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a b s t r a c t

Golumbic, Lipshteyn and Stern [12] proved that every graph can be represented as the edge
intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex
of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if
and only if the corresponding paths share at least one edge of the grid. For a nonnegative
integer k, Bk-EPG graphs are defined as EPG graphs admitting a model in which each path
has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle.
It is easy to see that every circular-arc graph is a B4-EPG graph, by embedding the circle
into a rectangle of the grid. In this paper, we prove that circular-arc graphs are B3-EPG,
and that there exist circular-arc graphs which are not B2-EPG. If we restrict ourselves to
rectangular representations (i.e., the union of the paths used in the model is contained
in the boundary of a rectangle of the grid), we obtain EPR (edge intersection of paths in
a rectangle) representations. We may define Bk-EPR graphs, k ≥ 0, the same way as Bk-
EPG graphs. Circular-arc graphs are clearly B4-EPR graphs and we will show that there
exist circular-arc graphs that are not B3-EPR graphs. We also show that normal circular-
arc graphs are B2-EPR graphs and that there exist normal circular-arc graphs that are not
B1-EPR graphs. Finally, we characterize B1-EPR graphs by a family of minimal forbidden
induced subgraphs, and show that they forma subclass of normal Helly circular-arc graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a rectangular grid of size (ℓ + 1) × (ℓ + 1). The vertical grid lines will be referred to as columns and denoted
by x0, x1, . . . , xℓ, and the horizontal grid lines will be referred to as rows and denoted by y0, y1, . . . , yℓ. A grid point lying
on column x and row y is referred to as (x, y). A path on G is nontrivial if it contains at least one edge of the grid. Let P be a
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collection of nontrivial simple paths onG. The edge intersection graph ofP (denoted by EPG(P )) is the graphwhose vertices
correspond to the paths of P and two vertices are adjacent in EPG(P ) if and only if the corresponding paths in P share at
least one edge in G. A graph G is called an edge intersection graph of paths on a grid (EPG graph) if G = EPG(P ) for some P .
Every graph G satisfies G = EPG(P ) for some P on a large enough grid and allowing an arbitrary number of bends (turns on
a grid point) for each path [12]. In recent years, the subclasses for which the number of bends of each path is bounded by
some integer k ≥ 0, known as Bk-EPG graphs, were widely studied [2–4,8,12,14,15]. The bend number of a graph G (resp. a
graph class H), is the smallest integer k ≥ 0 such that G (resp. every graph in H) is a Bk-EPG graph. We denote by Bk-EPG,
k ≥ 0, the class of Bk-EPG graphs.

In [14], it was shown that for every integer k ≥ 0 there exists a graph with bend number k, and that recognizing B1-
EPG graphs is NP-complete. The bend number of classical graph classes was investigated as well. In [15], it was shown that
outerplanar graphs are B2-EPG graphs and that planar graphs are B4-EPG graphs. For planar graphs, it is still an open question
whether their bend number is equal to 3 or 4. On the other hand, it is easy to see that B0-EPG graphs exactly correspond to
interval graphs (i.e., intersection graphs of intervals on a line) [12]. A generalization of interval graphs is circular-arc (CA)
graphs, i.e., intersection graphs of open arcs on a circle. It is natural to see circular-arc graphs as EPG graphs by identifying
the circle with a rectangle of the grid. Hence, circular-arc graphs form a subclass of B4-EPG graphs. This leads to some natural
questions. For example, the bend number of circular-arc graphs or the characterization of circular-arc graphs that are Bk-EPG
graphs, for some k < 4. One of the main results of this paper is that the bend number of circular-arc graphs is 3.

Another interesting question is how many bends per path are needed for a circular-arc graph to be represented in a
rectangle of the grid, i.e., in such a way that the union of the paths is contained in the boundary of a rectangle of the grid.
We call such graphs edge intersection graphs of paths on a rectangle (EPR graphs). It is easy to see that EPR graphs are exactly
the circular-arc graphs. We will study the classes Bk-EPR, for 0 ≤ k ≤ 4, in which the paths on the grid that represent the
vertices of the graph have at most k bends. As before, we denote by Bk-EPR, k ≥ 0, the class of Bk-EPR graphs. Similar to
the case of EPG graphs, one can define for a circular-arc graph G the bend number with respect to an EPR representation
as the smallest integer k such that G is a Bk-EPR graph. Notice that CA = EPR = B4-EPR. We strengthen this observation by
showing that the bend number for circular-arc graphs with respect to EPR representations is 4. Furthermore, we focus on
B1-EPR graphs and B2-EPR graphs (B0-EPR graphs correspond again to interval graphs), and relate these classes with the
class of normal Helly circular-arc graphs. In summary, we obtain the following results: we prove that the bend number of
normal circular-arc graphs with respect to EPR representations is 2; moreover, we characterize B1-EPR graphs by a family
of minimal forbidden induced subgraphs, and show that they are exactly the normal Helly circular-arc graphs containing no
powers of cycles Ck

4k−1, with k ≥ 2, as induced subgraphs.
An extended abstract of a preliminary version of this work was published in the proceedings of LAGOS 2015 [1].

2. Preliminaries

All graphs that we consider in this paper are connected, finite and simple. For all graph theoretical terms and notations
not defined here, we refer the reader to [5].

We denote by Cn, n ≥ 3, the chordless cycle on n vertices. A graph is called chordal, if every cycle of length at least four
has a chord. Given a graph G and an integer k ≥ 0, the power graph Gk has the same vertex set as G, two vertices being
adjacent in Gk if their distance in G is at most k.

Let G = (V , E) be a graph and let X ⊆ V . We denote by G − X the subgraph of G induced by the vertex set V − X .
A clique (resp. a stable set) is a subset of vertices that are pairwise adjacent (resp. non adjacent). We say that a vertex v

dominates a vertex w if they are adjacent and every neighbor of w is also a neighbor of v.
A thick spider Sn, n ≥ 2, is the graph whose 2n vertices can be partitioned into a clique K = {c1, . . . , cn} and a stable set

S = {s1, . . . , sn} such that, for 1 ≤ i, j, ≤ n, ci is adjacent to sj if and only if i ≠ j. Notice that Sn1 is an induced subgraph
of Sn2 if n1 ≤ n2. (The name spider for graphs or graph classes has been used in the literature with different meanings. We
follow the notation in [16], in the particular case in which the head of the spider is empty.)

Given a circle C of length ℓ, we can assign to vertices s1, . . . , sn of the thick spider Sn a set of pairwise disjoint arcs of C,
each of them of length ℓ/n − 2ε, and to vertices c1, . . . , cn of Sn a set of arcs of C of length (n − 1)ℓ/n + ε each (where ε is
a small enough real number), in such a way that the arc corresponding to ci is disjoint from the arc corresponding to si and
intersects every other arc corresponding to a vertex in S, for i = 1, . . . , n. Notice that since the length of each of the arcs
corresponding to vertices in K is greater than ℓ/2, they are pairwise intersecting. So, Sn is a circular-arc graph, as we have
described a circular-arc model for it.

More in general, if G is a circular-arc graph,C denotes the corresponding circle, andA the corresponding set of open arcs,
then (A, C) is called a circular-arc model of G [20]. A graph G is aHelly circular-arc graph (HCA graph) [10] if it is a circular-arc
graph having a circular-arc model such that any subset of pairwise intersecting arcs has a common point on the circle. Such
a model is called a Helly model. A circular-arc graph having a circular-arc model without two arcs covering the whole circle
is called a normal circular-arc graph (NCA graph), and such a model is called a normal model. Circular-arc models that are at
the same time normal and Helly are precisely those without three or less arcs covering the whole circle (see, for example,
Theorem 1 in [18]). A graph that admits such a model is called a normal Helly circular-arc graph (NHCA graph) [17]. We will
denote by NCA (resp. NHCA) the class of normal (resp. normal Helly) circular-arc graphs.
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In [6], the authors present a characterization of NHCA graphs by a family of minimal forbidden induced subgraphs.
Recent surveys on circular-arc graphs are given in [7,19]. A very recent characterization of circular-arc graphs by forbidden
structures is presented in [9].

3. Circular-arc graphs as EPG graphs

Themain result in this section is that the bend number of circular-arc graphswith respect to EPG representations is equal
to 3. We first show that every circular-arc graph is a B3-EPG graph (Theorem 1), then we exhibit an example of a graph in
B3-EPG \ B2-EPG (Proposition 2). We present also in this section a family of NHCA graphs that are not in B1-EPG (Lemmas 3
and 4). This family will play a central role in the characterization of B1-EPR graphs in the next section.

Theorem 1. Every circular-arc graph is a B3-EPG graph.

Proof. Let G be a circular-arc graph and let (A, C) be a circular-arc model of G. Without loss of generality, we may assume
that the endpoints of the arcs are all distinct and we can number them clockwise in the circle from 1 to 2n (with n being the
number of vertices of G). We also define a point 0 in the circle between 2n and 1 (clockwise). The arc (a, b), 1 ≤ a, b ≤ 2n,
denotes the arc from endpoint a to endpoint b (clockwise). In particular, an arc (a, b) contains point 0 of C if and only if
a > b. Let X be the set of vertices in G corresponding to arcs containing point 0 of C. Clearly, these vertices form a clique
in G. Moreover, G − X is an interval graph that can be represented on a line by taking, for each vertex, the interval (a, b)
defined by the endpoints of its corresponding arc, since a < b for vertices in G − X . We will construct the following EPG
representation of G on a grid. For each vertex in G − X corresponding to an arc (a, b), assign the 3-bends path on the grid
whose endpoints are (x0, yb) and (xb, y0) and whose bend points correspond to the grid points (x0, ya), (xa, ya), (xa, y0). For
each vertex of X corresponding to an arc (c, d) (in this case c > d), assign the 3-bends path on the grid whose endpoints are
(x0, y0) and (x2n, y0) and whose bend points correspond to the grid points (x0, yd), (xc, yd), (xc, y0). Since all the endpoints
of the arcs in A are different, the edge intersections of the paths are either on column x0 or on row y0 of the grid. Clearly,
two paths corresponding to vertices of G − X intersect if and only if the corresponding arcs intersect on C. Two paths
corresponding to vertices of X intersect at least on the edge of the grid going from (0, 0) to (0, 1). The path corresponding
to a vertex in G − X with endpoints (a, b) and the path corresponding to a vertex in X with endpoints (c, d) intersect if and
only if either d > a or c < b, and the same condition holds for the corresponding arcs in C. Thus, we obtain a representation
of G as a B3-EPG graph. �

Combining Theorem 1 with the following result shows that the bend number of circular-arc graphs with respect to EPG
representations is 3.

Proposition 2. The thick spider S40 is in B3-EPG \ B2-EPG.

Proof. Since all thick spiders are circular-arc graphs, it follows from Theorem 1 that S40 is a B3-EPG graph.
Suppose there exists a B2-EPG representation of S40. Let us consider the path Pc corresponding to a vertex c of the clique

and the paths corresponding to its 39 neighbors in the stable set S. The path Pc uses at most three lines (rows and/or
columns) of the grid since it has at most 2 bends. Thus, Pc intersects at least 13 paths, P1, . . . , P13, corresponding to 13 of
its neighbors in S on a same line x. Without loss of generality, we may assume that x is a column of the grid.

Notice that, since the paths have at most 2 bends, the edges of each path on a same row or column form a connected
subpath (this does not hold for example in paths with four bends: the 4-bends path on the grid whose endpoints are (0, 0)
and (0, 3) andwhose bend points correspond to the grid points (0, 1), (1, 1), (1, 2), and (0, 2), as the disconnected segments
(0, 0)–(0, 1) and (0, 2)–(0, 3) on column 0).

Consider now the 13 connected subpaths on x corresponding to the paths P1, . . . , P13 that Pc intersects on column
x. Since these paths correspond to vertices of S, they are edge-disjoint and thus their subpaths on x can be ordered. We
may assume then that P1, . . . , P13, the subpaths of P1, . . . , P13 on column x, are ordered by index from left to right. Let sj,
j ∈ {1, . . . , 39}, be the vertex in S corresponding to the path P7, i.e., Psj = P7. The path Pcj , corresponding to vertex cj of
the clique that is not adjacent to sj, cannot intersect the subpaths corresponding to P1, . . . , P13 on both sides of P7 on x since
it has at most two bends. Thus, it intersects at least 6 of them on some other row or column.

So we may assume, without loss of generality, that it intersects the paths P8, . . . , P13 on some other row or column.
But since these paths have at most two bends, are edge-disjoint and all use column x, it follows that Pcj intersects at most
2 paths among P8, . . . , P13 on a row. Therefore Pcj necessarily uses two columns and one row, and it intersects at least 4
paths among P8, . . . , P13 on a column x′

≠ x.
Since these 4 paths use both columns x, x′ and they are edge disjoint, it follows that each of them uses a different row.

Also notice that the order of their corresponding subpaths on the two columns x, x′ from left to rightmust be the same, since
they have at most 2 bends and therefore they cannot swap the order without intersecting.

Let sk, k ∈ {1, . . . , 39}, be the vertex corresponding to one of the two paths of these four whose subpaths on column x′

are located in the middle (i.e., the second or third subpath). It is now easy to see that, given that fixed configuration for the
four paths, it is impossible for the path Pck , corresponding to vertex ck of the clique that is not adjacent to sk, to avoid the
path Psk while intersecting the paths corresponding to the remaining three vertices using only two bends. Thus S40 does not
admit a B2-EPG representation. �
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Fig. 1. From left to right: a true pie, a false pie and four examples of a frame [12].

The thick spider S40 is probably not a minimal example in B3-EPG \ B2-EPG. The size 40 was chosen for the ease of
presentation. Finding a characterization of the minimal graphs in (CA ∩ B3-EPG) \ (CA ∩ B2-EPG) and in (CA ∩ B2-EPG) \

(CA ∩ B1-EPG) is left as an open problem.
We close this section by presenting a family of NHCA graphs that are not in B1-EPG, andwill be part of the characterization

of B1-EPR graphs in the next section: the powers of cycles Ck
4k−1, with k ≥ 2.

Lemma 3. Powers of cycles Ck
4k−1, with k ≥ 2, are NHCA.

Proof. Let k ≥ 2 and let G be the graph Ck
4k−1, where the vertices of the cycle are denoted by v1, . . . , vn, with n = 4k − 1.

Let C be a circle of length ℓ and let a1, a2, . . . , a2n be 2n points of it, ordered clockwise and such that the clockwise
distance from ai to ai+1 is ℓ/(2n). Let Ai, for 1 ≤ i ≤ n, be the clockwise open arc from a2i−1 to a2i+2k, where the index
operations are performed modulo 2n. Let A = {A1, . . . , An}. We will show first that (A, C) is a circular-arc model for G,
with Ai corresponding to vi. Indeed, as the length of all the arcs is the same and their start points are distinct, no arc is
contained in another. Then the arc Ai intersects exactly the arcs that have one of their endpoints within Ai, which are, by
definition of the arcs, Ai+1, . . . , Ai+k and Ai−1, . . . , Ai−k.

We will show now that (A, C) is a normal Helly model. As we already noticed, all the arcs have the same length and, by
definition, this length is (2k+1)ℓ/(2n). Also, the intersection of two arcs is either empty or of length at least ℓ/(2n). So, with
three arcs a, b, and c such that a intersects b and c intersects b, we can cover atmost a length of 3(2k+1)ℓ/(2n)−2ℓ/(2n) =

(6k + 1)ℓ/(2n). Observe that (6k + 1)ℓ/(2n) < ℓ ⇔ (6k + 1)ℓ < 2nℓ and recalling that n = 4k − 1, this reads
(6k + 1)ℓ < (8k − 2)ℓ which holds if and only if 2k > 3, that is true for k ≥ 2. As circular-arc models that are at the same
time normal and Helly are precisely those without three or less arcs covering the whole circle, this completes the proof. �

In order to prove the next result we need to introduce somemore definitions. It was shown in [12] that an induced cycle
C4 in a graph G corresponds to either a true pie or a false pie or a frame in any B1-EPG representation of G (see Fig. 1). In a
true pie or a false pie, the paths representing the vertices of the induced C4 use one common grid point which is defined as
the center of the pie. A frame is a model of C4 such that each of the four corresponding paths has a bend in one of the four
corners of a rectangle of the grid. Some examples of frame models are shown in Fig. 1.

Lemma 4. Powers of cycles Ck
4k−1, with k ≥ 2, are not in B1-EPG.

Proof. Let k ≥ 2 and let G be the graph Ck
4k−1, where the vertices of the cycle are denoted by v1, . . . , vn, with n = 4k − 1.

Suppose, by contradiction, that G admits a B1-EPG representation. Note that v1, vk+1, v2k+1 and v3k+1 induce a C4 in G.
We will consider the possible representations of the 4-cycle induced by v1, vk+1, v2k+1 and v3k+1. Let us denote by Pi the

path corresponding to vi, for i = 1, . . . , n. We will inductively show that, for each of the possible representations, the path
Pi+1 has to share with Pi a special point pi and its two incident edges of the grid. The point pi will be either the bend of Pi
or the center of the pie in case of pie representations.

Suppose first that the cycle is represented by a true pie using column x and row y of the grid. Let p be the intersection
point of x and y. Vertex v2 is adjacent to v1, vk+1, and v3k+1 in G. Since its corresponding path P2 must intersect P1, Pk+1
and P3k+1 and it cannot intersect P2k+1, it is forced to have a bend at p and use the same semi-row and semi-column as P1.
The same argument can then be applied to vk+2 and Pk+2 with respect to Pk+1, to v2k+2 and P2k+2 with respect to P2k+1
and to v3k+2 and P3k+2 with respect to P3k+1. Considering now the cycle v2, vk+2, v2k+2 and v3k+2, we can repeat the process
and, after k− 1 iterations, we will reach a contradiction because P1 should not use the same semi-row and semi-column as
P3k+1.

Suppose now that the 4-cycle is represented by a false pie with center p = (x, y). By symmetry, we may assume that P1
has a bend at p and Pk+1 uses edges on column x on both sides of p. Clearly, no path with at most one bend uses edges on
two different rows or columns. Since v2 is adjacent to v3k+1, v1, and vk+1, the path P2 must have a bend at p and use the
same semi-row and semi-column as P1. A similar argument shows that Pk+2 must use edges on column x on both sides of
p, as Pk+1. Symmetrically, an analogous situation holds for P2k+2 with respect to P2k+1 and for P3k+2 with respect to P3k+1.
As above, we can repeat the process and, after k − 1 iterations, we will reach again a contradiction.

Finally, suppose that the 4-cycle is represented by a frame on the rectangle defined by columns x and x′ and rows y and
y′. Suppose that P1 has edges on x and y, Pk+1 on y and x′, P2k+1 on x′ and y′, and P3k+1 on y′ and x. In order to have edge
intersections with P1, Pk+1, and P3k+1, the only possible row–column combination for the path P2 is to use edges on x and
y. Now repeating similar iterative arguments as previously, we will reach again a contradiction. �
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Fig. 2. Sketches of B3-EPR representations of S13 − {s1} and S13 − {c1} (we draw all the vertices of the stable set and representative vertices of the clique;
other vertices in the clique can be represented symmetrically).

4. Circular-arc graphs as EPR graphs

In this section, we focus on representations of circular-arc graphs as edge intersection graphs of paths on the boundary
of a rectangle of the grid, i.e., we restrict ourselves to 2 rows and 2 columns of the grid. Obviously, CA = B4-EPR since we can
embed the CAmodel into a rectangle of the grid in a natural way, and conversely. A strengthening of this observation is that
the bend number of CA graphs with respect to EPR representations is equal to 4. To show this, we exhibit in Proposition 5 a
circular arc-graph that is not B3-EPR.

In Theorem 6 we show that every normal circular-arc graph is a B2-EPR graph, and we give a counterexample for the
converse in Proposition 7.

In Lemma 8 we show that every graph in B1-EPR admits a normal Helly circular-arc model. This property allows us to
exhibit an example of a normal circular-arc graph that is not B1-EPR, concluding that the bend number of NCA graphs with
respect to EPR representations is equal to 2. We also point out that there are graphs in B1-EPG \ B1-EPR.

In Theorem 9, we prove the equivalence of five statements for B1-EPR graphs that are not chordal, two of them using
structural properties, other two in terms of their NHCAmodels, and one in terms of forbidden induced subgraphs. Joining this
result with known results from the literature on chordal NHCA graphs, we state in Theorem 12 a characterization of general
B1-EPR graphs. We prove that B1-EPG ∩ NHCA = B1-EPR = NHCA ∩ {Ck

4k−1}k≥2-free. As NHCA graphs are characterized
by minimal forbidden induced subgraphs [6], this result implies a forbidden induced subgraph characterization of B1-EPR
graphs.

Finally, we sketch a linear-time algorithm to recognize B1-EPR graphs.

Proposition 5. The thick spider S13 is not in B3-EPR.

Proof. By contradiction, suppose that S13 admits a B3-EPR representation. Clearly, at most four of the paths corresponding
to vertices in the stable set contain a corner of the rectangle, since they are pairwise non adjacent. So, from the remaining
9 paths, representing vertices in the stable set, at least three of them are intervals completely contained in one side of the
rectangle. Let us denote these paths in order by Pi, Pj, Pk, representing vertices si, sj, sk. The path corresponding to vertex cj
in the clique has to intersect Pi, and Pk avoiding Pj, so it necessarily needs four bends, a contradiction. �

The thick spider S13 is a minimal forbidden induced subgraph for the class of B3-EPR graphs. We sketch, in Fig. 2, B3-EPR
representations of S13 − {s1} and S13 − {c1} which, by symmetry, imply the minimality.

We will now consider normal circular-arc graphs (graphs having a circular-arc model without two arcs covering the
whole circle) and show that their bend number with respect to EPR representations is equal to 2.

Theorem 6. Every NCA graph is a B2-EPR graph.

Proof. Let (A, C) be a NCA model of a normal circular-arc graph. Without loss of generality, we may assume that the
endpoints of the arcs are pairwise different. Let p be a point of C that is not the endpoint of an arc of A. Since the model is
normal, the union of the arcs ofA that contain p does not coverC. Thus, there exists a point q inC that is not the endpoint of
an arc of A and is not contained in the union of the arcs of A containing p. We can then embed our model on a rectangle of
the grid in the following way (arcs will bijectively correspond to paths and C will bijectively correspond to the rectangle):
two consecutive corners of the rectangle correspond to point p of the circle and the remaining two corners correspond to
point q of the circle. In this way, since no arc of A contains both p and q, paths corresponding to arcs containing either p or
q have two bends, while paths corresponding to arcs containing neither p nor q have no bend. �

The converse is not true. We will show next that there exist B2-EPR graphs that are not in NCA.

Proposition 7. The thick spider S6 is in B2-EPR \ NCA.

Proof. Let (A, C) be a circular-arc model of S6. Without loss of generality, wemay assume that the disjoint arcsA1, . . . , A6
representing the vertices s1, . . . , s6 in the stable set are in clockwise order. The arc representing vertex c1 intersects
A2 . . . , A6 and is disjoint from A1, so it properly contains A3, A4, and A5. Similarly, the arc representing vertex c4 properly
contains A6, A1, and A2, and intersects A3 and A5, without intersecting A4. Thus the arcs representing vertices c1 and c4
cover the circle, and since the model was arbitrary up to symmetries, S6 is not in NCA. A B2-EPR representation of S6 is given
in Fig. 3. �
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Fig. 3. From left to right: aB1-EPG representation of S3; a sketch of aB2-EPR representation of S6 (wedrawall the vertices of the stable set and representative
vertices of the clique; other vertices in the clique can be represented symmetrically); sketches of B3-EPR and B2-EPG representations of S7 (again, we draw
all the vertices of the stable set and representative vertices of the clique; other vertices in the clique can be represented symmetrically).

We will now focus on B1-EPR graphs and show that they are NHCA graphs.

Lemma 8. B1-EPR ⊆ NHCA.

Proof. Consider a B1-EPR representation of a graph G and let P be the set of paths corresponding to the vertices of G. We
will consider the natural bijection between the rectangle R and a circle C, that maps the paths in P to open arcs A of C.
Notice that two open arcs intersect if and only if the corresponding paths ofP intersect on at least one edge of the grid. Thus,
(A, C) is a circular-arc representation of G. Now, since each path has at most one bend and the arcs are open, the union of
three (resp. two) arcs of A contains at most three (resp. two) points of C corresponding to corners of R. Hence (A, C) is a
NHCA model for G. �

As a corollary, we obtain that the bend number of NCA graphs with respect to EPR representations is equal to 2.We know
from Theorem 6 that it is at most 2. Now consider the thick spider S3, which is in NCA (see for example [6]). In [6] it is shown
that S3 is not in NHCA, so by Lemma 8, it is not in B1-EPR.

The thick spider S3 is also an example of a graph in B1-EPG \ B1-EPR, as it was shown in [12] that it belongs to B1-EPG.
In the next theorem, we will introduce five equivalent statements for B1-EPR graphs that are not chordal, two of them

using structural properties, other two in terms of their NHCA models, and one in terms of forbidden induced subgraphs.

Theorem 9. Let G = (V , E) be a graph which is not chordal. Then the following statements are equivalent:

(i) G ∈ B1-EPR;
(ii) G ∈ NHCA and G contains no Ck

4k−1, with k ≥ 2, as induced subgraph;
(iii) G ∈ NHCA and admits a NHCA model (A, C) with the following property: there are four points of C, different from the

endpoints of the arcs of A, such that no arc of A contains two of these points;
(iii′) G ∈ NHCA and in every NHCA model (A, C) of G there are four points of C, different from the endpoints of the arcs of A,

such that no arc of A contains two of these points;
(iv) G ∈ NHCA and G has four disjoint connected subgraphs H1, H2, H3, H4, such that H1 and H3 are in different connected

components of G \ (V (H2) ∪ V (H4)) and H2 and H4 are in different connected components of G \ (V (H1) ∪ V (H3)).
(iv′) G ∈ NHCA and G has four disjoint complete subgraphs H1, H2, H3, H4, such that H1 and H3 are in different connected

components of G \ (V (H2) ∪ V (H4)) and H2 and H4 are in different connected components of G \ (V (H1) ∪ V (H3)).

Proof. We will prove (iii) ⇒ (iv′), (iv) ⇒ (iii′), (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (i). The implications (iii′) ⇒ (iii) and
(iv′) ⇒ (iv) are straightforward.

(iii) ⇒ (iv′): Let (A, C) be a circular-arcmodel ofG such that there exist four points p1, . . . , p4 (clockwise) ofC satisfying
that no arc of A contains two of these points. Define Hi as the subgraph induced by the vertices corresponding to arcs of A
containing pi, for i = 1, . . . , 4. Since G is not chordal, the four graphs H1, . . . ,H4 are clearly non empty complete subgraphs,
and since no arc contains two of the four points, they are disjoint. By the topology of the circle and the order of the points
on it, it follows that every path connecting a vertex corresponding to an arc containing p1 and a vertex corresponding to an
arc containing p3 necessarily contains either a vertex corresponding to an arc containing p2 or a vertex corresponding to an
arc containing p4. So, H1 and H3 are in different connected components of G \ (V (H2) ∪ V (H4)) and, analogously, H2 and H4
are in different connected components of G \ (V (H1) ∪ V (H3)).

(iv) ⇒ (iii′): Let H1, H2, H3, H4 be disjoint connected subgraphs of G such that H1 and H3 are in different connected
components of G\ (V (H2)∪V (H4)) and H2 and H4 are in different connected components of G\ (V (H1)∪V (H3)). Let (A, C)
be a NHCA model of G, and let Ai be the set of arcs corresponding to vertices of Hi, for i = 1, . . . , 4.

The union of the arcs in Ai induces a connected sector of C, for each i = 1, . . . , 4. Moreover, by our assumptions,
A \ (A1

∪ A3) induces more than one connected sector on C, such that arcs in A2 and in A4 are in different connected
sectors A2 and A4. These sectors can be represented as two disjoint arcs of C with endpoints t2, h2, and t4, h4 (respectively)
in clockwise order (the arc corresponding to Ai is obtained by taking the union of all arcs in belonging to the same sector
as Ai, for i = 2, 4). Define A1 and A3 analogously, and let us represent them by two disjoint arcs of C with t1, h1, and t3, h3
being their endpoints, respectively. Notice that since the graph is not chordal, and thus A covers the circle, either A1 covers
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(h2 − ε, t4 + ε) and A3 covers (h4 − ε, t2 + ε), or A1 covers (t2 − ε, h4 + ε) and A3 covers (t4 − ε, h2 + ε), for some ϵ > 0.
Without loss of generality, we may assume that the first case holds.

Let p1 be a point in the clockwise open arc (h2, t4), p2 in (h1, t3), p3 in (h4, t2), and p4 in (h3, t1). No arc of A1, A2, A3

or A4 contains two of these points, since these arcs are contained in A1, A2, A3 and A4, respectively. Furthermore, no arc
in A \

4
i=1 Ai contains two of these points, because A1, A2, A3 and A4 are connected sectors of either A \ (A1

∪ A3) or
A \ (A2

∪ A4).
At this point, we know (iii) ⇒ (iii′), and thus (iii) ⇔ (iii′).
(i) ⇒ (ii): Since B1-EPR ⊆ B1-EPG, this follows directly from Lemmas 3, 4, and 8.
(ii) ⇒ (iii): Let G be a minimal counterexample to (iii), and let (A, C) be an arbitrary NHCA model of G. Then for every

choice of four points of C, there is an arc of A that contains two of these points.
As usual, we will assume that the arcs in A are open and their endpoints are pairwise distinct. We can number the

endpoints clockwise in the circle from 1 to 2n (n being the number of vertices of G). For an arc Ai ∈ A, its endpoints will be
referred to as tail and head in such a way that Ai is the open arc traversing C clockwise from the tail to the head.

Claim 10. No arc of A is properly contained in another.

Proof of Claim 10. Suppose there is an arc Ai which is properly contained in an arc Aj, i ≠ j. By minimality, and since
(iii) ⇒ (iii′), the model (A \ {Ai}, C) admits four points p1, p2, p3, p4 such that no arc contains two of them. But if Aj does
not contain two of these points, neither does Ai that is properly contained in Aj. Thus, (A, C) satisfies the property as well,
a contradiction to our hypothesis. �

Claim 11. No vertex is dominated by another.

Proof of Claim 11. Suppose that vertex v dominates vertex w. Let Av and Aw be their corresponding arcs in the NHCA
model (A, C). If there is an arc Az , corresponding to a vertex z, that intersects Aw only on Aw \ Av , then, since z is also
adjacent to v, Az intersects Av only on Av \ Aw . But then Av , Aw and Az cover C, a contradiction. Thus, such an arc of Az
does not exist. But then we can replace Aw by Aw ∩ Av obtaining a NHCA model of the same graph with an arc properly
contained in another, a contradiction with the previous claim. �

It was shown by Golumbic and Hammer [11] that the last claim implies that, when traversing the endpoints of the arcs
on the circle clockwise, heads and tails necessarily alternate. Moreover, they proved that G is the tth power of the cycle Cn,
for some value of t . Since G is a counterexample to (iii), it follows that t ≥ 2.

Let 1, . . . , 2n denote the endpoints of the arcs, where odd numbers correspond to tails and even numbers to heads.
Thus, every arc is of the form (2i − 1, 2i + 2t), for i = 1, . . . , n, where the sums are taken modulo 2n. In particular, every
arc properly contains 2t of the 2n endpoints. Since the model is normal and Helly, 6t < 2n, otherwise arcs (1, 2t + 2),
(2t + 1, 4t + 2), and (4t + 1, 6t + 2) cover the circle. On the other hand, 8t > 2n, otherwise points 2, 2t + 2, 4t + 2, and
6t + 2 would be such that no arc of A contains two of them.

Wewill shownow that 6t < 2n < 8t is also a sufficient condition for the tth power of the cycle Cn to be a counterexample
to (iii) (not necessarily minimal). It is clear that 6t < 2n ensures that C t

n is a NHCA graph. Consider a NHCA model of C t
n.

Now, suppose 2n < 8t and let p1, p2, p3, p4 be four points of C. We may assume that they correspond to endpoints of arcs,
otherwise we canmove each of them to its closest endpoint without creating a new containment relation between arcs and
points. If there are two points at distance at most 2t − 2, i.e., in the closed interval [i, i + 2t − 2] for some i = 1, . . . , n,
then they are both contained either in the arc (i − 1, i + 2t) or in the arc (i − 2, i + 2t − 1), depending on the parity of i. So
we may assume now that p1, p2, p3, p4 are pairwise at distance at least 2t − 1. It follows from the inequality 2n < 8t that
at least two pairs of vertices are at distance exactly 2t − 1 on C, and at least one of these pairs corresponds to endpoints
i, i + 2t − 1 with i even. Thus, these two points are both contained in the arc (i − 1, i + 2t).

Since t ≥ 2, the inequality 6t < 2n implies that n ≥ 7 thus, by the property above, C2
7 is a minimal counterexample

to (iii). Indeed, C t
n, t ≥ 2, contains C2

7 as induced subgraph if and only if 12t < 4n ≤ 14t (it can be verified that the arcs
(1, 2t + 2), (2t + 1, 4t + 2), (4t + 1, 6t + 2), . . . , (12t + 1, 14t + 2), where the operations are done modulo 2n, induce C2

7 ).
More in general and inductively, we can prove that Ck

4k−1, with k ≥ 2, is a minimal NHCA counterexample to (iii) and that
C t
n, t ≥ 2, contains Ck

4k−1 as induced subgraph if and only if 2(4k − 5)t < 2(k − 1)n and 2kn ≤ 2(4k − 1)t , or equivalently,
(4k − 5)/(k − 1) < n/t ≤ (4k − 1)/k.

As (4k − 1)/k converges to 4 as k tends to infinity, every C t
n with t ≥ 2 and such that 3 < n/t < 4 contains a power of a

cycle Ck
4k−1 as induced subgraph, for some k ≥ 2, and this completes the proof.

(iii) ⇒ (i): Let (A, C) be a circular-arc model of G such that there exist four points on C satisfying that no arc of A
contains two of these points.

Wewill place the corners of the rectangle in those four points. Since the arcs inA are open andwe are assuming, without
loss of generality, that the endpoints of the arcs are pairwise distinct,wemay assume aswell that the four points are different
from all the arc endpoints. It is easy to see then thatwe can find a big enough rectangle in the grid such thatwe can represent
the arcs as paths in the grid, maintaining the order of their endpoints, and placing the four corners at the desired points, and
this will give us a B1-EPR representation of G. �
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Now we are able to prove the following.

Theorem 12. Let G = (V , E) be a graph. Then G ∈ B1-EPR if and only if G ∈ NHCA and G has no Ck
4k−1, k ≥ 2, as induced

subgraph.

Proof. One implication follows immediately from Lemmas 8 and 4, since the class is hereditary. For the converse, if G is not
a chordal graph, then the result follows from Theorem 9. Suppose now that G is chordal. It is shown in [6] that a chordal
NHCA graph is indeed an interval graph, thus a B0-EPR graph and, in particular, a B1-EPR graph. �

Since Ck
4k−1, k ≥ 2, is not in B1-EPG (see Lemma 4), it follows that B1-EPG ∩ NHCA = B1-EPR = NHCA ∩ {Ck

4k−1}k≥2-free.
We leave as an open problem the characterization of the minimal graphs in B4-EPR \ B3-EPR and in B3-EPR \B2-EPR.

4.1. Linear time recognition of B1-EPR graphs

We will now sketch a linear-time algorithm to recognize B1-EPR graphs. The algorithm is based on the linear-time
recognition algorithm of NHCA graphs [6], that outputs a NHCA model of the graph if there is one, and property (iii′) of
Theorem 9.

Let G be a NHCA graph that is not chordal, and let (A, C) be a normal Helly circular-arc model of it. Let A = a1, . . . , a2n
be the endpoints of the arcs in A, in clockwise order.

Let P = p1, . . . , p2n be points of the circle such that pi is between ai and ai+1 for i = 1, . . . , 2n (index operations are
performed modulo 2n). We will define a function f : P → P . For each point in P , let f (p) be the first point clockwise in P
such that there is no arc of A containing both p and f (p).

Notice that, since the model covers the circle, f (pi) ≠ pi+1, for every i. Moreover, if the point ai+1 is a tail, then
f (pi+1) = f (pi), and if the point ai+1 is the head of an arc Av in A, then either Av contains f (pi) and f (pi+1) is the point right
after the tail of Av , or f (pi+1) = f (pi). We can therefore compute f (p1), . . . , f (p2n) in linear time.

Now, observe that if points q, q′, q′′, q′′′ (clockwise) in P satisfy the property that no arc ofA contains two of these points,
then points q, f (q), f 2(q), f 3(q) satisfy this property as well. It is worth noticing that, since the model is normal and Helly,
for every point q in P the points q, f (q), f 2(q), f 3(q) are in clockwise order.

By definition of f , in order to check the property, we only need to check that there is no arc containing both q and f 3(q).
Equivalently, we need to check that either f 4(q) = q or f 3(q), f 4(q), q are in clockwise order.

The algorithm is then as follows. Given a graph G, we first apply the algorithm in [6], that runs in O(n + m) time, where
n and m are, respectively, the number of vertices an edges of G. If G is an interval graph, the algorithm outputs an interval
model of G, as it uses as a sub-algorithm one of the many available interval graphs recognition algorithms. In this case the
graph is B0-EPR. If, otherwise, G is not chordal, the algorithm outputs a normal Helly circular-arc model (A, C) of it.

Let A = a1, . . . , a2n be the endpoints of the arcs in A, in clockwise order. We define the set P = p1, . . . , p2n and compute
f (p1), . . . , f (p2n) in linear time.We can then check for every point q in P if either f 4(q) = q or f 3(q), f 4(q), q are in clockwise
order. If the answer is affirmative for somepoint q, the graphG isB1-EPRby Theorem9and the observations above.Moreover,
we can place the bends of the rectangle in the representation at q, f (q), f 2(q), and f 3(q). If the answer is negative for every
point q, the graph G is not B1-EPR, by the observations above.

Since checking the property for each q in P can be done in constant time once we have precomputed f (P), the last step
of the algorithm takes linear time. The overall complexity of the algorithm is then O(m + n), the complexity of the NHCA
recognition algorithm.

5. Further results

The thick spider S3 is one of the minimal forbidden induced subgraphs for the class NHCA [6], but all the thick spiders
are CA graphs and, by Theorem 1, B3-EPG graphs. Thick spiders allow us to distinguish classes in the families Bk-EPR (k ≤ 4),
Bk-EPG (k ≤ 3), NHCA and NCA. In the previous sections we have proved that S40 is in B3-EPG \ B2-EPG (Proposition 2),
and that S6 is in B2-EPR \ NCA (see Proposition 7 and Fig. 3). In this section we will prove that S7 is in B3-EPR \B2-EPR
(Proposition 13), as well as in B2-EPG \ B1-EPG (Proposition 14).

Proposition 13. The thick spider S7 is in B3-EPR \ B2-EPR.

Proof. Fig. 3 shows a B3-EPR representation of S7. Let us show now that S7 is not a B2-EPR graph. By contradiction, suppose
that S7 admits a B2-EPR representation. Let us consider only the paths corresponding to vertices in the stable set. If there
are three of them whose union is contained in two adjacent sides of the rectangle (or in one side of the rectangle), let us
say in order Pi, Pj, Pk, representing vertices si, sj, sk, respectively, then the path corresponding to vertex cj in the clique
has to intersect Pi and Pk avoiding Pj, and so it needs at least three bends, a contradiction. So, we may assume that this
situation does not occur. Consider two opposite corners of the rectangle. If they are not covered by two different paths
corresponding to the stable set, then there are at least three paths whose union is contained in two adjacent sides of the
rectangle, a contradiction. So, we may assume that the four corners are covered by paths, corresponding to (at most) four
vertices of the stable set. If no such path uses two corners, then, from the remaining three paths, there are two of them that
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are intervals contained in the same side or in adjacent sides of the rectangle. But then, their union together with one path
on a corner are contained in two adjacent sides of the rectangle, a contradiction. If exactly one of the paths uses two corners
(and one side of the rectangle), from the remaining four paths, there are two of them that are intervals contained in the
same side of the rectangle, so as before we obtain a contradiction. Finally, if there are two paths using two corners each, and
two sides of the rectangle, from the remaining five paths, there are three of them that are intervals contained in the same
side of the rectangle, a contradiction. This completes the proof. �

The thick spider S7 is not a minimal forbidden induced subgraph for the class of B2-EPR graphs, but it is minimal within
the family of thick spiders. Indeed, with a similar proof we can show that S7 − {c1} is still in B3-EPR \B2-EPR, but S6 is in
B2-EPR (see Fig. 3).

Proposition 14. The thick spider S7 is in B2-EPG \ B1-EPG.

Proof. Fig. 3 shows a B2-EPG representation of S7. Let us show now that S7 is not a B1-EPG graph. By contradiction, suppose
that S7 admits a B1-EPG representation. Let us consider the path Pc corresponding to a vertex c of the clique and the paths
corresponding to its 6 neighbors in the stable set S. The path Pc has edges on at most two lines (one row and one column) of
the grid. Thus, it intersects at least 3 paths corresponding to neighbors in S on a same line x. Without loss of generality, we
may assume that x corresponds to a column of the grid. Consider now the 3 intervals on column x belonging to the 3 paths
mentioned above. Since the corresponding vertices are pairwise non adjacent, they admit some order on column x, say Ii,
Ij, Ik, corresponding to vertices si, sj, sk, respectively. Having at most one bend each, the paths corresponding to si and sk do
not have edges in a common column (and they do not have edges in a column different from x, or more than one interval
on x). So there is no way for the path Pcj corresponding to the vertex cj of the clique that is not adjacent to sj of avoiding the
interval Ij while intersecting the paths corresponding to si and sk using only one bend. �

In this case S7 is not aminimal example. Indeed, S4 is not in B1-EPG, but the size 7was chosen for the ease of presentation.
Another similar example of a circular-arc graph being not in B1-EPG is the 4-sun [13].

6. Conclusions and open questions

In this paper we study the number of bends per path needed to represent the class of circular-arc graphs as edge
intersection graphs of paths on a grid.

One of the main results is that CA ⊆ B3-EPG. We also show that (CA ∩ B3-EPG) \ (CA ∩ B2-EPG) and (CA ∩ B2-EPG) \

(CA ∩ B1-EPG) are non-empty, being the thick spiders S40 and S7, respectively, examples of graphs in these families.
These examples are not necessarilyminimal, the sizeswere chosen for the ease of presentation. Finding a characterization

of the minimal graphs in (CA ∩ B3-EPG) \ (CA ∩ B2-EPG) and in (CA ∩ B2-EPG) \ (CA ∩ B1-EPG) is left as an open problem.
We also study a particular type of representation in which the union of the paths used in the model is contained in the

boundary of a rectangle of the grid.
It is easy to see that CA = B4-EPR, and we prove that B4-EPR \ B3-EPR, B3-EPR \ B2-EPR, and B2-EPR \ B1-EPR are non-

empty, being the thick spiders S13, S7, and S3, respectively, examples of graphs in these families. Not all of them are minimal
examples as graphs, but they are minimal as examples within thick spiders.

Concerning subclasses of circular-arc graphs, we prove that NCA ( B2-EPR. We also show that (NCA∩ B2-EPR) \ (NCA∩

B1-EPR) is non-empty, being the thick spider S3 a minimal example in this family.
We prove that B1-EPR ( NHCA. Indeed, one of the main results in this paper is the equivalence B1-EPG ∩ NHCA =

B1-EPR = NHCA ∩ {Ck
4k−1}k≥2-free. As NHCA graphs are characterized by minimal forbidden induced subgraphs [6], this

result implies a forbidden induced subgraph characterization of B1-EPR graphs.
We leave as an open problem the characterization of the minimal graphs in B4-EPR \ B3-EPR and in B3-EPR \ B2-EPR.
Finally, we sketch a linear-time algorithm to recognize B1-EPR graphs.
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