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Abstract

We study cooperation dynamics in repeated games with Markovian private information. After any history, 
signaling reveals information that helps players coordinate their future actions, but also makes the problem 
of coordinating current actions harder. In equilibrium, players may play aggressive or uncooperative actions 
that signal private information and partners tolerate a certain number of such actions. We discuss several 
applications of our results: We explain the cycles of cooperation and conflict observed in trench warfare 
during World War I, show that price leadership and unilateral price cuts can be part of an optimal signal-
ing equilibrium in a repeated Bertrand game with incomplete information, and show that communication 
between cartel members may be socially efficient in a repeated Cournot game. Finally, we show that the 
welfare losses disappear as the persistence of the process of types increases and the interest rate goes to 
zero.
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1. Introduction

Trust-based relationships often exhibit apparent deviations from cooperative behavior. For 
example, during World War I, frontline soldiers often refrained from attacking the enemy – pro-
vided their restraint was reciprocated by soldiers on the other side – but unilateral aggressions did 
occur and triggered retaliations and mutual attacks (Ashworth, 1980). Likewise, cartel members 
often make unilateral price cuts, even in fully functioning cartels (Marshall and Marx, 2013), 
and governments in self-enforcing trade agreements raise their import tariffs, despite the fact 
that such measures are detrimental for foreign partners (Bagwell and Staiger, 2005).

In this paper, we shed light on this kind of phenomena by studying the scope for cooperation 
in a repeated game with private information. We assume the type profile follows an autonomous 
irreducible Markov chain where the evolution of types is independent across players. Values are 
private, actions are observable, and players cannot exchange cheap talk messages.1 We show that 
the combination of private information and no communication may result (but need not to) in 
apparent cooperation breaks, such as unilateral price cuts, aggressions, debt defaults, etc. These 
breaks substitute direct communication and may benefit the relationship by allowing players to 
signal the most profitable course of play. Our main theoretical results characterize a class of ap-
proximately Pareto optimal equilibria as players become arbitrarily patient. This result uncovers 
new economic forces in repeated interactions with incomplete information and can be used in a 
variety of applications.

In our dynamic game, the amount of information revealed by a player is endogenously de-
termined. Given any history of actions, a player may fully reveal his private information by 
separating and signaling his types. A benefit from such information revelation is that once types 
have been perfectly revealed by the player’s actions, other players can move on to the next round 
with more precise beliefs about the type of player they will face. A second benefit from full 
revelation is that a player’s payoff depends on his types and typically it will be in his short-run 
interest to choose a type-dependent action (which reveals his type). Yet, a perfectly revealing 
strategy need not be optimal for the relationship: when a player is fully revealing his private 
information, it is harder for other players to predict his current action. The costs of revealing 
information at any given history are the losses that rival players incur when the player’s action is 
unknown.

We formally capture this tradeoff by ignoring incentive constraints and studying the problem 
of maximizing the average expected payoffs over all strategies. This optimization problem can be 
formulated as a Bellman equation in which the state variable is the public belief about types. A 
solution to this equation solves the tradeoff between revealing and not revealing information, and 
yields an optimal equilibrium path for the repeated game with Markovian private information.

The construction of an approximately optimal equilibrium for the repeated game specifies a 
strategy in which a player forgives but does not forget hostile actions. To see this, consider two 
firms that are trying to collude in a market. Most of the time, firms are equally efficient – and 
therefore should fix the monopoly price and share the demand – but sometimes firm 1 is much 

1 The assumption of no communication is just a simplifying one, and acknowledges the fact – articulated by Marschak 
and Radner (1972) and Arrow (1985) among others – that oftentimes parties encounter nontrivial communication costs. 
This assumption is natural in collusion applications since price discussions between competitors are illegal. Ashworth 
(1980) documents the communication problems faced by enemy troops trying to avoid confrontation during World War 
I, and Schelling (1960) explains that “an agreement on limits is difficult to reach . . . because communication becomes 
difficult between adversaries in a time of war.”
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more efficient and it is therefore desirable for the cartel to have firm 1 as the only producer. The 
problem is that only firm 1 knows its costs. The cartel should not allow firm 1 to freely undercut 
firm 2 because firm 1 would undercut even when both firms are equally efficient. We show that, 
more generally, the players forgive apparently hostile actions – such as price reductions – but 
do not forget them. In equilibrium, each player keeps track of the number of actions played by 
others conditional on public beliefs, and (off-path) the relationship enters a punishment phase if 
the path of actions seems openly mischievous.

The equilibrium strategies exhibit dynamics that differ from those in previous literature. In 
an equilibrium with some information revelation, public beliefs determine the distribution over 
actions at any given history. Therefore, apparently uncooperative actions (such as price cuts and 
price wars in a collusion application) may occur on the path of play and be the optimal response 
of the relationship to incomplete information and no communication.

The assumptions of private information and no communication are natural in many long-run 
relationships. We illustrate our results and methods with some applications.

The first application is motivated by the live and let live system during World War I. During 
trench warfare, frontline soldiers often refrained from attacking the enemy. Army commanders 
were aware of the tendency towards non-aggression and would order raids to correct the “offen-
sive spirit” of the troops (Ashworth, 1980; Axelrod, 1984). Battalions faced severe information 
asymmetries because they could not discern if aggressions were caused by opportunistic behav-
ior or by military orders. Moreover, direct, cheap-talk communication was virtually non-existent 
as it was severely punished by high command. We apply our general results to explain how co-
operation can arise and evolve in this type of environment. We model the relationship between 
soldiers as a prisoners dilemma, in which one of the sides can receive a privately observed shock 
that makes mutual cooperation inefficient. Our dynamic programming formulation can be used 
to show that aggressions can occur on the path of play. Full cooperation can be resumed after the 
informed side signals that army commanders left by stopping aggressions, or after a cooling-off 
phase in which both sides mutually attack for a fixed (but optimally chosen) number of peri-
ods. We complement our theoretical analysis with some evidence showing that soldiers actually 
kept an account of the number of aggressions received from the other side, suggesting that our 
equilibrium strategies may be a good approximation to the way soldiers actually behaved.

Our second application is to collusion with Bertrand competition. Firms trying to collude face 
severe informational asymmetries – local demand conditions, private technological shocks, etc. – 
and price discussions between competitors are illegal. We characterize an approximately optimal 
collusive scheme in a Bertrand game of differentiated products in which one of the firms has 
private information about its demand. Consistent with case studies (Marshall and Marx, 2013), 
in our model unilateral price cuts occur on the path of play. Our repeated Bertrand game can 
also be interpreted as a model of collusive price leadership (Stigler, 1947; Markham, 1951; 
Scherer and Ross, 1990), in which a price increase by one of the firms is followed by rivals. We 
show that the dynamics of price leadership – which is the result of incomplete information and 
no communication – may involve significant costs for leader and follower. When local demand 
increases and the firm raises its price, it experiences a short-term loss until its price raise is 
matched by the rival. These short-term losses are significant in many industries (see, for example, 
Clark and Houde, 2013) and our model provides a natural explanation for them.

These results extend the analysis of Bertrand games with incomplete information about 
marginal costs pioneered by Athey and Bagwell (2001, 2008). In Athey and Bagwell (2001), 
firms have iid private costs and, before choosing actions, can freely exchange messages. Athey 
and Bagwell (2008) extend the model to allow for Markovian private costs. In these papers, firms 
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can be arbitrarily close to the first best collusive outcome, in which only the lowest cost firm 
produces and fixes the monopoly price. As Athey and Bagwell (2008) observe, communication 
can be dispensed with as prices can be used to signal costs at an arbitrarily low loss. But this ob-
servation crucially depends on the assumption of inelastic demand and constant returns to scale. 
Our results show that in more realistic Bertrand games, firms payoffs are bounded away from the 
perfectly collusive outcomes when the exchange of messages is costly, even when the discount 
factor is arbitrarily close to one.2

Our results reveal the constraints that lack of communication can impose in repeated inter-
actions. In doing so, they provide the first tight characterization for the value of cheap-talk 
communication in repeated games. But our results can also be used to explore the value of 
communication in applications. We illustrate this point by studying the social value of com-
munication in cartels in the context of a Cournot model with private costs. We show that commu-
nication reduces price distortions and therefore it is socially beneficial. Moreover, we show that 
consumers’ surplus increases when cartel members communicate to coordinate production. This 
result confirms an informal argument made by Carlton et al. (1996) and complements Awaya and 
Krishna (2016) who show a strictly positive lower bound for the value of communication for the 
cartel in a repeated Bertrand game with private monitoring.

Our analysis is refined by studying a prisoners dilemma in which the length of the period 
parameterizes both the discount factor and the persistence of the process of types. This param-
eterization follows a tradition initiated by Abreu et al. (1991) for repeated games with moral 
imperfect monitoring. We show that as interactions become arbitrarily frequent and the interest 
rate goes to zero, signaling becomes inexpensive compared to the benefits from more precise 
beliefs and, as a result, incomplete information has virtually no costs.

In most repeated game models, it is never optimal to have players unilaterally choosing appar-
ently uncooperative actions on the path of play (Green and Porter, 1984; Rotemberg and Saloner, 
1986; Fudenberg and Maskin, 1986; Abreu et al., 1986; Athey and Bagwell, 2001). Some recent 
exceptions are Mobius (2001) and Abdulkadiroğlu and Bagwell (2013), who assume that coop-
erative actions are sometimes unfeasible; Rahman (2014), who studies a collusion model with 
imperfect public monitoring in which unilateral price reductions may result in more informa-
tive signals; and Bernheim and Madsen (2017), who show a perfect monitoring repeated pricing 
game in which the best cartel arrangement is a mixed strategy path and price cuts occur with 
some probability. We view these results as complementary to ours.

Our results connect to work on repeated games with Markovian private information. Athey 
and Bagwell (2008), Escobar and Toikka (2013), Renault et al. (2013), and Hörner et al. (2015)
characterize optimal equilibria in games with communication. When players can exchange 
cheap-talk messages right before choosing actions, Escobar and Toikka (2013) and Hörner et 
al. (2015) show that the folk theorem holds. In these papers, actions have no signaling content 
and the paths of play are similar to those in games with complete information and changing types 
if players are sufficiently patient (Rotemberg and Saloner, 1986; Dutta, 1995). We contribute to 
this literature by providing a new result that characterizes an approximately optimal equilibrium 
behavior in repeated games without communication. Further, our results identify new tradeoffs 

2 Athey et al. (2004) show conditions under which firms pool on the path of play – and therefore the cartel is bounded 
away from perfect collusion. But that result hinges on the restriction to strongly symmetric equilibria.
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S O

S 1 + αθt , β 0,0

O 0,0 1 + α(1 − θt ), β

Fig. 1. A repeated coordination game. (θ t )t≥1 is a Markov chain observed only by player 1. The importance of coordi-
nation in the profile preferred by player 1 given θt is α > 0. The importance of coordination for player 2 is β > 0.

and inefficiencies in repeated games with incomplete information, and can be applied to a variety 
of economic examples.3

We finally observe that in games with imperfect public monitoring, players can also cycle be-
tween cooperative and uncooperative actions (Green and Porter, 1984; Abreu et al., 1986, 1990, 
1991). Green and Porter (1984) and Abreu et al. (1986) study repeated games with quantity 
competition, and characterize equilibria with high and low price regimes. Transitions between 
regimes depend on the realization of an exogenous random factor affecting demand. In our ad-
verse selection environment, in contrast, regime changes are triggered by a player’s actions. For 
example, a low-price regime (or price war) may be triggered by a price cut, whereas returning 
to a high-price regime may require a unilateral price increase. Abreu et al. (1991) studies a pris-
oners’ dilemma with imperfect monitoring and shows that cooperation can be broken and never 
resumed in the optimal equilibrium. There is therefore room for renegotiating punishments. In 
our model, in contrast, virtually no value is burnt on the equilibrium path and there is little room 
for on-path renegotiation.4

The remainder of this paper is organized as follows. Section 2 provides examples that illustrate 
the model and results. Section 3 introduces the model. Section 4 presents the main theorems. 
Section 5 provides applications. Section 6 explores the model with frequent interactions and 
vanishing discount rates. Section 7 concludes. The Appendix provides further examples and 
proofs.

2. Examples

In this section, we discuss two examples that illustrate some of the tradeoffs and inefficiencies 
arising in repeated games with Markovian private information.

2.1. A coordination game

Two players, i = 1, 2, interact repeatedly in the coordination game in Fig. 1.

3 Other papers studying repeated games with Markovian types include Gale and Rosenthal (1994), Cole et al. (1995), 
and Phelan (2006). These papers focus on specific equilibria that are typically bounded away from the Pareto-frontier. 
Gensbittel and Renault (2015) and Pęski and Toikka (2017) characterize the value of zero-sum games with Markovian 
private information.

4 Liu (2011) and Liu and Skrzypacz (2014) study games between a long-run player and a sequence of short-run players. 
The long-run player can be opportunistic or behavioral, and this is defined once and for all at the beginning of the game. 
Short-run players cannot freely access to the whole history of actions. This generates cycles of cooperation in which the 
long-run player builds and exploits his reputation. In those models, defaults are strategic while in our model defaults 
are mainly non-strategic. Acemoglu and Wolitzky (2014) study a reputation model in which players have limited and 
noisy observations. In all these models, memory restrictions play a key role determining cycles. The force in our model 
is unrelated to memory limits.
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At each t ≥ 1, θ t is privately observed by player 1 and players simultaneously choose actions. 
Actions are perfectly observable. The support of θ t is {0, 1}, P[θ t+1 = θ t | θ t ] = λ, and θ1 is 
drawn from the invariant distribution. We assume that λ ≥ 1/2 so the Markov chain has positive 
persistence.

If θ t was observed by both players at the beginning of t , then players could perfectly coordi-
nate and play (O, O) when θ t = 0 and (S, S) when θ t = 1. This strategy profile would maximize 
the sum of expected total payoffs and would result in average total payoffs equal to 1 + α + β . 
Our focus is on games with incomplete information and no communication. This means that θ t

is observed only by player 1 and player 1 cannot tell the value of θ t to player 2.
We now consider the private information case. Only for this example, we ignore incentive 

issues and focus on the informational value that pooling and separating strategies have.
Consider first a separating strategy profile in which player 1 fully reveals his type and player 

2 mimics player 1’s action in the previous period. In other words, player 1 plays S if θ t = 1 and 
plays O if θ t = 0. At t + 1, player 2 plays the action chosen by player 1 in period t . Conditional 
on θ t , total payoffs in t + 1 equal 1 + α + β with probability λ and 0 with probability 1 − λ. The 
normalized sum of total discounted expected payoffs equals

(1 − δ)

⎛⎝1 + α + β

2
+

∑
t≥2

δt−1 λ (1 + α + β)

⎞⎠ = (1 − δ) (1 + α + β)

(
1

2
+ λ

δ

1 − δ

)
,

which converges to λ (1 + α + β) as δ → 1.
Alternatively, the informed player could pool his types and, for example, players could play 

(S, S) in each round. This means that player 2 always gets the payoff from coordination β , but 
player 1 receives 1 +α when θ t = 1 and 1 when θ t = 0. The normalized sum of total discounted 
expected payoffs is 1 + 1

2α + β .
The perfectly revealing strategy profile results in higher total payoffs than the pooling profile 

as players become patient iff λ(1 +α+β) > 1 + α
2 +β . The revealing profile dominates when (i) 

λ is large (because the information generated by signaling lasts longer), or (ii) α is large (because 
the value of perfect coordination is high for player 1), or (iii) β is low (because otherwise player 
2 values coordination and the only way to ensure such coordination occurs is by having player 1 
pooling).

It is also worth noting that regardless of the strategy profile used, total expected payoffs are 
below the payoffs attained if information were complete: max{λ(1 + α + β), 1 + α

2 + β} < 1 +
α + β . This is a general feature of our model and does not depend on the restriction on strategies 
used in this example. Intuitively, with incomplete information players will not be able to perfectly 
coordinate every round. With a separating profile, players will not coordinate a fraction (1 − λ)

of rounds (whenever the state changes), whereas with a pooling profile players will imperfectly 
coordinate attaining total payoffs 1 + β < 1 + α + β half of the time. The cost of incomplete 
information does not vanish even as players become arbitrarily patient.

2.2. A prisoners dilemma

Two players, i = 1, 2, interact repeatedly in a public-good investment game. Every period, 
players decide whether to invest (I) or not to invest (N). Stage payoffs are equal to investment 
revenues minus cost. If both players invest, each player obtains a revenue of a. If only one player 
invests, each player obtains a revenue of b. If no player invests, both players obtain zero revenues. 
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I N

I a − θt , a − l b − θt , b

N b,b − l 0,0

Fig. 2. A prisoners dilemma. Player 1’s cost is privately known. Joint investment is socially desirable only when θ t = l.

Let 0 < b < a. Player 1’s investment cost in period t is θ t ∈ {l, h}, where l < h, and player 2’s 
investment cost is l every period. Fig. 2 shows the payoff matrix.

Assume that 2(a − l) > 0, 2a − l − h < 0, 2b − l < 0, and a − l < b. This means that playing 
N is a dominant action, that when the cost is low θ = l outcome (I, I ) is socially desirable, 
whereas when the cost is high θ = h outcome (N, N) is socially desirable.

As in our previous example, at each t ≥ 1, θ t is privately observed by player 1 and play-
ers simultaneously choose actions. Players’ actions are perfectly observable. The transitions are 
P[θ t+1 = θ t | θ t ] = λ, and θ1 is drawn from the invariant distribution. We assume that λ ≥ 1/2
so the Markov chain has positive persistence.5

There are several strategies that could maximize the sum of total payoffs. Our main results 
imply that a revealing strategy profile σR in which player 1 invests iff θ t = l and player 2 mimics 
player 1’s previous action at

2 = at−1
1 is optimal over all strategies when λ is sufficiently large and 

a − b < h/2, resulting in total average payoffs equal to 
(
2λ(a − l) − (l − 2b)(1 − λ)

) 1
2 > 0

(details are given in Sections 4 and Section 6). The revealing strategy profile σR = (σR
1 , σR

2 ) can 
be formulated as

σR
1 (θ t ) = I iff θ t = l

and σR
2 (pt ) = I if pt = λ and σR

2 (pt ) = N if pt = 1 − λ, where pt = P[θ t = I | at−1
1 ] is the 

belief that player 2 has about θ t after observing the action previously chosen by player 1.6 Intu-
itively, the revealing strategy profile is optimal because, as in the coordination game, when the 
state is sufficiently persistent the relationship benefits from information revelation.

The issue of incentives is subtle. The revealing strategy profile σR maximizes the sum of 
total payoffs but whether private incentives can be aligned is non-trivial. On the one hand, player 
1 should have some flexibility to choose actions and use his private information to benefit the 
relationship but, on the other hand, if player 1 is given full freedom to choose actions he will 
behave opportunistically with the purpose of maximizing his own payoffs. The problem that we 
face is how to balance these two forces.

Equilibrium strategies such that on-path play is arbitrarily close to the optimal strategy profile 
σR are constructed as follows. First, observe that ensuring player 2 behaves properly is simple as 
any deviation by 2 is observable and can be immediately punished by reverting to the static Nash 
equilibrium. Incentives for player 1 are given by noting that as play transpires, player 2 can keep 
checking whether player 1’s behavior seems likely to have been generated from the revealing 

5 It is worth pointing out two benchmarks that are relatively easy to solve. With complete information, the type of 
player 1, θt , is publicly observed at the beginning of round t . If δ is large enough, we can construct a trigger-strategy 
equilibrium in which play is efficient and both players invest in t if and only if θt = l (Rotemberg and Saloner, 1986; 
Dutta, 1995). Another interesting benchmark is the case of incomplete information and communication, in which player 1 
is privately informed about θt but can send a cheap-talk message to player 2 before actions are decided. If δ is sufficiently 
big, one can construct an efficient equilibrium in which player 1 truthfully reveals his type and both players invest only 
when θt = l (Escobar and Toikka, 2013).

6 Given the revealing strategy of player 1 σR , player 2 need not condition on the whole history of actions.
1
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Fig. 3. Dynamics of beliefs (pt )t≥1 when player 1 uses the revealing strategy σR
1 . The support of (pt )t≥1 is the set 

{λ, 1 − λ}.

strategy σR
1 . More precisely, note that under σR

1 , the process of beliefs (pt )t≥1 is Markovian, with 
transitions that can be drawn as shown in Fig. 3. By mechanically calculating probabilities using 
player 1’s actions, the uninformed player 2 can check whether the proportions of investment and 
no-investment actions seem credible. For example, out of all the visits to pt = λ, player 2 can 
check whether player 1 has played I in a proportion close to λ. A failure to do so would be 
observable and easily punished by Nash reversion.

The strategies discussed above continuously check whether player 1’s actions seem cred-
ible. They are similar to strategies used in repeated games with imperfect monitoring (Radner, 
1981) and in dynamic mechanism design (Jackson and Sonnenschein, 2007; Escobar and Toikka, 
2013).7 In our construction of strategies, while player 2 can tolerate some failures (i.e., periods 
in which player 2 invested but player 1 did not), he keeps track of the number of offenses, and 
players enter a punishment phase if that number becomes suspiciously high.8 In other words, 
equilibrium strategies are so that player 2 forgives but does not forget failures.

Informational constraints are key to determine optimal equilibrium paths. While incentive 
problems disappear as players become more patient, equilibria are bounded away from first-best 
payoffs. Indeed, with incomplete information and communication (or with complete informa-
tion), players can attain average total payoffs equal to 2(a − l) 1

2 . Assuming the conditions under 
which revealing information is optimal, under incomplete information total average payoffs are (
2λ(a − l) − (l − 2b)(1 − λ)

) 1
2 . Moreover, when the signaling costs are too high, the only equi-

librium of the game is the repetition of the static Nash equilibrium even when the discount factor 
is arbitrarily close to 1.9 While communication obviously expands the set of equilibria, we seem 
to be the first ones fully characterizing the gains from communication in a repeated game model.

3. Model

We consider a discrete-time infinitely repeated game played by n ≥ 2 players. At each t ≥ 1, 
player i is privately informed about his type θ t

i ∈ �i . Players simultaneously make decisions 
at
i ∈ Ai . Let A = A1 × A2 · · · × An. We assume that Ai and �i are finite sets for all i. Within 

each round t , play transpires as follows:

7 As in all these papers, our strategies are derived from a test based on necessary conditions for “appropriate behavior”. 
We then show that the necessary conditions are actually sufficient to align incentives.

8 In this example, punishments simply consist in Nash reversion. In the general model of Section 3, punishments are 
more complex in order to guarantee that adhering to these punishments is incentive compatible for both players.

9 As Hörner et al. (2015) show in their Corollary 3, the set of equilibrium payoffs in the game with communication 
depends on the transitions only through the invariant distribution. In contrast, in our repeated game without communica-
tion, Theorems 1 and 2 imply that transitions do matter to determine the equilibrium set. In Appendix A, we illustrate 
this observation by fulling solving for the limit equilibrium set in this game.
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t.0 A randomization device χt is publicly realized
t.1 Player i is privately informed about θ t

i ∈ �i

t.2 Players choose actions at
i ∈ Ai simultaneously

t.3 Players observe the action profile chosen at ∈ A

We assume players know their payoffs. The period payoff function for player i is ui(a, θi). 
We will sometimes abuse notation and write ui(a, θ) and u(a, θ) = (ui(a, θi))

n
i=1. Players rank 

flows of payoffs according to (1 − δ) 
∑

t≥1 δt−1ui(a
t , θ t

i ), where δ < 1 is the common discount 
factor. We assume that |Ai | ≥ |�i |.

The realizations of the randomization device are independent across time and distributed ac-
cording to the uniform distribution in [0, 1]. Each (θ t

i )t≥1 is a Markov chain which is independent 
of the process (θ t−i )t≥1. The initial type of player i, θ1

i , is drawn from a distribution p1
i ∈ 
(�). 

Player i’s private types, (θ t
i )t≥1, evolve with transition matrix Pi on �i . We assume that the pro-

cess of types has full support: for all θi, θ ′
i ∈ �i , Pi(θ

′
i | θi) > 0. Let πi ∈ 
(�i) be the stationary 

distribution for Pi .
A (behavior) strategy for player i is a sequence of functions si = (st

i )t≥1 with st
i : �t

i ×At−1 ×
[0, 1]t → 
(Ai). Any strategy profile s = (s1, . . . , sn) induces a probability distribution over 
histories. We can therefore define the vector of expected payoffs given s as

vδ(s) = (1 − δ)Es[
∑
t≥1

δt−1u(at , θ t )] ∈ R
n

where u(a, θ) = (u1(a, θ1), . . . , un(a, θn)). Let

V (δ,p1) =
{
v = vδ(s) ∈ R

n for some strategy s
}

be the set of all feasible payoffs that players can attain by employing arbitrary strategy profiles 
s. In passing, we note that V (δ, p1) ⊆ R

n is convex and compact.
The definitions of strategies and set of feasible payoffs differ from those used in stochastic 

games (Dutta, 1995; Hörner et al., 2011) and repeated games with incomplete information and 
communication (Escobar and Toikka, 2013; Hörner et al., 2015). The difference comes from the 
fact that in our model player i decides based only on the sequence of actions, his own private 
types, and public randomizations in the game.

A strategy profile s∗ = (s∗
1 , . . . , s∗

n) is a perfect Bayesian equilibrium if there exists a sys-
tem of beliefs constructed from Bayes rule (when possible) such that s∗

i is sequentially rational 
(Fudenberg and Tirole, 1991). The set of perfect Bayesian equilibrium payoffs will be denoted 
E(δ, p1) ⊆ R

n. It follows that E(δ, p1) ⊆ V (δ, p1) for all δ < 1.

4. Equilibrium analysis

We will describe an equilibrium play in two steps. In the first step, we provide a dynamic 
programming formulation for efficient strategies ignoring incentive constraints. In the second 
step, we construct repeated game strategies that approximate the efficient benchmark.

4.1. Efficient payoffs and information revelation

This section analyzes the problem of maximizing the weighted sum of payoffs ignoring incen-
tive constraints. This problem is formulated as a dynamic programming problem that identifies 
the tradeoff between revealing and not revealing information after any history.
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A strategy profile s is efficient if for some α ∈ R
n++, with 

∑n
i=1 αi = 1, s is a solution to

q(α) = max{α · vδ(s′) | s′ is a strategy profile }. (4.1)

Let sα,δ solve (4.1). We say that vα,δ = vδ(sα,δ) ∈ R
n is an efficient payoff vector.10

Solutions to (4.1) can be found using dynamic programming tools. To see this, take the belief 
p1

i that a player j �= i has about player i’s type at the beginning of the game. After player i’s 
action is observed, the strategies also determine the belief p2

i that player j �= i has about the 
new type that player i has at the beginning of period 2. This means that the strategy profile that 
maximizes the weighted sum of period payoffs can be found by decomposing the discounted 
sum of weighted payoffs in current and continuation payoffs using the public belief as a state 
variable.

To formulate the dynamic programing problem, we introduce some notation. Let �i =
{σi : �i → Ai} be a set of controls for player i and let � = �1 × . . . , �n.11 An element 
σ ∈ � is a control profile. Note that since types are independent, the belief about player i’s 
types that players j and k have coincide (with j �= i �= k). The independence assumption 
also guarantees that the set of beliefs can be represented as the product set 

∏n
i=1 
(�i). Let 

p = (p1, . . . , pn) ∈ ∏n
i=1 
(�i) be a belief profile so that pi is the belief that any player j �= i

has about player i’s type. Let pi(θi) denote the θi -element of pi . For σ ∈ � and p ∈ ∏n
i=1 
(�i), 

we define the vector of expected period utilities U(σ, p) ∈R
n by

Ui(σ,p) =
∑
θ∈�

ui(σ1(θ1), . . . , σn(θn), θi) p1(θ1) · p2(θ2) · · · · pn(θn).

For α ∈ R
n++, let Uα(σ, p) = α · U(σ, p) = ∑n

i=1 αi Ui(σ, p) be the ex-ante weighted sum of 
period payoffs given σ and beliefs p. We also define the Bayes operator Bi(· | σi, pi, ai) ∈

(�i) as

Bi(θ
′
i | σi,pi, ai) =

∑
{θi |σi(θi )=a1}

P(θ ′
i | θi)

pi(θi)∑
{θ̂i |σi(θ̂i )=ai } pi(θ̂i)

(4.2)

whenever σi(θ̂i) = ai for some θ̂i such that p(θ̂i) > 0. In words, Bi(θ
′
i | σi, pi, ai) is the probabil-

ity that player j �= i assigns to θ t+1
i = θ ′

i given that at the beginning of round t his belief about θ t
i

was pi , player i uses the control σi = σi(θ
t
i ), and player j �= i observed player i’s action at

i = ai . 
We write B(· | σ, p, a) = (Bi(· | σi, pi, ai))

n
i=1.

For α ∈ R
n++, consider the only solution to the Bellman equation

wα,δ(p) = max
σ∈�

{
(1 − δ)Uα(σ,p) + δ

∑
a∈A

wα,δ
(
B(· | σ,p,a)

) ∑
θ∈�,σ(θ)=a

p(θ)

}
(4.3)

for all p ∈ ∏n
i=1 
(�i), with p(θ) = p1(θ1) . . . pn(θn). The right hand side of this equation 

maximizes the weighted sum of current and continuation payoffs over all control profiles σ ∈ �, 
capturing the impact that a control has on current expected payoffs and continuation beliefs. 
Take σα,δ(· | p) as the control profile attaining the maximum in (4.3) as a function of beliefs p. 

10 Since any such vα,δ solves the problem max{α · v | v ∈ V (δ, p1)}, the set of efficient payoff vectors v that maximize 
payoffs given a direction α ∈ R

n++ is convex.
11 The proof of Lemma 1 shows the restriction to pure strategies is without loss.
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A control rule σ is such that for all p ∈ ∏n
i=1 
(�i), σ(· | p) ∈ �. Using the control rule σα,δ , 

we can construct a (pure) strategy profile s = sα,δ from σα,δ by setting12

st
i (a

1, . . . , at−1, θ1
i , . . . , θ t

i , χ
1, . . . , χt ) = σ

α,δ
i (θ t

i | pt)

where pt is the belief that players j �= i have about θ t
i at the beginning of t and can be recursively 

computed as

pt+1
i (θi) = Bi(θi | σα,δ

i (· | pt),pt
i , a

t
i ) for t ≥ 1.

The following lemma shows that the dynamic programming formulation (4.3) provides a solution 
to the problem of finding efficient payoffs given weighs α ∈R

n++.

Lemma 1. Let α ∈R
n++ with 

∑n
i=1 αi = 1. Then, the value of the maximization problem (4.1) is 

q(α) = wα,δ(p1). Moreover, the strategy s = sα,δ constructed from σα,δ above is a solution to 
(4.1).

Like most of the literature in repeated games (Fudenberg and Maskin, 1986; Athey and Bag-
well, 2008; Hörner et al., 2011), we explore equilibrium behavior when players are sufficiently 
patient. It will be useful to consider efficient strategies and payoffs as δ → 1. We define the 
differential discounted value function as

hα,δ(p) = wα,δ(p)

1 − δ
− wα,δ(p1)

1 − δ
(4.4)

for any p ∈ ∏n
i=1 
(�i). Using this definition we can rewrite (4.3) as

hα,δ(p)+wα,δ(p1) = max
σ∈�

{
Uα(σ,p)+δ

∑
a∈A

hα,δ
(
B(· | σ,p,a)

)( ∑
θ∈�,σ(θ)=a

p(θ)
)}

(4.5)

Just to set ideas, assume that there exist subsequences (hα,δν
)ν≥0, (wα,δν

)ν≥0 and func-
tions hα : ∏n

i=1 
(�i) → R, wα : ∏n
i=1 
(�i) → R such that hα(p) = limν→∞ hα,δν

(p) and 
wα(p) = limν→∞ wα,δν

(p) for all p with δν → 1. Therefore, ρα = limν→∞ wα,δν
(p1) does not 

depend on p1.13 Taking the limit in equation (4.5), we deduce that the pair (h, ρ) = (hα, ρα)

solves the average reward optimality equation (AROE)

h(p) + ρ = max
σ∈�

{
Uα(σ,p) +

∑
a∈A

h
(
B(· | σ,p,a)

)( ∑
θ∈�,σ(θ)=a

p(θ)
)}

(4.6)

for all p ∈ ∏n
i=1 
(�i). Let σα(· | p) ∈ � be the control profile attaining the maximum in the 

dynamic programming problem (4.6) given p.
The following result establishes the key properties connecting the discounted and undis-

counted dynamic programing problems.

Theorem 1 (Efficiency Theorem, Arapostathis et al. (1993)). Fix α ∈ R
n++. The following hold:

a. The AROE (4.6) has a solution (hα, ρα) and a control rule σα that attains the optimum.

12 This construction applies only for on-path histories. For off-path histories we define s arbitrarily.
13 To see this, note that for all ε > 0, there exists ν̄ ∈ N such that for all ν > ν̄, |wα,δν

(p) − wα,δν
(p1) −

(1 − δν)hα(p)(1 − δ)| < (1 − δν)ε. Taking the limit, it follows that limν→∞ wα,δν
(p) = limν→∞ wα,δν

(p1).
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b. For any converging subsequence hα,δν → h̄ as ν → ∞, we can take ρ = limν→∞ wα,δν
(p1)

that does not depend on p1, and obtain a pair (h̄, ρ) that solves the AROE (4.6). The function 
h̄ : ∏n

i=1 
(�i) → R is convex.
c. For any strategy s, lim supδ→1

∑n
i=1 αiv

δ
i (s) ≤ limν→∞ wα,δν

(p1) = ρα .

The first part of the Theorem ensures existence of solution. This is not obvious since (4.6)
does not define a contraction map. The second part shows that such solution can be found by 
solving the Bellman equations as the discount factor goes to 1. The second part also establishes 
that h̄ is a convex function, which means that continuation values improve when a compound 
lottery is resolved. The third part formally establishes that the solution ρ ∈ R to (4.6) provides a 
tight upper bound for the value of the discounted problem, as the discount factor goes to 1.

The AROE (4.6) is central to our analysis. The right-hand side of (4.6) captures the trade-off 
that an optimal control σ solves as a function of current beliefs p ∈ ∏n

i=1 
(�i). As we show 
below, each of the two terms on the right-hand side of (4.6) is maximized either by a pooling or 
a separating rule.

A control rule σ is separating if for any belief p ∈ ∏n
i=1 
(�i) having positive probability 

in the path (θ t , pt)t≥1, types are separated: σi(θi | p) �= σi(θ
′
i | p) for all θi �= θ ′

i and all i. This 
means that all players’ types can be perfectly inferred after observing their actions..

A separating control σ allows player i to fully reveal his type by setting a different action 
for each state of the world. The problem of maximizing player i’s payoff Ui(σ, p) typically 
results in a fully revealing strategy σi . A second benefit of perfect information revelation is that 
by fully separating his types in period t , player i makes continuation beliefs pt+1

i more precise 
and therefore a player j �= i faces less uncertainty about θ t+1

i at the beginning of t + 1. To 
see this, note that Theorem 1 (part b) shows that the limit differential discounted value h(p) is 
convex in p. This means that given p′

i , q
′
i ∈ 
(�i) and λ ∈ [0, 1], h(λp′

i + (1 − λ)q ′
i , p−i ) ≤

λh(p′
i , p−i ) + (1 − λ)h(q ′

i , p−i ). If player i uses a separating rule σi in period t , he is fully 
resolving the uncertainty about θ t

i at the end of round t and therefore maximizing 
∑

a∈A h
(
Bi(· |

σi, pi, ai), B−i (· | σ−i , p−i , a−i )
)(∑

θ∈�,σ(θ)=a p(θ)
)

over all σi ∈ �i keeping fixed σ−i .
When player i pools, he does not reveal any information. The benefit of a pooling control is 

that it allows player j �= i to perfectly predict player i’s current action. To see this, note that θi

does not determine player j ’s current payoffs, and therefore the profile that maximizes player j ’s 
expected payoff maxσi∈�i

Uj (σi, σ−i , p) will typically involve a pooling rule σi .
More generally, solutions to (4.6) will be determined by a complex mix of tradeoffs between 

revealing and not revealing information as time passes by.14 The following result can be used to 
find those solutions in applications.

Proposition 1. Consider p ∈ ∏n
i=1 
(�i) and a rule σ̄ = (σ̄1, . . . , σ̄n) such that for all i and all 

θi �= θ ′
i , σ̄i (θi) �= σ̄i (θ

′
i ) and

σ̄ ∈ arg max
σ∈�

Uα(σ,p).

Then,

14 Problem (4.6) is similar to a bandit problem with Markovian hidden state (Keller and Rady, 1999). Separating rules 
maximize exploration. Propositions 1 shows conditions under which the standard exploration vs exploitation dilemma 
(Bergemann and Valimaki, 2006) does not arise.
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σ̄ ∈ arg max
σ∈�

{
Uα(σ,p) +

∑
a∈A

h
(
B(· | σ,p,a)

)( ∑
θ∈�,σ(θ)=a

p(θ)
)}

. (4.7)

This proposition shows that if a rule that separates types maximizes current weighted pay-
offs, it also maximizes total undiscounted weighted payoffs. When current total payoffs are 
maximized by fully revealing, adding continuation payoffs can only reinforce the benefits from 
revelation.15

Finally, we use Theorem 1 to deduce an upper bound for the limit equilibrium set.16

Corollary 1.

lim sup
δ→1

E(δ,p1) ⊆ lim sup
δ→1

V (δ,p1) ⊆
⋂

α∈Rn++

{
v ∈R

n | α · v ≤ ρα
}
.

4.2. Equilibrium strategies

In this section, we investigate the conditions under which the efficient path characterized by 
(4.6) can be approximated by an equilibrium of the repeated game. We construct strategies in 
which a player losses credibility if his behavior does not match the efficient strategy profile. From 
an applied perspective, this implies that there exists an equilibrium path that is approximately 
equal to the path generated from the control rule σα that solves (4.6), provided players are patient 
enough.

A control rule σ together with the initial beliefs p1 recursively determine a belief process 
(pt )t≥1 by

pt+1
i = Bi(· | σi(· | pt),pt

i , a
t
i ) ∀t ≥ 1.

Given any control rule σ , the joint process (θ t , pt)t≥1 is Markovian, with p1 and θ1 given.
The construction of equilibrium strategies is subtle because, on the one hand, we want to allow 

player i to use his private information but, on the other, allowing him to freely choose actions 
may open up the room for opportunistic behavior. However, players j �= i can keep an account of 
the frequencies with which player i has played different actions and punish behaviors that seem, 
in a statistical sense, suspicious. To properly formulate how suspicious behaviors are identified, 
it will be useful to consider rules that generate well-behaved paths of beliefs.

Given a control rule σ and T̂ ≥ 1, we build an extended control rule that reveals every T̂
rounds as a policy σ̂ T̂ = (σ̂ T̂

i )ni=1 defined by

σ̂ T̂
i (θ t

i | pt , κt ) =
{

σi(θ
t
i | pt) if κt < T̂

θ t
i if κt = T̂

where κt = mod T̄ (t), pt+1
i = Bi(· | σ̂ T̂

i (· | pt), pt
i , a

t
i ), and we assume that �i ⊆ Ai for all 

i.17 In words, the extended control rule σ̂ T̂ is exactly like σ , but every T̂ rounds, σ̂ T̂ reveals all 

15 In Appendix A, we provide an example in which even when σα separates some types, σα �= σ̄ . In the example, σα

separates to generate more precise continuation beliefs.
16 Recall that for a given a sequence of sets (Xn)n∈N , x ∈ lim supn→∞ Xn if and only if there exists a sequence 
xk ∈ Xnk

, where (nk)k∈N goes to infinity, such that xk → x.
17 This is without loss since we already assumed |Ai | ≥ |�i | for all i. This is the only part of the construction of 
equilibrium strategies where this assumption is used. The notation mod T (x) refers to the modulo T congruence.
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players’ types and resets the updating process.18 When the control rule σ never separates types, 
κt ∈ {1, . . . , T̂ } can be interpreted as the number of rounds that has transpired since the last round 
in which σ̂ T̂ perfectly revealed.

Note that a control rule σ that separates generates the same path as the extended control rule 
that reveals every T̂ rounds, for all T̂ . In this case, the path of continuation beliefs belongs to the 
set 

∏n
i=1{Pi(· | θi) | θi ∈ �i}, the support of the process (θ t , pt)t≥1 is � × ({p1} ∪ ∏n

i=1{Pi(· |
θi) | θi ∈ �i}) and its unique recurrence class is � × ∏n

i=1{Pi(· | θi) | θi ∈ �i}. On the other 
hand, when the rule pools all types along the path, the path of the Markov chain (θ t , pt)t≥1 is 
typically countably infinite. In this case, the control rule and the extended control rule that reveals 
every T̂ rounds generate different paths.

The following result shows that relaxing the optimality requirement to allow for approximate 
efficiency is enough to ensure the existence of an extended control rule that reveals and generates 
well behaved paths.

Lemma 2. The following hold:

a. Any extended control rule σ̂ T̂ determines a unique recurrence class, that is, the process 
(θ t , pt , κt )t≥1 is a finite Markov chain and has a unique recurrence class19;

b. For all ε > 0, and all α ∈ R
n++, there exist an extended control rule that reveals σ̂ T̂ , and 

T ∈ N such that

1

T

T∑
t=1

E
σ̂ T̂ ,p

[α · u(at , θ t )] ≥ ρα − ε

for all T ≥ T , and all p in the (finite) path of beliefs generated by σ̂ T̂ and p1. Moreover, if 
σα is separating, we can take the rounds of revelation to be T̂ = 1.

When the control rule σα solving the AROE perfectly reveals types, this lemma is immediate 
and we can simply T̄ = 1. To intuitively understand this result, consider the prisoners dilemma 
in Section 2.2 and assume that the optimal rule is such that player 1 pools by playing I on the 
path of play.20 This rule generates an infinite belief path. We can modify the rule so that after 
a sufficiently large number of periods, player 1’s separates his types. This will, again, generate 
a new belief path that can be truncated after some time by changing the rule so that player 1’s 
types are separated again. The modified rule determines a unique recurrence class and incurs an 
arbitrarily small loss in welfare.

For any extended control rule σ̂ T̂ determining a unique recurrence class, the limit-average 
payoff

18 Note that σ̂ T̂ is not a control rule since it conditions on the payoff irrelevant variable κt . This justifies the term 
“extended” in the definition.
19 The process (θ t , pt , κt )t≥1 is a finite Markov chain and has a unique recurrence class if there exists a finite set Q ⊆∏n

i=1 
(�i) × {1, . . . , T̂ } such that (θ t , pt , κt )t≥1 ⊆ � × Q and a unique subset Q′ ⊆ Q such that for all (θ, p, κ) ∈
� × Q′ , if the Markov chain visits (θ, p, κ), then in the next period it will stay in � × Q′ with probability 1, and no 
proper subset of Q′ has this property. See Stokey et al. (1989) for additional discussion.
20 The problem of ensuring appropriate behavior from player 1 when the optimal rule pools is simple. This example is 
used just to illustrate the lemma.
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v∞
i (σ̂ T̂ ) = lim

T →∞
1

T
E[

T∑
t=1

ui(σ̂
T̂
1 (θ t

1 | pt , κt ), . . . , σ̂ T̂
n (θ t

n | pt , κt ), θ t
i )]

is well defined. This follows from Proposition 8.1.1 in Puterman (2005) after noticing that the 
limit above is the average reward from a stationary Markov decision rule over a finite state 
Markov process. We define v∞(σ̂ T̂ ) = (v∞

i (σ̂ T̂ ))ni=1.

For an extended control rule that reveals σ̂ T̂ that determines a unique recurrence class � ×Q
and q = (p, κ) ∈ Q, define mσ

i (· | q) ∈ 
(Ai) as the distribution over actions given q:

mσ̂ T̂

i (ai | q) =
∑

{θi∈�i |ai=σ̂ T̂
i (θi |q)}

pi(θi).

For a ∈ A, we define mσ̂ T̂
(a | q) analogously.

Given any sequence of actions a1, . . . , at ∈ A and σ̂ T̂ , we can mechanically calculate prob-

abilities p̄t+1
i = Bi(· | σ̂ T̂

i , p̄t
i , a

t
i ) (if this is not well defined, we set p̄t+1

i to be an arbitrary 
element of the support of the process of beliefs (pt

i )t≥1) with p̄1 = p1. These simulated proba-
bilities need not coincide with the beliefs a Bayesian agent would have about player i’s types as 
his actions in the game could be derived from an arbitrary strategy si . We can also compute the 
occupancy rate of actions conditional as

m̄δ(a | q) =
∑∞

t=1 δt−11{at=a,(p̄t ,κt )=(p,κ)}∑∞
t=1 δt−11{(p̄t ,κt )=(p,κ)}

.

We define the stationary minmax value as the smallest payoff a player i can attain when his rivals 
choose a fixed action profile and i chooses actions optimally. More formally,

vi = min
a−i∈A−i

Eπi
[max
ai∈Ai

ui(a, θ)].
This definition of minmax value does not yield the lowest payoff one could impose on a player 
(Escobar and Toikka, 2013; Hörner et al., 2015), but it is simple to work with and fully satis-
factory in many applications.21 A vector v ∈ R

n is strictly individually rational if vi > vi for 
i = 1, . . . , n.

Let F ⊆ R
n be the Pareto-frontier of the set ∩α∈Rn++{v ∈ R

n++ | α · v ≤ ρα} (see Corol-
lary 1). F is the set of all limit feasible payoffs that are efficient. Let V c = {v ∈ R

n | v =
Eπ [u(a, θ)] for some a ∈ A} be the set of average payoffs that can be attained using pooling 
profiles. Let

W = co
(
F∪ V c

)
where co denotes the convex hull. We also denote W = W ∩ {v ∈R

n | vi > vi for all i}. W is the 
set of payoffs in W that are strictly individually rational.

Definition 1. A vector v ∈ R
n allows player-specific punishments in W if there exists a collection 

of payoff profiles (vi)ni=1 ⊆ W such that for all i, vi
i < vi and vj

i > vi
i for all j �= i.

21 Our definition of minmax is restrictive because it only considers pure strategies. Furthermore, when player j is 
minmaxing i, player j could find optimal to use the information revealed by player i during the minmaxing phase. This 
introduces complexities beyond the scope of the paper. See Pęski and Toikka (2017).
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The following theorem shows that the efficiency analysis performed in Section 4.1 is useful 
to understand equilibrium behavior.

Theorem 2 (Equilibrium Theorem). Fix ε > 0 and α ∈ R
n++. Take the extended control rule σ̂ T̂

as in Lemma 2 part b. Assume that v = v∞(σ̂ T̂ ) is strictly individually rational and that allows 
for player-specific punishments in W . Then, there exists δ̄ < 1 such that for all δ > δ̄, the infinitely 
repeated game with discount factor δ has a perfect Bayesian equilibrium s∗ = (s∗

1 , . . . , s∗
n) such 

that

a. α · vδ(s∗) ≥ ρα − 2ε; and

b. Ps∗
[

maxa∈A,q∈Q|m̄δ(a | q) − mσ̂ T̂
(a | q)| < ε

]
≥ 1 − ε, where � × Q is the recurrence 

class of the process (θ t , pt , κt )t≥1 generated by σ̂ T̂ .

This result characterizes behavior under an approximately optimal equilibrium when players 
are sufficiently patient. The first part of Theorem 2 shows that players’ incentives can be aligned 
to attain total weighted payoffs arbitrarily close to ρα . Moreover, with sufficiently high probabil-
ity, conditional on q , players equilibrium actions will approximate the frequencies induced by the 
approximately optimal rule σ̂ T̂ . This means that the problem of determining approximately opti-
mal equilibrium dynamics reduces to solving the dynamic programing problem AROE (4.6) and 
in applications, we can use σ̂ T̂ to approximately describe the distribution over public histories in 
equilibrium.22

Theorem 2 assumes that we can build player-specific punishments v1, . . . , vn ∈ R
n (Fuden-

berg and Maskin, 1986). Since v = v∞(σ̂ ) is strictly individually rational and approximately 
efficient, the existence of player-specific punishments follows immediately when W has full 
rank. Checking that W has full dimension is relatively easy as W contains all average payoffs 
generated using pooling rules.

The construction of equilibrium strategies combines forgiveness and memory. If player i plays 
an action resulting in low current payoffs for player j �= i, player j keeps playing according 
to the efficient control σj given simulated beliefs. But if the number of such actions becomes 
suspiciously high (which happens off-path), a punishment phase against player i is triggered.

The proof of Theorem 2 revisits the review strategy idea from Radner (1981) and Townsend 
(1982). The proof builds strategies in which players keep checking whether the path of player 
i’s actions can be distinguished from the control rule σi . At each round, players build simulated 
beliefs p̄t

i and check whether the path of actions played by i is close to the path of action if player 
i were using the control rule σi . If this is not the case, a punishment phase is triggered. The proof 
shows that it is always in the interest of players to choose paths of actions which are close to the 
one generated from the efficient control rule σ .

To formalize the construction of strategies, take a1, . . . , at ∈ A, (q, a) ∈Q × A, and define

Nt(q, a) =
t∑

t ′=1

1{(p̄t ′ ,κt ,at ′ )=(q,a)}, Nt (q, a−i ) =
t∑

t ′=1

1{(p̄t ′ ,κt ,at ′−i )=(q,a−i )},

22 Note that Theorem 2 does not describe how the private histories of types are mapped to actions in equilibrium. 
Theorem 2 only characterizes the distribution over public histories. We also observe that Theorem 2 shows a particular 
approximately efficient equilibrium, and does not nail down behavior under another equilibria.



424 J.F. Escobar, G. Llanes / Journal of Economic Theory 176 (2018) 408–443
m̄t (ai | q, a−i ) = Nt(q, a)

Nt (q, a−i )
.

The number m̄t (ai | q, a−i ) is the empirical frequency of player i’s actions conditional on 
(p̄t , κt ) = q and at−i = a−i .

For any decreasing sequence (bk) converging to 0, we say that player i passes the test (bk)

given a history (a1, . . . , at ) ∈ At if

max
ai∈Ai

|mσ̂
i (ai | q) − m̄t (ai | q, a−i )| ≤ bNt (q,a−i )

for all a−i ∈ A−i and all q ∈ Q. Given T ≥ 1, σ̂ = σ̂ T̂ and a sequence (bk), construct the game 
of credible play (σ̂ , (bk), T ) as follows. For t ≤ T , if player i has passed the test (bk) in all 
previous rounds t ′ = 1, . . . , t − 1, then he can freely select his action at

i in the support of mσ̂
i (· |

p̄t , κt ); otherwise, at
i is an action randomly drawn from the distribution mσ̂

i (· | p̄t , κt ) at each 
t ′ = t, . . . , T . We define the obedient strategy ŝi for player i as ŝt

i (θ
1
i , . . . , θ t

i , a
1, . . . , at−1) =

σ̂i (θ
t
i | p̄t , κt ) whenever he is allowed to choose actions. We will also define the block game of 

credible play (σ̂ , (bk), T )∞ as the infinite horizon problem in which a game of credible play 
restarts after T rounds of play (with discount factor δ).

Lemma 3. Let η > 0. There exists a test (bk) such that the following hold:

a. For any i and any s−i ∈ S−i ,

P(ŝi ,s−i )[Player i passes the test (bk) at (a1, . . . , at ) for all t] ≥ 1 − η.

b. There exists δ̄ < 1 such that for all δ > δ̄ there exists T̄ such that for all T ≥ T̄ , for any 
strategy profile s in the block game of credible play (σ̂ , (bk), T )∞ given discount δ,

Ps

[
max

a∈A,q∈Q
|m̄δ(a | q) − mσ̂ (a | q)| < η

]
≥ 1 − η.

The first part of the lemma ensures that player i can pass the test using the obedient strategy 
ŝi . The second part ensures that the occupancy rate of actions is close enough to the distribution 
of actions drawn from σ given simulated beliefs regardless of the strategies actually used.

To establish Theorem 2, we use this lemma to construct strategies that approximately result 
in the desired weighted equilibrium payoffs ρα . Strategies are of the stick-and-carrot type (Fu-
denberg and Maskin, 1986). On the path of play, players choose actions mimicking the path of 
play in the equilibrium of the block game of credible play. Lemmas 2 and 3 ensure that such 
path generates welfare close enough to the target ρα . Any observable deviation by i triggers a 
punishment phase, in which player i is minmaxed during a fixed number of rounds, and then 
play proceed to a carrot phase in which players mimic the play of another game of credible play. 
Further deviations trigger new punishment phases.

The construction of equilibrium strategies is closely related to the quota mechanisms in Jack-
son and Sonnenschein (2007), Renault et al. (2013), Renou and Tomala (2015), and particularly 
Escobar and Toikka (2013). One difference between our construction and all previous papers is 
that in our model players observe actions, not reports or cheap-talk messages. The path of actions 
need not be a Markov chain, even when players follow (stationary Markov) control rules and, as 
a result, the equilibrium strategies in the game cannot be formulated by simply testing the transi-
tion rates between consecutive actions. To overcome this difficulty, we summarize the history of 
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actions by constructing simulated beliefs (p̄t )t≥1 from a dynamic programming formulation, and 
test actions conditional on those beliefs. A second, more technical, difference is that in our model 
the process of beliefs need not be a finite Markov chain, let alone an irreducible Markov chain. 
To overcome this difficulty, we need to approximate the belief path using rounds of revelation. 
To achieve this, Lemma 2 approximates the efficient control rule by one that induces a unique 
recurrence class of beliefs using rounds of revelation along the path of play at an arbitrarily small 
efficiency loss.

5. Applications

This section presents applications of our results and methods.

5.1. Live and let live

In this section, we explore the issue of implicit cooperation between enemy combatants in the 
Western Front in World War I (Ashworth, 1980; Axelrod, 1984). In the Western Front, armies 
adopted mostly static positions along a trench line of 475 miles which ranged from the North 
Sea to the Swiss Alps. Trench warfare was different from traditional war in that “the same small 
units faced each other in immobile sectors for extended periods of time” (Axelrod, 1984, p. 77). 
Repeated interaction between enemy battalions allowed enemy soldiers to engage in cooperative 
attitudes and to limit the level of aggressions. Such behavior was known as live and let live.

Army commanders understood the potential for cooperation and tried to limit it by ordering 
raids and attacks on enemy trenches.23 Enemy soldiers could not discern if such attacks were 
caused by military orders from high command or by opportunistic behavior.24 Moreover, direct 
communication was difficult, if not impossible. As Ashworth (1980, p. 38) explains, “although 
verbally arranged truces occurred intermittently for the duration of the war [. . . ] they were neither 
pervasive nor continuous.” On the contrary, “such truces were mostly irregular and ephemeral, 
since being highly visible they were easily repressed by high command.” For example, a British 
Divisional Commander issued a memo in 1917 stating that “any understanding with the enemy 
[. . . ] is strictly forbidden [. . . ] In the event of any infringement disciplinary action is to be tak-
en” (Ashworth, 1980, p. 37). Yet, cooperation was prevalent and battalions were successful at 
maintaining low levels of aggression for significant lengths of time.

As this discussion suggests, cooperation between battalions arose under severe information 
asymmetries. We apply our general insights and results to shed light on this issue.25 We consider 
a repeated game between two battalions. At each t = 1, 2, . . . , battalions 1 and 2 simultaneously 
decide S or NS (shoot or not). Battalion 2’s payoffs are common knowledge. Battalion 1’s private 
information is whether its army commanders have shown up or not and is represented by θ t ∈
{0, 1}, where θ t = 0 means that army commanders are absent. Payoffs are represented in Fig. 4.

23 In the British Army, for example, the lack of aggression was “both contrary to the spirit of the offensive, [...] and 
to an official British directive of 1915 which made active trench war mandatory,” and a British training manual of 1916 
stated that “the fostering of the offensive spirit [...] calls for incessant attention” (Ashworth, 1980, pp. 42–43).
24 By attacks caused by opportunistic behavior we mean attacks that are not caused by army commanders orders but by 
the desire to have a short-run gain by inflicting losses on the enemy.
25 Studying this well-documented example is interesting because it also yield insights about other episodes of limited 
war, such as the Korean War (Gorman, 1953) and the Cold War (Schelling, 1960).
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NS S

NS R − θtK , R −C − θtK , G

S G, −C 0 , 0

Fig. 4. A game between battalions.

We assume C > G > R > 0. These inequalities imply that when θ t = 0, playing S is a dom-
inant action, but that the outcome (NS, NS) is socially desirable. In other words, when θ t = 0, 
the interaction between battalions is a prisoners dilemma.26 The term −θ tK captures the cost 
that battalion 1 must pay if army commanders showed up and ordered raids (θ t = 1), but the 
battalion does not shoot. We assume that 2R − K < 0 so that when θ t = 1, the outcome (S, S)

maximizes the sum of stage payoffs.
Battalion 1’s type evolves according to a Markov process with transition probabilities given 

by

P[θ t = 0 | θ t−1 = 0] = λ,

P[θ t = 1 | θ t−1 = 1] = μ,

where λ + μ ≥ 1. This means that the process of types has positive persistence. For simplicity, 
we assume that the initial type is drawn according to P[θ1 = 0] = λ.

We focus on equilibrium strategies that maximize the sum of total payoffs. To do this, we first 
solve the AROE (4.6). The differential discounted function h maps distributions over {0, 1} to 
real numbers. We simplify notation by keeping track of a single number p ∈ [0, 1] representing 
the probability that θ = 0 given public information. Thus, h : [0, 1] → R is a convex function. 
Fixing p, the optimization problem on the right hand side of AROE (4.6) is defined over all 
controls (σ1(0), σ1(1), σ2) ∈ {S, NS}3. It is relatively simple to show that controls (NS, NS, S), 
(S, S, NS), (S, NS, NS), and (S, NS, S) are not optimal.27 When 2R − K < G − C we can 
also rule out the control (NS, NS, NS). Indeed, the right hand side of AROE (4.6) at control 
(NS, NS, NS) equals

p(2R) + (1 − p)(2R − K) + h(pλ + (1 − p)μ).

Evaluating the right hand side of (4.6) at (NS, S, NS) results in

p(2R) + (1 − p)(G − C) + ph(λ) + (1 − p)h(μ).

Since h is convex, ph(λ) +(1 −p)h(μ) ≥ h(pλ +(1 −p)μ) and therefore control (NS, NS, NS)

is not optimal. In the sequel, we rule out the control (NS, NS, NS) by assuming 2R − K <

G − C.

26 As Axelrod (1984) points out, “At any time, the choices are to shoot to kill or deliberately to shoot to avoid causing 
damage. For both sides, weakening the enemy is an important value because it will promote survival if a major battle is 
ordered in the sector. Therefore, in the short run it is better to do damage now whether the enemy is shooting back or not. 
This establishes that mutual defection is preferred to unilateral restraint [. . . ], and that unilateral restraint by the other 
side is even better than mutual cooperation [. . . ]. In addition, the reward for mutual restraint is preferred by the local 
units to the outcome of mutual punishment [. . . ], since mutual punishment would imply that both units would suffer for 
little or no relative gain.”
27 For example, control (NS, NS, S) gives less total period payoffs than (S, S, S). Since both controls determine the 
same distribution over continuation beliefs, control (NS, NS, S) cannot be optimal.
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Lemma 4 characterizes optimal dynamics. We say that a control rule σ : [0, 1] → {S, NS}3

generates reactive-signaling dynamics if on the path, battalion 1 does not shoot when its type is 
θt = 0 and shoots when its type is θ t = 1, whereas battalion 2 imitates the action of battalion 
1 in the previous period. Thus, battalion 1 signals its private information through its actions, 
and battalion 2 reacts to such information. Given ̂τ ∈ {0, 1, 2, . . . } ∪ {∞}, we say that a control 
rule generates time-off dynamics if, on the path, battalion 1 does not shoot only if it is in good 
standing and its type is θ t = 0, and battalion 2 does not shoot if and only if battalion 1 is in good 
standing. Battalion 1 is in good standing if it did not shoot in the previous period, or if it shot in 
the previous period, but it was in good standing τ̂ + 1 periods before. Thus, a time-off control 
rule leads to a waiting phase of ̂τ periods after an aggression by battalion 1.28

Let σα be the control rule solving AROE (4.6) for α = (1/2, 1/2). The following result char-
acterizes the optimal path.

Lemma 4. If λ < C−G
2 R+C−G

, σ (1/2,1/2) has both battalions playing S on the path of play. If λ >
C−G

2 R+C−G
, σ (1/2,1/2) generates either reactive-signaling or time-off dynamics (potentially, with 

τ̂ = 0 or = ∞).

The restriction λ > C−G
2 R+C−G

implies that control (NS, S, NS) is optimal at belief p = λ. If 
battalion 1 plays NS at p = λ then in the next period the belief is λ and the optimal control con-
tinues to be (NS, S, NS). If battalion 1 plays S instead, it ‘signals’ a change in type, and in the 
next period the optimal control is either (NS, S, S) (in which case σ (1/2,1/2) generates reactive-
signaling dynamics) or (S, S, S) (in which case σ (1/2,1/2) generates time-off dynamics).29

Regardless of the specific form that the solution to AROE (4.6) assumes, whenever both battal-
ions have strictly positive limit-average payoffs, we can use Theorem 2 to deduce that such path 
can be an equilibrium outcome for the repeated game model when players are patient enough. 
Moreover, in this case, we can simply use the repetition of the static Nash equilibrium to punish 
observable defections.

The analysis of this repeated game model yields new insights about cooperation between 
battalions. First, alternating between periods of aggressions and periods of non-aggressions can 
be optimal for the battalions. These dynamics are consistent with those observed in the Western 
Front, where “many sectors were a mixture of war and peace, that is, of exchanges of peace as 
well as exchanges of aggression and these were more frequent than either very quiet or very 
active sectors” (Ashworth, p. 39).

Second, consistent with our equilibrium construction, soldiers under the live and let live sys-
tem kept an account of the number of aggressions received from the other side. As Ashworth 
(1980) observes, “combatants generally had a good idea of what was, or was not, compatible 
with live and let live, and if one side deviated the other meted out punishments by returning to 
officially prescribed levels of aggression.” Moreover, Ashworth (1980) notes that the rules “were 
not broken by the arrival of four to twelve grenades, which were regarded as routine, but if twelve 
were exceeded, ‘the chances were’, retaliation followed.” This suggests that soldiers could have 
deemed sufficiently low numbers of aggressions as tolerable, which is similar to the combination 
of forgiveness and memory in the equilibrium strategies discussed after Theorem 2.

28 Note that reactive signaling is not a particular case of time-off. A time-off control rule with τ̂ = 0 implies that 
battalion 1 always signals its type, but battalion 2 keeps playing NS.
29 Lemma 4 rules out dynamics in which signaling can occur only after an exogenous number of rounds has transpired.
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5.2. Price cuts and price leadership

In this section, we study a model of tacit collusion with Bertrand competition, and show that 
price cuts and price leadership naturally arise in an equilibrium of the model.

Two firms set prices ai ∈ Ai ⊆ R at each t = 1, 2 . . . . Firms sell heterogeneous goods. The 
demand functions are given by

Qi(ai, aj , θi) = max{θi − ai + zaj ,0}
with 0 < z < 1. Firms’ marginal costs equal c > 0. Firm i’s demand shock is private information 
θi ∈ �i ⊆R+. Players’ utility functions take the form

ui(ai, aj , θi) =
(
Qi(ai, aj , θi) − c

)
ai .

A higher demand in a given period makes more likely a higher demand in ensuing rounds: En-
dowing 
(�i) with the first-order stochastic dominance order, Pi(· | θi) ∈ 
(�i) increases as θi

increases. Each player’s action set is rich enough in the sense that 0, c ∈ Ai . We finally assume 
that firm i can drive firm j ’s demand to 0: there exists āi ∈ Ai such that Qj(āi , aj , θi) = 0 for all 
aj ∈ Aj with aj ≥ c and all θi ∈ �i .30 We write Ai = {a1

i , . . . , a
|Ai |
i } and �i = {θ1

i , . . . , θ |�i |
i }.

We begin our analysis by characterizing the controls that maximize current expected payoffs.

Lemma 5. Fix p ∈ 
({θ, θ̄}) × 
({θ, θ̄}) with pi(θi) > 0 for all θi ∈ �i . Any solution σ̄ ∈ � to

max
σ∈�

1

2

∑
θ∈�

[
σ1(θ1)Q1(σ1(θ1), σ2(θ2), θ1) + σ2(θ2)Q2(σ1(θ1), σ2(θ2), θ2)

]
p1(θ1)p2(θ2)

is such that σ̄i(θi) is nondecreasing for i = 1, 2. When

max
k=2,...,|Ai |

{ak
i − ak−1

i } ≤ 1

4
min

k=2,...,|�i |
{θk

i − θk−1
i } (5.1)

for i = 1, 2, then σ̄i(θi) is strictly increasing. The set of solutions

arg max
σ∈�

1

2

∑
θ∈�

[
σ1(θ1)Q1(σ1(θ1), σ2(θ2), θ1)+σ2(θ2)Q2(σ1(θ1), σ2(θ2), θ2)

]
p1(θ1)p2(θ2)

is nondecreasing in p = (p1, p2) ∈ 
({θ, θ̄}) × 
({θ, θ̄}).31

This result is driven by the complementarity between prices and types. Noting that under 
(5.1) the grid of prices is rich enough, firms’ types are separated and therefore any solution 
σ̄ also solves the AROE equation (4.5) as a result of Proposition 1. We thus deduce that the 
optimal control rule σα , with α = (1/2, 1/2), separates types and induces a unique recurrence 
class (θ t , pt)t≥1. It is relatively simple to see that vi = 0 for i = 1, 2 and therefore the expected 
average payoff generated by σ (1/2,1/2), v = v∞(σα), is strictly individually rational. The set 
W has full dimension32 and therefore v allows for player-specific punishments in W . We use 

30 Given the demand, āi < 0.
31 This means that if p and p′ are such that pi dominates in the first order stochastic dominance sense p′

i
for i = 1, 2, 

and σ (resp. σ ′) solves the problem for p (resp. p′), then σi(θi ) ≥ σ ′
i
(θi ) for all θi .

32 To see this, let âi > c and compute the expected average payoff wi assuming that i sets price âi and j sets price 
aj = c so that wi > 0 and wi = 0. It follows that {(0, 0), w1, w2} ⊆ W and therefore W has full rank.
i j
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Theorem 2 to build an equilibrium s∗ resulting in payoffs arbitrarily close to ρ(1/2,1/2) such that 
the observed behavior under s∗ is close to the observed behavior under σ (1/2,1/2).

Under strategy s∗, when firm i chooses a high price in period t , then firms’ prices are higher 
in t + 1 (keeping fixed the type of firm j in t ). A price increase by firm i in t is seen as an 
invitation to switch to a high-price regime in t + 1.33 This mechanism matches the one described 
by Judge Posner in his decision on the High Fructose Corn Syrup case:

If a firm raises price in the expectation that its competitors will do likewise, and they do, the 
firm’s behavior can be conceptualized as the offer of a unilateral contract that the offerees 
accept by raising their prices.

In contrast to other theoretical papers, such as Green and Porter (1984) and Abreu et al. (1986), 
in our setup unilateral price cuts actually occur and are observed in equilibrium, and apparent 
deviations can be seen as the result of firms using their private information to signal continuation 
play. Rahman (2014) provides a complementary view in a repeated game model with imperfect 
monitoring. In such model, price cuts can be used to improve monitoring.34

In our model, price cuts and price leadership are imperfect substitutes to explicit communica-
tion. Indeed, if firms could freely communicate, firms would exchange messages to coordinate 
their pricing decisions and firms would simultaneously raise or lower their prices. But without 
communication, prices are used as a signal of market conditions. Using prices to substitute com-
munication entails a cost: Pricing decisions are uncoordinated and lack of communication does 
not allow the cartel to adjust prices to optimally assign demand after market conditions change.

Collusive price leadership has been extensively supported empirically (Nicholls, 1951; Stigler, 
1947; Allen, 1976; Mouraviev and Rey, 2011; Seaton and Waterson, 2013). Our model provides 
an explanation for price leadership in a natural repeated Bertrand game with incomplete informa-
tion. Rotemberg and Saloner (1990) also study collusion and price leadership in a Bertrand model 
with incomplete information. Their model exhibits iid private information and for price leader-
ship to emerge, within each round the informed firm must set its price before the uninformed one. 
Such sequentiality is not needed in our model. Furthermore, in Rotemberg and Saloner’s (1990)
model, price leadership entails no cost for the cartel as, within each round, production takes place 
after both firms has set prices. Empirical evidence supports the observation that unilateral price 
increases are costly for the cartel. For example, Clark and Houde (2013) study price leadership 
in gasoline markets in Quebec, and find that a small price premium for a few hours can result in 
a significant reduction in a station’s sales for the day (up to 50%).35

Our collusion model differs from the more standard analysis of Bertrand games with inelastic 
demand and incomplete information about costs. In Athey and Bagwell (2001), firms have iid 
private costs and, before choosing actions, can freely exchange messages. Athey and Bagwell 
(2008) and Escobar and Toikka (2013) extend the model to allow for Markovian private costs.36

In all these works, firms can be arbitrarily close to the first best collusive outcome, in which only 

33 This type of dynamics also arises in the alternating-move Bertrand model in Maskin and Tirole (1988).
34 Collusion and price cuts can also arise in a mixed strategy equilibrium of a repeated Bertrand game (Bernheim and 
Madsen, 2017).
35 Note that price leadership could also arise with private information even if firms did not collude.
36 Athey and Bagwell (2008) additionally study a model with perfectly persistent costs and prove that in the optimal 
equilibrium firms pool by fixing the monopoly price. Pęski (2014) shows that the pooling result does not survive to more 
general demand functions.
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the lowest cost firm produces and fixed the consumers’ reservation value. As Athey and Bagwell 
(2001) observe, communication can be dispensed with as prices can be used to signal costs (at an 
arbitrarily low cost) when firms are sufficiently patient. But this observation crucially depends 
on the assumption of inelastic demand. Our analysis shows that in more general Bertrand games, 
firms are bounded away from a perfectly collusive outcome when the exchange of messages is 
costly. Moreover, in the Bertrand models of Athey and Bagwell (2001, 2008) and Escobar and 
Toikka (2013), the path of collusive prices cannot be distinguished from the prices one would 
observe when firms’ information is symmetric and players were patient (as in Rotemberg and 
Saloner, 1986). In contrast, our analysis not only shows that the costs of incomplete information 
can be substantive for a cartel, but also that asymmetric information has nontrivial implications 
for the dynamics of prices.37

5.3. The social value of communication in cartels

Communication between cartel members can serve several roles. One role that communica-
tion has is to allow cartel members to better coordinate production. From a legal perspective, 
communication to share information about market conditions is typically seen as welfare en-
hancing (Carlton et al., 1996). Here, we confirm this intuition. We show that consumer surplus 
increases when firms communicate and therefore communication between cartel members has a 
pro-competitive effect.

Two firms set quantities ai ∈ Ai at each t = 1, 2, . . . . Firms sell homogeneous products and 
the (inverse) demand is given by P(a1 +a2), where P > 0 and it is strictly decreasing in a1 +a2. 
The marginal cost of firm 1 is θ ∈ �, whereas the marginal cost of firm 2 is c > 0. Firms’s utility 
functions are

u1(a1, a2, θ) = P(a1 + a2)a1 − θa1,

u2(a1, a2) =P(a1 + a2)a2 − ca2.

To simplify the analysis, we assume that A1 = A2 and Ai = {0, g, 2g, . . . , (|Ai | − 1)g}, where 
g > 0. We define the monopoly quantity given any cost κ ∈ � ∪ {c} as

QM(κ) = arg max
q∈{0,g,... }P(q)q − κq.

Note that QM(κ) decreases in κ . We assume that QM(κ) is strictly decreasing and that the set of 
actions Ai is such that QM(0) < max{ai | ai ∈ Ai}. We assume that no firm is always the most 
efficient one: min{θ ∈ �} < c < max{θ ∈ �}.

We focus on profiles that maximize the sum of firms’ payoffs. If firms could communicate, 
only the firm having the lowest cost would produce the monopoly quantity QM(min{θ, c}) and 

total payoffs would be maxq∈{0,g,... }
{
P(q)q − min{c, θ}q

}
. Theorem 4.1 in Escobar and Toikka 

(2013) implies that firms can approximately attain monopoly profits on the path of play in the 
repeated game with communication.

When firms cannot communicate, the monopoly arrangement is not feasible. To characterize 
an approximately optimal path, assume that the belief that firm 2 has about θ is p ∈ 
(�) and 
consider the problem of maximizing the expected sum of firms’ payoffs over all feasible rules:

37 Athey et al. (2004) study a repeated Bertrand game with iid cost and show that optimal equilibrium is in (on-path) 
pooling strategies when firms are restricted to use strongly symmetric strategies.
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max
σ1 : �→A1,σ2∈A2

U(1,1)(σ,p) :=
∑
θ∈�

(
P(σ1(θ) + σ2)(σ1(θ) + σ2) − θσ1(θ) − cσ2

)
p(θ)

(5.2)

Assume Ep[θ ] := ∑
θ θp(θ) < c. Then, for any solution of (5.2), σ2 = 0. If not, σ2 > 0. Take the 

alternative profile σ̃2 = σ2 −g and σ̃1(θ) = σ1(θ) +g.38 The difference in total expected payoffs 
would be

U(1,1)(σ̃ ,p) − U(1,1)(σ,p) = −g
(
Ep[θ ] − c

)
> 0.

Thus σ2 > 0 cannot be optimal. It follows that the optimal solution is σ1(θ) = QM(θ) and σ2 = 0
and total profits equal (P(QM(θ)) − θ)QM(θ). In other words, firm 1 ends up producing even 
when it is less efficient than firm 2. Since σ is a separating rule, Proposition 1 implies that it 
solves the AROE given beliefs p. Intuitively, the cartel must decide production under uncertainty 
and let the firm that is ex-ante more efficient produce the monopoly quantity. Assuming that 
Ep[θ ] < c for all p ∈ {p1} ∪θ∈� {P(· | θ)}, the optimal control rule σ (1/2,1/2) is separating and 
can be implemented as an equilibrium of the repeated game using Theorem 2.39

This analysis shows that the cartel gets lower payoffs when communication is not allowed. 
Perhaps surprisingly, consumers are also hurt by the lack of communication. To see this, note 
that with communication the quantity produced is QM(min{θ, c}). Without communication, the 
total quantity is QM(θ). Since QM is decreasing, the quantity produced when the cartel com-
municates is always above the quantity produced when the cartel cannot communicate and the 
consumer’s loss is smaller when the cartel can communicate than when it cannot. Intuitively, lack 
of communication distorts the cartel pricing and quantity decision as it cannot coordinate pro-
duction efficiently. Communication improves not only the cartel’s profits but also the consumers’ 
surplus.

Athey and Bagwell (2001) show an example in which, for intermediate levels of patience, 
firms can better collude with communication. Our results apply even when firms are arbitrar-
ily patient. Another role that communication has in cartels is to enhance monitoring (Whinston, 
2008). As Awaya and Krishna (2016) show in a private monitoring Bertrand game with com-
plete information, communication among firms allows them to set higher prices. Our finding is 
related to these ones, but here we show that communication also improves consumers welfare by 
reducing the price distortions that uncoordinated production induces.40

6. Equilibrium as interactions become frequent and discount rates vanish

Our limit results, Theorems 1 and 2, apply when δ → 1. As Abreu et al. (1991) point out, 
the limit δ → 1 can be interpreted saying that either interest (discount) rates are low or that 
players move frequently. In games with imperfect monitoring, Abreu et al. (1991) and Sannikov 

38 Note that σ1(θ) ≤ QM(0) and thus σ̃1(θ) ∈ Ai .
39 Since firm 2 never produces, its payoff equals the minmax, violating the conditions in Theorem 2. To deal with this 
difficulty, change the rule so that firm 2 produces g in every period and thus its payoff is strictly positive. When g is 
small enough, this entails an arbitrarily small loss. We can also construct player specific punishments as in Section 5.2.
40 Gerlach (2009) also study the value of communication among cartel members for consumers in a Bertrand model with 
incomplete information. In his inelastic demand model, consumers’ surplus vanish as firms become arbitrarily patient 
regardless of whether or not communication is available. He therefore emphasizes different mechanisms. Our finding 
depends on the assumption that firms perfectly collude (either with or without communication). Our results are thus 
complementary to those in Shapiro (1986), who explores the value of communication in static oligopoly games.
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and Skrzypacz (2007) show that the two interpretations can lead to radically different results 
as when moves become more frequent not only the interest rates change but also the quality of 
the monitoring technology. In our game of incomplete information, the impact of more frequent 
moves is also subtle as types are more likely to remain unchanged between two rounds. In this 
section, we illustrate these differences in a simple prisoners’ dilemma.

Two players choose actions at each t = D, 2D, . . . , where D > 0 is the period length. At each 
t , players play a prisoners dilemma, with the payoffs given in Fig. 2. We parameterize both the 
discount factor and the transitions by D. The discount factor equals δ = exp (−rD), where r > 0
is the discount rate per time unit. Transitions are given by

P[θ t = l | θ t−1 = l] = 1 − φD, P[θ t = h | θ t−1 = h] = 1 − χD

with φ, χ > 0. We make explicit the dependence of the transition matrix and the Bayes operator 
on D by writing P = PD and B = BD . Under this parametrization we can interpret our previous 
findings as taking the interest rate r → 0 for a fixed D. One may also ask what happens when 
D → 0 keeping fixed the interest rate r fixed. In this section, we show that when D is small 
enough, we can approximate the full information payoffs when r is chosen sufficiently small.

The formulation of the dynamic programming problem characterizing decision rules that max-
imize the sum of payoffs for D > 0 can be imported from Section 4. More explicitly, given a 
belief p = P[θ t = l], the value function for the problem of maximizing the sum of payoffs is

wD(p) = (6.1)

max
σ∈�

{
(1 − e−rD)U(1,1)(σ,p) + e−rD

∑
a1∈{I,N}

wD
(
BD(· | σ1,p, a1)

) ∑
θ,σ1(θ)=a1

p(θ)

}
.

The following result characterizes the solution to this problem when D and r are small.

Proposition 2. The following hold:

a. There exists D̄ > 0 such that for all D < D̄ and all p ∈ [χD, 1 − φD], the right-hand 
side of (6.1) has a unique solution σ̄ , with σ̄1(l | p) = I and σ̄1(h | p) = NI . Moreover, 
wD(p) → 2(a − l)

χ
φ+χ

as D → 0.

b. For all ε > 0, there exists D̂ ∈]0, D̄[ such that for D < D̂ we can find r̄(= r̄(D)) such 
that the game played every D units of time with discount rate r < r̄(D) has an equilibrium 
attaining payoffs within distance ε of (a − l)

χ
φ+χ

(1, 1)′.

This result shows that a separating rule (that generates a reactive-signaling path) is optimal 
whenever D is small enough, and that the incentive costs are modest if we can also pick r to be 
sufficiently small.41 Intuitively, when D is small, the costs of signaling a change of type is small 
(it is incurred once) compared to the benefit of perfectly revealing information (which results in 
almost perfect information for several rounds of interaction). Note that first best payoffs (with 
full information and perfect commitment) converges to 2(a − l)

χ
φ+χ

as D → 0 – the payoff 
attained in the game with frequent moves and low interest rate.

41 This is also related to Skrzypacz and Toikka’s (2015) finding that when trade is more frequent, the increase in the 
persistence of the process of types is detrimental for incentives in mechanism design.
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7. Conclusions and extensions

Oftentimes, economic agents in a long-run relationship can only partially know the conditions 
under which their partners are making decisions. Moreover, communicating tough or favorable 
conditions is difficult because such protocols are either incomplete or non-existent (Schelling, 
1960; Marschak and Radner, 1972; Whinston, 2008). Communication may also be difficult be-
cause economic shocks may materialize only after some other player has already made a decision. 
We explore optimal equilibria in this type of environment. Our exercise uncovers new tradeoffs 
arising in dynamic models of incomplete information – how much information is revealed is en-
dogenously determined and players forgive but do not forget apparently hostile actions. We show 
that the cooperation paths are quite rich and novel, and provide applications that shed light on 
phenomena that were previously unexplained.

Some extensions to our model are simple. We could extend our results to allow for action-
dependent transitions. Another extension would be to allow for restricted or costly communica-
tion or communication only once the stage game has been played (but before the subsequent type 
is realized). Our setup can also be used to explore equilibria in a dynamic model of sovereign 
default, in which a country faces privately observed (economical or political) shocks that may 
make defaults socially attractive (Cole et al., 1995; Sandleris, 2008). In such model, a govern-
ment decision of whether or not to pay its debt would affect others’ beliefs about fundamentals 
and their willingness to lend or invest in the future.42 A more challenging question is to explore 
the equilibrium set when the discount factor is not arbitrarily close to 1, possibly allowing for 
imperfect monitoring. We suspect that when δ is not close to 1, our insights (about whether and 
how information is revealed and about how strategies balance forgiveness and memory) will also 
show up, but additional incentive constraints may introduce new tradeoffs. Another interesting 
extension is to explore the continuous time limit model in Section 6, keeping constant the inter-
est rate r > 0. Keeping fixed the interest rate r , the review blocks used in Proposition 2 become 
arbitrarily long and therefore the informed player need not have incentives to play an obedient 
strategy. These extensions are left for future research.

Appendix

This Appendix consists of two parts. Appendix A provides some examples, and Appendix B
provides proofs.

Appendix A. Examples

A.1. Limit equilibrium payoff set

Consider the example in Section 2.2, and suppose that a = 1, b = 0.325, l = 0.7, and h = 4. 
Fig. 5a shows the set of limit equilibrium payoffs in the game with complete information or 
incomplete information and communication (F∗), which contains all feasible payoffs above the 
minmax vector (0, 0). The point (0.15, 0.15) shown in the graph corresponds to the strategy 
profile by which players play {I, I } when the state is θ t = l and {N, N} when the state is θ t = h.

42 This is similar to the model in Sandleris (2008), but in that model the game has a finite horizon and shocks are drawn 
once.
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Fig. 5. Limit sets of equilibrium payoffs.

Fig. 5b shows the set of limit equilibrium payoffs in the game with incomplete information 
and no communication (E∗) for λ = 0.6. This set coincides with the set of individually rational 
payoffs W because as δ → 1 incentive issues disappear. The point (0.08, 0.08) shown in the 
graph corresponds to a reactive signaling control profile: players attempt to coordinate on {I, I }
while the state is θ t = l and on {N, N} while the state is θ t = h. When the state changes from 
l to h, player 1 signals this change by playing N , when the state changes from h to l, player 
1 signals by playing I . This means that players are playing {I, I } a proportion 1

2 λ, {N, I } a 
proportion 1

2 (1 − λ), {N, N} a proportion 1
2 λ of time, and {I, N} a proportion 1

2 (1 − λ) of 
time.

To the left of (0.08, 0.08) in the upper frontier of E∗, players are mixing between the reactive 
signaling profile and a pooling control profile in which players play {I, I } regardless of the state 
(such control profile yields a − 1

2 l − 1
2h = −1.35 for player 1 and a − l = 0.3 for player 2). 

To the right of (0.08, 0.08), players mix between the reactive signaling profile and a separating 
control in which player 1 plays I when the state is l and N when the state is h (such control 
profile yields 1

2 (a − l) + 1
2 b = 0.3125 for player 1 and 1

2 (a − l) + 1
2 (b − l) = −0.0375 for 

player 2).
Fig. 5c shows E∗ for λ = 0.9. As λ approaches 1, the limit set of the game without communi-

cation converges to the limit set with communication.

A.2. Signaling even when payoffs do not change

Consider a game with two players i = 1, 2 and three states θ t ∈ {1, 2, 3}. The state is private 
information of player 1. Payoffs are given in Table 1.
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Table 1
Game payoffs.

A B C

A 5,5 0,0 0,0

B 4,4 4,4 0,0

C 0,0 0,0 0,0

θt ∈ {1,2}

A B C

A 0,0 0,0 0,0

B 0,0 0,0 0,0

C 0,0 0,0 5,5

θt = 3

Fig. 6. Level curves for the value function. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

The game is a coordination game: From a static point of view, it is optimal to coordinate 
on {A, A} when the state is 1 or 2, and to coordinate on {C, C} when the state is 3. Transition 
probabilities are given by

P =
⎡⎣0.8 0.1 0.1

0.1 0.3 0.6
0.1 0.1 0.8

⎤⎦
We solve the game numerically for δ = 0.999. Fig. 6 shows level curves for the value function 

v(p1, p2), which gives the optimal discounted sum of the sum of utilities as a function of the 
beliefs over states {1, 2}. Cooler colors (tending to blue) indicate smaller values for the value 
function. Warmer colors (tending to yellow) indicate larger values. The figure shows that value 
is largest when players are very sure that the state is 1 or 3, which is the expected outcome.

Gameplay evolves so that player 1 signals its type and player 2 plays A when the likelihood 
of state 1 is high, and C when the likelihood of states 2 and 3 is high. If player 2 is sure that state 
was 1 in t − 1, for example, then at t she believes that the state is 1 with probability 0.8, 2 with 
probability 0.1 and 3 with probability 0.1. Our calculations show that in this case, it is optimal 
for player 1 to play A if the state is 1, B if the state is 2 and C if the state is 3, while player 2 
plays A.

The interesting feature of this example is that player 1 optimally signals a change from state 1 
to state 2, even though these states have the same payoffs. The reason is that a change to state 2 
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makes a transition to state 3 very likely, which induces players to coordinate on playing C, even 
before the transition to state 3 has happened.

Appendix B. Proofs

This Appendix contains proofs for all the results in the main text.

B.1. Proofs for Section 4.1

Proof of Lemma 1. The result is the standard dynamic programming formulation of partially 
observed Markov decision processes (Arapostathis et al., 1993). A minor subtlety arises due 
to the fact that our control variables are mixed strategies which, in contrast to what is typ-
ically addressed in the literature, involve private randomizations. To address this, note that 
a strategy profile can be equivalently written as s = (st

i ) with st
i : At−1 × �t

i × [0, 1]t ×
[0, 1] → Ai . In other words, we can reformulate a behavior strategy by assuming that at

i =
st
i (a

1, . . . , at−1, θ1
i , . . . , θ t

i , χ
1, . . . , χt , χt

i ) where χt
i is only used by player i. We can expand 

the set over which the maximization (4.1) is performed by allowing rules where all players at t
condition on the whole vector (χt

1, . . . , χ
t
N). This relaxed efficiency problem admits a dynamic 

programming formulation in which, without loss, public randomizations are not used. Since the 
solution of the relaxed problem is feasible for (4.1), we deduce that q(α) = wα,δ(λ). �
Proof of Theorem 1. We use the so-called vanishing discount approach. The only caveat is that 
our dynamic programming equation is multilinear in beliefs as types are independent. To apply 
the vanishing discount approach, we extend equation (4.3) to allows for any belief p ∈ 
(�) and 
note that any solution must also be a solution when we restrict p ∈ ∏n

i=1 
(�i). Parts a and b 
follow from Platzman (1980) or Theorem 11 in Hsu et al. (2006). It is enough to note that the 
hidden Markov process (θ t )t≥1 has full support and note that, for example, Assumption 2 in Hsu 
et al. (2006) holds. To deduce c, we use part (d) Corollary on p. 369 in Platzman (1980). �
Proof of Proposition 1. Consider the problem

max
σ∈�

∑
a∈A

h(B(· | σ,p,a))
∑

θ∈�,σ(θ)=a

p(θ)

with h : 
(�) → R convex. The solution is any separating rule (in particular, σ̄ (· | p̄) in the text 
solves this problem). To see this, notice that the problem can be reformulated as the problem of 
choosing a Bayes-consistent belief distribution over beliefs with the purpose of maximizing a 
convex function (Aumann and Maschler, 1995; Gentzkow and Kamenica, 2011). The value of 
that problem equals the concave hull of the objective and is attained by a distribution putting 
appropriate weights over delta-Dirac beliefs. �
B.2. Proofs for Section 4.2

Proof of Lemma 2. Let Qt(p) ⊆ ∏n
i=1 
(�i) be the finite set of beliefs having positive prob-

ability under σ̄ α at round t given p1 = p when σ̂ T̂ is used (so that Q1(p) = {p}). To prove a, 
note that all elements in

∪T̂
t=1

(
� × ∪θ∈�Qt(P (· | θ)) × {t}

)
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are visited infinitely often by the Markov chain (θ t , pt , κt )t≥1. Since the finite Markov chain 
(θ t , pt , κt )t≥1 visits the set � × ∏n

i=1 ∪θi∈�i
{Pi(· | θi)} × {1} with probability 1 at rounds T̂ +

1, 2T̂ + 1, . . . , the set ∪T̂
t=1(� × ∪θ∈�Qt(P (· | θ)) × {t}) is its unique recurrence class.

To prove b, let σα be the control rule solving the AROE given α. In particular, there exists 
T̂ ∈ N such that

1

T

T∑
t=1

Eσα,p[α · u(at , θ t )] ≥ ρα − ε/4 (B.1)

for all T ≥ T̂ , and all p ∈ {p1} ∪
(

∪θ∈� {P(· | θ)}
)

. Choose T̂ large enough so that

1

T̂
max

a,a′∈A,θ,θ ′∈�
{α · (u(a, θ) − u(a′, θ ′))} <

ε

4
. (B.2)

Build the extended control rule that reveals every T̂ rounds, σ̂ T̂ , from σα . Note that for any 

n ∈ N, and any p, p̄1 ∈ {p1} ∪
(

∪θ∈� {P(· | θ)}
)

1

T̂

T̂ (n+1)∑
t=T̂ n+1

E
σ̂ T̂ ,p

[α · u(at , θ t ) | p
T̂ n+1 = p̄1] − 1

T̂

T̂ (n+1)∑
t=T̂ n+1

Eσα,p[α · u(at , θ t ) | p
T̂ n+1 = p̄1]

= 1

T̂

(
E

σ̂ T̂ ,p
[α · u(aT̂ (n+1), θ T̂ (n+1)) | p

T̂ n+1 = p̄1]

−Eσα,p[α · u(aT̂ (n+1), θ T̂ (n+1)) | p
T̂ n+1 = p̄1]

)
> −ε/4

where the equality follows since at rounds t = T̂ n + 1, . . . , T̂ (n + 1) − 1, σ̂ T̂ and σα prescribe 
the same actions. Using (B.1)

1

T̂

T̂ (n+1)∑
t=T̂ n+1

E
σ̂ T̂ ,p

[α · u(at , θ t ) | p
T̂ n+1 = p̄1]

≥ 1

T̂

T̂ (n+1)∑
t=T̂ n+1

Eσα,p[α · u(at , θ t ) | p
T̂ n+1 = p̄1] − ε

4
≥ ρα − 1

2
ε

and therefore

1

T̂

T̂ (n+1)∑
t=T̂ n+1

E
σ̂ T̂ ,p

[α · u(at , θ t )] ≥ ρα − 1

2
ε. (B.3)

Now, pick T such that

T̂ /T max
a,θ

|α · u(a, θ)| < ε/4 and
T̂

T
�T

T̂
�(ρα − 1

2
ε) > ρα − 3

4
ε (B.4)

for all T > T (here �x� = max{y ∈ N | y ≤ x}). As a result, for all T > T
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1

T

T∑
t=1

E
σ̂ T̂ ,p

[α · u(at , θ t )]

= 1

T

( �T/T̂ �−1∑
n=0

T̂ (n+1)∑
t=T̂ n+1

E
σ̂ T̂ ,p

[α · u(at , θ t )] +
T∑

t=1+T̂ �T/T̂ �
E

σ̂ T̂ ,p
[α · u(at , θ t )]

)

= T̂

T

( �T/T̂ �−1∑
n=0

1

T̂

T̂ (n+1)∑
t=T̂ n+1

E
σ̂ T̂ ,p

[α · u(at , θ t )]
)

+ 1

T

T∑
t=1+T̂ �T/T̂ �

E
σ̂ T̂ ,p

[α · u(at , θ t )]

≥ T̂

T
�T

T̂
� (ρα − 1

2
ε) − T̂

T
max
a,θ

|α · u(a, θ)|
> ρα − ε

where the first inequality follows from (B.3) and the second inequality follows from (B.4). This 
proves the result. �
Proof of Lemma 3. We prove a. Use Lemma B.1 in Escobar and Toikka (2013) (which provides 
a rate of convergence in Glivenko–Cantelli theorem) to deduce the existence of a test (bk) such 
that regardless of the strategy followed by −i, whenever player i’s actions are not changed

Pŝi ,s−i

[
max
θi∈�i

|m̄t (θi | q, a−i ) − pi(θi)| < bNt (q,a−i )

|�| ∀q ∈ Q, a−i ∈ A−i ,∀t
]

> 1 − η

where m̄t (θi | q, a−i ) =
∑t

t ′=1 1
(θt

i
,p̄t ,κt ,at−i

)=(θi ,q,a−i )∑t
t ′=1 1

(p̄t ,κt ,at−i
)=(q,a−i )

is the empirical frequency of player i’s types. 

Note that whenever i is obedient

m̄t (ai | q, a−i ) − mσ̂ (ai | q) =
∑

θi∈�i st σ̂i (θi |q)=ai

(
m̄t (θi | q, a−i ) − pi(θi)

)
.

As a result,

Pŝi ,s−i

[
max
ai∈Ai

|m̄t (ai | q, a−i ) − mσ̂
i (ai | q)| < bNt (q,a−i ) ∀q ∈Q, a−i ∈ A−i ,∀t

]
> 1 − η.

Now, if player i actually plays the game of credible play, then in the event above he will pass the 
test and his actions will not be modified.

To prove b, define ck = 2 max1≤j≤k jbk/k + 1/k and use Lemma B.5 in Escobar and Toikka 
(2013) to deduce in the game of credible play (σ̂ , (bk), T ), for all strategy profile s,43

Ps

[
max
ai∈Ai

|m̄T (ai | q, a−i ) − mσ̂
i (ai | q)| < cNt (q,a−i ) ∀i = 1, . . . , n, q ∈Q, a−i ∈ A−i

]
> 1 − η.

It follows that there exists T such that for T > T , in the game of credible play (σ̂ , (bk), T ), for 
all strategy profile s,

43 This result says that regardless of the strategy profile used, all players will pass the relaxed test ck . Intuitively, when 
a player fails the test, the ensuing path of actions is generated using the target rule σ̂i (which by definition passes the test 
bk ).
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Ps

[
max
a∈A

|m̄T (a | q) − mσ̂ (a | q)| < η/2 ∀q ∈ Q
]

> 1 − η. (B.5)

Now, for any such T ≥ T , pick δ̄ < such that for all δ > δ̄, and every path a1, . . . , aT ,

max
a∈A

|m̄T ,δ(a | q) − m̄T (a | q)| < η/2

where

m̄T ,δ(a | q) =
∑T

t=1 δt−11at=a,qt=q∑T
t=1 δt−11qt=q

is the discounted finite horizon occupancy rate. As a result, for any block game of credible play 
(σ̂ , (bk), T )∞, for all strategy profile s, and for any element of the event in (B.5),

max
a∈A

|m̄δ(a | q) − mσ̂ (a | q)|

= max
a∈A

|
∑∞

n=1

(∑T (n+1)
t=nT +1 δt−11at =1,qt =q∑n(T +1)

t=nT +1 δt−11qt =q

− mσ̂ (a | q)
)∑n(T +1)

t=nT +1 δt−11qt=q∑∞
t=1 δt−11qt=q

|
< η

This completes the proof. �
Proof of Theorem 2. Before constructing the equilibrium strategies, we use Lemmas 2 and 3
to build a test (bk) and T̄ such that for all T ≥ T̄ there exists δ̄ such that for all δ > δ̄, player 
i can get a payoff which is at least v∞

i (σ̂ ) − ε by playing obediently in the block game of 
credible play (σ̂ , (bk), T )∞ (this holds regardless of the strategies used by −i). In particular, in 
any equilibrium sδ of (σ̂ , (bk), T )∞, player i’s equilibrium payoff satisfies vδ

i (s
δ) ≥ v∞

i (σ̂ ) − ε. 
Thus,

α · vδ(sδ) ≥ α · v∞(σ̂ ) ≥ ρα − 2ε.

This means that any equilibrium of the block game of credible play (σ̂ , (bk), T )∞ results in total 
weighted payoffs that are at most 2ε below the target ρα .

Now, since v∞(σ̂ ) allows for player-specific punishments in W , we can find (vi)ni=1 ⊆ W such 

that vi > vi
i and vj

i > vi
i for j �= i. Since vi ∈ W , we can use Lemmas 2 and 3 to find a (perhaps 

randomized) extended control rule σ̂ i and build a block game of credible play (σ̂ i, (bk), T i)∞ in 
which players get equilibrium payoffs arbitrarily close to vi for all δ sufficiently large.

Construct the equilibrium strategy profile s∗ as follows. Players start in a cooperative phase
by choosing actions as in the equilibrium of the games of credible play (σα, (bk), T )∞. Any 
observable deviation by player i triggers a stick phase in which the players play minmax against 
i during L periods. Any deviation by a player restarts a minmax phase of L rounds against that 
player. After the L rounds of minmax against i, a carrot phase is started in which players choose 
actions as in the equilibrium of the game of credible play (σ̂ i, (bk), T i)∞. Deviations restart the 
minmax phase and so on.

Suppose that ε > 0 is small enough such that for some γ ∈]0, 1[

v
j
i − vi

i > 2ε, (1 − γ ) >
2ε

vi − v
, γ

(
v

j
i − vi

i − 2ε
)

> (1 − γ )
(
vi − m + ε

)

i i
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for i, j = 1, . . . , n with i �= j . Define the length of the stick phase as L = L(δ) = max{d ∈
N | d ≤ ln(γ )

ln(δ)
} and note that δL → γ . Lemma 6.1 in Escobar and Toikka (2013) shows that 

discounted payoffs during the L periods of the stick phase against i are bounded above by 
(1 − δL)(vi + ε) for δ sufficiently large. Define M = maxi=1,...,n,a∈A,θi∈�i

ui(a, θ) and m =
mini=1,...,n,a∈A,θi∈�i

ui(a, θ).
Now, consider the incentives in the carrot phase

vi − ε ≥ (1 − δ)M + (δ − δL+1)(vi + ε) + δL+1(vi
i + ε)

The incentives of player i in the stick phase against j �= i can be written

(1 − δL)m + δL(v
j
i − ε) ≥ (1 − δ)M + (δ − δL+1)(vi + ε) + δL+1(vi

i + ε)

Finally, the incentives of player i in the carrot phase against j can be written as

v
j
i − ε ≥ (1 − δ)M + (δ − δL+1)(vi + ε) + δL+1(vi

i + ε)

Taking the limit as δ → 1 in all these inequalities, by construction of ε and γ , we deduce the 
existence of a critical discount factor such that all incentive constraints hold.

Since the path of play of the strategy profile s∗ coincides with the equilibrium sδ of 
(σ̂ , (bk), T )∞, it follows that α · vδ(s∗) ≥ ρα − ε. Lemma 3 part b also implies that s∗ satis-
fies the second part of the Theorem. This concludes the proof. �
B.3. A proof for Section 5.1

Proof of Lemma 4. Under the assumptions λ > C−G
2R+C−G

, the AROE (4.6) is maximized by 
control (NS, S, NS) when p = λ. This follows from the fact that under this restriction on pa-
rameters, (NS, S, NS) maximizes maxσ U(1/2,1/2)(λ) and, from Proposition 1, (NS, S, NS) also 
solves (4.6). Now, if at belief p = 1 − μ, control (NS, S, S) is optimal for the right hand side 
of AROE (4.6), then σ generates reactive-signaling dynamics and the result holds. So, suppose 
that (NS, S, S) is not optimal at p = 1 − μ. This means that either (S, S, S) or (NS, S, NS)

are optimal at p = 1 − μ. If (NS, S, NS) is optimal, then σ generates time-off dynamics with 
τ̂ = 0. If (S, S, S) is optimal at 1 − μ, then it must result in higher total payoffs than (NS, S, S)

for all p > (1 − μ).44 When the control (S, S, S) is employed, the path of beliefs increases as 
time passes by. If after some belief in the path, (NS, S, NS) is optimal, then the optimal control 
rule generates time-off dynamics with finite ̂τ . If not, (S, S, S) is played along the path and the 
optimal control rule generates time-off dynamics with ̂τ = ∞. �
B.4. A proof for Section 5.2

Proof of Lemma 5. Since pi(θi) > 0, σ̄i (θi) is a solution to

max
ai∈Ai

∑
θj ∈�j

(
ui(ai, σ̄j (θj ), θi) + uj (σ̄j (θj ), ai, θj )

)
pj (θj ).

The fact that σ̄i is nondecreasing follows since ui(ai, aj , θi) has increasing differences in (ai, θi).

44 To see this, let hσ (p) be the right hand side of AROE (4.6) given a control σ . Note that h(S,S,S)(0) = h(NS,S,S)(0), 
h(S,S,S)(1 − μ) > h(NS,S,S)(1 − μ), and h(S,S,S)(p) is convex whereas h(NS,S,S)(p) is linear. These three conditions 
imply that h(S,S,S)(p) > h(NS,S,S)(p) for all p > 1 − μ.
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To see the second part, fix θi = θk
i with k < |�i | and take ãi = max{ai < σ̄i(θ

k
i )} (which is 

well defined since 0, c ∈ Ai ). Since the objective function in the optimization problem is concave, 
it must be the case that

∂

∂ai

∑
θj ∈�j

(
ui(ãi , σ̄j (θj ), θi) + uj (σ̄j (θj ), ãi , θj )

)
pj (θj ) ≥ 0

for otherwise σ̄i(θ
k
i ) would not be optimal. Now, take âi = min{ai > σ̄i(θ

k
i )}. Using the funda-

mental theorem of calculus, it follows that

∂

∂ai

∑
θj ∈�j

(
ui(âi , σ̄j (θj ), θ

k+1
i ) + uj (σ̄j (θj ), âi , θj )

)
pj (θj )

= ∂

∂ai

∑
θj ∈�j

(
ui(ãi , σ̄j (θj ), θi) + uj (σ̄j (θj ), ãi , θj )

)
pj (θj )

+
θk+1
i∫

θk
i

∂2

∂ai∂θi

∑
θj ∈�j

(
ui(ãi , σ̄j (θj ), y)

)
pj (θj )dy

+
âi∫

ãi

∂2

∂a2
i

∑
θj ∈�j

(
ui(y, σ̄j (θj ), θi)

)
pj (θj )dy

≥ 0 + min{θ l+1
i − θ l

i } − 4 max{al+1
i − al

i}
≥ 0.

As a result, σ̄i(θ
k+1
i ) ≥ âi > σ̄i(θ

k
i ), which proves the result. �

B.5. A proof for Section 6

Proof of Proposition 2. Lemma 4 shows that the optimal equilibrium follows either reactive-
signaling or time-off dynamics. Let WRS(D) be given the reactive signaling rule. Let wτ

T O(D)

be the average value when a time-off control rule is used, given a punishment τ ∈ {0, 1, 2} ∪{∞}. 
The limit of the value of playing reactive-signaling when D → 0 is

lim
D→0

wRS(D) = 2(a − l)
χ

φ + χ
.

The limit of the value of playing time-off for a given τ when D → 0 is

lim
D→0

(
max

τ∈{0,1,2... }w
τ
T O(D)

)
= 2(a − l)

χ

φ + χ
.

Now, we can also compute the derivatives and deduce that

lim
D→0

∂wRS

∂D
(D) ∈R lim

D→0
max

τ∈{0,1,2,}∪{∞}
∂wτ

T O(D)

∂D
= −∞.

It follows that there exists D̂ such that for all D < D̂, a reactive-signaling control has greater 
value than an optimally chosen time-off control. This proves part a of the proposition.

The proof of b follows by replication the steps of the proof of Theorem 2. Details are available 
upon request. �
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