
The Impact of Locality on the Detection of
Cycles in the Broadcast Congested

Clique Model?

F. Becker1, P. Montealegre2, I. Rapaport3, and I. Todinca1

1 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans , France
2 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile

3 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile

Abstract. The broadcast congested clique model is a message-passing
model of distributed computation where n nodes communicate with each
other in synchronous rounds. The joint input to the n nodes is an undi-
rected graph G on the same set of nodes, with each node receiving the list
of its immediate neighbors in G. In each round each node sends the same
message to all other nodes, depending on its own input, on the messages
it has received so far, and on a public sequence of random bits. One pa-
rameter of this model is an upper bound b on the size of the messages,
also known as bandwidth. In this paper we introduce another parameter
to the model. We study the situation where the nodes, initially, instead
of knowing their immediate neighbors, know their neighborhood up to a
fixed radius r.

In this new framework we study one of the hardest problems in
distributed graph algorithms, this is, the problem of detecting, in G,
an induced cycle of length at most k (Cycle≤k) and the problem of
detecting in G an induced cycle of length at least k + 1 (Cycle>k).
For r = 1, we exhibit a deterministic, one-round algorithm for solving
Cycle≤k with b = O(n2/k logn) if k is even, and b = O(n2/(k−1) logn) if
k is odd. We also prove, assuming the Erdős Girth Conjecture, that this
result is tight for k ≥ 4, up to logarithmic factors. More precisely, if each
node, instead of being able to see only its immediate neighbors, is allowed
to see up to distance r = bk/4c, and if we also allowed randomization and
multiple rounds, then the number of rounds R needed to solve Cycle≤k

must be such that R · b = Ω(n2/k) if k is even, and R · b = Ω(n2/(k−1))
if k is odd.

On the other hand, we show that, if each node is allowed to see up
to distance r = bk/2c+ 1, then a polylogarithmic bandwidth is sufficient
for solving Cycle>k with only two rounds. Nevertheless, if nodes were
allowed to see up to distance r = bk/3c, then any one-round algorithm
that solves Cycle>k needs the bandwidth b to be at least Ω(n/ logn).

Keywords: broadcast congested clique; induced cycles; graph degeneracy

? Additional support from CONICYT via Basal in Applied Mathematics (P.M. and
I.R.) and Fondecyt 1170021 (I.R.).



1 Introduction

The broadcast congested clique model is a message-passing model of distributed
computation where n nodes communicate with each other in synchronous rounds
over a complete network [1, 2, 4, 6–8, 14, 16, 18, 21]. The joint input to the n nodes
is an undirected graph G on the same set of nodes, with node u receiving the list
of its neighbors in G. Nodes have pairwise distinct identities, which are numbers
upper bounded by some polynomial in n. The identity of node u is denoted by
id(u). All nodes know n, the size of the network.

Each node broadcasts, in each round, a single b-bit message along each of its
n− 1 communication links. The size of the messages is known as the bandwidth
of the system, and it is a parameter of the model (which could grow with n).
Broadcasting is equivalent to writing the messages on a whiteboard, visible to
every node. In each round every node produces its message using its input, the
contents of the whiteboard, and a sequence of public random bits.

Typically, the goal of an algorithm is to decide whether the input graph G
belongs to some graph class C. An algorithm is correct if it terminates with every
node knowing the correct answer (that is, whether G ∈ C) with high probability.
The round complexity of an algorithm is the maximum number of rounds over
all possible input graphs (of size n).

Few fast algorithms are known in the broadcast congested clique model. In
fact, if the bandwidth b = O(log n), then there exist one-round algorithms for
deciding whether the input graph G has bounded degeneracy [6], contains a fixed
forest [14], is a cograph [21]. Also, if b = O(polylog n), then there is a one-round
algorithm for deciding whether G is connected [1, 2].

One way to increase the computing power of the model is to lift the broad-
cast restriction and to allow the nodes the possibility of sending different mes-
sages through different links. This general model, known as unicast congested
clique [14], gives the possibility to perform a load balancing procedure effi-
ciently. Such enormous intrinsic power has allowed some authors to provide fast
algorithms for solving natural problems: an O(log log log n)-round algorithm for
finding a 3-ruling set [17], O(n0.158)-round algorithms for counting triangles, for
counting 4-cycles and for computing the girth [12], an O(1)-round algorithm
for detecting a 4-cycle [12], an O(1)-round algorithm constructing a minimum
spanning tree [20].

Another very natural, much more limited and less dramatic way to increase
the computing power of the broadcast congested clique model, is to expand
the local knowledge the nodes initially have about G. The idea of a constant-
radius neighborhood independent of the size of the network is present in the
research on local algorithms pioneered by Angluin [3], Linial [23] and Naor and
Stockmeyer [25].

We therefore use the KTr notion, introduced by Awebuch et. al. [5], which
means Knowledge of Topology up to distance r, excluding edges with both end-
points at distance r. More precisely, we call BClique[r] the extension of the
broadcast congested clique model where each node u “sees” (receives as input)
the set of all edges lying on a path of length at most r, starting in u. Hence,

2



BClique[1] corresponds to the classical broadcast congested clique model, and
is simply denoted BClique.

One of the most studied problems in the BClique model is related to the
existence of cycles in the input graph G. The first natural question one can
formulate, that is, deciding whether G contains a cycle has been, until now,
the only question amenable to a simple algorithm. In fact, Becker et al. [6]
show that a simple set of logarithmic size messages is sufficient to recognize,
deterministically and in one round, whether the input graph G is acyclic.

Any other natural question concerning cycles has given strong negative re-
sults. Drucker et al. [14] showed that, if ` ≥ 4, then any algorithm that decides
whether the `-node cycle C` is a subgraph (or an induced subgraph) of the input
graph G needs Ω(ex(n,C`)/nb) rounds, where ex(n,H) is the Turán number of
H, i.e., the maximal number of edges of an n-node graph which does not contain
a subgraph isomorphic to H. Remark that ex(n,C`) is Θ(n2) for odd values `,
and Θ(n1+1/`) for even values (assuming the Erdős Girth Conjecture4 [15]).

Moreover, even in the very powerful unicast congested clique model , the al-
gorithms for cycle detection are rather slow. In fact, the best algorithm for
detecting C` uses O(nρ log n) rounds, for every ` ≥ 3, where ρ < 0.15715 [12].
The only exception being the detection of squares C4, for which an extremely
elegant O(1)-round algorithm has been devised [12].

In this paper, we mainly study two problems: Cycle≤k and Cycle>k. The
first one consists in deciding whether the graph contains an induced cycle of
length at most k (i.e., deciding whether the girth of the graph is at most k).
The second problem, complementary to the first one, consists in detecting the
existence of an induced cycle of length at least k + 1. This difficulty to find
fast algorithms for problems related to the existence of cycles is what makes the
positive results of this paper surprising.

Note that the existence of an induced cycle of length at most k is equivalent
to the existence of a cycle (not necessarily induced) of length at most k. On the
other hand, as we are going to explain later, finding an algorithm for detecting
induced cycles of length at least k + 1 requires much more involved arguments
than finding algorithms for detecting cycles (not necessarily induced) of length
at least k + 1.

Our Results

In Section 3 we show that there is a deterministic, one-round BClique algorithm
for solving problem Cycle≤k with bandwidth O(n2/k log n) if k is even, and
bandwidth O(n2/(k−1) log n) if k is odd. The main ingredient for proving this
is a deterministic, one-round algorithm given in [24] that reconstructs a graph
of degeneracy at most d in the BClique model using bandwidth O(d log n)
(reconstruction means that every node knows all the edges of the input graph).

4 This conjecture states that there exist graphs with n vertices and Ω(n1+1/k) edges
not containing cycles of length less than or equal to 2k.

3



Recall that the degeneracy of G is the minimum d such that, by iteratively
removing vertices of degree at most d, we obtain the empty graph.

We also show that previous upper bounds match the lower bounds up to
logarithmic factors, even in the BClique[bk/4c] model allowing randomization
and multiple rounds. More precisely, if we allowed the nodes to see up to distance
bk/4c, to use public coins and multiple rounds, then the number of rounds R
and bandwidth b needed to solve Cycle≤k is such that R · b = Ω(n2/k) if k is
even, and R · b = Ω(n2/(k−1)) if k is odd (in both cases k ≥ 4), for every ε-error
algorithm. (For these lower bounds we assume the Erdős Girth Conjecture).

We start Section 4 by giving a useful, “local” characterization of graphs
which do not have long induced cycles. Using this, together with a technique
inspired by the linear sketches of [1, 19], we show that, if each node is allowed to
see at distance bk/2c+ 1, then a polylogarithmic number of bits is sufficient for
detecting in two rounds an induced cycle of length strictly larger than k. More
precisely, we prove that for every k ≥ 3, there exists a two-round algorithm
in the BClique[bk/2c + 1] model that solves Cycle>k with high probability
using bandwidth O(log4 n). The approach is based on the randomized algorithm
of Ahn et al. [1] for computing a spanning forest in the BClique model with
bandwidth O(log3 n). With respect to lower bounds, we prove that any one-
round, public-coin BClique[bk/3c] algorithm that solves Cycle>k needs the
bandwidth to be at least Ω(n/ log n). Note that the case k = 3 corresponds
to decide whether the input graph G is chordal, i.e., whether the only induced
cycles in G are triangles.

The results of this article are summarized in Tables 1 and 2.

BClique[r] # Rounds Bandwidth Randomized?

Upper bound
Theorem

r = 1 1
O(n2/k logn), k even

O(n2/(k−1) logn), k odd
Deterministic

Lower bound
Theorem

r ≤ k/3 1
Ω(n2/k/ logn), k even

Ω(n2/(k−1)/ logn), k odd

Randomized
ε-error

Lower bound
Theorem

r ≤ k/4 R
Ω(n2/k/R), k even

Ω(n2/(k−1)/R), k odd

Randomized
ε-error

Table 1. Results concerning problem Cycle≤k. The lower bounds assume the Erdős
Girth Conjecture.

BClique[r] # Rounds Bandwidth Randomized?

Upper bound
Theorem

r ≥ k
2

+ 1 2 O(log4 n)
Randomized

(w.h.p.)

Lower bound
Theorem

r ≤ k/3 1 Ω(n/ logn)
Randomized
ε-error

Table 2. Results concerning problem Cycle>k

4



2 Basic Definitions and Notations

Let G = (V,E) be an undirected graph, and let u ∈ V . We call NG(u) = {v ∈
V |uv ∈ E} and NG[u] = NG(u) ∪ {u}, the open and closed neighborhoods of
u, respectively. Similarly, for U ⊆ V , NG(U) = ∪u∈UNG(u) − U and NG[U ] =
NG(U) ∪ {U} are the open and closed neighborhoods of U , respectively. When
no ambiguity is possible, we will omit the subindices. By extension, we denote
Nr[u] the set of vertices at distance at most r from u, and we call it closed r-
neighborhood of u. Analogously, Nr(u) = Nr[u] \ {u} is the open r-neighborhood
of u.

Graph H = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. If,
for any edge uv ∈ E with u, v ∈ V ′ we also have uv ∈ E′, we say that H is an
induced subgraph of G, or that H is the subgraph of G induced by V ′. Given a
vertex subset S, the subgraph induced by S is denoted G[S]. We simply write
G−S for G[V \S]. Also, if F is a subset of edges, we denote by G−F the graph
obtained from G by removing the edges of F . The degeneracy of a graph G is
the minimum d such that, by iteratively removing vertices of degree at most d,
we obtain the empty graph

If S is a vertex subset of G = (V,E), the contraction of S consists in replacing
the whole subset S by a unique vertex vS , such that the neighborhood of vS in the
new graph is NG(S) while G − S remains unchanged. A connected component
of G is the inclusion-maximal set of vertices inducing a connected graph. An
induced path (resp. cycle) of graph G is called a chordless path (cycle). A graph
is called k-chordal if it does not contain any induced cycle of length greater than
k. The 3-chordal graphs are known as chordal graphs.

The BClique[r] model is formally defined as follows. There are n nodes
which are given distinct identities (IDs), that we assume for simplicity to be
numbers between 1 and n. In this paper we consider the situation where the
joint input to the nodes is a graph G. More precisely, each node u receives as
input the subgraph of radius r around itself (i.e., all edges lying on a path of
length at most r, starting in u). Nodes execute an algorithm, broadcasting b-bit
messages in synchronous rounds. Their goal is to compute some function f that
depends on G. When an algorithm stops every node must know f(G). Function
f defines the problem to be solved. A 0 − 1 function corresponds to a decision
problem.

An algorithm may be deterministic or randomized. We distinguish two sub-
cases of randomized algorithms: the private-coin setting, where each node flips
its own coin; and the public-coin setting, where the coin is shared between all
nodes. (In this work we are going to consider public-coin algorithms only). An
ε-error algorithm A that computes a function f is a randomized algorithm such
that, for every input graph G, Pr{A outputs f(G)} ≥ 1 − ε. In the case where
ε→ 0 as n→∞, we say that A computes f with high probability (whp).

We consider several decision problems in this paper: Cycle=k, Cycle≤k and
Cycle>k. These problems consist in deciding, respectively, whether the input
graph has an induced cycle of length exactly k, at most k, and strictly larger
than k. Problems Sub-Cycle=k, Sub-Cycle≤k and Sub-Cycle>k are defined

5



in a similar way, but in this case we ask whether the input graph has a cycle as
a subgraph (induced or not) of length k, at most k, and strictly larger than k.

3 Detection of Short Cycles

Let us denote by ex(n, k) the maximum number of edges in an n-vertex graph
not containing a cycle of length at most k. A very helpful result in the study
of graphs without short cycles is the one that relates the nonexistence of short
cycles in G with the degeneracy of G. More precisely, graphs with no cycles of
length at most k (as subgraphs) have a relatively small degeneracy.

Proposition 1 ([14]). Graphs with no cycles of length at most k are of degen-
eracy O(ex(n, k)/n).

In [24] it is shown that graphs of degeneracy at most d can be recognized,
and even reconstructed, by a one-round algorithm in the BClique model using
bandwidth O(d · log n). Recall that reconstruction means that at the end of the
algorithm, every node knows all the edges of the input graph.

Theorem 1 ([24]). There is a one-round, deterministic algorithm in the model
BClique, that reconstructs the input graph G if the graph is d-degenerate, and
rejects otherwise, using bandwidth O(d · log n).

By Proposition 1, the degeneracy of the NO-instances of Cycle≤k is upper
bounded by O(ex(n, k)/n). Therefore, from Theorem 1, we conclude the exis-
tence of a one-round algorithm for Cycle≤k such that, each node, either (1)
fully reconstructs the graph and decides the existence of a cycle of length at
most k or (2) notices that the degeneracy of the input graph is larger than the
bound required by the NO instances, and concludes that the input graph must
be a YES instance. Therefore, we have the following corollary.

Corollary 1. Problem Cycle≤k can be solved with a one-round, deterministic
algorithm in the BClique model using bandwidth O((ex(n, k)/n) log n).

Previous algorithm is rather restrictive. It is deterministic, it works in one-
round and the information each node has about the graph is minimal, consisting
in the 1-neighborhood. The question we ask here is the following: is it possible,
by lifting previous restrictions, to decrease the total number of bits broadcasted
by each node? Next results give a negative answer to this question. In other
words, the one-round deterministic algorithm based on the degeneracy seems to
be the best we can do.

Recall that BClique[r] is the extension of the broadcast congested clique
model where each node u receives as input the set of all edges lying on a path of
length at most r, starting in u. Our first result tackles the case where r ≤ bk/4c.

Theorem 2. Let ε ≤ 1/3 and 0 < r ≤ k/4. Then, any ε-error, R-round, b-
bandwidth algorithm in the BClique[r] model solving Cycle≤k satisfies R · b =
Ω(ex(n, k)/n).

6



In the case where the nodes have more knowledge of the graph, i.e., when
k/4 ≤ r ≤ k/3, we obtain a tight bound for one-round algorithms.

Theorem 3. Let ε ≤ 1/3 and k/4 < r ≤ k/3. Then, any ε-error, one-round
algorithm in the BClique[r] model that solves Cycle≤k requires bandwidth b =
Ω(ex(n, k)/(n log n)).

Remark 1. Bondy and Simonovits [10] showed that ex(n, k) = O(n1+2/k) if k is
even, and ex(n, k) = O(n1+2/(k−1)) if k is odd. On the other hand, the Erdős
Girth Conjecture states that this bound is tight, implying the results of Table 1.
Note that currently, the best constructions provide a lower bound for ex(n, k) =
Ω(n1+4/(3k−7)) if k is even, and ex(n, k) = Ω(n1+4/(3k−9)) if k is odd [22].

4 Detection of Long Cycles

Recall that graphs without induced cycles of length greater than k are called
k-chordal [11]. 3-chordal graphs, i.e., graphs in which every cycle (not neces-
sarily induced) of 4 or more vertices has a chord, are called chordal graphs. It
is known that a graph G is chordal if and only if, for each vertex u ∈ V , and
each connected component C in G−N [u], the neighborhood N(C) of this com-
ponent induces a clique in G. This “local” characterization has been exploited
by Chandrasekharan et al. [13] for devising a fast parallel algorithm recognizing
chordal graphs. We begin this section by extending previous characterization to
arbitrary chordalities k > 3 in order to take advantage of this in our distributed
framework.

Let G be a graph, u ∈ V (G) and k > 0. Let D1, . . . , Dp be the p connected
components of G−Nbk/2c[u] (obtained by removing the vertices at distance at
most bk/2c from u). Let Hk

u denote the graph obtained from G by contracting
each component Di into a single node di.

Lemma 1. Let G be a graph. G is k-chordal if and only if, for every u ∈ V (G),
Hk
u is k-chordal.

Lemma 1 provides us with a strategy for deciding k-chordality, i.e., for de-
ciding whether the input graph G is a NO instance of problem Cycle>k. For
doing this every node x must compute the graph Hk

x and then decides whether
Hk
x is k-chordal. In order to compute Hk

x , each node x needs first to find the
connected components of G − Nbk/2c[x]. Let Fx is the set of all edges lying on
a path of length at most bk/2c + 1 starting in x. We need then each node to
compute the connected components of G− Fx outside Nbk/2c[x].

4.1 Computing the Connected Components of G − Fx

Ahn et al. provide a probabilistic, one-round algorithm for computing a span-
ning forest of the input graph G, in the BClique model using bandwidth
O(log3 n) [1]. In their algorithm, each node constructs a message based on its

7



neighborhood and on a sequence of public random coins, and broadcasts it to all
other nodes. Using all these messages, every node is able to construct a spanning
forest of the graph with probability 1− ε, for a fixed ε > 0.

We want each node x to compute the connected components of G−Fx. Recall
that Fx is the set of all edges lying on a path of length at most bk/2c+1 starting
in x. We place ourselves in the BClique[bk/2c + 1] model with bandwidth
O(log4 n). We amplify the bandwidth by a log(n) factor, with respect to the
spanning tree algorithm of [1], to ensure that it succeeds with high probability.
Also, every node needs to know all the set of edges Fx, that is why we choose
the BClique[bk/2c + 1] model. Using the spanning forest algorithm of [1], we
prove that each node x can construct a spanning forest of G − Fx with high
probability.

The key observation is that the messages produced by each vertex is a linear
function (w.r.t. to the edges of the graph). Therefore, from the messages of G,
each vertex x computes the messages that the algorithm would have constructed
on G− Fx.

Definition 1. Let n, k, δ > 0. A δ-linear sketch of size k is a function S :
{0, 1}O(logn) × {−1, 0, 1}n → {0, 1}k, such that, if we call Sr = S(r, ·), then

– Sr is linear, for each r ∈ {0, 1}O(logn);
– If r is chosen uniformly at random, then there is an algorithm that on input
Sr(x) returns ERROR with probability at most δ, and otherwise returns a
pair (i, xi) such that xi 6= 0 and coordinate i is picked uniformly at random
between the non-zero coordinates of x. The probabilities are taken over the
random choices of r.

Proposition 2 ([19]). For each n, δ > 0, there exists a δ-linear sketch of size
O(log2 n log δ−1).

Let G = (V,E) be a graph of size n, and x ∈ V . We call ax the connectivity
vector of x in G, defined as the vector of dimension

(
V
2

)
such that:

ax{u,v} =

 1 if {u, v} ∈ E, x = u and u < v,
−1 if {u, v} ∈ E, x = v and u < v,
0 otherwise.

For r ∈ {0, 1}O(logn), we say that Sr(G) = {Sr(ax)}x∈V (G) is a δ-connectivity
sketch of G, where S is a δ-linear sketch. Note that for any x ∈ V , each non
zero coordinate of ax represents an edge of N(x), and for any U ⊆ V the non
zero coordinates of

∑
x∈U a

x are exactly the edges in the cut between U and its
complement V \ U .

Let G = (V,E) be the input graph. The one-round algorithm in the BClique
model devised by Ahn et al. for computing a spanning forest of G works as fol-
lows. Let t = dlog ne. Each node computes and sends t independent δ-linear
sketches of its connectivity vector, using t random strings r1, . . . , rt picked uni-
formly at random. Using these messages, any node can compute t independent
δ-connectivity sketches of G and therefore it can compute a spanning tree using

8



the following t steps procedure. First, let us denote by V̂ the set of supernodes,
which initially are the n singletons {{u}|u ∈ V }. At step 0 ≤ i < t, each node
samples an incident edge to each set v̂ ∈ V̂ using the ith collection of linear
sketches

∑
x∈v̂ Sri(a

x), and merge the obtained connected components into a
single supernode. The procedure finishes before t = dlog ne steps since the num-
ber of supernodes at least halves at each step. This idea is behind the proof of
the following proposition.

Proposition 3 (Ahn et al. [1]). Let n, δ > 0 and t = dlog ne. There exists an
algorithm that receives t independent δ-connectivity sketches of a graph G, pro-
duced with r1, . . . , rt ∈ {0, 1}O(logn) random strings picked uniformly at random,
and outputs a spanning forest of G with probability 1− δ.

Lemma 2. There exists a one-round algorithm in the BClique[bk/2c+1] model
which computes, for every node x ∈ V , the connected components of G−Nbk/2c[x],
using bandwidth O(log4 n) and with high probability.

Proof. The algorithm works as follows. First, each node x sends t = dlog ne
different 1/n2-linear sketches of its connectivity vector ax, using t random strings
r1, . . . , rt. Note that each node knows Fx. Observe that the components of G−
Nbk/2c[x] are exactly the components of G−Fx without considering the nodes in
Nbk/2c[x]. In the following, we show that after the communication round, each
node x can compute a spanning forest of G−Fx with probability at least 1−1/n2.
Therefore, the whole algorithm succeeds with probability at least 1− 1/n.

Let Sr(G) = (Sr(a
x1), . . . , Sr(a

xn)) be one of the 1/n2-connectivity sketches
of G, produced with the random string r, received in the communication round.
Consider, for each e ∈ Fx and u ∈ e, the vector bu,e of dimension

(
n
2

)
where,

bu,ee′ =

{
−aue if e′ = e,

0 otherwise
, for each e′ ∈

(
n

2

)
.

Let us call cu be the connectivity vector of node u in G− Fx. Note that, for
each e ∈

(
n
2

)
,

cue = aue +
∑

{e′∈Fx:u∈e′}

bu,e
′

e =

{
aue if e ∈ E(G) \ Fx,
0 otherwise.

If we define Sur = Sr(a
u) +

∑
{e∈Fx:u∈e} Sr(b

u,e), we obtain, by linearity of

Sr, that Sur = Sr(c
u) and then {Sr(cu)}u∈V is a 1/n2-connectivity sketch of

G− Fx produced with r.

Then, after the communication round, any node x can obtain t different 1/n2-
connectivity sketches of G− Fx produced with random strings r1, . . . , rt picked
uniformly at random. Therefore, by Proposition 3, it can produce a spanning
forest of that graph with probability at least 1− 1/n2. ut

9



4.2 Deciding k-Chordality

We are now able to express the distributed algorithm recognizing k-chordal
graphs, see Algorithm 1.

Theorem 4. Let k ≥ 3. There exists a two-round randomized algorithm in the
BClique[bk/2c + 1] model, that recognizes k-chordal graphs, and thus solves
problem Cycle>k, with bandwidth O(log4 n) and high probability.

Proof. In the first round, each node x ∈ G computes the connected components
of G−Nbk/2c[x] using the algorithm of Lemma 2. After the first round, each node
x uses its knowledge of G to locally reconstruct Hk

x by identifying the connected
components D1, . . . , Dp of G−Nbk/2c[x] and contracting each Di into a unique
vertex di. Note that x sees the edges between Di and Nbk/2c[x]. Finally, x checks
whether Hk

x is k-chordal and communicates the answer in the second round. By
Lemma 1, the input graph is chordal if and only if each vertex x communicated
a YES answer. We emphasis that the second round is needed only because the
nodes must all agree on the output.

The algorithm may fail only when some node x fails to compute the compo-
nents of G − Nbk/2c[x]; this event may occur, from Lemma 2, with probability
at most 1/n. ut

Algorithm 1: k-chordality

1 Round 1
2 Run the algorithm of Lemma 2 to compute the components of

G−Nbk/2c[x];

3 Round 2

4 Each node x builds Hk
x contracting each component of G−Nbk/2c[x] into

a single node;

5 Each node x checks whether Hk
x is k-chordal and communicates the

answer to the other nodes;
6 The graph is k-chordal if all messages communicated during this round are

YES messages;

We end this section giving a lower-bound on the bandwidth b for any one-
round algorithm solving Cycle>k in the BCliquer model, when 0 < r ≤ k/3.

Theorem 5. Let ε ≤ 1/3, and 0 < r ≤ k/3. Any ε-error, one-round algorithm
in the BClique[r] model that solves Cycle>k requires bandwidth Ω(n/ log n).

5 Conclusion

All throughout the paper we considered problems Cycle≤k and Cycle>k.
Let us briefly discuss the similar problems Sub-Cycle≤k, Sub-Cycle>k and

10



Sub-Cycle=k, which consist in deciding whether the input graphs has, as a sub-
graph, a cycle of length at most k, greater than k, and equal to k, respectively.

Observe that Sub-Cycle≤k is identical to Cycle≤k, so upper and lower
bounds coincide. We emphasize that, for k ≥ 3r, the lower and upper bounds
for these problems are tight up to polylogarithmic factors.

Unlike the case of short cycles, there is a significative difference between
detecting long induced cycles and detecting long cycles (induced or not). By
a result of Birmelé [9], graphs with no cycles of length greater than k have
treewidth (and hence degeneracy) at most k. Therefore, they can be recognized
by a one-round deterministic algorithm in the BClique model with bandwidth
O(k log n), based on Theorem 1.

Further lower bounds can be obtained for both Cycle=k and Sub-Cycle=k
problems in the BClique[r] model, when k is an odd number between 3r and
4r. These bounds are obtained by a reduction from a 3-party Number-On-the-
Forehead version of the disjointness problem DISJ, and show that any determin-
istic R-round b-bandwidth algorithm for this problem, in the BClique[r] model,
is such that R · b = Ω(n1−o(1)). Under some stronger complexity assumptions,
this lower bound can be extended to randomized algorithms.

When k is even, problem Sub-Cycle=k can be solved by a one-round deter-
ministic algorithm in BClique with bandwidth O(n2/k log n), thanks to degen-
eracy arguments.

We leave as open problems the question whether Cycle>k can be solved by
a non-trivial one-round algorithm in the BClique[bk/2c+ 1] model, as well as
the question of multi-round lower bounds for this problem in the BClique[r]
model for r < k/2.

References

1. Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure
via linear measurements. In Proceedings of the 23rd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2012, pages 459–467, 2012.

2. Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: Sparsifica-
tion, spanners, and subgraphs. In Proceedings of the 31st Symposium on Principles
of Database Systems, PODS 2012, pages 5–14, 2012.

3. Dana Angluin. Local and global properties in networks of processors. In Proceedings
of the twelfth annual ACM symposium on Theory of computing, pages 82–93. ACM,
1980.

4. Heger Arfaoui, Pierre Fraigniaud, David Ilcinkas, and Fabien Mathieu. Distribut-
edly Testing Cycle-Freeness. In Proceedings of the 40th International Workshop on
Graph-Theoretic Concepts in Computer Science, volume 8747 of LNCS, pages 15
– 28, Nouan-le-Fuzelier, France, June 2014.

5. Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-
off between information and communication in broadcast protocols. J. ACM,
37(2):238–256, 1990.

6. Florent Becker, Adrian Kosowski, Mart́ın Matamala, Nicolas Nisse, Ivan Rapa-
port, Karol Suchan, and Ioan Todinca. Allowing each node to communicate only

11



once in a distributed system: shared whiteboard models. Distributed Computing,
28(3):189–200, 2015.

7. Florent Becker, Mart́ın Matamala, Nicolas Nisse, Ivan Rapaport, Karol Suchan,
and Ioan Todinca. Adding a referee to an interconnection network: What can(not)
be computed in one round. In Proceedings of the 25th IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2011, pages 508–514, 2011.

8. Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. The simul-
taneous number-in-hand communication model for networks: Private coins, public
coins and determinism. In Proceedings of the 21st International Colloquium, on
Structural Information and Communication Complexity, SIROCCO 2014, pages
83–95, 2014.

9. Etienne Birmelé. Tree-width and circumference of graphs. Journal of Graph The-
ory, 43(1):24–25, 2003.

10. John A. Bondy and Miklós Simonovits. Cycles of even length in graphs. Journal
of Combinatorial Theory, Series B, 16(2):97–105, 1974.

11. Andreas Brandstädt, Jeremy P Spinrad, et al. Graph classes: a survey, volume 3.
Siam, 1999.

12. Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami
Paz, and Jukka Suomela. Algebraic methods in the congested clique. In Proceedings
of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015,
pages 143–152, 2015.

13. N. Chandrasekharan and S. Sitharama Iyengar. NC algorithms for recognizing
chordal graphs and k trees. IEEE Trans. Computers, 37(10):1178–1183, 1988.

14. Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested
clique model. In ACM Symposium on Principles of Distributed Computing, PODC
2014, pages 367–376, 2014.

15. Paul Erdős. Extremal problems in graph theory. In Theory of graphs and its
aplications”. Proc. Sympos. Smolenice, 1964.

16. Sudipto Guha, Andrew McGregor, and David Tench. Vertex and hyperedge con-
nectivity in dynamic graph streams. In Proceedings of the 34th ACM Symposium
on Principles of Database Systems, pages 241–247. ACM, 2015.

17. James W. Hegeman, Sriram V. Pemmaraju, and Vivek Sardeshmukh. Near-
constant-time distributed algorithms on a congested clique. In Proceedings of
the 28th International Symposium on Distributed Computing, DISC 2014, pages
514–530, 2014.

18. Stephan Holzer and Nathan Pinsker. Approximation of Distances and Shortest
Paths in the Broadcast Congest Clique. In 19th International Conference on Prin-
ciples of Distributed Systems (OPODIS 2015), volume 46 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 1–16, 2016.

19. Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers,
finding duplicates in streams, and related problems. In Proceedings of the 30th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2011, pages 49–58, 2011.

20. Tomasz Jurdzinski and Krzysztof Nowicki. MST in O(1) rounds of the congested
clique. Preprint arXiv:1707.08484, 2017.

21. Jarkko Kari, Martin Matamala, Ivan Rapaport, and Ville Salo. Solving the induced
subgraph problem in the randomized multiparty simultaneous messages model. In
Proceedings of the 21st International Colloquium, on Structural Information and
Communication Complexity, SIROCCO 2015, pages 370–384, 2015.

12



22. Felix Lazebnik, Vasiliy A. Ustimenko, and Andrew J. Woldar. A new series of dense
graphs of high girth. Bulletin of the American mathematical society, 32(1):73–79,
1995.

23. Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Com-
puting, 21(1):193–201, 1992.

24. Pedro Montealegre and Ioan Todinca. Brief anouncement: deterministic graph
connectivity in the broadcast congested clique. In Proceedings of the 35th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC
2016), 2016.

25. Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal
on Computing, 24(6):1259–1277, 1995.

13


