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Abstract. In this article, we provide sufficient conditions on a self-similar interval
exchange map, whose renormalization matrix has complex eigenvalues of modulus greater
than one, for the existence of affine interval exchange maps with wandering intervals
that are semi-conjugate with it. These conditions are based on the algebraic properties
of the complex eigenvalues and the complex fractals built from the natural substitution
emerging from self-similarity. We show that the cubic Arnoux–Yoccoz interval exchange
map satisfies these conditions.

1. Introduction
The existence of wandering intervals in dynamical systems has been studied for a long
time. Denjoy [Den32] proved that an orientation-preserving C1-diffeomorphism of the
circle with irrational rotation number is conjugate with an irrational rotation if and only if
it has no wandering intervals, and he constructed examples of Cr -diffeomorphisms of this
type with wandering intervals for r < 2. The absence of wandering intervals is ensured for
C2-diffeomorphisms.

By suspending a rotation, one obtains a linear flow on a two-dimensional torus. A
natural generalization of such a flow is a linear flow on surfaces of a higher genus, which,
when restricted to a Poincaré section, induces an interval exchange map (i.e.m.). In this
sense, an i.e.m. is a natural generalization of a rotation of the circle.

A bijective map T : [0, 1)→ [0, 1) is said to be an i.e.m. if there exists a finite
partition (Ia; a ∈A) of [0, 1)made of intervals such that T (t)= t + δa for each t ∈ Ia and
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a ∈A. Clearly, T is a piecewise isometry of the unit interval exchanging the intervals (Ia;

a ∈A). An i.e.m. T is said to be self-similar if there exists 0< α < 1 such that the map
T (1) : [0, α)→ [0, α) of first return by T to the interval [0, α) is, up to rescaling, equal to
T . The natural symbolic extension of a self-similar i.e.m. is generated by a substitution.
An affine interval exchange map (affine i.e.m.) f : [0, 1)→ [0, 1) is a bijective piecewise
affine map with positive slopes. The vector (`a; a ∈A), where `a is the slope of f in the
ath interval of continuity, is called the slope vector of f .

Levitt [Lev87] constructed an example of a non-uniquely ergodic affine i.e.m. with
wandering intervals, showing that there exist Denjoy counterexamples of arbitrary
smoothness in some surfaces of genus at least two. Given a slope vector and a self-similar
i.e.m., Camelier and Gutiérrez [CG97] provided necessary and sufficient conditions for
the existence of an affine i.e.m. with the same number of intervals and a slope vector
that is semi-conjugate with the self-similar i.e.m. Namely, such map exists if and only
if the logarithm of the given slope vector, log `= (log `a; a ∈A), is orthogonal to the
vector of interval lengths λ= (|Ia |; a ∈A). The self-similarity of the i.e.m. implies that
Rλ= α−1λ, where R is the renormalization matrix (recall that [0, α) is the interval of
renormalization) and α−1 > 1 is the Perron–Frobenius eigenvalue of R. Thus, basic linear
algebra implies that log ` is orthogonal to λ if and only if log ` belongs to the invariant
subspace corresponding to all the eigenvalues of M = Rt that are different from α−1. We
remark that M is the matrix associated with the substitution associated with the self-similar
i.e.m.

If log ` belongs to the stable space of M , Camelier and Gutiérrez [CG97] proved that
any semi-conjugate affine i.e.m. with this slope vector is, in fact, conjugate with an i.e.m.
(that is, has no wandering intervals). The resulting conjugacy is of class C1+ε, with ε > 0
depending on the particular eigenspace [Bar99]. They also built an example of a uniquely
ergodic affine i.e.m. with wandering intervals that is strictly semi-conjugate with a self-
similar i.e.m. This last example and extensions of the results in [CG97] were considered
more deeply by Cobo in [Cob02], where a generalization is also obtained by introducing
the Rauzy–Veech–Zorich Oseledets decomposition (see [Vee82, Zor96]). In the case
when log ` belongs to the unstable space of M , Bressaud, Hubert and Maass proved,
in [BHM10], that if it also lies in the eigenspace associated with a real eigenvalue of
modulus strictly greater than one, which is different from the Perron–Frobenius eigenvalue
α−1 but Galois-conjugate with it, then one can choose a semi-conjugate affine i.e.m. with
such a slope vector and wandering intervals. If the given vector of logarithms lies in an
eigenspace of M associated with the eigenvalue 1 or−1, or if it lies in an invariant subspace
corresponding to a conjugate pair of non-real eigenvalues of modulus one, then Bressaud,
Bufetov and Hubert, in [BBH14], proved that any semi-conjugate affine i.e.m. with such a
slope vector is indeed conjugate to the i.e.m. and thus has no wandering intervals. Finally,
in [MMY10], Marmi, Moussa and Yoccoz proved that the existence of an affine i.e.m.
with wandering intervals that is semi-conjugate with a given i.e.m. is generic. Thus many
non-self-similar examples arise.

In this article, we study the remaining case of the program stated in [CG97]. That
is, we consider a self-similar i.e.m. and a slope vector ` whose logarithm log ` lies in
an invariant subspace of M corresponding to a conjugate pair of non-real eigenvalues of



Wandering intervals in affine extensions of i.e.m. 2539

modulus strictly larger than one. We will heavily rely on the strategy of [BHM10] and the
geometrical models for substitutions defined by Arnoux, Bernat and Bressaud in [ABB11].
These geometrical models are often of fractal nature. We will see that some properties of
these fractals are sufficient conditions for the existence of an affine i.e.m. with wandering
intervals that is semi-conjugate with a given self-similar i.e.m. having the aforementioned
properties. Specifically, we will prove the following theorem.

THEOREM A. Let T be a self-similar i.e.m. Assume that M has an eigenvalue β with
|β|> 1 such that β/|β| is not a root of unity, and that there exists an eigenvector 0 for β
such that T has the unique representation property for β and 0. Then, for almost every γ
in the complex subspace generated by 0, exp(−Re(γ )) can be realized as the slope vector
of an affine i.e.m. that is semi-conjugate with T and has wandering intervals.

The unique representation property, which will be stated in §6, is related to the different
ways in which the extreme points of the dual Rauzy fractal, in the sense of [ABB11], can
be written as certain sums

∑
m≥1 zmβ

−m with coefficients zm belonging to a finite subset
of the field Q[β].

Most of the properties that we will develop before the proof of the main theorem are
of purely symbolic nature, in the sense that they can be proved for a primitive substitution
and a non-real eigenvalue together with an eigenvector of the matrix associated to such
substitution.

The unique representation property needed in this article is, in some way, analogous
to the explicit algebraic condition required for the case treated in [BHM10]. We think
that similar algebraic conditions imply the unique representation property, but we did
not succeed in establishing a proof, even though interesting examples can be found.
However, we found that an algebraic condition similar to the one needed in [BHM10]
provides a simplification in the hypotheses of Theorem A. Indeed, assume that either β
is Galois-conjugate with α−1 or that β is Galois-conjugate with α and the self-similarity
comes from Rauzy–Veech renormalizations: that is, some iteration of the Rauzy–Veech
renormalization returns to the original map. Then β is a simple eigenvalue. Moreover, if
β is not real, then β/|β| is not a root of unity (see Lemma 7.9). In these cases, since the
corresponding eigenspace is one-dimensional, the unique representation property depends
only on T and β. Since it is possible to construct an i.e.m. that is periodic for the Rauzy–
Veech algorithm from most cycles of a Rauzy class, such an i.e.m. belongs to a natural
family of self-similar maps.

Therefore, we have the following consequence of Theorem A.

THEOREM B. Let T be an i.e.m. and let β with |β|> 1 be a non-real eigenvalue of M.
Assume that either β is Galois-conjugate to α or that β is Galois-conjugate with α−1

and that T is periodic for the Rauzy–Veech renormalization algorithm on the interval
[0, α). If T has the unique representation property for β, then, for almost every associated
eigenvector γ , exp(−Re(γ )) can be realized as the slope vector of an affine i.e.m. that is
semi-conjugate with T and has wandering intervals.

Finally, we apply the techniques developed along this work to the cubic Arnoux–Yoccoz
i.e.m. [AY81]. When defined on the circle, this map is self-similar and its renormalization
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matrix has an eigenvalue β with |β|> 1 such that β/|β| is not a root of unity. We will
discuss this example in §8 and prove the following theorem.

THEOREM C. Let β be a non-real eigenvalue of the renormalization matrix associated to
the cubic Arnoux–Yoccoz i.e.m. satisfying that |β|> 1 and that β/|β| is not a root of unity.
For almost every eigenvector γ for β, there exists a semi-conjugate affine i.e.m. with slope
vector exp(−Re(γ )) exhibiting wandering intervals.

The fact that Theorem A is valid for almost every eigenvector for β when considering
the cubic Arnoux–Yoccoz i.e.m. comes from the simplicity of the eigenvalue β in this case.

The article is organized as follows. In §2, we outline the general strategy introduced
in [CG97] that will be used to prove the main theorem. In §3, we present some basic
properties and definitions concerning a self-similar i.e.m. In §4, the notion of a minimal
sequence is presented. In §5, the fractals associated with β and the concept of extreme
points are defined. In §6, the unique representation property is introduced. In §7, we
restate and prove the main theorems. In §8, we prove that the cubic Arnoux–Yoccoz i.e.m.
satisfies the unique representation property and thus that the main theorem can be applied
to it.

2. Strategy
Let T : [0, 1)→ [0, 1) be a self-similar i.e.m. with continuity intervals (Ia; a ∈A). Our
goal is to prove that, under the hypotheses of Theorem A, there exists an affine i.e.m.
f : [0, 1)→ [0, 1)with wandering intervals that is semi-conjugate with T or, equivalently,
is a topological extension of T .

In order to achieve this, we will follow the strategy devised by Camelier and Gutiérrez
in [CG97] that was used by Cobo in [Cob02] and by Bressaud, Hubert and Maass in
[BHM10]: that is, we search for a Borel probability measure µ with atoms on [0, 1) that
assigns positive measure to every open interval with the following property. For each
a ∈A, there exists a positive real `a such that

µ(T (J ))= `aµ(J ) (1)

for every Borel set J ⊆ Ia . By following the proof of Lemma 3.6 of [CG97] and using
such a measure, one constructs an affine i.e.m. that is semi-conjugate with T and has a
wandering interval. Indeed, assume that µ satisfies the aforementioned properties. Let
g : [0, 1)→ [0, 1) be defined by g(t)= µ([0, t)) and g(0)= 0. We know that g is strictly
increasing, since µ is positive on open intervals. It is also right-continuous. Therefore,
G = [0, 1) \ g([0, 1)) is a union of countably many intervals of the form [t0, t1). Define
the map h : [0, 1)→ [0, 1) by h = g−1 on [0, 1) \ G and h(t)= g−1(t1) if t ∈ [t0, t1),
where [t0, t1) is a maximal interval in G. We know that h is right-continuous, non-
decreasing and surjective. Then we define f : [0, 1)→ [0, 1) in the following way.
If t ∈ [0, 1) \ G, we put f (t)= h−1

◦ T ◦ h(t). If [t0, t1) is a maximal interval in G,
we define f to be linear and increasing between [t0, t1) and h−1(T ◦ h([t0, t1))). A
straightforward computation shows that h ◦ f = T ◦ h and that f is an affine i.e.m. with
the desired slope vector.
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One way to construct such a measure is finding a sequence ω ∈�T , where �T is the
natural symbolic extension of T constructed from codings of itineraries of points by T
with respect to the continuity intervals (Ia; a ∈A), a complex vector γ ∈ CA and a number
ρ > 0 such that

lim inf
n→∞

Re(γn(ω))

nρ
> 0 and lim inf

n→∞

Re(γ−n(ω))

nρ
> 0, (2)

where γn(ω)= γω0 + · · · + γωn−1 and γ−n(ω)=−(γω−n + · · · + γω−1) for n ≥ 1. This
implies that K =

∑
n∈Z exp(−Re(γn(ω))) <∞. Thus, if ω ∈�T is the coding by T of

t ∈ [0, 1), then the measureµ= (1/K )
∑

n∈Z exp(−Re(γn(ω)))1T n(t) satisfies the desired
properties for the slope vector `= (exp(−Re(γa)); a ∈A). This can be proved in an
analogous way to [BHM10, Lemma 22].

Otherwise, if ω is not the coding by T of any point in [0, 1), then it is the coding by
T ′ : [0, 1)→ [0, 1) of some point in [0, 1), where T ′ is equal to T up to some discontinuity
points. The strategy can be still applied to find f ′ : [0, 1)→ [0, 1) and h : [0, 1)→ [0, 1)
such that h ◦ f ′ = T ′ ◦ h, where h is continuous, surjective, non-decreasing and non-
injective. Let f be the right-continuous function that is equal to f ′ up to a finite number
of points. Then f is an affine i.e.m. By right-continuity, h ◦ f = T ◦ h. Moreover, f
has wandering intervals since h(J ) is a point for some interval J ⊆ [0, 1). Therefore, it is
enough to prove (2) for a sequence ω in �T . This last fact can also be proved using the
classical construction of Keane in [Kea75].

3. Background and preliminaries
3.1. The i.e.m. and the affine i.e.m. A bijective map T : [0, 1)→ [0, 1) is said to be
an i.e.m. if there exists a finite partition (Ia; a ∈A) of [0, 1) made of intervals such that
T (t)= t + δa for each t ∈ Ia and a ∈A. Clearly, T is a piecewise isometry of the unit
interval exchanging the intervals (Ia; a ∈A). The vector δ = (δa; a ∈A) is called the
translation vector of T . An i.e.m. T is determined by the following combinatorial data:
that is, a length vector λ= (λa; a ∈A) of positive entries corresponding to the length of
each interval Ia and a pair of bijections π0, π1 : {1, . . . , |A|} →A encoding the order of
the intervals (Ia; a ∈A) before and after the transformation.

An i.e.m. T is said to be self-similar if there exists 0< α < 1 such that the map T (1) :
[0, α)→ [0, α) of first return by T to the interval [0, α) is, up to rescaling, equal to T .
These maps are called renormalizable in [CG97]. In [LPV07], they are called scale-
invariant and the term self-similar is used for maps such that the induced map on some
interval is, up to rescaling and rotation, the same map T . Here, for convenience, we keep
the notation used in [CG97] and used implicitly in [BHM10].

For each a ∈A, we define the interval I (1)a = α Ia and denote by R the renormalization
matrix given by Ra,b = |{0≤ k ≤ rb − 1; T k(I (1)b )⊆ Ia}|, where rb is the first-return time
of I (1)b to [0, α).

Given an i.e.m., the Rauzy–Veech renormalization algorithm produces a new i.e.m. by
considering the first-return map on a specific interval and rescaling the domain to [0, 1).
A Rauzy class consists of the possible combinatorics for the starting and ending position
of (Ia)a∈A that can be reached from a fixed permutation by applying the Rauzy–Veech
algorithm (for details, see [Via06]). As explained later, cycles on Rauzy classes provide
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a natural way to construct a self-similar i.e.m. Nevertheless, we will not assume that the
self-similar i.e.m. comes from this construction, unless otherwise stated.

A self-similar i.e.m. is always uniquely ergodic and therefore minimal (see [Vee78]).
Recall that T is minimal if any point in [0, 1) has a dense orbit. For more details on a
minimal i.e.m., see [Kea75, Via06].

An affine i.e.m. f : [0, 1)→ [0, 1) is a bijective, piecewise affine map with positive
slopes. If (Ja; a ∈A) are the continuity intervals of f , we say that `= (`a; a ∈A) is its
slope vector, where `a > 0 is the slope of f restricted to Ja : f (t)= `a t + da for every
t ∈ Ja and for some translation vector d= (da; a ∈A). Clearly, an i.e.m. is an affine
i.e.m. with slope vector `= (1, . . . , 1).

We are interested in affine i.e.m. extensions of an i.e.m. T with wandering intervals:
that is, an affine i.e.m. f with wandering intervals such that there exists a continuous,
surjective, non-decreasing and non-injective map h : [0, 1)→ [0, 1) satisfying h ◦ f =
T ◦ h. As mentioned in the introduction, the existence of such extensions has already
been studied in [CG97, Cob02, BHM10, BBH14, MMY10].

3.2. Substitution subshifts and prefix–suffix decomposition. We refer to [Que87] and
[Fog02] and the references therein for the general theory of substitutions.

Let A be a finite set or alphabet. A word is a finite string of symbols in A, namely,
w = w0 . . . wm−1, where |w| = m is called the length of w. The empty word ε is defined
as the word of length zero. The set of all words in A is denoted by A∗ and the set of words
of positive length is denoted by A+ =A∗ \ {ε}.

We will need to consider words indexed by integers. We will write such a word
as w = w−m . . . w−1 · w0 . . . wn , where m, n are non-negative integers and the dot
separates negative and non-negative coordinates. The set of one-sided infinite sequences
ω = (ωm)m≥0 in Ais denoted by AN. Analogously, AZ denotes the set of two-sided infinite
sequences ω = (ωm)m∈Z.

A substitution is a map σ :A→A+. It naturally extends to A+, AN and AZ by
concatenation. For ω = (ωm)m∈Z ∈AZ, the extension is given by

σ(ω)= . . . σ (ω−2)σ (ω−1) · σ(ω0)σ (ω1) . . . ,

where the central dot separates the negative and non-negative coordinates of σ(ω). A
further natural convention is that σ(ε)= ε.

Let Mσ be the matrix with indices in A such that Mσ
a,b is the number of times the letter

b appears in σ(a) for any a, b ∈A. The substitution is said to be primitive if there exists an
integer n ≥ 1 such that, for any a ∈A, σ n(a) contains every letter of A, where σ n denotes
n consecutive iterations of σ .

Let�σ ⊆AZ be the subshift defined from σ : that is, ω ∈�σ if and only if any subword
of ω is a subword of σ n(a) for some integer n ≥ 0 and a ∈A. We call �σ the substitution
subshift associated with σ . This subshift is minimal whenever σ is primitive.

Assume that σ is primitive. By the recognizability property (see [Mos92]), given a
point ω ∈�σ , there exists a unique sequence (pm, cm, sm)m≥0 ∈ (A

∗
×A×A∗)N such

that, for each integer m ≥ 0, σ(cm+1)= pmcmsm and

. . . σ 3(p3)σ
2(p2)σ

1(p1)p0 · c0s0σ
1(s1)σ

2(s2)σ
3(s3) . . .
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is the central part of ω, where the dot separates negative and non-negative coordinates. We
remark that the pm (respectively, sm) are in the finite subset of A∗ containing all prefixes
(respectively, suffixes) of σ(a) for all a in A. This sequence is called the prefix–suffix
decomposition of ω (for more details, see, for instance, [CS01]).

If only finitely many suffixes sm are non-empty, then there exist a ∈Aand non-negative
integers n and q such that

ω[0,∞) = c0s0σ
1(s1) . . . σ

n(sn) lim
m→∞

σmq(a).

Analogously, if only finitely many pm are non-empty, then there exist a ∈A and non-
negative integers n and q such that

ω(−∞,−1] = lim
m→∞

σmq(a)σ n(pn) . . . σ
1(p1)p0.

The recognizability property also implies that �σ =
⋃n

m=0 S−m(σ (�σ )) for some
positive integer n, where S :AZ

→AZ is the left shift map.

3.3. Symbolic coding of a self-similar i.e.m. Let T be a self-similar i.e.m. and let
(Ia; a ∈A) be its associated intervals. Recall that, under the self-similar condition, T is
minimal. Given t ∈ [0, 1), we construct a symbolic sequence ω = (ωm)m∈Z ∈AZ, where
ωm = a if and only if T m(t) ∈ Ia . The sequence ω is called the itinerary of t . Let�T ⊆ AZ

be the closure of the set of sequences constructed in this way for every t ∈ [0, 1). Clearly,
the sequence associated with T (t) corresponds to S(ω), where S :AZ

→AZ is the left
shift map. Moreover, it is classical that there exists a continuous and surjective map
πT :�T → [0, 1) such that T ◦ πT = πT ◦ S. The map πT is invertible up to a countable
set of points corresponding to the orbits of discontinuities of T . Since T is self-similar,
the restriction of S to �T is minimal and �T is a substitutive subshift associated with
a substitution σ :A→A+: that is, �T =�σ for some substitution σ . The substitution
is constructed in the following way: σ(a)= w0 . . . wra−1 if and only if T m(I (1)a )⊆ Iwm

for all 0≤ m ≤ ra − 1 and a ∈A. Then Mσ
= Rt is the transpose of the renormalization

matrix associated with T (for details, see [CG97]).

4. Minimal sequences associated with a self-similar i.e.m.
We fix a self-similar i.e.m. T that is self-induced on the interval [0, α) with 0< α < 1.
Let M = Rt be the matrix of its associated substitution σ and let β ∈ C be an eigenvalue
of M with |β|> 1 and such that β/|β| is not a root of unity. We fix an eigenvector γ for β
for the rest of the section.

Definition 4.1. For w = w0 . . . wn−1 ∈A
∗, we set γ (w)= γw0 + · · · + γwn−1 .

It is easy to see that, for any integer n ≥ 0,

γ (σ n(w))= βnγ (w). (3)

For a sequence ω = (ωm)m∈Z ∈�T , we define γ0(ω)= 0, γn(ω)= γ (ω0 . . . ωn−1) for
n ≥ 1 and γn(ω)=−γ (ωn . . . ω−1) for n ≤−1.

Definition 4.2. A sequence ω ∈�T is a minimal sequence for the vector γ if

Re(γn(ω))≥ 0 for all n ∈ Z.
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Our purpose is to prove that minimal sequences for some eigenvector γ satisfy equation
(2): that is, that there exists a number ρ > 0 such that

lim inf
n→∞

Re(γn(ω))

nρ
> 0 and lim inf

n→∞

Re(γ−n(ω))

nρ
> 0.

This does not necessarily hold for an arbitrary eigenvector γ .
The next lemma illustrates a property of minimal sequences for finite words.

LEMMA 4.3. Let ω ∈�T be a minimal sequence for γ . Then, for all integers n ≤−1 and
m ≥ n,

Re(γ (ωn . . . ω−1))≤ Re(γ (ωn . . . ωm)).

Proof. If m ≤−1, then

Re(γ (ωn . . . ω−1))− Re(γ (ωn . . . ωm))=−Re(γm+1(ω))≤ 0

by minimality of ω. If m ≥ 0, then

Re(γ (ωn . . . ωm))− Re(γ (ωn . . . ω−1))= Re(γm(ω))≥ 0

by minimality of ω. �

LEMMA 4.4. There exist minimal sequences for γ .

Proof. We know that Re(γ ) 6= 0. Indeed, if Re(γ )= 0, then γ = iχ , where χ ∈ RA is an
eigenvector associated to β: that is, Mχ = βχ . Since M is an integer matrix, Mχ ∈ RA.
This contradicts the fact that β is not real.

Recall that Re(γ ) is orthogonal to λ. Then there exist letters a, b ∈Awith Re(γa) < 0
and Re(γb) > 0. Also, by minimality of T , there exists an itinerary of the form awb with
w ∈A∗.

Let β0 = β/|β| and consider (nk)k≥1 to be a sequence of integers such that Re(βnk
0 ) > C

for every integer k and some constant C > 0. In this way, there is a decomposition

σ nk (awb)= σ nk (a)σ nk (w)σ nk (b)= ω−mkω−mk+1 . . . ω−1 · ω0ω1 . . . ωm′k
,

with the dot marking the minimal sum with respect to γ : that is,

Re(γ (ω−mk . . . ω−1))≤ Re(γ (ω−mk . . . ωm))

for every −mk ≤ m ≤ m′k . We claim that both sequences (mk)k≥0 and (m′k)k≥0 go
to infinity when k→∞. For this, we only need to prove that both sequences
Re(γ (ω−mk . . . ω−1)) and Re(γ (ω0 . . . ωm′k

)) are unbounded. First, recall that, from
(3), γ (σ nk (a))= βnkγa = |β|

nkβ
nk
0 γa and γ (σ nk (b))= |β|nkβ

nk
0 γb. Since the sequence

(Re(βnk
0 ))k≥1 is positive and bounded from below, the choice of a and b implies that

Re(γ (σ nk (a)))→−∞ and Re(γ (σ nk (b)))→∞.

But, from the definition of the decomposition,

Re(γ (σ nk (a)))≥ Re(γ (ωmk . . . ω−1)) and Re(γ (σ nk (b)))≤ Re(γ (ω0 . . . ωm′k
)).

Thus, the claim follows.
By taking a subsequence, one can assume that ω−mkω−mk+1 . . . ω−1 · ω0ω1 . . . ωm′k

converges to a sequence ω ∈AZ. Since awb is a subword of a point in �T and σ(�T )⊆

�T , we obtain that ω ∈�T . Moreover, by construction, Re(γn(ω))≥ 0 for every n ∈ Z,
which proves that ω ∈�T is a minimal sequence for γ . �
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5. Fractals associated with a self-similar i.e.m.
We continue with the notation of the previous section. So β ∈ C is an eigenvalue of M
with |β|> 1 such that β0 = β/|β| is not a root of unity. Along this section γ is a fixed
eigenvector of M for β.

For a ∈A, set

Sa = {(pm, cm, sm)m≥1; σ(a)= p1c1s1 and σ(cm)= pm+1cm+1sm+1 for all m ≥ 1}.

For x ∈ Sa , write x = (px
m, cx

m, sx
m)m≥1 and define functions za, z

(n)
a : Sa 7→ C for each

a ∈Aand integer n ≥ 1 by

za(x)=
∑
m≥1

β−mγ (px
m) and z(n)a (x)=

n∑
m=1

β−mγ (px
m).

Clearly, the previous functions and the notation below depend on γ . To simplify, we
will not include γ in the notation unless it becomes necessary.

Definition 5.1. The fractal associated with a ∈A is the set Fa = {za(x); x ∈ Sa}. We
also define F

(n)
a = {z

(n)
a (x); x ∈ Sa}. We say that x ∈ Sa is a representation of z ∈ Fa if

z = za(x).

Let a ∈A. From the definition of Sa , it is easy to see that, for any x ∈ Sa , σ n(a)=

σ n−1(px
1 ) . . . px

n cx
n sx

n . . . σ
n−1(sx

1 ) for any integer n ≥ 1. Furthermore, Fa =
⋃

n≥1 F
(n)
a .

Indeed, let x ∈ Sa and n ≥ 1. We can ‘truncate’ x in the following way. Let x |n be the
sequence defined by (px |n

m , cx |n
m , sx |n

m )= (px
m, cx

m, sx
m) for every 1≤ m ≤ n. For each m ≥

n + 1, we proceed inductively by defining (px |n
m , cx |n

m , sx |n
m )= (ε, cx |n

m , sx |n
m ) in a way such

that σ(cx |n
m )= cx |n

m+1sx |n
m+1. It is easy to see that x |n ∈ Sa and that za(x |n)= z

(n)
a (x), so

F
(n)
a ⊆ Fa and the claim follows. In a similar way, we can construct a point x ∈ Sa such

that px
m = ε for every m ≥ 1. Clearly, za(x)= 0, so 0 ∈ Fa . Moreover, Fa 6= {0}. In fact,

by primitivity of σ and the fact that γ 6= 0, it is easy to see that, for some integer n ≥ 1,
there exists a prefix w of σ n(a) that satisfies γ (w) 6= 0. We can then choose x ∈ Sa such
that w = σ n−1(px

1 ) . . . px
n . Therefore

z(n)a (x)=
n∑

m=1

β−mγ (px
m)=

1
βn

n∑
m=1

βn−mγ (px
m)=

1
βn

n∑
m=1

γ (σ n−m(px
m))

=
1
βn γ (σ

n−1(px
1 ) . . . px

n )=
1
βn γ (w) 6= 0. (4)

Finally, consider x ∈ Sa such that sx
m = ε for each integer m ≥ 1, which can be defined

inductively, as before. We obtain that σ n(a)= σ n−1(px
1 ) . . . px

n cx
n for each integer n ≥ 1,

so a similar computation to (4) shows that za(x)= γa ∈ Fa .
An elementary computation yields that Fa is a particular case of a fractal built by

projecting stepped lines to an expanding plane, as defined in [ABB11], and it is not
necessarily a Rauzy fractal. Thus, the fractal Fa is a compact and path-connected subset
of the plane. In addition, in [ABB11], the authors study the fractals associated with the
cubic Arnoux–Yoccoz i.e.m., proving that they have non-empty interior and that they are
somehow related to the so-called tribonnacci fractal. In §8, we will find a parametrization
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FIGURE 1. The dot indicates an extreme point of one Arnoux–Yoccoz fractal in the direction of the line.

of the boundary of the fractal associated with the cubic Arnoux–Yoccoz map. This map
will serve as an example to illustrate our main result and the techniques developed along
the article. Although this i.e.m. is not self-similar in the sense we are following here (see
§3), Theorem A can be still applied by making some slight modifications.

We are interested in the extreme points of the defined fractals along directions.

Definition 5.2. For τ ∈ S1 and an integer n ≥ 1, define

va(τ )= min
z∈Fa

Re(τ z) and v(n)a (τ )= min
z∈F(n)a

Re(τ z).

We call Ea(τ )= {z ∈ Fa; Re(τ z)= va(τ )} the set of extreme points of Fa for the direction
τ , as shown by Figure 1. Clearly, va(τ )≤ v

(n)
a (τ )≤ 0 since F

(n)
a ⊆ Fa and 0 ∈ F(n)a .

LEMMA 5.3. The function va : S1
→ R is continuous for every a ∈A.

Proof. Let (τn)n≥1 be a sequence in S1 that converges to τ . First, assume by
contradiction that u = lim infn→∞ va(τn) < va(τ ). Let (nk)k≥1 be a sequence such that
limk→∞ va(τnk )= u. Let znk ∈ Fa such that Re(τnk znk )= va(τnk ). Since Fa is compact,
we can assume that limk→∞ znk = z ∈ Fa . We know that limk→∞ Re(τnk znk )= Re(τ z),
so Re(τ z)= u < va(τ ), which is a contradiction. Now, let z ∈ Fa such that Re(τ z)=
va(τ ). Clearly, va(τn)≤ Re(τnz) and therefore lim supn→∞ va(τn)≤ va(τ ). So

lim sup
n→∞

va(τn)≤ va(τ )≤ lim inf
n→∞

va(τn),

which shows that limn→∞ va(τn)= va(τ ). �

5.1. Basic properties of extreme points. We will now present some important properties
of extreme points that will be used to prove the main theorem. We start with a technical
definition.

Definition 5.4. Let w ∈A∗ be an itinerary by T . A prefix w′ of w is said to be a minimal
prefix for w and γ if

Re(γ (w′))=min{Re(γ (w′′)); w′′ is a prefix of w}.

LEMMA 5.5. Let n ≥ 1 be an integer, let a ∈A and let τ ∈ S1. Let w be a minimal
prefix for σ n(a) and the vector τγ . Let x ∈ Sa be any sequence that satisfies w =
σ n−1(px

1 ) . . . σ (p
x
n−1)p

x
n . Then v(n)a (βn

0 τ)= Re(βn
0 τz

(n)
a (x)).
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Proof. Take y = ( p̄m, c̄m, s̄m)m≥1 ∈ Sa and let w′ = σ n−1( p̄1) . . . σ ( p̄n−1) p̄n . By
hypothesis, Re(τγ (w))≤ Re(τγ (w′)). By using (3),

γ (w)=

n∑
m=1

βn−mγ (px
m)= β

n
n∑

m=1

β−mγ (px
m)= β

nz(n)a (x).

Therefore, multiplying by τ , taking the real part and multiplying by |β|−n ,

Re(βn
0 τz

(n)
a (x))= |β|−n Re(τγ (w))

≤ |β|−n Re(τγ (w′))= Re(βn
0 τz

(n)
a (y)),

where, in the last equality, we have used that the computation for w′ is analogous to the
one developed for w just above. Since y is arbitrary, the result follows. �

LEMMA 5.6. (Continuation property) Let a ∈A and τ ∈ S1. If x ∈ Sa satisfies za(x) ∈
Ea(τ ), then zcx

1
(S(x)) ∈ Ecx

1
(β−1

0 τ), where S is the left shift map. Moreover,

Re(τza(x))= Re(τβ−1γ (px
1 ))+ |β|

−1vcx
1
(β−1

0 τ).

Similarly, if x ∈ Sa satisfies za(x) ∈ E (n)a (τ ) for an integer n ≥ 1, then zcx
1
(S(x)) ∈

E (n−1)
cx

1
(β−1

0 τ) and

Re(τz(n)a (x))= Re(τβ−1γ (px
1 ))+ |β|

−1v
(n−1)
cx

1
(β−1

0 τ).

Proof. Let x ∈ Sa as in the hypothesis and assume that zcx
1
(S(x)) /∈ Ecx

1
(β−1

0 τ).

Then there exists y ∈ Scx
1

such that Re(β−1
0 τzcx

1
(y)) < Re(β−1

0 τzcx
1
(S(x))). Clearly,

(px
1 , cx

1 , sx
1 )y ∈ Sa . Therefore, from the identities za(x)= β−1γ (px

1 )+ β
−1zcx

1
(S(x))

and za((px
1 , cx

1 , sx
1 )y))= β

−1γ (px
1 )+ β

−1zcx
1
(y), we deduce that

Re(τza((px
1 , cx

1 , sx
1 )y)) < Re(τza(x)),

which contradicts the fact that x is an extreme point in Ea(τ ).
The equality

Re(τza(x))= Re(τβ−1γ (px
1 ))+ |β|

−1vcx
1
(β−1

0 τ)

follows directly from the fact that zcx
1
(S(x)) ∈ Ecx

1
(β−1

0 τ). The rest of the proof follows
analogously. �

LEMMA 5.7. (Exponential approximation) Let a ∈A and τ ∈ S1. For all n ≥ 1,
|v
(n)
a (τ )− va(τ )| ≤ C |β|−n , where C =max{−vb(τ ); b ∈A, τ ∈ S1

}<∞.

Proof. Let x ∈ Sa with za(x) ∈ Ea(τ ). Then

va(τ )= Re(τza(x))≤ v(n)a (τ )≤ Re(τz(n)a (x)).

Therefore

|v(n)a (τ )− va(τ )| = v
(n)
a (τ )− va(τ )≤−Re

(
τ
∑

m≥n+1

β−mγ (px
m)

)
=−|β|−nvcx

n (β
−n
0 τ),

where, in the last equality, we used the continuation property of Lemma 5.6. �
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LEMMA 5.8. For any a ∈A, eventually periodic elements of Sa do not produce extreme
points in Fa .

Proof. Let x be an eventually periodic element of Sa . Then there exist non-negative
integers n0 and q such that, for every k ≥ 0 and 1≤ m ≤ q,

(px
n0+kq+m, cx

n0+kq+m, sx
n0+kq+m)= (pm, cm, sm).

Assume that za(x) is an extreme point for the direction τ ∈ S1. By definition and
periodicity, for every k ≥ 1,

Re(τza(x))

= Re
(
τ

n0+kq∑
m=1

β−mγ (px
m)

)
+ |β|−n0−kq Re

(
β
−n0−kq
0 τ

∑
j≥1

β− jγ (px
n0+kq+ j )

)

= Re
(
τ

n0+kq∑
m=1

β−mγ (px
m)

)
+ |β|−n0−kq Re

(
β
−n0−kq
0 τ

∑
j≥0

β− jq
q∑

m=1

β−mγ (pm)

)
.

Define z =
∑

j≥0 β
− jq ∑q

m=1 β
−mγ (pm). Then

Re(τza(x))= Re
(
τ

n0+kq∑
m=1

β−mγ (px
m)

)
+ |β|−n0−kq Re(β−n0−kq

0 τ z).

By Lemma 5.6, Re(β−n0−kq
0 τ z)= vcx

n0+kq
(β
−n0−kq
0 τ)= vcq (β

−n0−kq
0 τ). Thus

Re(β−n0−kq
0 τ z)≤ 0 for any k ≥ 0. Since (β−kq

0 )k≥0 is dense in S1, we deduce that
z = 0 and, consequently, vcq (β

−n0−kq
0 τ)= 0 for every k ≥ 0. Finally, by continuity of va

(Lemma 5.3) and density, vcq (ξ)= 0 for every ξ ∈ S1. Since Fcq is not reduced to {0}, we
get a contradiction. �

We remark that, from the previous lemma, one deduces that va(τ ) < 0 for any a ∈A
and τ ∈ S1. Indeed, we know that va(τ )≤ 0, but if va(τ )= 0, then we would have that
0 ∈ Fa is an extreme point, which contradicts the previous lemma.

5.2. The set 9 and extreme points.

Definition 5.9. Let a ∈Aand (p, c, s) ∈A∗ ×A×A∗ such that σ(a)= pcs. We denote
by Sa,(p,c,s) the set of sequences x ∈ Sa starting with x1 = (p, c, s). We define

Fa,(p,c,s) = {za(x); x ∈ Sa,(p,c,s)} = β
−1(γ (p)+ Fc)⊆ Fa .

For a direction τ ∈ S1, we define va,(p,c,s)(τ )=min{Re(τ z); z ∈ Fa,(p,c,s)} and
Ea,(p,c,s)(τ )= Ea(τ ) ∩ Fa,(p,c,s).

It is easy to see that Fa =
⋃

Fa,(p,c,s) and that va(τ )=min{va,(p,c,s)(τ )}, where the
union and the minimum are taken over the (p, c, s) ∈A×A∗ ×A such that σ(a)= pcs.
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FIGURE 2. In the cubic Arnoux–Yoccoz map we show directions in 91.

Definition 5.10. For each a ∈A, we define 9a as the set of directions τ ∈ S1 for
which there exist distinct decompositions σ(a)= pcs = p̄c̄s̄ in A∗ ×A×A∗ with
Ea,(p,c,s)(τ ) 6= Ea,( p̄,c̄,s̄)(τ ) and va(τ )= va,(p,c,s)(τ ) = va,( p̄,c̄,s̄)(τ ): that is, 9a is the set
of directions for which there exist distinct extreme points in Fa belonging to distinct
subfractals Fa,(p,c,s) and Fa,( p̄,c̄,s̄) (see Figure 2). Put 9 =

⋃
a∈A9a .

LEMMA 5.11. For each a ∈A, the set 9a is at most countable.

Proof. Let a ∈A. We will prove that the set 9 ′a = {τ ∈ S1
; |Ea(τ )| ≥ 2}, which clearly

contains 9a , is at most countable.
Let Z ⊆ C and τ ∈ S1. We define the set of extreme points of Z for the direction

τ as EZ (τ )= {z ∈ Z; Re(τ z)=min{Re(τ z′); z′ ∈ Z}}. Similarly, we define the set of
directions in S1 for which there exist at least two distinct extreme points as 9 ′Z (τ )=
{τ ∈ S1

; |EZ (τ )| ≥ 2}. We denote the convex hull of Z by conv(Z).
We know that Ea(τ )= EFa (τ ),9

′
a(τ )=9

′

Fa
(τ ), Econv(Fa)(τ )= conv(Ea(τ )) and that

9 ′conv(Fa)
=9 ′a , since |Ea(τ )| ≥ 2 if and only if |conv(Ea(τ ))| ≥ 2.

Since conv(Fa) is convex and compact, it is either a point, a line segment or
homeomorphic to a closed disk. Since, in the first two cases, 9 ′conv(Fa)

is finite, we
can assume that the third case holds. Let 8 : S1

→ ∂conv(Fa) be an homeomorphism
between S1 and the boundary of conv(Fa). We know that τ ∈9 ′a if and only if the map
Re(τ8) : S1

→ R is constant on an open interval of S1. Since such open intervals must be
disjoint for distinct τ and a family of disjoint open subsets of S1 is at most countable, we
obtain that 9 ′a is at most countable. �

5.3. Minimal sequences for γ gamma and limit extreme points. Points in Sa may be
constructed by ‘reversing’ the prefix–suffix decomposition of elements in �T . Moreover,
minimal sequences in �T for γ produce, by reversing the prefix–suffix decomposition,
extreme points for any direction. We will make this statement precise in this section.
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Consider a minimal sequence ω ∈�T for γ and let (pm, cm, sm)m≥1 be its prefix–
suffix decomposition. Fix some τ ∈ S1 and recall that β0 = β/|β| is not a root of unity.
Let (nk)k≥1 be an increasing sequence of integers such that βnk

0 → τ ∈ S1 and cnk = a ∈A
for every k ≥ 1. For each k ≥ 1, consider a point xnk ∈ Sa starting with

(pnk−1, cnk−1, snk−1)(pnk−2cnk−2, snk−2) . . . (p0, c0, s0)

and such that p
xnk
m = ε for any m ≥ nk + 1. This is a sequence obtained by reversing the

indices of finitely many elements of the prefix–suffix decomposition of ω. Assume that
(xnk )k≥1 converges to x∞ ∈ Sa . We will show that x∞ is the representation of an extreme
point in Fa for the direction τ . In fact, we can prove a little more. For this, we need to
introduce the following concept.

Definition 5.12. A limit extreme point is an extreme point that has a representation x ∈ Sa

with the following property. For each j ≥ 1, there exists y j ∈ Sa j for some a j ∈A such
that:
(i) y j is a representation of an extreme point for the direction β j

0 τ ;
(ii) c

y j
j = a; and

(iii) x = S j (y j ), where S is the left shift map on
⋃

a∈ASa .
The set of limit extreme points will be denoted by E∗a (τ ).

LEMMA 5.13. Any limit x∞ ∈ Sa , constructed as above, is a representation of a limit
extreme point in E∗a (τ ).

Proof. Assume that the sequence constructed as before (xnk )k≥1 converges to x∞ ∈ Sa .
For each integer j ≥ 0, let y j

nk be the sequence in Scnk+ j starting with

(pnk+ j−1, cnk+ j−1, snk+ j−1)(pnk+ j−2cnk+ j−2, snk+ j−2) . . . (p0, c0, s0),

and such that p
y j

nk
m = ε for every m ≥ nk + j + 1: that is, y j

nk is the sequence obtained by
reversing the first nk + j elements of the prefix–suffix decomposition (pm, cm, sm)m≥0 of
ω. Clearly, S j (y j

nk )= xnk . By taking a subsequence, we may assume that cnk+ j = a j for
every k ≥ 1 and that y j

nk converges to y j when k→∞. Clearly, c
y j
j = a and S j (y j )= x∞.

We claim that both x∞ and y j are representations of extreme points for the letters a and
a j and the directions τ and β j

0 τ , respectively. Indeed, since ω is a minimal sequence
for γ , by Lemma 4.3 xnk satisfies the hypotheses of Lemma 5.5 (taking τ = 1 in the
lemma), so v

(nk )
a (β

nk
0 )= Re(βnk

0 za(xnk )). Thus, for every x ∈ Sa , Re(βnk
0 za(xnk ))≤

Re(βnk
0 z

(nk )
a (x)). Finally, taking the limit when k→∞, Re(τza(x∞))≤ Re(τza(x)) for

any x ∈ Sa , so x∞ is an extreme point in Ea(τ ). The proof for y j is similar. �

The previous lemma gives us the following important corollary.

COROLLARY 5.14. For every τ ∈ S1, there exists a ∈A such that E∗a (τ ) is non-empty.
Moreover, if E∗a (τ ) is non-empty for some a ∈Aand τ ∈ S1, then E∗a (τ )= Ea(τ ).

Proof. Take a minimal sequence ω ∈�T and τ ∈ S1. By reversing the prefix–suffix
decomposition of ω, as above, on an appropriate sequence (nk)k≥1 such that βnk

0 → τ , we



Wandering intervals in affine extensions of i.e.m. 2551

obtain by previous lemma that E∗a (τ ) 6=∅ for some a ∈A. Now, if E∗a (τ ) is non-empty
for some a ∈Aand τ ∈ S1, let x ∈ Sa be a representation of a limit extreme point in E∗a (τ ),
for every j ≥ 1 let y j ∈ Sa j be the sequence from the definition of limit extreme point and
let x ′ ∈ Sa be the representation of some extreme point in Ea(τ ). For every j ≥ 1, we
define y′j ∈ Sa to coincide with y j in its first j coordinates and with x ′ in the rest of its
coordinates. A direct computation shows that y′j ∈ Sa j and that it is the representation of

an extreme point in Ea j (β
j

0 τ) such that S j (y′j )= x ′ and c
y′j
j = a. �

Even though, for every a ∈A and τ ∈ S1, Ea(τ ) is non-empty, in general, E∗a (τ ) may
be empty. Indeed, the Arnoux–Yoccoz fractals contain extreme points that are not limit
extreme points.

Another interesting consequence of Lemma 5.13 is the following lemma.

LEMMA 5.15. If ω ∈�T has an eventually periodic prefix–suffix decomposition, then it
cannot be minimal for any eigenvector γ associated with β.

Proof. If it were, then, using the reversing procedure described above Lemma 5.13, we
could construct a limit extreme point with periodic representation. This contradicts Lemma
5.8. �

6. Unique representation property
We continue with the notation of the previous sections. So T is a self-similar i.e.m., which
is self-induced on the interval [0, α), and β is an eigenvalue of M with |β|> 1 such that
β/|β| is not a root of unity. Consider an eigenvector γ of M associated to β. Recall that
x ∈ Sa is a representation of z ∈ Fa if z = za(x).

Definition 6.1. We say that T satisfies the unique representation property (u.r.p.) for β
and the eigenvector γ if every extreme point of the associated fractals has a unique
representation. We say that T satisfies the weak unique representation property (weak
u.r.p.) for β and the eigenvector γ if every limit extreme point of the associated fractals
has a unique representation.

By Corollary 5.14, if T satisfies the weak u.r.p. for β and the eigenvector γ , then, for all
a ∈Aand τ ∈ S1 such that E∗a (τ ) in non-empty, every extreme point of Fa for the direction
τ has a unique representation. Indeed, in this case, Ea(τ )= E∗a (τ ). In particular, if σ(a)=
pcs = p̄c̄s̄ for distinct decompositions in A∗ ×A×A∗, then Ea,(p,c,s)(τ ) ∩ Ea,( p̄,c̄,s̄)(τ )

is empty.
Before continuing, we need to comment on the dependence of the previous concepts

on the eigenvector γ . Until now, we have fixed an eigenvector γ associated with β and
defined the fractal set Fa , its extreme and limit extreme points for a given direction Ea(τ )

and E∗a (τ ), and the directions with extreme points in distinct subfractals9a . These objects
clearly depend on the choice of γ . We will temporarily make this dependence explicit by
writing Fa(γ ), Ea(γ, τ ), E∗a (γ, τ ) and 9a(γ ), respectively. Our main concern is to see
how these concepts vary in the one-dimensional space generated by γ . The following
relations follow easily from definitions.
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LEMMA 6.2. Let γ, zγ ∈ CA be eigenvectors associated with β, with z ∈ C \ {0}. Let
a ∈Aand τ ∈ S1. Then:
(i) Fa(zγ )= zFa(γ );
(ii) Ea(zγ, τ )= zEa(γ, z0τ), E∗a (zγ, τ )= zE∗a (γ, z0τ); and
(iii) 9a(zγ )= z−1

0 9a(γ ),
where z0 = z/|z|.

From this lemma, we deduce that if the (weak) u.r.p. holds for an eigenvector γ
associated to β, then it holds for zγ for all z ∈ C \ {0}. If the eigenvalue β is simple,
then this condition is independent of the choice of the eigenvector, so, in this case, we can
speak of the (weak) u.r.p. for β. We believe that there are some natural algebraic conditions
that imply this fact.

The weak u.r.p. is, in some sense, analogous to the algebraic condition considered in the
case when β is real. In fact, restating our definitions for the real case, [BHM10, Lemma
19] is equivalent to the weak u.r.p.

We will prove, in §8, that the cubic Arnoux–Yoccoz map satisfies the u.r.p. for some
simple non-real eigenvalue β.

7. Proof of the main theorem
We restate our main theorem for completeness. We continue with the notation of the three
previous sections.

THEOREM A. Let T be a self-similar i.e.m. Assume that M has an eigenvalue β with
|β|> 1 such that β/|β| is not a root of unity, and that there exists an eigenvector 0 for β
such that T has the u.r.p. for β and 0. Then, for almost every γ in the complex subspace
generated by 0, exp(−Re(γ )) can be realized as the slope vector of an affine i.e.m. that is
semi-conjugate with T and has wandering intervals.

Of course, an affine i.e.m. with wandering intervals cannot be conjugate with T , so the
theorem asserts the existence of an affine i.e.m. that is strictly semi-conjugate with T . We
remark that each affine i.e.m. is uniquely ergodic, since T is.

The weak u.r.p. is sufficient to prove Theorem A. In fact, the proof of this theorem relies
completely on Lemma 7.8, which is also true under the weak u.r.p. as we point out at the
end of the proof.

The (weak) u.r.p. may seem technical and difficult to check for a specific map. In the
next section, we prove that this property is satisfied by the cubic Arnoux–Yoccoz i.e.m.
(A–Y i.e.m.).

As discussed in §2, using the general strategy of [CG97], the proof of Theorem A is a
consequence of the following more technical statement that we prove in the next section.

THEOREM 7.1. Under the same assumptions of Theorem A, there exists a number ρ >
0 such that, for almost all γ in the complex subspace generated by 0, every minimal
sequence ω ∈�T for γ satisfies

lim inf
n→∞

Re(γn(ω))

nρ
> 0 and lim inf

n→∞

Re(γ−n(ω))

nρ
> 0. (5)
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7.1. Proof of Theorem 7.1.

7.1.1. Differentiability of va . We start by describing some differentiability properties
of the map va : S1

→ R.

LEMMA 7.2. Let a ∈Aand τ ∈ S1.

lim
t→0+

va(τ exp(i t))− va(τ )

t
=−Im(τe+a (τ )),

lim
t→0−

va(τ exp(i t))− va(τ )

t
=−Im(τe−a (τ )),

where e+a (τ ), e−a (τ ) are the points of Ea(τ ) such that z 7→ Im(τ z) is maximal and minimal,
respectively.

Proof. We will only prove the first equality, since the second one is analogous. Let z =
e+a (τ ), zt ∈ Ea(τ exp(i t)) and write τ z = r exp(iθ) and τ zt = rt exp(iθt ) for r, rt > 0,
θ, θt ∈ [0, 2π). We will assume that 0< t < π/2.

Since z = e+a (τ ) and zt ∈ Ea(τ exp(i t)), we know that va(τ )= Re(τ z)= r cos(θ),
va(τ exp(i t))= Re(τ exp(i t)zt )= rt cos(θt + t) and − Im(τe+a (τ ))=−r sin(θ). Thus,
we have to prove that

lim
t→0+

rt cos(θt + t)− r cos(θ)
t

=−r sin(θ).

Since zt ∈ Ea(τ exp(i t)),

r cos(θ + t)= Re(τ exp(i t)z)≥ Re(τ exp(i t)zt )= rt cos(θt + t).

Hence

0≥ rt cos(θt + t)− r cos(θ + t)

= (rt cos(θt )− r cos(θ)) cos(t)+ (r sin(θ)− rt sin(θt )) sin(t). (6)

Moreover, since z ∈ Ea(τ ), r cos(θ)= Re(τ z)≤ Re(τ zt )= rt cos(θt ). We conclude that
(rt cos(θt )− r cos(θ)) cos(t)≥ 0 for t small enough. Therefore, from sin(t) > 0 and
(6), we know that r sin(θ)− rt sin(θt ) cannot be positive. This proves that Im(τ z)=
r sin(θ)≤ rt sin(θt )= Im(τ zt ).

We claim that limt→0+ Im(τ zt )= Im(τ z). Indeed, fix a real η > 0 and consider

u(t)=min{Re(τ exp(i t)z′); z′ ∈ Fa, Im(τ z′)≥ Im(τ z)+ η}.

Since z is in Ea(τ ) and is chosen with the maximal possible value for Im(τ z),
Re(τ z) < u(0). The map u : [0, π/2)→ R is continuous, so there exists t0 > 0 such that
Re(τ exp(i t)z) < Re(τ exp(i t)z′) for every 0≤ t < t0 and z′ ∈ Fa such that Im(τ z′)≥
Im(τ z)+ η. Therefore, if 0≤ t < t0 and Im(τ zt )≥ Im(τ z)+ η, then Re(τ exp(i t)z) <
Re(τ exp(i t)zt ), which contradicts the fact that zt ∈ Ea(τ exp(i t)). This shows that
Im(τ zt ) < Im(τ z)+ η for 0≤ t < t0, so we get the desired result by taking η→ 0.

The previous claim and (6) imply that

lim
t→0+

rt cos(θt + t)− r cos(θ + t)
t

≥ lim
t→0+

(Im(τ zt )− Im(τ z))
sin(t)

t
= 0.
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Finally, we write

va(τ exp(i t))− va(τ )

t
=

rt cos(θt + t)− r cos(θ + t)
t

+
r cos(θ + t)− r cos(θ)

t
,

and the result follows by taking t→ 0+. �

7.1.2. Good directions and good eigenvectors. In order to prove the convergences in
(5), we need to control the velocity at which βn

0 approaches a number τ in S1. In what
follows, Jτ − τ ′K is the natural distance between τ and τ ′ in S1. We fix an eigenvector 0
of M for β. We will be interested in the complex subspace generated by 0.

Definition 7.3. A direction ξ ∈ S1 is good for 0 if, for every constant A > 1 and every
τ ∈9(0)=

⋃
a∈A9a(0), lim infn→∞ AnJτ − βn

0 ξK> 0.

As shown by the next lemma, this property is generic.

LEMMA 7.4. Almost every direction ξ ∈ S1 is good for 0.

Proof. Let A > 1 and τ ∈ S1. We will first prove that

K (A, τ )=
{
ξ ∈ S1

; lim inf
n→∞

AnJτ − βn
0 ξK> 0

}
has full Lebesgue measure. Consider the sets Bn = {ξ ∈ S1

; Jτ − βn
0 ξK< A−n

} for an
integer n ≥ 0. By the Borel–Cantelli lemma, the Lebesgue measure of lim supn→∞ Bn

is zero: that is, the set of ξ which belong to infinitely many of the Bn has Lebesgue
measure zero. This implies that, for a typical ξ ∈ S1, there exists some N ≥ 1 such that
AnJτ − βn

0 ξK≥ 1 if n ≥ N . This proves the claim.
Now, since, by Lemma 5.11, 9(0) is at most countable, the intersection K (A)=⋂
τ∈9(0) K (A, τ ) also has full Lebesgue measure. Finally, the intersection K =⋂
n≥1 K (1+ 1/n) has full Lebesgue measure and it is easy to see that every element of K

is a good direction. �

We can now define the eigenvectors for which our main result is valid.

Definition 7.5. An eigenvector γ of M associated with β is a good eigenvector if, for every
A > 1 and every τ ∈

⋃
a∈A9a(γ ), lim infn→∞ AnJτ − βn

0 K> 0.

If ξ ∈ S1 is a good direction for 0, then ξ0 is a good eigenvector by Lemma 6.2.
Therefore, by Lemma 7.4, we conclude the following lemma.

LEMMA 7.6. If 0 is an eigenvector of M for β, then almost every vector of the complex
subspace generated by 0 is good.

7.1.3. Convergence in Theorem 7.1. Assume the existence of an eigenvector 0 for β
such that T has the (weak) u.r.p. for β and 0. We show the convergence in (5) for the
set of good eigenvectors in the subspace generated by 0, which has full measure by the
previous lemma. Fix a good eigenvector γ . As discussed at the end of §6, T also has the
(weak) u.r.p. for β and γ .
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FIGURE 3. Illustration of the proof of Lemma 7.7.

In the rest of the section, the sets Fa , Ea , 9a , etc., are computed with respect to γ .
The proof of the next lemma and proposition closes the proof of Theorem 7.1 and thus

of Theorem A, as explained in §2.

LEMMA 7.7. Let a ∈A and τ ∈9a . Assume that (p, c, s), ( p̄, c̄, s̄) are such that
Ea,(p,c,s)(τ ) and Ea,( p̄,c̄,s̄)(τ ) are non-empty but Ea,(p,c,s)(τ ) ∩ Ea,( p̄,c̄,s̄)(τ )=∅. Put

D =min{|z − z′|; z ∈ Ea,(p,c,s)(τ ), z′ ∈ Ea,( p̄,c̄,s̄)(τ )}.

We know that D > 0 and, if (τk)k≥1 is a sequence in S1 such that τk→ τ when k→∞,
then

lim inf
k→∞

|va,(p,c,s)(τk)− va,( p̄,c̄,s̄)(τk)|

Jτ − τkK
≥ D.

Proof. See Figure 3 for an insight into the proof, which is, in fact, a little technical.
The property D > 0 is a consequence of the fact that Ea,( p̄,c̄,s̄)(τ ) and Ea,(p,c,s)(τ ) are

non-empty, disjoint and compact.
Let (xk)k≥1, (yk)k≥1 be sequences in Sa,(p,c,s) and Sa,( p̄,c̄,s̄), respectively, such that

xk→ x∞ and yk→ y∞ when k→∞ for some sequences in x∞ ∈ Sa,(p,c,s) and y∞ ∈
Sa,( p̄,c̄,s̄) and

va,(p,c,s)(τk)= Re(τkza(xk)), va,( p̄,c̄,s̄)(τk)= Re(τkza(yk))

for all k ≥ 1. We remark that za(xk) and za(yk) attain the minimum for the direction
τk and the subfractals Fa,(p,c,s) and Fa,( p̄,c̄,s̄), respectively, but not necessarily for Fa , as
Figure 3 illustrates.

By continuity and the fact that Ea,(p,c,s)(τ ) and Ea,( p̄,c̄,s̄)(τ ) are non-empty by
hypotheses, za(x∞) ∈ Ea,(p,c,s)(τ ) and za(y∞) ∈ Ea,( p̄,c̄,s̄)(τ ). Therefore

va(τ )= Re(τza(x∞))= Re(τza(y∞)). (7)
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From the definition of D,

|Im(τ (za(x∞)− za(y∞))| ≥ D. (8)

Since xk→ x∞ and yk→ y∞, there exists an increasing sequence (nk)k≥1 such
that (pxk

m , cxk
m , sxk

m )= (p
x∞
m , cx∞

m , sx∞
m ) and (pyk

m , cyk
m , s yk

m )= (p
y∞
m , cy∞

m , s y∞
m ) for every

1≤ m ≤ nk . Without loss of generality, we may assume that cxk
nk = cx∞

nk = b and that
cyk

nk = cy∞
nk = b̄ for every k ≥ 1.

Let S be the left shift in
⋃

a∈ASa . Recall that, from the continuation
property in Lemma 5.6, if x ∈ Sa represents an extreme point for the direction τ ,
then Sm(x) ∈ Scx

m represents an extreme point for the direction β−m
0 τ , for every

integer m ≥ 0. Consequently, vb(β
−nk
0 τk)= Re(β−nk

0 τkzb(Snk (xk))) and vb(β
−nk
0 τ)=

Re(β−nk
0 τzb(Snk (x∞))) for every k ≥ 1.

Therefore, we can write

Re(τza(x∞))−Re(τkza(xk))=Re((τ − τk)(β
−1γ (px∞

1 )+ · · · + β−nkγ (px∞
nk
)))

+ |β|−nk (vb(β
−nk
0 τ)− vb(β

−nk
0 τk)). (9)

Analogously,

Re(τza(y∞))− Re(τkza(yk))=Re((τ − τk)(β
−1γ (py∞

1 )+ · · · + β−nkγ (py∞
nk )))

+ |β|−nk (vb̄(β
−nk
0 τ)− vb̄(β

−nk
0 τk)). (10)

Thus, by taking (10)–(9), multiplying by Jτ − τkK−1 and using (7),

va,(p,c,s)(τk)− va,( p̄,c̄,s̄)(τk)

Jτ − τkK
=Re

(
τ − τk

Jτ − τkK
(z(nk )

a (y∞)− z(nk )
a (x∞))

)
− |β|−nk

(
vb(β

−nk
0 τ)− vb(β

−nk
0 τk)

Jτ − τkK

)
+ |β|−nk

(
vb̄(β

−nk
0 τ)− vb̄(β

−nk
0 τk)

Jτ − τkK

)
. (11)

Since Jβ−nk
0 τ − β

−nk
0 τkK= Jτ − τkK, Lemma 7.2 implies that the quotients

vb(β
−nk
0 τ)− vb(β

−nk
0 τk)

Jτ − τkK
and

vb̄(β
−nk
0 τ)− vb̄(β

−nk
0 τk)

Jτ − τkK
remain bounded for every k ≥ 1, so the last two terms in the previous equality go to zero
when k→∞. Now, if τ, τ ′ belong to S1, then

lim
τ ′→τ

τ − τ ′

Jτ − τ ′K
= iτ

and, therefore,

Re
(
τ − τk

Jτ − τkK
(z(nk )

a (y∞)− z(nk )
a (x∞))

)
converges to Re(iτ(za(y∞)− za(x∞))) when k→∞, which is the imaginary part of
τ(za(y∞)− za(x∞)). Finally, when k→∞,

|va,(p,c,s)(τk)− va,( p̄,c̄,s̄)(τk)|

Jτ − τkK
→ |Im(τ (za(x∞)− za(y∞))| ≥ D,

where, in the last inequality, we have used (8). �
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PROPOSITION 7.8. Assume the hypotheses of Theorem A. Consider ω ∈�T , a minimal
sequence for γ . Let η > 0 with |β| − η > 1 and let ρ = log(|β| − η)/ log(α−1

+ η) > 0.
Then

lim inf
n→∞

Re(γn(ω))

nρ
> 0 and lim inf

n→∞

Re(γ−n(ω))

nρ
> 0. (12)

Proof. We will only prove the first inequality, since the other one is similar.
We denote the prefix–suffix decomposition of ω by (pωm, cωm, sωm)m≥0. Let us assume

that there exists an increasing sequence of positive integers (nk)k≥1 such that

lim
k→∞

Re(γnk (ω))

nρk
= 0. (13)

Let (pωk
m , cωk

m , sωk
m )m≥0 be the prefix–suffix decomposition of ωk = Snk (ω), where, as

usual, S is the left shift map on the corresponding subshift. We start by showing that
ω must have infinitely many non-empty suffixes in its prefix–suffix decomposition Indeed,
assume by contradiction that sωn0+m = ε for some integer n0 ≥ 0 and every m ≥ 0. We will
show that (pωm, cωm, sωm)m≥0 is eventually periodic, which contradicts Lemma 5.15. We
know that σ(cωn0+m+1)= pωn0+mcωn0+m for every m ≥ 0. Then, for every m ≥ 0, the value
of cωn0+m+1 determines a unique possible value for pωn0+m and cωn0+m . By induction, it is
easy to see that (pωm, cωm, sωm)m≥n0 is periodic.

Let Nk be the first integer such that (pωm, cωm, sωm)m≥Nk = (p
ωk
m , cωk

m , sωk
m )m≥Nk . By

taking a subsequence, we can assume that (Nk)k≥1 is an increasing sequence of integers.
Moreover, we may assume that, for k ≥ 1:
(i) cωNk

= cωk
Nk
= a;

(ii) (pωNk−1, cωNk−1, sωNk−1)= (p, c, s);
(iii) (pωk

Nk−1, cωk
Nk−1, sωk

Nk−1)= ( p̄, c̄, s̄);
(iv) pc is a prefix of p̄; and
(v) limk→∞ β

Nk
0 = τ ∈ S

1.
Since pc is a prefix of p̄,

σ Nk−1(pωk
Nk−1) . . . pωk

0 = σ
Nk−1(pωNk−1) . . . pω0 ω0 . . . ωnk−1 (14)

for every k ≥ 1.
We will now proceed to reverse the indices of the prefix–suffix decompositions of ω

and ωk in order to obtain sequences in Sa . Let (xNk )k≥1 and (yNk )k≥1 be the sequences in
Sa obtained by reversing the coordinates of (pωm, cωm, sωm)m≥0 and (pωk

m , cωk
m , pωk

m )m≥0 up
to the (Nk − 1)th coordinate and such that p

xNk
m = p

yNk
m = ε for each m ≥ Nk , as detailed

at the beginning of §5.3. By the assumptions above, xNk ∈ Sa,(p,c,s) and yNk ∈ Sa,( p̄,c̄,s̄)

for every k ≥ 1.
Without loss of generality, we will assume that xNk converges to x∞ ∈ Sa,(p,c,s), which

is the representation of a limit extreme point in E∗a (τ ) by Lemma 5.13. We will show that
any limit point of yNk in Sa,( p̄,c̄,s̄) is the representation of an extreme point in Ea(τ ) and
therefore that τ belongs to 9a .

Applying γ to (14), using the definitions of xNk , yNk and multiplying by |β|−Nk , for
every k ≥ 1,

β
Nk
0

Nk∑
m=1

β−mγ (p
yNk
m )= β

Nk
0

Nk∑
m=1

β−mγ (p
xNk
m )+ |β|−Nkγnk (ω).
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By taking real parts and rearranging the previous expression,

Re(βNk
0 (za(yNk )− za(xNk )))= |β|

−Nk Re(γnk (ω)).

Furthermore, Re(βNk
0 za(xNk ))≤ Re(βNk

0 za(yNk )) by Lemma 5.5. Then

0≤ Re(βNk
0 (za(yNk )− za(xNk )))= |β|

−Nk Re(γnk (ω)). (15)

On the other hand, since ω0ω1 . . . ωnk−1 is a subword of σ Nk (a) and |σ Nk (a)| grows as
α−Nk (recall that α−1 > 1 is the Perron–Frobenius eigenvalue of M), nk ≤ (α

−1
+ η)Nk

for sufficiently large k ≥ 1, where η > 0 was given in the statement of the proposition.
Therefore, by definition of ρ,

n−ρk ≥ (α
−1
+ η)−Nkρ = (|β| − η)−Nk ≥ |β|−Nk .

From the assumption (13),

lim
k→∞

(|β| − η)−Nk Re(γnk (ω))= lim
k→∞

|β|−Nk Re(γnk (ω))= 0.

In particular, from equation (15), we obtain that any limit point y∞ of yNk in Sa,( p̄,c̄,s̄)

is such that za(y∞) is an extreme point for the direction τ = limk→∞ β
Nk
0 : va(τ )=

Re(τza(y∞)). Therefore τ belongs to 9a .
Amplifying equation (15) by ANk , where A = |β|/(|β| − η) ∈ (1, |β|), we find that

0≤ ANk Re(βNk
0 (za(yNk )− za(xNk )))= (|β| − η)

−Nk Re(γnk (ω))

for all sufficiently large k. Hence

lim
k→∞

ANk Re(βNk
0 (za(yNk )− za(xNk )))= 0. (16)

We know from Lemma 5.5 that

v(Nk )
a (β

Nk
0 )= v

(Nk )
a,(p,c,s)(β

Nk
0 )= Re(βNk

0 za(xNk )).

We also know that Re(βNk
0 za(yNk ))≥ v

(Nk )
a,( p̄,c̄,s̄)(β

Nk
0 ) and, therefore, that

Re(βNk
0 (za(yNk )− za(xNk )))≥ v

(Nk )
a,( p̄,c̄,s̄)(β

Nk
0 )− v

(Nk )
a,(p,c,s)(β

Nk
0 )≥ 0. (17)

On the other hand, since x∞ ∈ Sa,(p,c,s) and y∞ ∈ Sa,( p̄,c̄,s̄) are representations of
extreme points for τ , the u.r.p. implies that Ea,(p,c,s)(τ ) and Ea,( p̄,c̄,s̄)(τ ) are disjoint, so,
in particular, za(x∞) 6= za(y∞). We notice at this point that the weak u.r.p. is sufficient.
Indeed, the extreme points za(x∞) and za(y∞) are also limit extreme points in E∗a (τ ),
so the weak u.r.p. implies that they are different. Also notice that, by Corollary 5.14,
Ea(τ )= E∗a (τ ).

Using Lemma 5.7, we conclude that, for each k ≥ 1,

v
(Nk )
a,( p̄,c̄,s̄)(β

Nk
0 )− v

(Nk )
a,(p,c,s)(β

Nk
0 )≥ va,( p̄,c̄,s̄)(β

Nk
0 )− va,(p,c,s)(β

Nk
0 )− 2C |β|−Nk (18)

for a constant C > 0 which does not depend on k.
Finally, by (17), (18) and Lemma 7.7, we conclude that

Re(βNk
0 (za(yNk )− za(xNk )))≥ DJτ − βNk

0 K− 2C |β|−Nk

for infinitely many k ≥ 1. Since γ is a good eigenvector for 0 and τ ∈9a , by definition,
lim infk→∞ ANk Jτ − βNk

0 K=∞. This contradicts (16). �
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7.2. Proof of Theorem B. The theorem follows from Theorem A if we prove that β
is a simple eigenvalue of M and that β/|β| is not a root of unity. These two facts can
proved if either β is Galois-conjugate with α−1 or if β is Galois-conjugate with α and the
self-similarity comes from Rauzy–Veech renormalizations: that is, if some iteration of the
Rauzy–Veech algorithm on T and the interval [0, α) returns to T (see [Via06] for details
about the Rauzy–Veech algorithm). This last condition is natural in the following sense.
Let π be a vertex on a Rauzy class and consider a cycle starting at π in which every letter
wins and loses at least once. Let R be the matrix of such a cycle. Then R is primitive and
α−1 is its Perron–Frobenius eigenvalue. Also, Rλ= α−1λ for some positive eigenvector
λ whose coordinates add up to one. The i.e.m. with combinatorial data (π, λ) is periodic
for the Rauzy–Veech algorithm. Thus this algorithm provides a simple way to construct a
self-similar i.e.m.

Let ψ :Q(ξ) 7→Q(β) be the natural field isomorphism coming from the Galois-
conjugacy, where ξ is either α or α−1. The following Lemma proves what we need.

LEMMA 7.9. Let β be an eigenvalue of M that is either Galois-conjugate with α−1 or is
Galois-conjugate with α and T is periodic for the Rauzy–Veech renormalization algorithm
on [0, α). Then β has algebraic and geometric multiplicity one. Moreover, if β is not real,
then β/|β| is not a root of unity.

Proof. If β is Galois-conjugate with α−1, which is the Perron–Frobenius eigenvalue of M ,
then it has multiplicity one. We will now prove that if it is Galois-conjugate with α, then it
also has multiplicity one when it is further assumed that T is periodic for the Rauzy–Veech
algorithm. We will use the classical results of Veech in [Vee84], which use this fact.

Recall that R = M t is the renormalization matrix coming from the Rauzy–Veech
induction. There exists a (possibly degenerate) antisymmetric integer matrix Lπ such that

Rt Lπ R = M Lπ R = Lπ . (19)

Let H(π)= Lπ (CA) and N (π)= ker Lπ . It is easy to check from (19) that H(π) is
invariant for M and that N (π) is invariant for R. The matrix Lπ is non-degenerate when
restricted to H(π) and, therefore, R|H(π) is symplectic. We will show that the eigenspaces
of α, α−1 and β are contained in H(π).

By [Vee84, Lemma 5.6], R acts as a permutation on a basis of N (π). Therefore every
eigenvalue of R|N (π) has modulus one. Let V be the eigenspace of an eigenvalue z for R
with |z| 6= 1. From (19), it is easy to see that Lπ (V )⊆ H(π) is contained in the eigenspace
of z−1 for M and, since V ∩ N (π)= {0}, that Lπ (V ) is the entire eigenspace of z−1 for
M . Thus, the desired eigenspaces are contained in H(π).

Let p(t) be the characteristic polynomial of M restricted to H(π). We know that p(t)=
t |A| p(1/t) by symplecticity. The Galois-conjugacy implies that β has the same algebraic
multiplicity of α. Since α−1 is a simple root of p(t), so is α by the equality p(t)=
t |A| p(1/t). The first part of the lemma is therefore proved.

Now, assume by contradiction that β is Galois-conjugate to ξ (with ξ = α or α−1)
and that βn is real for some integer n. Since β̄ is also an eigenvalue of M , which is
different from β, βn

= β̄n has algebraic multiplicity two for Mn . Moreover, ξn and
βn are also Galois-conjugate. Indeed, if q(t) is the minimal polynomial of ξn , then



2560 M. Cobo et al

q(βn)= q(ψ(ξn))= ψ(q(ξn))= 0. The matrix Mn is also primitive and corresponds
to the induced map of T on [0, αn). We can therefore replicate the proof of the first
part of the lemma for Mn and conclude that βn has algebraic multiplicity one, which is a
contradiction. �

8. The cubic Arnoux–Yoccoz map

In this section, we illustrate Theorem A in the cubic A–Y i.e.m. This map is self-similar in
the sense of [LPV08] but not in the sense of [CG97], which is the notion we are following
in Theorem A. However, it satisfies all the other hypotheses of the theorem. Although the
main theorem is written for a self-similar i.e.m. in the sense of [CG97], this precise notion
plays a role in a very specific part of the proof of the theorem, which is ensuring that the
symbolic system associated with the i.e.m. is substitutive. It is possible to prove this fact
for the specific case of the A–Y i.e.m.

In addition, it is proved in [LPV08] that an induced system obtained from the A–Y
i.e.m. with respect to a precise interval is a self-similar i.e.m. in the sense of [CG97], but
the resulting substitution associated with the i.e.m. is unnecessarily complex to analyse.
Nevertheless, some technical but not difficult modifications on the study that we will
develop for the A–Y i.e.m. below allow us to prove that the induced system also satisfies
the hypotheses of Theorem A.

8.1. A–Y i.e.m. Let α be the unique real number such that α + α2
+ α3

= 1 and
let G t0,t1 be the map exchanging both halves of the interval [t0, t1) while preserving
orientation: that is,

G t0,t1(t)=


t + (t0 + t1)/2 t ∈ [t0, (t0 + t1)/2),

t − (t0 + t1)/2 t ∈ [(t0 + t1)/2, t1),

t t /∈ [t0, t1).

Then the A–Y i.e.m. is given by T = G0,1 ◦ G0,α ◦ Gα,α+α2 ◦ Gα+α2,1 (see Figures 4 and
5 for clarity). Properties of T were extensively discussed in [ABB11]. In particular, it is
proved that the map T is equal, up to rescaling and rotation, to the map induced on the
interval [0, α) and, by considering an appropriate refinement of continuity intervals of T
into nine intervals, one may encode the relation of orbits by T for this partition and the
orbits of the induced system for the induced partition by the substitution σ on the alphabet
A= {1, . . . , 9} given by

σ(1) = 35, σ (4) = 17, σ (7) = 29,
σ (2) = 45, σ (5) = 18, σ (8) = 2,
σ (3) = 46, σ (6) = 19, σ (9) = 3.

Then �T =�σ . It is easy to check that σ is primitive. This solves the issue at the
beginning of the section; the symbolic system is indeed substitutive.
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FIGURE 4. The compositions that produce the cubic Arnoux–Yoccoz interval exchange map T . The dashed lines
show the midpoints of the respective intervals.

FIGURE 5. The cubic Arnoux–Yoccoz interval exchange map T .

Let M be the matrix associated with the substitution σ : that is,

M =



0 0 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


.

Its characteristic polynomial is (1− t3)(t3
+ t2
+ t − 1)(−t3

+ t2
+ t + 1), where the

last two factors are irreducible. The roots of t3
+ t2
+ t − 1 are α, β and β̄, whereas

the roots of −t3
+ t2
+ t + 1 are α−1, β−1 and β̄−1, where α−1 is the Perron–Frobenius

eigenvalue. We assume that β is the eigenvalue with positive imaginary part. Numerically,
β ≈−0.771845+ 1.11514i . It is proved in [Mes00] that (β−1)n is never real for any n ∈
Z. Furthermore, the eigenvalue β is simple and the corresponding eigenspace is generated
by

γ = (β2
+ β + 1,−β,−β,−β2

− β − 1, β + 1, β + 1,−β2
− β − 2,−1,−1).

Therefore, it is enough to prove the u.r.p. for β.
In what follows, β and γ are the corresponding eigenvalue and eigenvector of M used

in the previous sections.

8.2. Fractals associated with the A–Y i.e.m. Theorem 6.4 of [ABB11] shows that the
fractals defined in §5 exist and satisfy F2 = F3, F5 = F6 and F8 = F9. An illustration of
each fractal is given in Figure 8. The boundaries of these fractals can be constructed by
combining pieces of the boundary of the standard tribonnacci fractal and can therefore be
parametrized as we will see later.
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FIGURE 6. The tribonnacci fractal with some important features.

8.2.1. Parametrization of the boundary of tribonnacci fractal. First, we state some
important properties of the tribonnacci fractal. We will follow [Mes00] freely. Let N be
the set of sequences in {0, 1} without three consecutive ones. The (standard) tribonnacci
fractal is defined by

R=

{∑
m≥3

β−mam−2; (am)m≥1 ∈N

}
.

For (am)m≥1 ∈N, we define r((am)m≥1)=
∑

m≥3 β
−mam−2. For z ∈R, we say that

(am)m≥1 ∈N is a representation of z if z = r((am)m≥1). Clearly, any sequence in N

starts with either 0, 10 or 11.

R0 = β
−1R= {z ∈R; z has a representation starting with 0},

R10 = β
−3
+ β−2R= {z ∈R; z has a representation starting with 10},

R11 = β
−3
+ β−4

+ β−3R= {z ∈R; z has a representation starting with 11}.

These three subsets of R are scalings, rotations and translations of R and are disjoint
except for a set of measure zero (see Figure 6).

Clearly, N is a subshift. As before, S is the shift map in N. For z ∈R and (am)m≥1 ∈N

being a representation of z, r(S((am)m≥1)) ∈R and

r(S((am)m≥1))=

{
βz if a1 = 0,

β(z − β−3) if a1 = 1.

It is easy to see that the points in R11 are mapped bijectively into R10, that the points in
R10 are mapped bijectively to R0 and that the points in R0 are mapped bijectively to R.

Now, the parametrization of the boundary of the tribonnacci fractal is constructed as
follows. Put z0 = β

−4/(1− β−3) and for each t ∈ [0, 1] let (am)m≥1 be a sequence
in {0, 1, 2} such that t =

∑
m≥1 3−mam . Put κ(t)= limm→∞ κa1 ◦ κa2 ◦ · · · ◦ κam (z0),
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where

κ0(z)= β−4
+ β−3z,

κ1(z)= β−4
+ β−6

+
β−10

1− β−3 − β
−4z,

κ2(z)= β−3
+ β−4

+ β−3z.

It is shown in [Mes00, §4] that κ is bijective and that

K′ = κ([0, 1])=R ∩ (R+ β−1).

The set K′ is also part of the boundary of the tribonnacci fractal. The rest of the boundary
is obtained by scaling, rotating and translating K′.

We know that K′ ⊆R0 ∪R11: that is, every point in K′ has a representation starting
with either 0 or 11. Furthermore, K′ = κ0(K

′) ∪ κ1(K
′) ∪ κ2(K

′), which is a consequence
of [Mes00, Lemma 4], and

K′ ∩R0 = κ0(K
′) ∪ κ1(K

′), K′ ∩R11 = κ2(K
′).

A simple computation shows that by applying the shift map to K′ ∩R11 one obtains β−3
+

β−2K′ and that by applying the shift map again one obtains β−1K′, as Figure 6 shows.
Finally, we describe some basic additional properties of R and K that we will need.

LEMMA 8.1.
(i) R ∩ (R+ (β2

− 1)/2)=∅;
(ii) K′ ∩ (R+ (β2

+ 2β + 3)/2)=∅; and
(iii) K′ ∩ β−2R=∅.

8.2.2. Parametrization of the boundary of fractals associated with the cubic A–Y i.e.m.
We will use K= K′ − z0 to parametrize the boundaries of each Fa for each a ∈A. It is
not difficult to see (after a simple computation) that K is a curve with endpoints κ(0)−
z0 = 0 and κ(1)− z0 = (−β

2
− 2β − 1)/2. To get our parametrization, we will need the

following four lemmas that, at the end, show that the boundaries of the Fa are Jordan
curves.

LEMMA 8.2. The following equalities are satisfied: that is,

K= κ(1)− K and K= β−3K ∪ (β−4K+ β−3) ∪ (β−3K+ β−3).

Proof. The first equality comes from the fact that K′ is symmetric, as shown in [Mes00,
Lemma 4]. Furthermore, since K′ = κ0(K

′) ∪ κ1(K
′) ∪ κ2(K

′), by subtracting z0 from both
sides, expanding and using the first equality, we get the desired result. �

The following two lemmas will serve to prove that the parts of the boundaries in the
A–Y fractals coming from the tribonacci fractal intersect in a unique point (see Figure 8).

LEMMA 8.3. K ∩ (βK+ (β2
+ 1)/2)= K ∩ (β2K+ (−β2

+ 1)/2)= {0}.
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Proof. Recall that z0 = β
−4/(1− β−3)= (−β2

− 2β − 3)/2 and K′ =R ∩ (R+ β−1).
Set K1 = K ∩ (βK+ (β2

+ 1)/2) and K2 = K ∩ (β2K+ (−β2
+ 1)/2).

(i) Let z ∈ K1. We will prove that −β2z ∈ K2. By definition, z = ζ − z0 = β(ζ
′
−

z0)+ (β
2
+ 1)/2, where ζ, ζ ′ ∈ K′. Therefore

ζ = βζ ′ − βz0 + z0 +
β2
+ 1
2
= βζ ′ +

β2
− 1
2

.

From the discussion in §8.2.1, ζ ′ has a representation starting with either 0 or 11. Let
a1, a2, a3 be the first three letters of such representation and consider the point ζ ′′ =
β(ζ ′ − β−3a1) ∈R: that is, the point obtained by shifting the representation of ζ ′. We
get that ζ = ζ ′′ + β−2a1 + (β

2
− 1)/2, where a1 ∈ {0, 1}.

By Lemma 8.1 item (i), R ∩ (R+ (β2
− 1)/2)=∅, so a1 6= 0 and thus a1a2a3 =

110. Then, ζ ′ ∈ K′ ∩R11, so ζ ′′ ∈ β−3
+ β−2K′ = β−2K+ (−β2

− 2β − 1)/2 and, by
replacing the value of a1 in previous expressions, ζ = ζ ′′ + (3β2

+ 4β + 3)/2.
Finally, z ∈ K ∩ (β−2K+ (3β2

+ 4β + 5)/2), so

−β2z ∈
(
−β2
− 2β − 1

2
− K

)
∩ (−β2K)= K2,

where the last equality is obtained by using Lemma 8.2 and a simple computation.
(ii) Let z ∈ K2. We will prove that −βz ∈ K1. The proof is similar to (i) so we skip

some details.
By definition, z = ζ − z0 = β

2(ζ ′ − z0)+ (−β
2
+ 1)/2, where ζ, ζ ′ ∈ K′. Therefore

ζ = β2ζ ′ − β2z0 + z0 +
−β2
+ 1

2
= β2ζ ′ +

−β2
− 2β − 1

2
.

As in the proof of (i), ζ ′ has a representation that begins with either 0 or 11. Let a1, a2, a3

be its first three letters and let ζ ′′ = β2(ζ ′ − β−3a1 − β
−4a2) ∈R: that is, the point

obtained by shifting the representation of ζ ′ twice. We know that ζ = ζ ′′ + β−1a1 +

β−2a2 + (−β
2
− 2β − 1)/2, where a1, a2 ∈ {0, 1}.

We also know that a1a2 6= 10. If a1a2 = 01, it would be that ζ = ζ ′′ +

(β2
+ 2β + 3)/2. By Lemma 8.1 item (ii), K′ ∩ (R+ (β2

+ 2β + 3)/2)=∅, so this
cannot happen. Furthermore, by item (iii) of the same lemma, K′ ∩ β−2R=∅, so a1a2 6=

00. We obtain a1a2a3 = 110, so ζ = ζ ′′ + (3β2
+ 4β + 5)/2 and we deduce that ζ ′′ ∈

β−1K′ = β−1K+ (−3β2
− 4β − 5)/2. Finally, z ∈ K ∩ (β−1K+ (β2

+ 2β + 3)/2), so

−βz ∈
(
−β2
− 2β − 1

2
− K

)
∩ (−βK)= K1,

where the last equality is obtained by using the previous lemma.
From (i) and (ii), we find that if z belongs to either K1 or K2, then {βnz,−βnz} meets

K1 ∪ K2 for infinitely many integers n ≥ 0. Since K1 ∪ K2 is bounded and |β|> 1, it
must be that z = 0. �

LEMMA 8.4. (K− 2β2
− 3β − 4) ∩ (K+ (−3β2

− 4β − 7)/2) is a unique point.

Proof. We illustrate the proof in Figure 7. Observe that (K− 2β2
− 3β − 4)⊆R. By the

previous lemma and a translation, a rotation and a scaling, K− 2β2
− 3β − 4 is a subset

of int R up to one point. On the other hand, (K+ (−3β2
− 4β − 7)/2)⊆R− 1− β−1.
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FIGURE 7. Illustration of the proof of Lemma 8.4.

We know from [Mes00] that R− 1− β−1
⊆ C \ int R. Then (K+ (−3β2

− 4β − 7)/2)
is a subset of C \R up to one point. �

Now we give the parametrization of the boundaries of the Arnoux–Yoccoz fractals.
Define

C1 = (β
−1K) ∪ (β−2K+ β2

+ β + 1) ∪
(
K+

3β2
+ 4β + 3

2

)
∪

(
β−2K+

3β2
+ 4β + 3

2

)
∪

(
β−1K+

β2
+ 2β + 1

2

)
∪

(
K+

β2
+ 2β + 1

2

)
,

C2 = K ∪ (βK− β) ∪

(
K+

β2
+ 1
2

)
∪

(
βK+

β2
+ 1
2

)
,

C4 = βK ∪ (β
−1K+ β + 1) ∪ (β−3K+ β + 1) ∪ (β−2K− β2

− β − 1)

∪

(
β−2K+

β2
+ 2β + 3

2

)
∪

(
β−1K+

β2
+ 2β + 3

2

)
,

C5 = βK ∪ (β
−1K+ β + 1) ∪

(
βK+

β2
+ 2β + 3

2

)
∪

(
β−1K+

β2
+ 2β + 3

2

)
,

C7 = β
−1K ∪ (K− 1) ∪ (β−2K− 1) ∪ (β−1K− β2

− β − 2)

∪

(
β−2K+

β2
+ 2β + 1

2

)
∪

(
K+

β2
+ 2β + 1

2

)
,

C8 = β
−1K ∪ (K− 1) ∪

(
β−1
+
β2
+ 2β + 1

2

)
∪

(
K+

β2
+ 2β + 1

2

)
and C3 = C2, C6 = C5, C9 = C8.
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FIGURE 8. Description of Arnoux–Yoccoz fractals and their features.

LEMMA 8.5. For each a ∈A, Ca is a Jordan curve.

Proof. In the definition of each Ca , the terms between unions correspond to the segments
in the boundary of Fa shown in Figure 8 in the clockwise order, starting at zero. So it is
enough to see that the intersection of two consecutive segments is a single point. Indeed,
using the results for the tribonnacci fractal from [Mes00], the intersection of most of the
pairs of contiguous segments have only one point. The conclusion of the lemma follows
from the two previous lemmas.
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For example, consider the segments β−1K and β−2K+ β2
+ β + 1, which are part of

C1. By translating by −β−1z0 and replacing K by K′ − z0, we get that these segments
intersect at a single point if and only if β−1K′ and β−2K′ + β−2

+ β−1 do. These two
segments are part of the boundary the tribonacci fractal, which is a Jordan curve. Further
examples are the segments K+ (β2

+ 2β + 1)/2 and β−1K, which are also part of C1.
We can amplify by β to get that these segments intersect at a single point if and only if K
and βK+ (β2

+ 1)/2 do, which is implied by Lemma 8.3. �

Now we are ready to prove that the Ca are parametrizations of the boundaries of the
Arnoux–Yoccoz fractals.

LEMMA 8.6. For each a ∈A, Fa is the closure of the interior (in the Jordan sense) of Ca .
Furthermore, if σ(a) can be written as σ(a)= bc with b, c ∈A, then Fb ∩ int(γ (b)+
Fc)=∅ and int Fb ∩ (γ (b)+ Fc)=∅.

Proof. We will make the identifications 3∼ 2, 6∼ 5, 9∼ 8. By the definition of Ca ,

β−1 C1 = (β
−2K) ∪ (β−3K+ β2

+ 2β + 2) ∪
(
β−1K+

3β2
+ 6β + 7

2

)
∪

(
β−3K+

3β2
+ 6β + 7

2

)
∪

(
β−2K+

β2
+ 2β + 3

2

)
∪

(
β−1K+

β2
+ 2β + 3

2

)
,

β−1 C2 = β
−1K ∪ (K− 1) ∪

(
β−1K+

β2
+ 2β + 1

2

)
∪

(
K+

β2
+ 2β + 1

2

)
,

β−1 C4 = K ∪ (β−2K+ β2
+ β + 2) ∪ (β−4K+ β2

+ β + 2)

∪ (β−3K− β2
− 2β − 2) ∪

(
β−3K+

3β2
+ 4β + 5

2

)
∪

(
β−2K+

3β + 4β + 5
2

)
,

β−1 C5 = K ∪ (β−2K+ β2
+ β + 2) ∪

(
K+

3β2
+ 4β + 5

2

)
∪

(
β−2K+

3β2
+ 4β + 5

2

)
,

β−1 C7 = β
−2K ∪ (β−1K− β2

− β − 1) ∪ (β−3K− β2
− β − 1)

∪ (β−2K− 2β2
− 3β − 3) ∪

(
β−3K+

β2
+ 2β + 3

2

)
∪

(
β−1K+

β2
+ 2β + 3

2

)
,

β−1 C8 = β
−2K ∪ (β−1K− β2

− β − 1) ∪
(
β−2
+
β2
+ 2β + 3

2

)
∪

(
β−1K+

β2
+ 2β + 3

2

)
.
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By using Lemma 8.2 when necessary,

β−1 C2 ∪ β
−1(−β + C5)= C1 ∪ (K− 1),

β−1 C4 ∪ β
−1(−β−1

+ C5)= C2 ∪ (β
−4K+ β2

+ β + 2) ∪ (β−3K− β2
− 2β − 2),

β−1 C1 ∪ β
−1(β−1

+ C7)= C4 ∪

(
β−1K+

3β2
+ 6β + 7

2

)
∪

(
β−3K+

3β2
+ 6β + 7

2

)
,

β−1 C1 ∪ β
−1(β−1

+ C8)= C5 ∪

(
β−1K+

3β2
+ 6β + 7

2

)
,

β−1 C2 ∪ β
−1(−β + C8)= C7 ∪

(
β−1K+

β2
+ 2β + 1

2

)
,

β−1 C2 = C8.

(20)

The following equations stated in [ABB11, (6-1)] produce a unique solution for the
given γ .

F1 = β
−1F2 ∪ β

−1(−β + F5), F2 = β
−1F4 ∪ β

−1(−β−1
+ F5),

F4 = β
−1F1 ∪ β

−1(β−1
+ F7), F5 = β

−1F1 ∪ β
−1(β−1

+ F8),

F7 = β
−1F2 ∪ β

−1(−β + F8), F8 = β
−1F2.

(21)

Finally, let F′a be the closure of the Jordan interior of Ca . We have to show that (F′a)a∈A
satisfies (21). We know that (see Figure 8)

K− 1⊆ F′1, (β−4K+ β2
+ β + 2) ∪ (β−3K− β2

− 2β − 2)⊆ F′2,(
β−1K+

3β2
+ 6β + 7

2

)
∪

(
β−3K+

3β2
+ 6β + 7

2

)
⊆ F′4,(

β−1K+
3β2
+ 6β + 7

2

)
⊆ F′5,

(
β−1K+

β2
+ 2β + 1

2

)
⊆ F′7.

So, by (20), we conclude that (F′a)a∈A satisfies (21), which proves that Fa = F′a for each
a ∈A.

The second part of the proof follows directly from the parametrization (see Figure 8). �

The following corollary is straightforward and follows from the previous lemma.

COROLLARY 8.7. ∂Fa = Ca for each a ∈A.

8.2.3. Unique representation property for the A–Y i.e.m. We finally prove that every
extreme point of each fractal Fa has a unique representation.

LEMMA 8.8. For any a ∈A, extreme points in the boundary of Fa have a unique
representation: that is, T has the unique representation property for β.

Proof. The proof is by contradiction. We prove that extreme points in Fa with more than
one representation have an eventually periodic representation. This, together with Lemma
5.8, gives a contradiction.



Wandering intervals in affine extensions of i.e.m. 2569

Let z ∈ ∂Fa be an extreme point with two representations. By shifting and using Lemma
5.6, we can assume that the first letters in these representations are different. This implies
that σ(a) cannot be a single letter, so we get that σ(a)= bc for some b, c ∈A. Then
z ∈ β−1Fb ∩ β

−1(γ (b)+ Fc) and, by Lemma 8.6,

z ∈ ∂Fa ∩ (β
−1Fb ∩ β

−1(γ (b)+ Fc))= ∂Fa ∩ ∂β
−1Fb ∩ ∂β

−1(γ (b)+ Fc).

Now, to get the desired contradiction, we prove that these points have an eventually
periodic representation. There are seven cases (see Figure 8 to understand the cases).

(i) If a = 1, then z =−1 or z = (−β2
− 2β − 3)/2. The point x1 ∈ Sa defined

by (px1
1 , cx1

1 , sx1
1 )= (3, 5, ε) and px1

m = ε for every m ≥ 2 is an eventually periodic
representation of z =−1, and the point x2 ∈ Sa defined by

x2 = (ε, 3, 5)(ε, 4, 6)(1, 7, ε)(ε, 2, 9)(ε, 4, 5)(1, 7, ε)(ε, 2, 9)(ε, 4, 5) . . .

is an eventually periodic representation of z = (−β2
− 2β − 3)/2.

(ii) If a = 2, then z =−β2
− 2β − 2 or z = β2

+ β + 2. The point x1 ∈ Sa defined
by (px1

1 , cx1
1 , sx1

1 )= (4, 5, ε) and px1
m = ε for every m ≥ 2 is an eventually periodic

representation of z =−β2
− 2β − 2, and the point x2 ∈ Sa defined by (px2

1 , cx2
1 , sx2

1 )=

(4, 5, ε), (px2
2 , cx2

2 , sx2
2 )= (1, 8, ε) and px2

m = ε for every m ≥ 3 is an eventually periodic
representation of z = β2

+ β + 2.
(iii) If a = 3, then z =−β2

− 2β − 2 or z = β2
+ β + 2. The point x1 ∈ Sa defined

by (px1
1 , cx1

1 , sx1
1 )= (4, 6, ε) and px1

m = ε for every m ≥ 2 is an eventually periodic
representation of z =−β2

− 2β − 2, and the point x2 ∈ Sa defined by (px2
1 , cx2

1 , sx2
1 )=

(4, 6, ε), (px2
2 , cx2

2 , sx2
2 )= (1, 9, ε) and px2

m = ε for every m ≥ 3 is an eventually periodic
representation of z = β2

+ β + 2.
(iv) If a = 4, then z = β2

+ 2β + 2 or z =−β2
− β − 1. The point x1 ∈ Sa defined

by (px1
1 , cx1

1 , sx1
1 )= (1, 7, ε) and px1

m = ε for every m ≥ 2 is an eventually periodic
representation of z = β2

+ 2β + 2, and the point x2 ∈ Sa defined by (px2
1 , cx2

1 , sx2
1 )=

(ε, 1, 7), (px2
2 , cx2

2 , sx2
2 )= (3, 5, ε) and px2

m = ε for every m ≥ 3 is an eventually periodic
representation of z =−β2

− β − 1.
(v) If a = 5, then z = β2

+ 2β + 2 or z = (3β2
+ 6β + 7)/2. The point x1 ∈ Sa

defined by (px1
1 , cx1

1 , sx1
1 )= (1, 8, ε) and px1

m = ε for every m ≥ 2 is an eventually periodic
representation of z = β2

+ 2β + 2, and the point x2 ∈ Sa defined by

x2 = (ε, 1, 8)(3, 5, ε)(ε, 1, 8)(ε, 3, 5)(4, 6, ε)(ε, 1, 9)(ε, 3, 5)(4, 6, ε)(ε, 1, 9) . . .

is an eventually periodic representation of z = (3β2
+ 6β + 7)/2.

(vi) If a = 6, then z = β2
+ 2β + 2 or z = (3β2

+ 6β + 7)/2. The point x1 ∈ Sa

defined by (px1
1 , cx1

1 , sx1
1 )= (1, 9, ε) and px1

m = ε for every m ≥ 2 is an eventually periodic
representation of z = β2

+ 2β + 2, and the point x2 ∈ Sa defined by

x2 = (ε, 1, 9)(3, 5, ε)(ε, 1, 8)(ε, 3, 5)(4, 6, ε)(ε, 1, 9)(ε, 3, 5)(4, 6, ε)(ε, 1, 9) . . .

is an eventually periodic representation of z = (3β2
+ 6β + 7)/2.

(vii) If a = 7, then z =−1 or z = (β2
+ 2β + 1)/2. The point x1 ∈ Sa defined

by (px1
1 , cx1

1 , sx1
1 )= (2, 9, ε) and px1

m = ε for every m ≥ 2 is an eventually periodic
representation of z =−1, and the point x2 ∈ Sa defined by

x2 = (ε, 2, 9)(4, 5, ε)(ε, 1, 8)(ε, 3, 5)(4, 6, ε)(ε, 1, 9)(ε, 3, 5)(4, 6, ε)(ε, 1, 9) . . .

is an eventually periodic representation of z = (β2
+ 2β + 1)/2. �
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[Que87] M. Queffélec. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics,

1294). Springer, Berlin, 1987.
[Vee78] W. Veech. Interval exchange transformations. J. Anal. Math. 33(1) (1978), 222–272.
[Vee82] W. Veech. Gauss measures for transformations on the space of interval exchange maps. Ann. of

Math. (2) 115(1) (1982), 201–242.
[Vee84] W. Veech. The metric theory of interval exchange transformations I. Generic spectral properties.

Amer. J. Math. 106(6) (1984), 1331–1359.
[Via06] M. Viana. Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19(1) (2006), 7–100.
[Zor96] A. Zorich. Finite Gauss measure on the space of interval exchange transformations. Lyapunov

exponents. Ann. Inst. Fourier (Grenoble) 46(2) (1996), 325–370.


	Introduction
	Strategy
	Background and preliminaries
	The i.e.m. and the affine i.e.m
	Substitution subshifts and prefix–suffix decomposition
	Symbolic coding of a self-similar i.e.m

	Minimal sequences associated with a self-similar i.e.m.
	Fractals associated with a self-similar i.e.m.
	Basic properties of extreme points
	The set Ψ and extreme points
	Minimal sequences for γ gamma and limit extreme points

	Unique representation property
	Proof of the main theorem
	Proof of Theorem 7.1
	Differentiability of va
	Good directions and good eigenvectors
	Convergence in Theorem 7.1

	Proof of Theorem B

	The cubic Arnoux–Yoccoz map
	A–Y i.e.m
	Fractals associated with the A–Y i.e.m
	Parametrization of the boundary of tribonnacci fractal
	Parametrization of the boundary of fractals associated with the cubic A–Y i.e.m
	Unique representation property for the A–Y i.e.m


	Acknowledgements
	References

