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Abstract
Leakage from water distribution systems is a worldwide issue with consequences including loss of revenue, health and
environmental concerns. Leaks have typically been found through leak noise correlation by placing sensors either side of
the leak and recording and analysing its vibro-acoustic emission. While this method is widely used to identify the location
of the leak, the sensors also record data that could be related to the leak’s flow rate, yet no reliable method exists to
predict leak flow rate in water distribution pipes using vibro-acoustic emission. The aim of this research is to predict leak
flow rate in medium-density polyethylene pipe using vibro-acoustic emission signals. A novel experimental methodology
is presented whereby circular holes of four sizes are tested at several leak flow rates. Following the derivation of a num-
ber of features, least squares support vector machines are used in order to predict leak flow rate. The results show a
strong correlation highlighting the potential of this technique as a rapid and practical tool for water companies to assess
and prioritise leak repair.
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Introduction and background

Leakage in water distribution systems

Water pipes are the primary method of transporting
water to customers worldwide. Leaking pipes are an
international problem and represent dangers to public
health and the environment, as well as economic losses
from non-revenue water.1 As water discharges through
a leak, acoustic sound in the water column and vibra-
tion on the pipe wall is created. Sensors (normally accel-
erometers or hydrophones) placed either side of the
leak can record this leak signal. The signal is then cross
correlated with finding the leaks’ location (known as
leak noise correlation). A number of factors have been
shown to influence a leak signal and therefore vary the
efficacy of leak noise correlators. Some of these factors
have been investigated in the literature, including leak
flow rate, backfill, pipe material,2–4 among others. The
leak’s vibro-acoustic emission (VAE) is determined by
all of the aforementioned parameters and therefore it
may be possible to use the leak signal to predict both
the leak flow rate2 and leak area.5

A system that can accurately predict leak flow rate
will provide water industry practitioners with a tool to
assess and prioritise leak repair and develop to drive
down sustainable economic levels of leakage (SELL)
(whereby the cost of repair should be lower than the
cost of not repairing the leak6). Butterfield et al.2 devel-
oped a method to predict leak flow rate using the signal
root mean square (RMS). A similar method was pro-
posed for leaking gas pipes by Chen et al.7 and
Kaewwaewnoi et al.8 These studies however only
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investigated a single hole size. Sun et al.5 presented a
study whereby the classification of different round hole
diameter leaks on gas pipes using acoustic emission
sensors was investigated and then classified using sup-
port vector machines (SVM). Despite the use of classifi-
cation/prediction-based algorithms common in other
disciplines (e.g. speech recognition), there are no robust
techniques to predict leak flow rate on water distribu-
tion pipes using VAE-based measurements that are
actively being used by water industry practitioners.

The aim of this article is to derive a method for pre-
dicting leak flow rate using VAE with no prior knowl-
edge of leak size. In addition, the VAE will be explored
to determine the potential for independent determina-
tion of leak diameter. A data-driven theory and an
intelligent system to predict leak flow rate using least
squares support vector machines (LS-SVM) is demon-
strated in this article.

Feature extraction of leak signals

The use of classification or predictive machine learning
algorithms involves using a number of features, which
can be divided into time and frequency domain and
time–frequency features. As leak VAE signals are non-
stationary,9,10 approaches with good representation of
non-stationary signals in both time and frequency
domains could provide informative features. Empirical
mode decomposition (EMD) is an adaptive time–
frequency technique and has been shown to provide
good estimates of time–frequency signals11 and there-
fore may provide the required time–frequency resolu-
tion for leak signal feature extraction.

EMD breaks down a signal into different intrinsic
mode functions (IMFs) which represent a different fre-
quency content of the signal. The EMD method as a
process of sifting is described below:

(1) Find extrema of signal x0(t);
(2) Find lower and upper signal envelopes connecting

the minima (cf. minima) and maxima (cf. max-
ima), emin(t) (cf. (emax(t)) by interpolating (using
spline interpolation);

(3) Calculate the signal mean between upper and
lower envelopes, m(t) = (emin(t) + emax(t))=2;

(4) Subtract the calculated mean to obtain ‘modulated
oscillation’,12d(t) = x0(t)� m(t);

(5) Apply stopping criteria.12 If d(t) satisfies stopping
criteria, let d(t) become IMFm. Revert back to step
1 and subtract the new IMF from the original sig-
nal (x0(t)), so x0(t) : = x0(t)� IMFm;

(6) Continue sifting until IMF calculated in step 5
becomes a monotonic function.

EMD has been used to successfully extract signals in
noisy environments.13 As leak signals on plastic pipe
generally have a low signal to noise ratio,14 EMD is
likely to be particularly useful.

EMD alone suffers from a mode mixing problem
due to IMF rectification and a signal may be separated
into the same IMFs15 resulting in inaccurate measure-
ments. Huang et al.16 suggest mode mixing could lose
physical meaning of the signal as well as aliasing in
time–frequency domains. This problem can be resolved
by overcoming signal intermittency,15 leading to the
development of ensemble empirical mode decomposi-
tion (EEMD) by Wu and Huang.15 Essentially, EEMD
decomposes the signal via the EMD method, but dur-
ing each decomposition process, Gaussian white noise
of finite amplitude is added to the signal

Ensemble : Sn tð Þf gN
n = 1 = x tð Þ+ wn tð Þf gN

n = 1 ð1Þ

where fwn tð ÞgN
n = 1N(0,s) represents the generation of

Gaussian white noise added to each decomposition
level and x(t) is the recorded leak signal.

As the additive noise is different for all decomposi-
tion levels, no mixing occurs.17 Due to the higher accu-
racy in generating representative IMFs, EEMD is used
in this study instead of standard EMD. A similar
method was proposed by Si et al.18 who used EEMD
to decompose signals into IMFs with different energy
for classification with LS-SVM.

Studying just one hole size, the RMS of leak signals
has also been shown to effectively describe leak flow
rate in plastic water pipe by Butterfield et al.2 and in
gas pipes by Chen et al.7 EMD-based decomposition
was used by Sun et al.5 in combination with the signal
RMS to classify the aperture of leaks in gas pipes, find-
ing that the RMS of individual IMFs, produced from
EMD provided good separation between circular holes
in gas pipes of different diameters. RMS features can
be used to characterise continuous vibration signals,
with the RMS value representing the energy of the sig-
nal at that point in time5 and could therefore be a good
feature in predicting leak flow rates. The RMS of each
decomposed IMF containing N samples,
x½0�, x½1�, . . . , x½N � 1� can therefore be calculated as
follows

RMSIMFi
=

1

2

XN�1

n = 0

x n½ �2
 !0:5

ð2Þ

The concept of Shannon entropy was introduced in
order to characterise system complexity where more
random, discorded systems have higher information
entropy. Sheng et al.19 used local mean decomposition
followed by Shannon entropy and SVM in order to
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classify bearing running state. Sun et al.5 also used the
Shannon entropy of individual IMFs following EMD
to recognise leak apertures.

Frequency domain features such as the fundamental
frequency has been shown by Prime and Shevitz20 to
shift depending on whether or not a beam is cracked
using accelerometers. Other frequency domain methods
such as the maximum and mean dB of a signal’s power
spectral density (PSD) was reported by Chen et al.7 as
a good descriptor of pin hole leaks in gas pipes. Based
on the above review of the literature, the following fea-
tures were used to predict leak diameter: RMS of IMFs
following EEMD, Shannon entropy of each IMF fol-
lowing EEMD, Shannon entropy of the raw signal and
RMS of the raw signal. In addition to the aforemen-
tioned features, standard metrics of mean dB of the
PSD, maximum dB of the PSD, minimum dB of the
PSD, standard deviation, signal power, fundamental
frequency, spectral flux, kurtosis, skewness and crest
factor were also included.

Redundant features can increase computational cost
and the possibility of overfitting so need to be removed.
A variety of methods exists for subset selection and has
been reviewed by numerous authors.21,22 Brute force
methods involve assessing all input combinations and
then identifying the subset which provides the greatest
accuracy but can have high computational cost, and
there is a possibility of overfitting. So called ‘greedy
methods’ include forward selection (‘forward search
algorithm’) is a more conventional feature selection
algorithm. Forward feature selection methods involve
measuring validation error, and the best individual fea-
ture is identified. The best subset of two components is
then found and continues finding the best combination
of features.

Least Squares-Support Vector Machines

SVM provide a method for solving classification prob-
lems with nonlinearity and pattern recognition23 and
has had some uses in leak detection.24 However, SVM
models involve complex quadratic programming prob-
lems25 and are known to take a long time for training.23

LS-SVM overcome the problems of SVM, whereby a
number of linear equations are solved rather than quad-
ratic equations.23,26 LS-SVM is therefore more optimal
at solving non-linear systems, performing with higher
accuracy.18

LS-SVM have been shown to be successful at predic-
tive problems, such as identification of cracks in
images,27 the characterisation of cracks in conductive
materials25 and faults in complex non-linear systems.28

In the context of acoustic-based measurements, Shen et
al.23 used LS-SVM and wavelet packet decomposition

of acoustic emission signals to classify the state of pres-
sure vessels. There is no known use of LS-SVM in the
context of leak detection; therefore, this study repre-
sents the known first application of this model to pipe
leakage with VAE.

The LS-SVM algorithm has been described by Si et
al.18 and Chelabi et al.,25 following the theory by
Suykens and Vandewalle26 and is described here for the
completeness. xi 2 Rn is data from a given sample
fxi, yigm

i = 1. Therefore, yi 2 Rn becomes the output data.
The classification is as follows

min
J

w, b, k
w, kð Þ=

1

2
wT w +

1

2
C
Xm

= 1

k2
i ð3Þ

where J is the objective function, C is a regularisation
parameter (g and s), k is slack variable, b denotes bias
and w is a weight vector. This equation (above) is sub-
ject to the equality constraint

yi = wTj xið Þ+ b + ki, i = 1, 2, . . . ,m ð4Þ

where (1=2)wT w is a flatness measurement function, j
is a non-linear function mapping the input into a higher
dimensional space which solves the regression prob-
lem.18 A Lagrangian function can then be formulated

L w, b, k,að Þ=
1

2
wT w +

1

2
C
Xm

i = 1

k2
i

�
Xm

i = 1

ai wTj xið Þ+ b + ki � yi

� � ð5Þ

where ai represents Lagrange multipliers. As the equal-
ity constraints follow Kuhn–Tucker conditions, the
Lagrange multipliers can be positive or negative,29

given by

∂L

∂w
= 0) w =

Xm

i = 1

aiji xið Þ

∂L

∂b
= 0) w =

Xm

i = 1

ai = 0

∂L

∂ki

= 0) ai = Cki

∂L

∂ai

= 0) wTj xið Þ+ b + ki � yi = 0

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð6Þ

It is therefore possible to write a solution to a set of
linear equations, Ax = B

0 IT

1K + C�1 I

� �
b

A

� �
=

0

Y

� �
ð7Þ
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where I = ½1, 1, . . . , 1�T ,A = ½a1,a2, . . . , am�T , Y = ½y1,
y2, . . . , ym�T . Mercer’s condition is then applied to the
matrix, observing the Kernel function as

K xi, xj

� �
=j xið ÞT � j xj

� �
ð8Þ

It is now possible to derive the regression function
for the LS-SVM algorithm

f xð Þ =
Xm

i = 1

aiK x, xið Þ + b ð9Þ

It is necessary to ‘tune’ the hyper-parameters (g and
s) in LS-SVM, and this was done by the leave-one-out
method.30

The model performance can be assessed through
using the root mean square error (RMSE) and is a com-
mon parameter for assessing model performance.31 As
the RMSE shows the residual error, it provides a good
estimate of the difference between the LS-SVM pre-
dicted values and the actual values.32 RMSE can be
described as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1

xi � byið Þ2

2

s
ð10Þ

where xi is the real value of the test set, byi is the LS-
SVM output value of the ith sample and n is the num-
ber of samples.

Methodology

Experimental methods

A series of tests was conducted on the novel, state-of-
the-art leaks in viscoelastics (LIVE) pipe rig at the
University of Sheffield, UK (Figure 1(a)) which was
designed specifically for this study to minimise the possi-
bility of signal reflections from other sources (e.g. the
number of valves, fittings, bends were limited). The rig
consists of approximately 26-m-long pipe loop with a
63-mm outer diameter 12-bar rated medium-density
polyethylene (MDPE) pipe. Water is supplied from an
upstream reservoir (0.95 m3 volume) by a 3.5-kW (Wilo,
Burton Upon Trent, UK) MVIE variable speed pump
set at 15 r/min. Water then passes a magnetic flow meter
(Flow Systems 91DE) measuring system flow rate
upstream of the leak. Two pressure sensors (Gems
Plainville 2200) measure system pressure upstream and
downstream of the leak at a sampling rate of 2000 Hz.

A removable 5.5-m ‘test section’ is located in the
middle of the pipe. The test section allows for the
alteration of leak size when the hole test section is
replaced. This section of pipe is removed and reat-
tached to the main pipe rig at two flange plates located

at both ends of the test section. The test section is sup-
ported by the two flange plates, while the main pipe rig
is supported using MDPE pipe clips at various points
along the pipe rig. Circular holes of four different dia-
meters (3.5, 4.5, 5.5 and 6.5-mm nominal diameter)
were drilled through the pipe wall of four different test
sections. Each drill bit was passed through the hole
three times in order to reduce swarfs surrounding the
hole. The test section passes through a rectangular box
measuring 0.5 3 0.5 3 0.5 m3 and was filled with
5–12-mm diameter pea gravel backfill (Figure 1(b)), in
accordance with British Standards33 for backfill of
plastic pipe and therefore represents a standard exter-
nal porous media. The wavespeed in the pipe rig is esti-
mated to be 347 m/s using theoretical calculations.34

Initially, the system characteristics were measured
with no leak in place to generate data on background
noise. The leak VAE measurements were then taken
from the pipe rig at consistent pressure heads and leak
flow rate adjusted by turning the downstream gate
valve. Tests were conducted leak flow rates of
(1) 39–40 l/min, (2) 44–45 l/min, (3) 47–48 l/min,
(4) 49–51 l/min and (5) 56–57 l/min. A wide range of
leak flow rates can occur in real water distribution
pipes, but in this study, these leak flow rates were cho-
sen due to the experimental limitations of the pipe rig.

Signal processing and feature extraction

Leak signals were recorded using a hydrophone (Bruel
and Kjaer type 8103, 50 3 9.5 mm2), placed 2.25 m

Figure 1. (a) Schematic of the LIVE pipe rig. Not to scale.
Adapted from Butterfield et al.3 and (b) picture of buried leak.
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from the leak. An accelerometer (393B12; PCB
Piezotronics, Depew, NY, USA; sensitivity: 10 V/g)
was placed approximately 30 cm away from the leak.
Both sensors were sampled at 2500 Hz. The sensors
were powered by a current source unit (Dytran
Instruments type 4102C). Signals were then passed
through a 6-m integral cable to a two-channel CCLD
conditioning amplifier. Signals were processed in
MATLAB and filtered using a fourth-order
Butterworth bandpass filter at set points \10 Hz and
.1000 Hz. A total of 20 samples were taken per leak
flow rate and leak shape. About 60% of these samples
were used for training of the data, and the remaining
40% used for testing (Figure 2). A total of 24 time, fre-
quency and time–frequency domain features were
extracted from the raw hydrophone and accelerometer
signal, and these are listed in Table 1.

Results

Leak signal characteristics

The frequency domain response of leak signals
recorded with hydrophones following bandpass filter-
ing are shown in Figure 3 for the low and high leak
flow rates (39–40 and 56–57 l/min, respectively) for all
hole diameters and is compared to the ‘no leak’ case.
Background noise was defined as when the signal pres-
ent in recorded leak signals is equal or less than the sig-
nal in the ‘no leak’ case and was found to be at
frequencies \28 Hz. Signals for all hole diameters fol-
low a similar spectral pattern, with the highest ampli-
tude signals at the lower frequency range. A decline in
amplitude at approximately 557 Hz occurs in the spec-
trums of all hole diameters. Increasing system pressure

and thereby leak flow rate resulted in an increase in sig-
nal amplitude for frequencies in all hole diameters stud-
ied. However, it appeared easier to distinguish between
leak flow rates at frequencies .207 Hz due to the wider
separation between leak spectral patterns are these fre-
quency ranges.

The resulting frequency spectrums for each hole dia-
meter at 39–40 l/min are plotted together in Figure 4
for comparison. As they are all at similar leak flow
rates, the effect of leak diameter can be isolated. Leak
diameter appears to have no visible effect on the leak
signal when the flow rate is kept consistent across hole
diameters where a similar frequency and amplitude
spectrum is observed. However, there appears to be
some difference with 4.5 mm, which tends to be higher
in amplitude and a different spectral pattern compared
to the other three hole diameters, especially at frequen-
cies 60–157 and 300–600 Hz.

Data processing

Feature extraction. The research methodology presented
in this study utilises 24 different features (Table 1). The
measured signals shown in Figures 3 and 4 were subse-
quently decomposed via EEMD (described in section
‘Feature extraction of leak signals’) into individual
IMFs. The corresponding first six IMFs and the
Fourier transforms of these IMFs are shown in Figure
5(a) and (b), respectively. All IMF frequency compo-
nents were found to be well below the pipe ring fre-
quency (estimated to be in the region of 20 kHz for this
pipe rig). The complexity of the leak signal is high-
lighted, in that the separate IMFs are related to differ-
ent frequency components of the leak signal, with a
decrease in frequency as IMF number increased. The
EEMD decomposition identified leak signal in the
region of 0–1000 Hz. The highest frequency compo-
nents were identified in IMF1 and found to between
150 and 1000 Hz. However, these were distinctly low
amplitude. Higher number IMFs were related to higher
frequency, and in general, those IMFs . IMF1 were
of greater amplitude compared to IMF1. However, the

Table 1. The features extracted from both the accelerometer
and hydrophone signals.

Feature no. Name

1–6 RMS of IMFs 1–6
7–12 Shannon entropy of IMFs 1–6
13 Shannon entropy of whole signal
14 RMS of whole signal
15 Mean dB of PSD
16 Maximum dB of PSD
17 Minimum dB of PSD
18 Standard deviation
19 Signal power
20 Fundamental frequency
21 Spectral flux
22 Kurtosis
23 Skewness
24 Crest factor

RMS: root mean square; IMFs: intrinsic mode functions; PSD: power

spectral density.

Figure 2. Process of signal processing, feature generation and
results classification.
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highest IMFs (IMFs 4–6) represent the lowest fre-
quency components and are regarded as background
noise (IMFs 4–6 are \28 Hz, and in accordance with
Figure 3, this is equivalent to background noise).

Optimisation of model parameters. A total of 24 different
features have been derived from the accelerometer and
hydrophone signals. The most important features were
selected using the ‘forward search algorithm’ (section
‘Feature extraction of leak signals’), eliminating redun-
dant features, increasing the learning speed and predic-
tion accuracy. The ability of the forward search to
identify the most important features was determined by
assessing the model output RMSE and this is shown in

Table 2. It was found that the model would begin with
high RMSE values and would decline as additional fea-
tures were added systematically by the forward search
algorithm. However, the model would reach a point
where the addition of further features resulted in higher
RMSE and therefore poorer model performance.

When predicting leak flow rate, the forward search
identified five features using the hydrophones while
seven features were identified using the accelerometers
(Table 2). When predicting leak area, the forward
search identified four features with the hydrophone
and five features using the accelerometer. The output
of the forward search algorithm suggested that the
optimal combination or features differed depending on
using hydrophones of the accelerometers and whether
the model was chosen to predict leak flow rate or leak
area. Generally, the most valuable features appeared to
be those that represent time–frequency characteristics,
and some common features were found to be useful for
the model no matter how the model was adjusted or
sensor choice (feature numbers 1 and 2).

Model training and testing

To assess the ability of the model to predict leak flow
rate, the RMSE was used and is shown in Figure 6.
When predicting leak flow rate, the results demonstrate
that good performance can be achieved when using
hydrophones to high accuracy with a low RMSE of
2.4766 (l/min) (Figure 6(a)). The output standard

Figure 3. Frequency domain signals of round hole leaks of different diameter: (a) 3.5 mm, (b) 4.5 mm, (c) 5.5 mm and (d) 6.5 mm.

Figure 4. Frequency domain signals of round holes of different
diameters at 39–40 l/min.
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deviation was also calculated for each flow rate and
found that the model performed better with lower stan-
dard deviations at the mid-range flow rates with stan-
dard deviations of 2.3, 1.4 and 1.6 at 44–45, 47–48 and
56–57 l/min, respectively. The prediction results were
notably poorer at the extremities, with the lowest leak

Table 2. Feature selection and reduction in feature redundancy when predicting leak flow rate and leak area.

Category Sensor Features useda RMSE Total no. of features

Flow rate prediction Accelerometer 1 4.4596 1
1,6 4.4056 2
1,6,2 4.2979 3
1,6,2,18 3.8193 4
1,6,2,18,10 3.8001 5
1,6,2,18,10,7 3.7765 6
1,6,2,18,10,7,1 3.7500 7
1,6,2,18,10,7,1,23 4.0282 8

Hydrophone 1 3.1055 1
1,17 3.0567 2
1,17,2 3.0492 3
1,17,2,7 2.4771 4
1,17,2,7,3 2.4766 5
1,17,2,7,3,4 2.4786 6

Leak area prediction Accelerometer 1 0.938 1
1,2 0.886 2
1,2,4 0.825 3
1,2,4,7 0.818 4
1,2,4,7,3 0.705 5
1,2,4,7,3,4 0.706 6

Hydrophone 1 0.8373 1
1,17 0.6534 2
1,17,23 0.4121 3
1,17,23,2 0.3984 4
1,17,23,2,7 0.4401 5

Text in red informs the optimal combination of features (lowest RMSE).
aBy performing the forward search algorithm, numbers correspond to feature names given in Table 1.

Figure 5. (a) IMF representation of EEMD decomposed signals
and (b) a subsequent Fourier transform of each IMF. Example
shown is the median leak flow rate leak flow rate (44–45 l/min).

Figure 6. LS-SVM output results to predict leak flow rate using
a hydrophone.
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flow rate (39–40 l/min) and highest leak flow rates
(56 l/min) demonstrating higher standard deviations of
2.5 and 2.7, respectively.

The data were reanalysed in order to predict leak
area using hydrophones measurements. The actual ver-
sus output leak diameter is given in Figure 7. The
hydrophone showed good prediction results with low
overall RMSE (0.3984 mm). The best predictive perfor-
mance came from using hydrophones at the lowest leak
diameter of 3.5 mm. The resultant standard deviations
for each leak diameter revealed better performance at
3.5 mm but poorer performance in predicting the
6.5 mm hole.

In order to assess the implications of using an alter-
native sensor, the measurements were repeated using
an accelerometer. Figure 8 describes the actual versus
output leak flow rates when predicting leak flow rate
using accelerometers. It was found that, although the
model could provide leak flow rate predictions using
an accelerometer, these were significantly worse than
when using the hydrophones (RMSE: 2.4766 and
3.7570 l/min for hydrophone and accelerometer,
respectively) (Figures 6 and 8, respectively). Unlike
with hydrophones, there was no observable trend in
standard deviation – the mid-range flow rates gave high
standard deviations comparable to the lowest and high-
est leak flow rates.

With the optimal model parameters chosen from the
subset of features, it is possible to estimate the accuracy
of the LS-SVM model quantitatively. Figure 9 demon-
strates the accuracy of the flow and area prediction of
the LS-SVM model at each leak flow rate and each leak
diameter within 610%. It was found that the optimum
LS-SVM model provides excellent leak flow rate
prediction results with the hydrophone data. Excellent

Figure 7. LS-SVM output results to predict leak area using a
hydrophone.

Figure 8. LS-SVM output results to predict leak flow rate using
an accelerometer.

Figure 9. Accuracy of hydrophones in predicting (a) leak flow
rate and (b) leak area within 610% band.
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prediction results were found at all leak flow rates, con-
sistently achieving above .70% prediction accuracy
(Figure 9(a)). Comparable to the results in Figure 6,
greater prediction accuracy was found at the mid-range
leak flow rates. The application of the model to acceler-
ometer led to a reduction in prediction accuracy for all
leak flow rates, reducing the accuracy of the model
between 31.3% and 7%. On average, the hydrophone
was found to accurately predict leak flow rate 15.9%
more than the accelerometer.

Predictions of leak area within 610% (Figure 9(b))
were also excellent with all area predicted .70% using
hydrophones. Contrary to leak flow rate prediction,
the area towards the extremities had the highest rate of
prediction accuracy (100% and 90% prediction accu-
racy for 3.5 and 6.5-mm round holes, respectively). The
use of accelerometer signals lead to a decrease in %
accuracy when predicting leak area. The most signifi-
cant difference in prediction appeared at 3.5 mm where
the hydrophone was able to accurately predict leak
area 100% of the time (610%), whereas the acceler-
ometer performed poorly only predicting the area of
the 3.5-mm hole 17.5% (610%). On average, the
hydrophone predicting leak area 25.13% better than
the accelerometer.

Discussion

The research presented herein aimed to derive a method
to predict the flow rate of leaks in MDPE pipes using a
LS-SVM on a novel experimental pipe rig where a
unique data set was collected.

Leak characteristics

It was found that leak flow rate had a strong effect on
the leak signal. Increasing leak flow rate led to an
increase in amplitude of all frequencies greater than the
background noise level (.28 Hz) for all hole diameters
(Figure 3). However, there appeared to be clearer
separation between leak flow rates at frequencies
around .207 Hz. The observed increase in signal
amplitude is coherent with other studies,2,35 and it is
also likely that the higher flow rate leaks will be more
easily identified than those with smaller leak flow
rates14 due to the increased signal amplitude.

When the leak flow rate was standardised, small dif-
ferences in leak area were noted at the lowest leak flow
rate with similar magnitude spectrums (Figure 4). At
higher leak flow rates, the differences in leak area
became more apparent, particularly at frequencies
.600 Hz. Cassa and Van Zyl36 and Ferrante37 have

shown leak area to be a key variable in defining the
leakage behaviour.

However, there were noted differences in signal the
4.5-mm test results at both 39–40 and 56–57 l/min.
These differences are more likely due to experimental
features, such as the cutting process and localised mate-
rial stresses38 caused when drilling the leak holes. It is
likely that limitations in the experimental design have
led to changes in turbulence around the leak as the
water jet discharges hole (possible due to the presence
of swarfs during the drilling process). As turbulence
around the leak hole is a strong parameter governing
the leak signal,39 it is important that any swarfs are
either removed or standardised between studies. The
differences in leak signal observed between hole size
when the leak flow rate was standardised may also be
due to changes in leak jet angle, which is strongly gov-
erned by pipe flow velocity and pressure head.40

These results have shown that the effect of leak area
will have little influence on the leak VAE signal (and
therefore leak detection) at lower flow rates but is more
important at higher leak flow rates.

Performance of the LS-SVM model

Following the derivation of a number of features, the
LS-SVM model was used to predict leak flow rate
despite changes in leak area. The model showed better
leak flow prediction at the mid-range leak flow rates
(Figure 6) with lower standard deviations and higher
prediction accuracy. The model was able to predict
mid-range leak flow rates to higher accuracy than at
the extremities. This is possibly due to the fact that
there is a greater population of data positioned within
a smaller range of flow rates within the mid-range leak
flow rates (minimum of 44 l/min and maximum of
51 l/min). However, at the extremities (39–40 and 56–
57 l/min), there are fewer data points and therefore the
model has a small proportion of data to train on.

Considering there is little difference between
the magnitude spectrums when measuring leak area
(Figure 4), surprisingly good prediction accuracy was
also shown when predicting leak area, with lower stan-
dard deviations at the lower leak diameter and a slight
increase trend in standard deviation as the hole size
increased. This highlights the importance of deriving
different features from the data set – it may be possible
that a different set of features are able to describe leak
area more than the relativity simple magnitude spec-
trum. The ability to independently predict either leak
flow rate or leak area suggests that in future, a multi-
variate fitting process would be a profitable area of
investigation.
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Optimal feature selection

It was found that features relating to signal RMS were
highly useful for predicting leak flow rate and leak area,
whereby the RMS of IMF1, IMF2 and IMF3 were
identified by the forward search algorithm as providing
the optimal combination of features (Table 2). Signal
RMS is likely a useful parameter as it has been shown
to increase with leak flow rate.2,8,7 Interestingly, the
model preferred to utilise features that are broken down
by individual frequency bands rather than the RMS of
the whole signal which was not favoured by the model.
The fast Fourier transform (FFT) of each IMF has
demonstrated that those IMFs . IMF3 represent the
extremity of the signals lowest frequencies and repre-
sent the background noise (\28 Hz) identified by com-
paring the leak and no leak spectrums (Figure 3). As
these higher IMFs represented the background noise,
the model prefers to predict leak flow rate based on the
RMS of parts of the signal relating solely to the leak
signal and excludes background noise.

As the model favoured time–frequency domain
representations of the leak signal, the efficacy of these
features will become less useful when the sensor is posi-
tioned further away from the leak. A loss of higher fre-
quency components and a general reduction in signal
amplitude due to signal attenuation on the pipe wall
and radiation into the surrounding media,41 the leak
has a low signal to noise ratio14 and is difficult to dis-
tinguish from the background noise. Therefore, the fea-
tures which are highly valued by this model will be
reduced in efficacy as these features are only present in
this study as the sensor was positioned close to the
leak. It may then be more difficult to quantify leak flow
rate using these features at greater distances from the
leak, and it may be more valuable to use other features
which are focussed around spectral shape as in reality
it would be difficult to position a sensor next to a leak.

Sensor choice

It was found that hydrophones provided much better
performance in predicting leak flow rate and hole area
compared to accelerometers, with hydrophones achiev-
ing a much better RMSE and classification rate (Figure
6). This agrees with current understanding that hydro-
phones usually offer better performance for leak detec-
tion when compared with accelerometers.41,42

Improved performance using hydrophones may be due
to the effect of a smaller effective bandwidth and higher
signal coherence41 when using hydrophones. As the
accelerometer is placed on the pipe wall, it may be
more susceptible to changes in ground conditions.
While efforts were made to ensure that the ground con-
ditions were standardised, the replacement of test

sections resulted in the excavation of the pipe from the
gravel backfill. The ground conditions have been
shown to have a strong influence on the leak signal.3,4

Slight changes to the test conditions are possible
through changes in loading, soil hydraulics and flow
resistance which can have an influence on leakage
dynamics.43 As the accelerometer is in contact with the
pipe wall, the effect of ground conditions may be more
paramount and therefore may interrupt with the signal.

Wider context and industrial application

This study has managed to accurately predict the leak
flow rate regardless of the leak area and with no prior
knowledge of the leak area. However, in real water dis-
tribution pipes, it is unlikely that the leaks on plastic
pipe would be perfect round holes of these given sizes;
in fact, the majority of plastic pipe leaks occur due to
joints contaminated during the pipe installation pro-
cess.44 Despite this, this research has established the
first base case in leak flow rate prediction with the suc-
cessful application of the LS-SVM model. However,
classification of leak flow rates of different shapes and
sizes represents a priority in any future work.

Excellent results using this LS-SVM model suggest
that this is a suitable method in predicting leak flow
rate area using hydrophone measurements for leaks in
water distribution pipes. Any system that manages to
predict leak flow rate will be advantageous to water
companies, by prioritising leak repair and driving down
SELL – repairing the bigger leaks first will save more
water by fixing less leaks and costs savings through
optimised allocation of company resources. Attempts
were also made to predict leak area using the same
model. As there is potential for contaminant ingress
into water distribution systems through leaks,45 level of
contamination will involve the size of the leak area
(among other factors such as driving force).38

Therefore, a tool which provides the leak area will be
useful in judging the risk of contamination due to
ingress and therefore the threat to public health. The
method can also be combined with existing leak noise
correlation methods in order to provide both the leak
flow rate and the leak’s location.

Conclusion

This article has categorically demonstrated that the leak
flow rates in leaking MDPE pipes can be determined
from VAE measurements without prior knowledge of
leak area. High-quality experimental data from a spe-
cifically designed MDPE pipe rig were collected with
hydrophones and accelerometers. Four separate test
sections with different sized round holes were drilled,
and system pressure was varied to alter leak flow rate.
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The leak flow rate and leak area were found to both
influence the leak spectrum. A total of 24 different fea-
tures were derived from the raw signal and analysed via
LS-SVM. It was shown that the signal contained suffi-
cient information about the leak in order to accurately
predict leak flow rate without prior knowledge of the
hole area. It was also possible to accurately predict leak
area without prior knowledge of leak flow rate vice
versa; this strongly suggests that future multi-variant
predictions would be a profitable area of investigation.
Coherent with current understanding, it is shown that
hydrophones provide a more accurate predictive
method compared with accelerometers on MDPE pipe.
The knowledge gained from this study, and the pro-
posed technique, is important to leakage management
as it will allow the leakage manager to prioritise their
repair strategies.
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