 3 (Static gradual guarantee of verification).
Let p1, p2 ∈ Program such that p1 v p2. If p1 is valid then p2 is valid.

The dynamic gradual guarantee states that a valid program that takes a step
still takes the same step if we reduce the precision of contracts.

Proposition 4 (Dynamic gradual guarantee of verification).
Let p1, p2 ∈ Program such that p1 v p2 and π ∈ State.
If π −̃→p1 π

′ for some π′ ∈ State then π −̃→p2 π
′.

This also means that if a gradual program fails at runtime, then making its
contracts more precise will not eliminate the error. In fact, doing so may only
make the error manifest earlier during runtime or manifest statically. This is
a fundamental property of gradual verification: a runtime verification error re-
veals a fundamental mismatch between the gradual program and the underlying
verification discipline.

4.3 Practical aspects

Residual checks. Compared to SVL, the naive semantics adds a runtime assertion
to every single reduction. Assuming that the cost of checking an assertion is
proportional to the formula size, i.e. proportional to the size of the WLP of the
remaining statement, this is highly unsatisfying. The situation is even worse if
the entire GVL program has fully-precise annotations, because then the checks
are performed even though they are not necessary for safety.

We can reduce formula sizes given static information, expecting formulas to
vanish (reduce to true) in the presence of fully-precise contracts and gradually
grow with the amount of imprecision introduced, yielding a pay-as-you-go cost
model. Example 4 illustrates this relationship.

Example 4 (Residual checks). Consider the following variation of withdraw:
int withdraw (int balance , int amount)

requires ? ensures result ≥ 0 {
// WLP: (balance - amount ≥ 0) /\ (amount > 0)
assert amount > 0;

Gradual Program Verification 39

// WLP: balance - amount ≥ 0
balance = balance - amount ;
// WLP: balance ≥ 0
return balance ;
// WLP: result ≥ 0

}

Precomputed preconditions are annotated. Following the naive semantics (Sec-
tion 4.1), these are to be checked before entering the corresponding state, to
ensure soundness. However, many of these checks are redundant. When entering
the procedure (i.e. stepping to the state prior to the assertion statement), we
must first check φ1 = (balance - amount ≥ 0) /\ (amount > 0). According
to the naive semantics, in order to execute the assertion statement, we would
then check φ2 = (balance - amount ≥ 0). Fortunately, it is derivable stat-
ically that this check must definitely succeed: The strongest postcondition of
assert amount > 0 given φ1 is again φ1. Since φ1 ⇒ φ2 there is no point in
checking φ2 at runtime. Similar reasoning applies to both remaining statements,
making all remaining checks redundant. Only the initial check remains, which is
itself directly dependent on the imprecision of the precondition. Preconditions
(balance - amount ≥ 0) /\ ? or (amount > 0) /\ ? would allow dropping
the corresponding term of the formula, the conjunction of both (with or without
a ?) allows dropping the entire check.

The above example motivates the formalization of a strongest postcondition
function S̃P and function d̃iff which takes a formula φ̃a to check, a formula φ̃k

known to be true and calculates a residual formula d̃iff(φ̃a, φ̃k) sufficient to check
in order to guarantee that φ̃a holds.

Definition 14 (Strongest postcondition). Let SP : Stmt × Formula ⇀
Formula be defined as: SP(s, φ) = min

⇒
{ φ′ ∈ Formula | φ ⇒ WLP(s, φ′) }

Furthermore let S̃P : Stmt × F̃ormula ⇀ F̃ormula be the consistent lifting
(Def. 13) of SP.

Definition 15 (Reducing formulas).
Let diff : Formula× Formula ⇀ Formula be defined as:

diff(φa, φk) = max
⇒
{ φ ∈ Formula | (φ /\ φk ⇒ φa) ∧

(φ /\ φk ∈ SatFormula) }

Furthermore let d̃iff : F̃ormula× F̃ormula ⇀ F̃ormula be defined as:

d̃iff(φa, φ̃k) = diff(φa, static(φ̃k)) d̃iff(φa /\ ?, φ̃k) = diff(φa, static(φ̃k)) /\ ?

Both SP and diff can be implemented approximately by only approximating
min/max. Likewise, an implementation of S̃P may err towards imprecision. As
a result, the residual formulas may be larger than necessary. 8

8 Even a worst case implementation of S̃P(s, φ̃) as ? will only result in no reduction
of the checks, but not affect soundness.

40 J. Bader et al.

〈ρ′n, (s; sn)〉 · ... −→ 〈ρn, sn〉 · ...
〈ρ′n, (s; sn)〉 · ... −̃→ 〈ρn, sn〉 · ...

S̃sLocal

〈ρn−1, (y := m(x); sn−1)〉 · ... −→ 〈ρn,mbody(m)〉 · ...
ρn �̃ d̃iff(W̃LP(mbody(m),mpost(m)),mpre(m))

〈ρn−1, (y := m(x); sn−1)〉 · ... −̃→ 〈ρn,mbody(m)〉 · ...
S̃sCall

〈ρ′n+1, skip〉 · 〈ρ′n, (y := m(x); sn)〉 · ... −→ 〈ρn, sn〉 · ...
ρn �̃ d̃iff(sW̃LPn(sn · ..., true),

S̃P(y := m(x), sW̃LPn((y := m(x); sn) · ..., true)))
〈ρ′n+1, skip〉 · 〈ρ′n, (y := m(x); sn)〉 · ... −̃→ 〈ρn, sn〉 · ...

S̃sCallExit

Fig. 6. Dynamic semantics with reduced checks.

Definition 16 (Approximate algorithm for d̃iff).

F̃ormula d̃iff(F̃ormula φ̃a , F̃ormula φ̃b)
let φ̃1 /\ φ̃2 /\ ... /\ φ̃n := φ̃a (such that all φ̃i are atomic)
for i from 1 to n

if Jφ̃bK ∩ Jφ̃1 /\ ... /\ φ̃i−1 /\ φ̃i+1 ... /\ φ̃nK ⊆ Jφ̃aK
φ̃i := true

return φ̃1 /\ ... /\ φ̃n // one may drop the true terms

Figure 6 shows the dynamic semantics using residual checks (omitting error
reductions). Runtime checks of reductions operating on a single stack frame
vanish completely as there exists no source of imprecision in that subset of
GVL. This property can be formalized as: For all s ∈ Stmt that do not contain
a call, d̃iff(sW̃LPn(sn · ..., true), S̃P(s, sW̃LPn((s; sn) · ..., true))) ∈ {true, ?}
The check in S̃sCall vanishes if mpre(m) is precise. The check in S̃sCallExit
vanishes if mpost(m) is precise. Recall that Example 4 demonstrates this effect:
We concluded that only the initial check is necessary and derived that it also
vanishes if the precondition is precise.

If mpost(m) is imprecise, the assertion is equivalent to

ρn �̃ d̃iff(d̃iff(sW̃LPn(sn · ..., true),mpre(m)[x/mparam(m)]),
mpost(m)[x, y/old(mparam(m)), result])

which exemplifies the pay-as-you-go relationship between level of imprecision and
run-time overhead: both mpre(m) and mpost(m) contribute to the reduction of
sW̃LPn(sn · ..., true), i.e. increasing their precision results in smaller residual
checks.

Pay-as-you-go. To formally establish the pay-as-you-go characteristic of gradual
verification, we introduce a simple cost model for runtime contract checking.

Gradual Program Verification 41

Let size(φ̃) be the number of conjunctive terms of (the static part of) φ̃, e.g.
size((x = 3) /\ (y 6= z) /\ ?) = 2. We assume that measure to be propor-
tional to the time needed to evaluate a given formula. Let checksize(p) be the
sum of the size of all residual checks in program p.

Proposition 5 (Pay-as-you-go overhead).
a) Given programs p1, p2 such that p1 v p2, then checksize(p1) ≤ checksize(p2).
b) If a program p has only precise contracts, then checksize(p) = 0.

5 Scaling up to Implicit Dynamic Frames

We applied our approach to a richer program logic, namely implicit dynamic
frames (IDF) [20], which enables reasoning about shared mutable state. The
starting point is an extended statically verified language similar to Chalice [10],
called SVLIDF. Compared to SVL, the language includes classes with publicly-
accessible fields and instance methods. We add field assignments and object cre-
ation. Formulas may also contain field accessibility predicates acc from IDF and
use the separating conjunction * instead of regular (non-separating) conjunction
/\ . An accessibility predicate acc(e.f) denotes exclusive access to the field e.f .
It justifies accessing e.f both in the source code (e.g. x.f := 3 or y := x.f)
and in the formula itself (e.g. acc(x.f) * (x.f 6= 4)), which is called framing.
Compared to SVL, the main challenge in gradualizing SVLIDF is framing.

The linear logic ensures that accessibility predicates cannot be duplicated,
hence entitling them to represent exclusive access to a field. SVLIDF can statically
prove that any field access during execution is justified. To formalize and prove
soundness, SVLIDF has a reference dynamic semantics that tracks, for each stack
frame, the set of fields that it has exclusive access to; deciding at runtime whether
a formula holds depends on this information. Of course, thanks to soundness, an
implementation of SVLIDF needs no runtime tracking.

Recall that our approach to derive a gradual language includes the insertion
of runtime checks, which requires that formulas can be evaluated at runtime.
Therefore, the overhead of the reference semantics of SVLIDF carries over to a
naive implementation semantics. Additionally, it is no longer clear how accessi-
bility is split between stack frames in case of a call: SVLIDF transfers exclusive
access to fields that are mentioned in the precondition of a procedure from the
call site to the callee’s (fresh) stack frame. As we allow ? to also plausibly rep-
resent accessibility predicates, an imprecise precondition poses a challenge.

A valid strategy is to conservatively forward all accesses from caller to callee.
As for GVL, we can devise an efficient implementation strategy for accessi-
bility tracking that results in pay-as-you-go overhead.The fact that reducing
the precision of contracts may now result in a divergence of program states
(specifically, the accessible fields) asks for an adjustment of the dynamic part
of the gradual guarantee, which originally requires lock-step reduction behav-
ior. We carefully adjust the definition, preserving the core idea that reducing
precision of a valid program does not alter the observable behavior of that pro-
gram. The formalization of SVLIDF and GVLIDF are available in a companion

42 J. Bader et al.

report available online, along with an interactive prototype implementation at
http://olydis.github.io/GradVer/impl/HTML5wp/.

The prototype implementation of GVLIDF displays the static and dynamic
semantics of code snippets interactively, indicating the location of inserted run-
time checks where necessary. It also displays the stack and heap at any point of
execution. A number of predefined examples are available, along with an editable
scratchpad. In particular, Example 2 demonstrates how imprecision enables safe
reasoning about a recursive data structure that was not possible in SVLIDF,
because SVLIDF lacks recursive predicates. This illustrates that, similarly to
gradual types, imprecision can be used to augment the expressiveness of the
static verification logic. In this case, the example does not even require a single
runtime check.

6 Related Work

We have already related our work to the most-closely related research, including
work on the underlying logics [8,4,15,20], the theory of gradual typing [18,17,19,7],
closely related approaches to static [10] and dynamic [6,12,11,3] verification, as
well as hybrid verification approaches [2,14]. Additional related work includes
gradual type systems that include notions of ownership or linearity; one can
think of the acc predicate as representing ownership of a piece of the heap, and
acc predicates are treated linearly in the implicit dynamic frames methodol-
ogy [20]. [21] developed a gradual typestate checking system, in which the state
of objects is tracked in a linear type system. Similar to acc predicates, permis-
sions to objects with state are passed linearly from one function to another,
without being duplicated; if a strong permission is lost (e.g. due to a gradual
specification), it can be regained with a runtime check, as long as no conflicting
permission exist.

The gradual ownership approach of [16] is also related in that, like implicit
dynamic frames, it aids developers in reasoning (gradually) about heap data
structures. In that work, developers can specify containment relationships be-
tween objects, such that an owned object cannot be accessed from outside its
owner. These access constraints can be checked either statically using a standard
ownership type system, but if the developer leaves out ownership annotations
from part of the program, dynamic checks are inserted.

Typestate and ownership are finite-state and topological properties, respec-
tively, whereas in this work we explore gradual specification of logical contracts
for the first time. Neither of these prior efforts benefited from the Abstracting
Gradual Typing (AGT) methodology [7], which guided more principled design
choices in our present work. Additionally, it is unclear whether the gradual guar-
antee of Siek et al. [19] holds in these proposals, which were developed prior to
the formulation of the gradual guarantee.

One contrasting effort, which was also a stepping-stone to our current pa-
per, is recent work on gradual refinement types [9]. In that approach, the AGT
methodology is applied to a functional language in which types can be refined by

Gradual Program Verification 43

logical predicates drawn from a decidable logic. The present work is in a differ-
ent context, namely first-order imperative programs as opposed to higher-order
pure functional programs. This difference has a strong impact on the technical
development. The present work is simpler in one respect, because formulas do
not depend on their lexical context as in the gradual refinement setting. How-
ever, we had to reformulate gradual verification based on a weakest precondition
calculus, whereas the prior work could simply extend the type system setting
used when the AGT methodology was proposed. In addition, we provide a run-
time semantics directly designed for the gradual verification setting, rather than
adapting the evidence-tracking approach set forth by the AGT methodology and
used for gradual refinement types. In fact, we investigated using the evidence-
based approach for the runtime semantics of gradual verification, and found that
it was semantically equivalent to what we present here but introduces unneces-
sary complexities. Overall, by adapting the AGT methodology to the verification
setting, this work shows that the abstract interpretation approach to designing
gradual languages can scale beyond type systems.

7 Conclusion

We have developed the formal foundations of gradual program verification, tak-
ing as starting point a simple program logic. This work is the first adaptation
of recent fundamental techniques for gradual typing to the context of program
verification. We have shown how to exploit the Abstracting Gradual Typing
methodology [7] to systematically derive a gradual version of a weakest precon-
dition calculus. Gradual verification provides a continuum between static and
dynamic verification techniques, controlled by the (im)precision of program an-
notations; soundness is mediated through runtime checks.

Later, we briefly discuss how we applied our strategy to a more advanced
logic using implicit dynamic frames (IDF) [20] in order to reason about mutable
state. The use of IDF presents an additional challenge for obtaining a full pay-
as-you-go model for gradual verification, because the footprint has to be tracked.
We point to our prototype implementation which also references a formalization
of graualizing SVLIDF. Further optimization of this runtime tracking is an inter-
esting direction of future work. Another interesting challenge is to exercise our
approach with other, richer program logics, as well as to study the gradualization
of type systems that embed logical information, such as Hoare Type Theory [13],
establishing a bridge between this work and gradual refinement types [9].

44 J. Bader et al.

References

1. Arlt, S., Rubio-González, C., Rümmer, P., Schäf, M., Shankar, N.: The gradual
verifier. In: NASA Formal Methods Symposium. pp. 313–327. Springer (2014)

2. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of jml tools and applications. International Journal
on Software Tools for Technology Transfer 7(3), 212–232 (2005), http://dx.doi.
org/10.1007/s10009-004-0167-4

3. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the java modeling lan-
guage (jml) (2002)

4. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18(8), 453–457 (Aug 1975), http://doi.acm.org/10.
1145/360933.360975

5. Fahndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages.
In: ACM SAC - OOPS. Association for Computing Machinery, Inc.
(March 2010), https://www.microsoft.com/en-us/research/publication/
embedded-contract-languages/

6. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings
of the 7th ACM SIGPLAN Conference on Functional Programming (ICFP 2002).
pp. 48–59. Pittsburgh, PA, USA (Sep 2002)

7. Garcia, R., Clark, A.M., Tanter, E.: Abstracting gradual typing. In: Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 429–442. POPL ’16, ACM, New York, NY, USA (2016),
http://doi.acm.org/10.1145/2837614.2837670

8. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

9. Lehmann, N., Tanter, É.: Gradual refinement types. In: Proceedings of the 44th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2017). pp. 775–788. Paris, France (Jan 2017)

10. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with
chalice. In: Foundations of Security Analysis and Design V, pp. 195–222. Springer
(2009)

11. Meyer, B.: Eiffel: A language and environment for software engineering. Journal of
Systems and Software 8(3), 199–246 (1988)

12. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1988)
13. Nanevski, A., Morrisset, G., Birkedal, L.: Hoare type theory, polymorphism and

separation. Journal of Functional Programming 5-6, 865–911 (2008)
14. Nguyen, H.H., Kuncak, V., Chin, W.N.: Runtime checking for separation logic. In:

International Workshop on Verification, Model Checking, and Abstract Interpre-
tation. pp. 203–217. Springer (2008)

15. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on.
pp. 55–74. IEEE (2002)

16. Sergey, I., Clarke, D.: Gradual ownership types. In: Proceedings of the 21st
European Conference on Programming Languages and Systems. pp. 579–599.
ESOP’12, Springer-Verlag, Berlin, Heidelberg (2012), http://dx.doi.org/10.
1007/978-3-642-28869-2_29

17. Siek, J., Taha, W.: Gradual typing for objects. In: European Conference on Object-
Oriented Programming. pp. 2–27. Springer (2007)

Gradual Program Verification 45

18. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop. vol. 6, pp. 81–92 (2006)

19. Siek, J.G., Vitousek, M.M., Cimini, M., Boyland, J.T.: Refined criteria for gradual
typing. In: LIPIcs-Leibniz International Proceedings in Informatics. vol. 32. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

20. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic
frames and separation logic. In: European Conference on Object-Oriented Pro-
gramming. pp. 148–172. Springer (2009)

21. Wolff, R., Garcia, R., Tanter, É., Aldrich, J.: Gradual typestate. In: European
Conference on Object-Oriented Programming. pp. 459–483. Springer (2011)

22. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (Nov 1994), http://dx.doi.org/10.1006/inco.1994.1093

46 J. Bader et al.

	2
Gradual Program Verification
	Abstract
	1 Introduction
	2 SVL: Statically Verified Language
	2.1 Syntax
	2.2 Dynamic Semantics
	2.3 Static Verification
	2.4 Soundness

	3 GVL: Static Semantics
	3.1 Interpretation of Gradual Formula
	3.2 Lifting Predicates
	3.3 Lifting Functions
	3.4 Lifting the Verification Judgment

	4 GVL: Dynamic Semantics
	4.1 Naive semantics
	4.2 Properties of GVL
	4.3 Practical aspects

	5 Scaling up to Implicit Dynamic Frames
	6 Related Work
	7 Conclusion
	References

