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Abstract. In this article, we provide sufficient conditions on a self-similar interval
exchange map, whose renormalization matrix has complex eigenvalues of modulus greater
than one, for the existence of affine interval exchange maps with wandering intervals
that are semi-conjugate with it. These conditions are based on the algebraic properties
of the complex eigenvalues and the complex fractals built from the natural substitution
emerging from self-similarity. We show that the cubic Arnoux—Yoccoz interval exchange
map satisfies these conditions.

1. Introduction

The existence of wandering intervals in dynamical systems has been studied for a long
time. Denjoy [Den32] proved that an orientation-preserving €' -diffeomorphism of the
circle with irrational rotation number is conjugate with an irrational rotation if and only if
it has no wandering intervals, and he constructed examples of ‘6" -diffeomorphisms of this
type with wandering intervals for r < 2. The absence of wandering intervals is ensured for
®2-diffeomorphisms.

By suspending a rotation, one obtains a linear flow on a two-dimensional torus. A
natural generalization of such a flow is a linear flow on surfaces of a higher genus, which,
when restricted to a Poincaré section, induces an interval exchange map (i.e.m.). In this
sense, an i.e.m. is a natural generalization of a rotation of the circle.

A bijective map T : [0, 1) — [0, 1) is said to be an i.e.m. if there exists a finite
partition (I,; a € o) of [0, 1) made of intervals such that 7' (t) =t + §, foreach ¢t € I, and



2538 M. Cobo et al

a € d. Clearly, T is a piecewise isometry of the unit interval exchanging the intervals (/,;
acd). Aniem. T is said to be self-similar if there exists 0 < @ < 1 such that the map
TW . [0, @) = [0, &) of first return by T to the interval [0, «) is, up to rescaling, equal to
T. The natural symbolic extension of a self-similar i.e.m. is generated by a substitution.
An affine interval exchange map (affine i.e.m.) f : [0, 1) — [0, 1) is a bijective piecewise
affine map with positive slopes. The vector (¢,; a € ), where ¢, is the slope of f in the
ath interval of continuity, is called the slope vector of f.

Levitt [Lev87] constructed an example of a non-uniquely ergodic affine i.e.m. with
wandering intervals, showing that there exist Denjoy counterexamples of arbitrary
smoothness in some surfaces of genus at least two. Given a slope vector and a self-similar
i.e.m., Camelier and Gutiérrez [CG97] provided necessary and sufficient conditions for
the existence of an affine i.e.m. with the same number of intervals and a slope vector
that is semi-conjugate with the self-similar i.e.m. Namely, such map exists if and only
if the logarithm of the given slope vector, log £ = (log £,4; a € ), is orthogonal to the
vector of interval lengths A = (|1,]; @ € o). The self-similarity of the i.e.m. implies that
RA =a~'A, where R is the renormalization matrix (recall that [0, «) is the interval of
renormalization) and a1 > 1 is the Perron—Frobenius eigenvalue of R. Thus, basic linear
algebra implies that log £ is orthogonal to A if and only if log £ belongs to the invariant
subspace corresponding to all the eigenvalues of M = R’ that are different from a~'. We
remark that M is the matrix associated with the substitution associated with the self-similar
ie.m.

If log £ belongs to the stable space of M, Camelier and Gutiérrez [CG97] proved that
any semi-conjugate affine i.e.m. with this slope vector is, in fact, conjugate with an i.e.m.
(that is, has no wandering intervals). The resulting conjugacy is of class €!*¢, with ¢ > 0
depending on the particular eigenspace [Bar99]. They also built an example of a uniquely
ergodic affine i.e.m. with wandering intervals that is strictly semi-conjugate with a self-
similar i.e.m. This last example and extensions of the results in [CG97] were considered
more deeply by Cobo in [Cob02], where a generalization is also obtained by introducing
the Rauzy—Veech—Zorich Oseledets decomposition (see [Vee82, Zor96]). In the case
when log £ belongs to the unstable space of M, Bressaud, Hubert and Maass proved,
in [BHM10], that if it also lies in the eigenspace associated with a real eigenvalue of
modulus strictly greater than one, which is different from the Perron—Frobenius eigenvalue
a~! but Galois-conjugate with it, then one can choose a semi-conjugate affine i.e.m. with
such a slope vector and wandering intervals. If the given vector of logarithms lies in an
eigenspace of M associated with the eigenvalue 1 or —1, or if it lies in an invariant subspace
corresponding to a conjugate pair of non-real eigenvalues of modulus one, then Bressaud,
Bufetov and Hubert, in [BBH14], proved that any semi-conjugate affine i.e.m. with such a
slope vector is indeed conjugate to the i.e.m. and thus has no wandering intervals. Finally,
in [MMY10], Marmi, Moussa and Yoccoz proved that the existence of an affine i.e.m.
with wandering intervals that is semi-conjugate with a given i.e.m. is generic. Thus many
non-self-similar examples arise.

In this article, we study the remaining case of the program stated in [CG97]. That
is, we consider a self-similar i.e.m. and a slope vector £ whose logarithm log ¢ lies in
an invariant subspace of M corresponding to a conjugate pair of non-real eigenvalues of
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modulus strictly larger than one. We will heavily rely on the strategy of [BHM10] and the
geometrical models for substitutions defined by Arnoux, Bernat and Bressaud in [ABB11].
These geometrical models are often of fractal nature. We will see that some properties of
these fractals are sufficient conditions for the existence of an affine i.e.m. with wandering
intervals that is semi-conjugate with a given self-similar i.e.m. having the aforementioned
properties. Specifically, we will prove the following theorem.

THEOREM A. Let T be a self-similar i.e.m. Assume that M has an eigenvalue B with
|B] > 1 such that B/|B| is not a root of unity, and that there exists an eigenvector I for 8
such that T has the unique representation property for 8 and I'. Then, for almost every y
in the complex subspace generated by I', exp(—Re(y)) can be realized as the slope vector
of an affine i.e.m. that is semi-conjugate with T and has wandering intervals.

The unique representation property, which will be stated in §6, is related to the different
ways in which the extreme points of the dual Rauzy fractal, in the sense of [ABB11], can
be written as certain sums ), . z, 8" with coefficients z,, belonging to a finite subset
of the field Q[A]. -

Most of the properties that we will develop before the proof of the main theorem are
of purely symbolic nature, in the sense that they can be proved for a primitive substitution
and a non-real eigenvalue together with an eigenvector of the matrix associated to such
substitution.

The unique representation property needed in this article is, in some way, analogous
to the explicit algebraic condition required for the case treated in [BHM10]. We think
that similar algebraic conditions imply the unique representation property, but we did
not succeed in establishing a proof, even though interesting examples can be found.
However, we found that an algebraic condition similar to the one needed in [BHM10]
provides a simplification in the hypotheses of Theorem A. Indeed, assume that either 8
is Galois-conjugate with «~! or that f is Galois-conjugate with « and the self-similarity
comes from Rauzy—Veech renormalizations: that is, some iteration of the Rauzy—Veech
renormalization returns to the original map. Then B is a simple eigenvalue. Moreover, if
B is not real, then B/|B| is not a root of unity (see Lemma 7.9). In these cases, since the
corresponding eigenspace is one-dimensional, the unique representation property depends
only on 7 and B. Since it is possible to construct an i.e.m. that is periodic for the Rauzy—
Veech algorithm from most cycles of a Rauzy class, such an i.e.m. belongs to a natural
family of self-similar maps.

Therefore, we have the following consequence of Theorem A.

THEOREM B. Let T be an i.e.m. and let B with |B| > 1 be a non-real eigenvalue of M.
Assume that either B is Galois-conjugate to « or that B is Galois-conjugate with o~
and that T is periodic for the Rauzy—Veech renormalization algorithm on the interval
[0, @). If T has the unique representation property for B, then, for almost every associated
eigenvector y, exp(—Re(y)) can be realized as the slope vector of an affine i.e.m. that is
semi-conjugate with T and has wandering intervals.

Finally, we apply the techniques developed along this work to the cubic Arnoux—Yoccoz
i.e.m. [AY81]. When defined on the circle, this map is self-similar and its renormalization
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matrix has an eigenvalue 8 with |8| > 1 such that §/|8] is not a root of unity. We will
discuss this example in §8 and prove the following theorem.

THEOREM C. Let 8 be a non-real eigenvalue of the renormalization matrix associated to
the cubic Arnoux—Yoccoz i.e.m. satisfying that |8| > 1 and that B/|B| is not a root of unity.
For almost every eigenvector y for B, there exists a semi-conjugate affine i.e.m. with slope
vector exp(—Re(y)) exhibiting wandering intervals.

The fact that Theorem A is valid for almost every eigenvector for 8 when considering
the cubic Arnoux—Yoccoz i.e.m. comes from the simplicity of the eigenvalue 8 in this case.

The article is organized as follows. In §2, we outline the general strategy introduced
in [CGY7] that will be used to prove the main theorem. In §3, we present some basic
properties and definitions concerning a self-similar i.e.m. In §4, the notion of a minimal
sequence is presented. In §5, the fractals associated with S and the concept of extreme
points are defined. In §6, the unique representation property is introduced. In §7, we
restate and prove the main theorems. In §8, we prove that the cubic Arnoux—Yoccoz i.e.m.
satisfies the unique representation property and thus that the main theorem can be applied
to it.

2. Strategy

Let T : [0, 1) — [0, 1) be a self-similar i.e.m. with continuity intervals (I,; a € o). Our
goal is to prove that, under the hypotheses of Theorem A, there exists an affine i.e.m.
f 110, 1) — [0, 1) with wandering intervals that is semi-conjugate with T or, equivalently,
is a topological extension of 7.

In order to achieve this, we will follow the strategy devised by Camelier and Gutiérrez
in [CGY7] that was used by Cobo in [Cob02] and by Bressaud, Hubert and Maass in
[BHM10]: that is, we search for a Borel probability measure p with atoms on [0, 1) that
assigns positive measure to every open interval with the following property. For each
a € d, there exists a positive real £, such that

(T (J)) = Lap(J) 6]

for every Borel set J C I,. By following the proof of Lemma 3.6 of [CG97] and using
such a measure, one constructs an affine i.e.m. that is semi-conjugate with 7 and has a
wandering interval. Indeed, assume that p satisfies the aforementioned properties. Let
g:[0, 1) — [0, 1) be defined by g(¢) = ([0, #)) and g(0) = 0. We know that g is strictly
increasing, since w is positive on open intervals. It is also right-continuous. Therefore,
G =10, 1)\ g([0, 1)) is a union of countably many intervals of the form [f, #;). Define
the map 4 :[0, 1) — [0, 1) by A =g_1 on [0, 1)\ G and h(¢) =g_1(t1) if t € [19, 11),
where [fy, #1) is a maximal interval in G. We know that /4 is right-continuous, non-
decreasing and surjective. Then we define f :[0, 1) — [0, 1) in the following way.
Ifrel0,1)\ G, we put f(t) = h=L o T o h(t). If [19, ;) is a maximal interval in G,
we define f to be linear and increasing between [fo, t;) and h~'(T o h([tg, 11))). A
straightforward computation shows that 7 o f =T o h and that f is an affine i.e.m. with
the desired slope vector.
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One way to construct such a measure is finding a sequence w € Qr, where Q7 is the
natural symbolic extension of T constructed from codings of itineraries of points by T
with respect to the continuity intervals (I,; a € o), a complex vector y € C*# and a number
© > 0 such that

tim inf S0 @) o and lim ing Re=n (@)
n—o00 n n—oo n

where y,, (@) =Yy ++* + Vo, and y_ (@) = —(Yo_, ++ -+ Vo_,) for n > 1. This

implies that K =, _, exp(—Re(y, (w))) < co. Thus, if w € Q7 is the coding by T of

t € [0, 1), then the measure u = (1/K) ZneZ exp(—Re(y, (@)))17n (s satisfies the desired

properties for the slope vector £ = (exp(—Re(y,)); a € A). This can be proved in an

analogous way to [BHM10, Lemma 22].

Otherwise, if w is not the coding by T of any point in [0, 1), then it is the coding by
T’ :[0, 1) — [0, 1) of some point in [0, 1), where T’ is equal to T up to some discontinuity
points. The strategy can be still applied to find f” : [0, 1) — [0, 1) and & : [0, 1) — [0, 1)
such that 1o f' =T’ o h, where h is continuous, surjective, non-decreasing and non-
injective. Let f be the right-continuous function that is equal to f’ up to a finite number
of points. Then f is an affine i.e.m. By right-continuity, 7 o f =T o h. Moreover, f
has wandering intervals since /4 (J) is a point for some interval J C [0, 1). Therefore, it is
enough to prove (2) for a sequence w in Q7. This last fact can also be proved using the
classical construction of Keane in [Kea75].

0, 2

3. Background and preliminaries

3.1. The i.e.m. and the affine i.,eem. A bijective map T : [0, 1) — [0, 1) is said to be
an i.e.m. if there exists a finite partition (/;; a € o) of [0, 1) made of intervals such that
T({)=t+ 4, foreacht €1, and a € o. Clearly, T is a piecewise isometry of the unit
interval exchanging the intervals (I,; a € ). The vector § = (8,; a € ) is called the
translation vector of T. Ani.e.m. T is determined by the following combinatorial data:
that is, a length vector . = (A4; a € d) of positive entries corresponding to the length of
each interval /, and a pair of bijections g, 1 : {1, ..., |d|} = o encoding the order of
the intervals (/,; a € o) before and after the transformation.

Aniem. T is said to be self-similar if there exists 0 < a < 1 such that the map 71 :
[0, @) — [0, &) of first return by T to the interval [0, «) is, up to rescaling, equal to 7.
These maps are called renormalizable in [CG97]. In [LPVO07], they are called scale-
invariant and the term self-similar is used for maps such that the induced map on some
interval is, up to rescaling and rotation, the same map 7. Here, for convenience, we keep
the notation used in [CG97] and used implicitly in [BHM10].

For each a € o, we define the interval I,gl) = al, and denote by R the renormalization
matrix givenby R, p =|{0 <k <r, — 1; Tk(llgl)) C 1,}|, where rp, is the first-return time
of IV 10 [0, ).

Given an i.e.m., the Rauzy—Veech renormalization algorithm produces a new i.e.m. by
considering the first-return map on a specific interval and rescaling the domain to [0, 1).
A Rauzy class consists of the possible combinatorics for the starting and ending position
of (I)qeq that can be reached from a fixed permutation by applying the Rauzy—Veech
algorithm (for details, see [Via06]). As explained later, cycles on Rauzy classes provide
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a natural way to construct a self-similar i.e.m. Nevertheless, we will not assume that the
self-similar i.e.m. comes from this construction, unless otherwise stated.

A self-similar i.e.m. is always uniquely ergodic and therefore minimal (see [Vee78]).
Recall that 7 is minimal if any point in [0, 1) has a dense orbit. For more details on a
minimal i.e.m., see [Kea75, Via06].

An affine i.em. f:[0, 1) — [0, 1) is a bijective, piecewise affine map with positive
slopes. If (J;; a € o) are the continuity intervals of f, we say that £ = ({,; a € d) is its
slope vector, where £, > 0 is the slope of f restricted to J,: f(t) = £,t + d, for every
t € J, and for some translation vector d = (d,; a € o). Clearly, an i.e.m. is an affine
i.e.m. with slope vector £ = (1, ..., 1).

We are interested in affine i.e.m. extensions of an i.e.m. 7" with wandering intervals:
that is, an affine i.e.m. f with wandering intervals such that there exists a continuous,
surjective, non-decreasing and non-injective map & : [0, 1) — [0, 1) satisfying ho f =
T o h. As mentioned in the introduction, the existence of such extensions has already
been studied in [CG97, Cob02, BHM10, BBH14, MMY10].

3.2. Substitution subshifts and prefix—suffix decomposition. ~We refer to [Que87] and
[Fog02] and the references therein for the general theory of substitutions.

Let o be a finite set or alphabet. A word is a finite string of symbols in of, namely,
w=wp...wny—1, Where |w| = m is called the length of w. The empty word ¢ is defined
as the word of length zero. The set of all words in & is denoted by s4* and the set of words
of positive length is denoted by ™+ = o* \ {¢}.

We will need to consider words indexed by integers. We will write such a word
as wW=w_,...w_1 - W ...w,, where m, n are non-negative integers and the dot
separates negative and non-negative coordinates. The set of one-sided infinite sequences
® = (Wm)m>0 in A is denoted by N, Analogously, s1Z denotes the set of two-sided infinite
sequences @ = (W) mez.

A substitution is a map o : sl — g, It naturally extends to sit, s and A% by
concatenation. For w = (w;;)mez € AZ, the extension is given by

ow)=...0(w_2)o(w_1) - o(wy)o(wy) ...,

where the central dot separates the negative and non-negative coordinates of o (w). A
further natural convention is that o (g) = €.

Let M? be the matrix with indices in of such that M fl’ » 18 the number of times the letter
b appears in o (a) for any a, b € 9. The substitution is said to be primitive if there exists an
integer n > 1 such that, for any a € d, 0" (a) contains every letter of 9f, where " denotes
n consecutive iterations of o.

Let Q, C AZ be the subshift defined from o: that is, w € €2, if and only if any subword
of w is a subword of ¢” (a) for some integer n > 0 and a € of. We call Q, the substitution
subshift associated with o. This subshift is minimal whenever o is primitive.

Assume that o is primitive. By the recognizability property (see [Mos92]), given a
point @ € Q, there exists a unique sequence (Pum, Cm, Sm)m>0 € (A* x o X &4*)N such
that, for each integer m > 0, o (¢;y+1) = PmCmSm and

o3 (p3)a i (p)ot (p)po - cosoo  (s1)a P (s2)03(s3) . .
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is the central part of w, where the dot separates negative and non-negative coordinates. We
remark that the p,, (respectively, s,,) are in the finite subset of oi* containing all prefixes
(respectively, suffixes) of o (a) for all a in . This sequence is called the prefix—suffix
decomposition of w (for more details, see, for instance, [CSO01]).

If only finitely many suffixes s,, are non-empty, then there exist a € of and non-negative
integers n and ¢ such that

®[0,00) = 0500 (s1) . .. 0" (sp) mli_)moo o™ (a).

Analogously, if only finitely many p, are non-empty, then there exist a € 9 and non-
negative integers n and ¢ such that

W(co—11= lim_ 6™ (@)o" (pn) ... (p1)po.

The recognizability property also implies that Q, =J;,_, S~ (0 (£2)) for some
positive integer n, where S : 1% — d? is the left shift map.

3.3. Symbolic coding of a self-similar i.eem. Let T be a self-similar i.e.m. and let
(I;; a € d) be its associated intervals. Recall that, under the self-similar condition, T is
minimal. Given ¢ € [0, 1), we construct a symbolic sequence w = (W) mez € AZ, where
wy, = aifand only if T™(¢) € 1,. The sequence w is called the itinerary of t. Let Q7 C AZ
be the closure of the set of sequences constructed in this way for every ¢ € [0, 1). Clearly,
the sequence associated with 7'(¢) corresponds to S(w), where S : AZ — A% is the left
shift map. Moreover, it is classical that there exists a continuous and surjective map
mr : Qr — [0, 1) such that T o rr = 7 o S. The map 7 is invertible up to a countable
set of points corresponding to the orbits of discontinuities of 7. Since T is self-similar,
the restriction of § to Q7 is minimal and Q27 is a substitutive subshift associated with
a substitution o : sd — AT: that is, Q7 = Q, for some substitution o. The substitution
is constructed in the following way: o (a) = wo . . . w,,—1 if and only if 7" (Lﬁ”) cly,
forall0 <m <r, — 1 and a € sf. Then M° = R' is the transpose of the renormalization
matrix associated with T (for details, see [CG9I7]).

4. Minimal sequences associated with a self-similar i.e.m.

We fix a self-similar i.e.m. T that is self-induced on the interval [0, o) with 0 < « < 1.
Let M = R' be the matrix of its associated substitution o and let 8 € C be an eigenvalue
of M with |8| > 1 and such that 8/|8] is not a root of unity. We fix an eigenvector y for 8
for the rest of the section.

Definition 4.1. Forw =wq ... wy—1 € A*, weset y(w) = yy, + -+ Vuw,_,-

It is easy to see that, for any integer n > 0,

y(@"(w)) ="y (w). €)]
For a sequence w = (0 )mez € Q1, We define yp(w) =0, v, (w) =y (g . . . w,—1) for
n>1land y,(w) =—y(wy ...w_1) forn < —1.

Definition 4.2. A sequence w € Q7 is a minimal sequence for the vector y if

Re(yn(w)) >0 foralln € Z.
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Our purpose is to prove that minimal sequences for some eigenvector y satisfy equation
(2): that is, that there exists a number p > 0 such that
o Re(yn(w))
nP

Re(y_
>0 and lim infM >
n—o0 nP

lim in

n—od
This does not necessarily hold for an arbitrary eigenvector y.
The next lemma illustrates a property of minimal sequences for finite words.

0.

LEMMA 4.3. Let w € Q1 be a minimal sequence for y. Then, for all integers n < —1 and
m=>n,
Re(y(wy ... w-1)) <Re(y(wy ... on)).

Proof. If m < —1, then
Re(y (@ ... w-1)) —Re(y(@y ... o)) = —Re(Ynt1(@)) =0
by minimality of w. If m > 0, then
Re(y(@n ... om)) —Re(y(wp . .. 0-1)) =Re(ym(@)) =0

by minimality of w. O
LEMMA 4.4. There exist minimal sequences for y.

Proof. We know that Re(y) # 0. Indeed, if Re(y) =0, then y =i x, where x € R¥ is an
eigenvector associated to B: that is, M x = Bx. Since M is an integer matrix, M x € R%.
This contradicts the fact that 8 is not real.

Recall that Re(y) is orthogonal to A. Then there exist letters a, b € o with Re(y,;) <0
and Re(yp) > 0. Also, by minimality of 7', there exists an itinerary of the form awb with
w e dA*.

Let 8o = B/|8| and consider (nx)x>1 to be a sequence of integers such that Re(,Bg N>C
for every integer k and some constant C > 0. In this way, there is a decomposition

o (awb) = o™ (a)o" (W) "* (D) = Wy O—my+1 - . . O—1 © WOWI - . . Oy, »

with the dot marking the minimal sum with respect to y: that is,

Re(y (w-my - - - w-1)) S Re(Y (0 - - - ©m))

for every —myi <m <m). We claim that both sequences (mi)r=0 and (m))r=0 g0
to infinity when k — oco. For this, we only need to prove that both sequences
Re(y(w—m; ... @w—-1)) and Re(y(wp . .. wm;()) are unbounded. First, recall that, from

(3), ¥ (0" (a)) = B"ya = |B" By  va and y (0" (b)) = |BI™ By" v. Since the sequence
(Re(ﬁg" ))k>1 is positive and bounded from below, the choice of a and b implies that
Re(y (6™ (a))) = —oc0 and Re(y (o™ (b)) — oo.
But, from the definition of the decomposition,
Re(y (0" (a))) = Re(y (@m - .. @-1)) and Re(y ("™ (b)) <Re(y(wp . ..wu)).
Thus, the claim follows.
By taking a subsequence, one can assume that w_,,, @ _p; 41 ... 0_1 - ooy ... Oy

converges to a sequence w € 9%, Since awb is a subword of a point in Q7 and o (1) €
Qr, we obtain that w € Q7. Moreover, by construction, Re(y, (w)) > 0 for every n € Z,
which proves that w € Q7 is a minimal sequence for y. O
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5. Fractals associated with a self-similar i.e.m.
We continue with the notation of the previous section. So 8 € C is an eigenvalue of M
with |8| > 1 such that 8g = B/|8] is not a root of unity. Along this section y is a fixed
eigenvector of M for 8.

For a € A, set

Sa ={(Pm, cm» SmI)m=1; 0(a) = prc1sy and 6 (¢) = Pm+1Cm+1Sm+1 for allm > 1}.

For x € §,, write x = (p;,,, ¢3,, S )m>1 and define functions %4, %4 (n) . : S, — Cforeach
a € 9 and integer n > 1 by

2a(0) =Y B"y(py) and %)= By ()

m>1 m=1

Clearly, the previous functions and the notation below depend on y. To simplify, we
will not include y in the notation unless it becomes necessary.

Definition 5.1. The fractal associated with a € d is the set §, = {x4(x); x € §,}. We
also define S(n) {%(n) (x); x € §;}. We say that x € S, is a representation of 7 € §, if
7 =%4(x).

Let a € 9. From the definition of §,, it is easy to see that, for any x € S;, 0" (a) =

a”_l(p’l‘) RN 7 ATepR A "_l(sf) for any integer n > 1. Furthermore, §, = Un>1 S(").
Indeed, let x € §; and n > 1. We can ‘truncate’ x in the following way. Let x|, be the
sequence defined by (pfnl", cfn"’, sm"’) = (p},, ¢ S;y) forevery 1 <m < n. For each m >
n + 1, we proceed inductively by defining ( pﬂ”, cn'” sml") = (e, cf,ll”, sml”) in a way such

X|n

that o(cf;l") = chrlsmlJrl It is easy to see that x|, € S, and that x,(x|,) = x(")(x) SO

(") C 3§, and the claim follows. In a similar way, we can construct a point x € §; such
that p;, = € for every m > 1. Clearly, x,(x) =0, so 0 € §,. Moreover, §, # {0}. In fact,
by primitivity of o and the fact that y # 0, it is easy to see that, for some integer n > 1,
there exists a prefix w of 0" (a) that satisfies y (w) % 0. We can then choose x € S, such
that w = a"’l(pf) ... p;. Therefore

2 (x) = Zﬂ "y () = 5 Zﬂ" "y (py) = — Z y(©@" " (p)

m=1

’Bn
ﬂm ")) - .pz)—ﬁy(wnéo )

Finally, consider x € 8, such that s;, = ¢ for each integer m > 1, which can be defined
inductively, as before. We obtain that o (a) = "~ !( Py) .. pyc;, for each integer n > 1,
so0 a similar computation to (4) shows that x,(x) =y, € §a-

An elementary computation yields that §, is a particular case of a fractal built by
projecting stepped lines to an expanding plane, as defined in [ABB11], and it is not
necessarily a Rauzy fractal. Thus, the fractal §, is a compact and path-connected subset
of the plane. In addition, in [ABB11], the authors study the fractals associated with the
cubic Arnoux—Yoccoz i.e.m., proving that they have non-empty interior and that they are
somehow related to the so-called tribonnacci fractal. In §8, we will find a parametrization
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S

FIGURE 1. The dot indicates an extreme point of one Arnoux—Yoccoz fractal in the direction of the line.

of the boundary of the fractal associated with the cubic Arnoux—Yoccoz map. This map
will serve as an example to illustrate our main result and the techniques developed along
the article. Although this i.e.m. is not self-similar in the sense we are following here (see
§3), Theorem A can be still applied by making some slight modifications.

We are interested in the extreme points of the defined fractals along directions.

Definition 5.2. For € S! and an integer n > 1, define
va(t) = min Re(rz) and v (r) = min Re(rz).
2€8a Zegan

We call E,(t) = {z € §4; Re(rz) = v, (1)} the set of extreme points of §, for the direction
7, as shown by Figure 1. Clearly, v,(t) < vt(l")(r) < 0 since &(l") CSq.and0 e Sfln).

LEMMA 5.3. The function v, : S' — R is continuous for every a € d.

Proof. Let (t,)s>1 be a sequence in S! that converges to t. First, assume by
contradiction that ¥ = lim inf,,_, o v4(74) < v4(7). Let (nx)k>1 be a sequence such that
limy s o0 V4 (Tn, ) = u. Let z,,, € §, such that Re(t,, z2,,) = va(7y,). Since §, is compact,
we can assume that limy_, o0 24, =z € §4. We know that limy_, o Re(7,,2,,) = Re(z2),
so Re(tz) = u < v,(t), which is a contradiction. Now, let z € §, such that Re(rz) =
va (7). Clearly, v, (t,) < Re(t,z) and therefore lim sup,,_, o, V4 (1) < v4(7). So
lim sup v, (7,) < v,(7) <liminf v,(7,),
n—00 n—0o0

which shows that lim,, _, o0 V4 (T;) = v (7). O

5.1. Basic properties of extreme points.  We will now present some important properties
of extreme points that will be used to prove the main theorem. We start with a technical
definition.

Definition 5.4. Let w € of* be an itinerary by T. A prefix w’ of w is said to be a minimal
prefix for w and y if
Re(y (w)) = min{Re(y (w")); w” is a prefix of w}.

LEMMA 5.5. Let n > 1 be an integer, let a € d and let T € Sl Let w be a minimal
prefix for o"(a) and the vector ty. Let x €8, be any sequence that satisfies w =

" N(pY)...o(p*_)p}. Then vfl”)(ﬁgr) = Re(ﬁgt%fln)(x)).
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Proof. Take y = (pm, Cm» Sm)m=1 €Sq and let w' ="' (p1)...0(pp_1)pn. By
hypothesis, Re(ty (w)) < Re(ry (w’)). By using (3),

yw)=Y_ By () =" By (p) = B"={ ().

m=1 m=1

Therefore, multiplying by t, taking the real part and multiplying by |8]|™",
Re(fy 24" (x)) = |B™" Re(ty (w))
<817 Re(ry (w) = Re(Byr(” (),

where, in the last equality, we have used that the computation for w’ is analogous to the
one developed for w just above. Since y is arbitrary, the result follows. O

LEMMA 5.6. (Continuation property) Let a € ol and T € S'. If x € S, satisfies x,(x) €
E, (1), then Xl Sx)) e ECT (ﬂalt), where S is the left shift map. Moreover,

Re(tx4(x)) =Re(xB~y (p})) + 1B vex (B ' ).
Similarly, if x € 8§, satisfies %,(x) € E,gn)(r) for an integer n > 1, then Zet Sx)) €
Ec(ff_l)(,BO_lr) and
1

Re(v” (1)) =Re(ep~"y (p]) + 181705~V (85 ).

Proof. Let x €8, as in the hypothesis and assume that Xt (S(x)) ¢ EC)]r By 11).
Then there exists y € S+ such that Re(ﬂo_lrxcf (y)) < Re(,Bo_lrxcf (S(x))). Clearly,
(pi.cy.s7)y €8,4. Therefore, from the identities %, (x) = ﬂ_l)/(pf) + ,B_IZC.T(S(x))
and x4 ((p}, cf, sP¥) = B~y (py) + B~ "% (), we deduce that

Re(tx((p1, 1, 57)y)) < Re(rx,4(x)),

which contradicts the fact that x is an extreme point in E, (7).
The equality

Re(tx4(x)) =Re(zB ™'y (p})) + 181 ver (By ' 7)

follows directly from the fact that Xt (Sx)) € ECT By ! 7). The rest of the proof follows
analogously. O

LEMMA 5.7. (Exponential approximation) Let a € sl and v €S'. For all n> 1,
[0 (1) — va(1)] < C|BI™", where C = max{—v,(t); be o, T € S'} < 0.
Proof. Letx € §; with x,(x) € E,(t). Then
va () =Re(t24(x)) < v (r) < Re(rx{" (x)).
Therefore

|v3">(z)—va(r)|=v§")(r)—va(r>s—Re<f > ﬂmV(P”)

m>n+1
= —|B1 " vex (By "),

where, in the last equality, we used the continuation property of Lemma 5.6. O
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LEMMA 5.8. For any a € d, eventually periodic elements of S, do not produce extreme
points in §g.

Proof. Let x be an eventually periodic element of §,. Then there exist non-negative
integers ng and g such that, forevery k > 0and 1 <m <gq,

X X x _
(pn0+kq+m’ Crotkg+m> sno+kq+m) = (Pm> Cm» Sm)-

Assume that x,(x) is an extreme point for the direction 7 € S'. By definition and
periodicity, for every k > 1,

Re(tz4(x))
no+kq .
=Re<r > ﬂ—my<p;;>> + 170k Re<:30 R Zﬂ"y<1’ﬁo+kq+j>)
m=1 jzl1

no+kg q
=Re<r > ﬂ""y(p,’i,)>+ || no—ka Re(ﬁo‘ ke N gy ﬂ""y(pm>).
m=1

m=1 j>0

Define 2= 3" 8777 35,y B~"¥ (pm)- Then

no+kq

Re(ma(x»:Re(r > ﬂ""y(p;z)) + 181707k Re(y ™M 12).

m=1

By Lemma 5.6, Re(ﬁo_"o_quz) =V
no

Re(,BO_nO_quz) <0 for any k> 0. Since (ﬂo_kq)kzo is dense in S', we deduce that
z =0 and, consequently, v, (B, " ~K41) = 0 for every k > 0. Finally, by continuity of v,
(Lemma 5.3) and density, Ve, (§) =0forevery & € S!. Since Sfcq is not reduced to {0}, we

get a contradiction. O

By " 1) = ve, (B, " M), Thus

We remark that, from the previous lemma, one deduces that v,(t) < O for any a € o
and t € S!. Indeed, we know that v,(z) < 0, but if v,(t) = 0, then we would have that
0 € §, is an extreme point, which contradicts the previous lemma.

5.2. The set ¥ and extreme points.

Definition 5.9. Leta € d and (p, ¢, s) € d* x d x o* such that o (@) = pcs. We denote
by Sa,(p,c,s) the set of sequences x € §, starting with x; = (p, c, 5). We define

Sapes) =12a(X); X €Su(pesy} =B (P) +Te) C Fa

For a direction 7 eS!, we define Va,(p,e,s)(T) =min{Re(72); z € §u,(p,c,s)} and
Ea;(ILC,S)(f) =E4(7)N Sa,(p,c,s)'

It is easy to see that §, = (J Fa,(p,c,s) and that v, (7) = min{vy,(p,c,5)(T)}, where the
union and the minimum are taken over the (p, ¢, s) € d x 4* x o such that o (a) = pcs.
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FIGURE 2. In the cubic Arnoux—Yoccoz map we show directions in Wy.

Definition 5.10. For each a € 9, we define ¥, as the set of directions t € S! for
which there exist distinct decompositions o (a) = pcs = pcs in od* x o x o4* with
Ea,(p’c’s)(f) #* Ea,(ﬁ’g’g)(‘t) and v, (1) = Va,(p,c,s)(t) = VYa,(j,¢,5) (7): that is, W, is the set
of directions for which there exist distinct extreme points in §, belonging to distinct
subfractals §q,(p,c,s) and §q,(5,2,5) (see Figure 2). Put W = Uaes& v,.

LEMMA 5.11. For each a € d, the set VY, is at most countable.

Proof. Let a € dd. We will prove that the set ¥/, = {r € S'; |Eq ()| = 2}, which clearly
contains W, is at most countable.
Let ZC C and 7 €S'. We define the set of extreme points of Z for the direction
T as Ez(t) ={z € Z; Re(rz) = min{Re(t7'); 7/ € Z}}. Similarly, we define the set of
directions in S' for which there exist at least two distinct extreme points as v (1) =
{r € S!; |EZ(1)| = 2}. We denote the convex hull of Z by conv(Z).
We know that E,(t) = Ez, (1), ¥, (1) = “IJ/&, (1), Econv(g,)(t) = conv(E, (7)) and that
éonv(ga) = W/, since |E4(7)| > 2 if and only if |conv(E,(7))| > 2.
Since conv(§,) is convex and compact, it is either a point, a line segment or

v

homeomorphic to a closed disk. Since, in the first two cases, \I/écvnv(&a) is finite, we
can assume that the third case holds. Let ® :S! — dconv(F,) be an homeomorphism
between S! and the boundary of conv(F,). We know that t € W/ if and only if the map
Re(t®) : S' — R is constant on an open interval of S'. Since such open intervals must be
disjoint for distinct 7 and a family of disjoint open subsets of S! is at most countable, we
obtain that W/, is at most countable. O

5.3. Minimal sequences for y gamma and limit extreme points. Points in §, may be
constructed by ‘reversing’ the prefix—suffix decomposition of elements in 7. Moreover,
minimal sequences in Q7 for y produce, by reversing the prefix—suffix decomposition,
extreme points for any direction. We will make this statement precise in this section.
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Consider a minimal sequence w € Qr for y and let (p, ¢, Sm)m>1 be its prefix—
suffix decomposition. Fix some 7 € S! and recall that o = 8/|8] is not a root of unity.
Let (nx)r>1 be an increasing sequence of integers such that ,Bg" — teSland Cyy=acd
for every k > 1. For each k > 1, consider a point x,, € S, starting with

(Prg—1> Cng—15 Sng—1) (Png—2Cng—25 Sug—2) - - - (Po, €0, $0)

and such that pﬁ{"‘ = ¢ for any m > ny + 1. This is a sequence obtained by reversing the
indices of finitely many elements of the prefix—suffix decomposition of w. Assume that
(X )k>1 converges to xoo € S;. We will show that x is the representation of an extreme
point in §, for the direction 7. In fact, we can prove a little more. For this, we need to
introduce the following concept.

Definition 5.12. A limit extreme point is an extreme point that has a representation x € §,
with the following property. For each j > 1, there exists y; € S, for some a; € 9 such
that: _
(i) y; is arepresentation of an extreme point for the direction ,36 T;
(i) c;j =a; and
(i) x=587 (yj), where S is the left shift map on .y Sa-

The set of limit extreme points will be denoted by E (7).

LEMMA 5.13. Any limit x» € S,, constructed as above, is a representation of a limit
extreme point in E} (7).

Proof. Assume that the sequence constructed as before (x,, )r>1 converges to xo € Sq.
For each integer j > 0, let yék be the sequence in é’cnk ,; starting with

(Pug+j—15 Crgtj—1» Sng+j—1) (Prg+j—2Cng+j—25 Sng+j—2) - - - (PO, €0, $0)»

and such that p,}jk = ¢ for every m > ny + j + 1: thatis, y,{k is the sequence obtained by
reversing the first ny + j elements of the prefix—suffix decomposition (p;,, ¢, Sm)m=0 of
. Clearly, S/ (y,{k) = xy,. By taking a subsequence, we may assume that ¢, 4 ; = a; for
every k > 1 and that y,{k converges to y; when k — o0o. Clearly, cfj =aand §/ (y;) = Xo.

We claim that both x, and y; are representations of extreme pbints for the letters a and
aj and the directions T and ,Bér, respectively. Indeed, since w is a minimal sequence
for y, by Lemma 4.3 x,, satisfies the hypotheses of Lemma 5.5 (taking t =1 in the
lemma), so v\ (B1) = Re(Bi x4 (xn;)). Thus, for every x € 8y, Re(Br sq(xny)) <
Re(ﬂg"xfln") (x)). Finally, taking the limit when k — 00, Re(t%4(x00)) < Re(rx,(x)) for
any x € 84, SO X 1S an extreme point in E,(t). The proof for y; is similar. O

The previous lemma gives us the following important corollary.

COROLLARY 5.14. For every T € S', there exists a € A such that E} (1) is non-empty.
Moreover, if E} () is non-empty for some a € A and © € S, then EX(t) = E4 (7).

Proof. Take a minimal sequence w € Q7 and 7 € S'. By reversing the prefix—suffix
decomposition of w, as above, on an appropriate sequence (7x)x>1 such that ,86”‘ — T, we
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obtain by previous lemma that E(7) # @ for some a € . Now, if E}(t) is non-empty
forsomea e dandt € S}, letx € S, bea representation of a limit extreme point in E} (1),
forevery j > llet y; € Sy; be the sequence from the definition of limit extreme point and
let x’ € 8, be the representation of some extreme point in E,(t). For every j > 1, we
define y; € 8, to coincide with y; in its first j coordinates and with x” in the rest of its
coordinates. A direct computation shows that y} € §q; and that it is the representation of

/

. ' ; ¥
an extreme point in Eg, (,Bé 7) such that S/ (y}) =x" and cj’ =a. O

Even though, for every a € of and T € S!, E, () is non-empty, in general, E*(t) may
be empty. Indeed, the Arnoux—Yoccoz fractals contain extreme points that are not limit
extreme points.

Another interesting consequence of Lemma 5.13 is the following lemma.

LEMMA 5.15. If w € Qr has an eventually periodic prefix—suffix decomposition, then it
cannot be minimal for any eigenvector y associated with B.

Proof. 1f it were, then, using the reversing procedure described above Lemma 5.13, we
could construct a limit extreme point with periodic representation. This contradicts Lemma
5.8. O

6. Unique representation property

We continue with the notation of the previous sections. So 7T is a self-similar i.e.m., which
is self-induced on the interval [0, ), and B is an eigenvalue of M with |B| > 1 such that
B/1B] is not a root of unity. Consider an eigenvector y of M associated to 8. Recall that
x € 8, is a representation of z € §, if z =%,(x).

Definition 6.1. We say that T satisfies the unique representation property (u.r.p.) for g
and the eigenvector y if every extreme point of the associated fractals has a unique
representation. We say that T satisfies the weak unique representation property (weak
u.r.p.) for B and the eigenvector y if every limit extreme point of the associated fractals
has a unique representation.

By Corollary 5.14, if T satisfies the weak u.r.p. for 8 and the eigenvector y, then, for all
a € dland t € S! such that E *(7) in non-empty, every extreme point of §, for the direction
7 has a unique representation. Indeed, in this case, E,(t) = E} (7). In particular, if o (a) =
pes = pcs for distinct decompositions in o* x o x d*, then Eq (p.c.5)(T) N Eq (5,65 (T)
is empty.

Before continuing, we need to comment on the dependence of the previous concepts
on the eigenvector y. Until now, we have fixed an eigenvector y associated with g and
defined the fractal set §,, its extreme and limit extreme points for a given direction E,(7)
and E (), and the directions with extreme points in distinct subfractals W,. These objects
clearly depend on the choice of y. We will temporarily make this dependence explicit by
writing §4(y), Eq(y, T), EX(y, t) and W, (y), respectively. Our main concern is to see
how these concepts vary in the one-dimensional space generated by y. The following
relations follow easily from definitions.
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LEMMA 6.2. Let y, zy € C* be eigenvectors associated with B, with z € C\ {0}. Let
aecdandt €S, Then:

D) Sa(zy) =2z8a(y);

(i) Ea(zy, v) =zEq(y, 207), Ej(zy, ©) = 2E;(y, z07); and

(i) Wa(zy) =25 Waly),

where zo = z/|z|.

From this lemma, we deduce that if the (weak) u.r.p. holds for an eigenvector y
associated to B, then it holds for zy for all z € C\ {0}. If the eigenvalue 8 is simple,
then this condition is independent of the choice of the eigenvector, so, in this case, we can
speak of the (weak) u.r.p. for 8. We believe that there are some natural algebraic conditions
that imply this fact.

The weak u.r.p. is, in some sense, analogous to the algebraic condition considered in the
case when S is real. In fact, restating our definitions for the real case, [BHM10, Lemma
19] is equivalent to the weak u.r.p.

We will prove, in §8, that the cubic Arnoux—Yoccoz map satisfies the u.r.p. for some
simple non-real eigenvalue S.

7. Proof of the main theorem
We restate our main theorem for completeness. We continue with the notation of the three
previous sections.

THEOREM A. Let T be a self-similar i.e.m. Assume that M has an eigenvalue B with
|B| > 1 such that B/|B| is not a root of unity, and that there exists an eigenvector I for 8
such that T has the u.r.p. for B and I". Then, for almost every y in the complex subspace
generated by I', exp(—Re(y)) can be realized as the slope vector of an affine i.e.m. that is
semi-conjugate with T and has wandering intervals.

Of course, an affine i.e.m. with wandering intervals cannot be conjugate with 7, so the
theorem asserts the existence of an affine i.e.m. that is strictly semi-conjugate with 7. We
remark that each affine i.e.m. is uniquely ergodic, since T is.

The weak u.r.p. is sufficient to prove Theorem A. In fact, the proof of this theorem relies
completely on Lemma 7.8, which is also true under the weak u.r.p. as we point out at the
end of the proof.

The (weak) u.r.p. may seem technical and difficult to check for a specific map. In the
next section, we prove that this property is satisfied by the cubic Arnoux—Yoccoz i.e.m.
(A-Y i.e.m.).

As discussed in §2, using the general strategy of [CG97], the proof of Theorem A is a
consequence of the following more technical statement that we prove in the next section.

THEOREM 7.1. Under the same assumptions of Theorem A, there exists a number p >
0 such that, for almost all y in the complex subspace generated by T', every minimal
sequence w € Qr for y satisfies

¢ Re(n (@)

Re(y_
lim in 20 and liminf R @)
n— 00 nf n— 00 nP

0. (5)
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7.1.  Proof of Theorem 7.1.

7.1.1. Differentiability of v,. ~We start by describing some differentiability properties
of the map v, : S' — R.

LEMMA 7.2. Letac dd and T € S'.
V(¥ exp(if)) — va(t)

- _ +
Tim, t = —Im(ze} (),
1)) —
llr(r)l Ve (T eXP(lt)) Ve (T) _ —Im(re;(z')),
t—0—

where ej(t), e, (t) are the points of E,(t) such that z — Im(zz) is maximal and minimal,
respectively.

Proof. We will only prove the first equality, since the second one is analogous. Let z =
ej(r), 7t € E (T exp(it)) and write Tz =r exp(if) and tz, = ry exp(i6;) for r, r, > 0,
0, 6; € [0, 2mr). We will assume that 0 < ¢ < /2.

Since z = ej[(t) and z; € E, (t exp(it)), we know that v,(t) = Re(rz) =r cos(h),
va(7 exp(it)) = Re(t exp(it)z;) = ry cos(f; + 1) and — Im(ref (v)) = —r sin(¥). Thus,
we have to prove that

ricos® +1) —reos® _ o)

lim

t—0t t

Since z; € E, (T exp(it)),
r cos(f 4+ t) = Re(r exp(it)z) > Re(r exp(it)z;) =r; cos(6; +1).
Hence

0>r;cos(@; +1t) —rcos(f + 1)
= (r; cos(6;) — r cos(0)) cos(t) + (r sin(0) — r; sin(6;)) sin(t). (6)

Moreover, since z € E,(t), r cos(8) = Re(tz) < Re(rz;) = r; cos(6;). We conclude that
(r; cos(6;) — r cos(0)) cos(t) > 0 for ¢+ small enough. Therefore, from sin(¢) > 0 and
(6), we know that r sin(f) — r; sin(6;) cannot be positive. This proves that Im(tz) =
r sin(@) < r; sin(6;) = Im(tz;).

We claim that lim,_, o+ Im(7z;) = Im(7z). Indeed, fix a real > 0 and consider

u(t) = min{Re(t exp(it)z); 7’ € Fu, Im(rz") > Im(tz) + n}.

Since z is in E,(r) and is chosen with the maximal possible value for Im(tz),
Re(tz) <u(0). The map u : [0, 7/2) — R is continuous, so there exists #y > 0 such that
Re(t exp(it)z) < Re(t exp(ir)z’) for every 0 <t <1y and 7’ € §, such that Im(zz) >
Im(tz) + n. Therefore, if 0 <t < #y and Im(rz,) > Im(rz) + n, then Re(r exp(it)z) <
Re(t exp(it)z;), which contradicts the fact that z; € E,(t exp(it)). This shows that
Im(rz,) <Im(rz) + n for 0 <t < 1y, so we get the desired result by taking n — 0.

The previous claim and (6) imply that

6 +1) — 0+t in(t
fim 168G+ —reosO@ D L ez — Im(ray) S =
t—0t t t—0t

0.
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Finally, we write

Va (T exp(it)) — va(t)  rycos(® +1) —rcos(d +1) . rcos(@ +t) —r cos(0)
t B t t

’

and the result follows by taking ¢ — 0. m

7.1.2. Good directions and good eigenvectors. In order to prove the convergences in
(5), we need to control the velocity at which B approaches a number 7 in S'. In what
follows, [t — 7] is the natural distance between 7 and 7’ in S!. We fix an eigenvector I'
of M for . We will be interested in the complex subspace generated by I'.

Definition 7.3. A direction & € S! is good for T if, for every constant A > 1 and every
T e V() =,y Ya(), liminf, o A"[z — Bi&] > 0.

As shown by the next lemma, this property is generic.

LEMMA 7.4. Almost every direction & € S! is good for T.

Proof. Let A> 1and r € S'. We will first prove that
K(A, 1) = {g e S'; lim inf A" [t — BR&] > 0}
n—od

has full Lebesgue measure. Consider the sets B, = {£€ € S'; [t — B3] < A"} for an
integer n > 0. By the Borel-Cantelli lemma, the Lebesgue measure of lim sup,_, o, Bx
is zero: that is, the set of £ which belong to infinitely many of the B, has Lebesgue
measure zero. This implies that, for a typical & € S!, there exists some N > 1 such that
A"t — ,Bgé]] > 1if n > N. This proves the claim.

Now, since, by Lemma 5.11, W(I") is at most countable, the intersection K (A) =
MNeewry K(A,7) also has full Lebesgue measure. Finally, the intersection K =
(,>1 K (1 + 1/n) has full Lebesgue measure and it is easy to see that every element of K
is a_good direction. O

We can now define the eigenvectors for which our main result is valid.

Definition 7.5. An eigenvector y of M associated with B is a good eigenvector if, for every
A>landevery T € J,cq Wa(y), liminf, o A"z — B3] > 0.

If £ eS' is a good direction for ', then £I" is a good eigenvector by Lemma 6.2.
Therefore, by Lemma 7.4, we conclude the following lemma.

LEMMA 7.6. If T is an eigenvector of M for B, then almost every vector of the complex
subspace generated by T is good.

7.1.3. Convergence in Theorem 7.1. Assume the existence of an eigenvector I" for
such that 7' has the (weak) u.r.p. for 8 and I'. We show the convergence in (5) for the
set of good eigenvectors in the subspace generated by I, which has full measure by the
previous lemma. Fix a good eigenvector y. As discussed at the end of §6, T also has the
(weak) u.r.p. for 8 and y.
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9k = HT—Tk]]

[Va(p.c.s) (Tk) = Va(p.25) (Th)| ~ Dsin 6y, R

D

| O

FIGURE 3. Illustration of the proof of Lemma 7.7.

In the rest of the section, the sets §,, E,4, W, etc., are computed with respect to y.
The proof of the next lemma and proposition closes the proof of Theorem 7.1 and thus
of Theorem A, as explained in §2.

LEMMA 7.7. Let ae d and T € V,. Assume that (p,c,s), (p,c,s) are such that
Ea,(p,c,s) (t) and Ea,(ﬁ,ag)(f) are non-empty but Ea,(p,c,s) ()N Ea,(ﬁ’g,g)(‘[) = . Put

D =min{|z — 2'|; 2 € Eq,(p,c.5)(T), 2 € Eq (5,65 (D)}

We know that D > 0 and, if (tk)i>1 is a sequence in S! such thar tw — © when k — o0,
then

Lim inf [Va,(p,c,5)(Tk) — Va, (5,65 (Tk)]

> D.
k—00 [t — @] o

Proof. See Figure 3 for an insight into the proof, which is, in fact, a little technical.

The property D > 0 is a consequence of the fact that E, (5 ¢35 (t) and Ey (p,c,s5)(T) are
non-empty, disjoint and compact.

Let (xp)r=1, (y)r=1 be sequences in S, (p.c ) and Sy (5.¢,5), respectively, such that
Xk —> Xoo and y; — Yoo When k — oo for some sequences in Xoo € Sy, (p,c,s) and Yoo €
Sa’([;’g’g) and

Va,(p,e,s)(Tk) = Re(tuza (X)), Va,(p,e,5 (th) = Re(texa (Vi)

for all k > 1. We remark that x,(x;) and %,(yx) attain the minimum for the direction
74 and the subfractals Ty, (p,c,5) and §a,(5,¢,5), respectively, but not necessarily for §,, as
Figure 3 illustrates.

By continuity and the fact that E, (p.c 5 (7) and E, (5,65 (7) are non-empty by
hypotheses, %4 (x00) € Eq,(p,c,s)(T) and %4 (o) € Eq,(j,2,5 (t). Therefore

Va(7) =Re(t%4(Xo0)) = Re(7%4 (Yoo))- (7
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From the definition of D,
IIm(7 (24 (xo0) — %4 (Yoo))| = D. 3

Since xk — Xoo and yr — Yoo, there exists an increasing sequence (nk)k> 1 such

that (pm s ot Spi) = (P € sw™) and (pm ) Cm ) Sm ‘)= (pm ) Cm ) Sm ;°) for every
1 <m <ng. Without loss of generality, we may assume that ¢;f = ¢, =b and that
ek = cp = b forevery k > 1.

Let S be the left shift in |J,.y Ss.  Recall that, from the continuation
property in Lemma 5.6, if x € S, represents an extreme point for the direction ,
then S§”(x) € Scx represents an extreme point for the direction B;,"t, for every
integer m > 0. Consequently, vj(8, "“1) =Re(B, " Tk (S™ (x¢))) and vp(B, 1) =
Re (B, " t25(5" (xo0))) for every k > 1.

Therefore, we can write

Re(t%4 (X)) —Re(Tita (1)) = Re((t — t) (B~ ly (p{™) +- -+ B~ "y (Pp)))

+ 1817 (wp(By ™) — vb(By ")) 9)
Analogously,
Re(T%4(yoo)) — Re(tiza () =Re((r — w) (B~ v (p{™) + -+ By (pne*)))
+ 1B 7" (3 (By " T) — v5(By " w))- (10)

Thus, by taking (10)—(9), multiplying by [t — 7] ™' and using (7),

Va,(p,c.s) (Thk) — Va,(p,e,5) (Tk)

:Re( L (=) (yoo) — %fl"")(xoo)))
[t — ul

[t — @]
18] ,,k(vb(ﬁo r)—vb(ﬂo"krk)>
[t — ]
+ |ﬁ|nk(v5(ﬁo 1) —v(By "kfk)>, (11)
[t — ]

Since [B, "t — B, "] = [r — =], Lemma 7.2 implies that the quotients

b (By " T) — vp(By " ) and v By ") — vy (By i)
[t — w] [t — ]
remain bounded for every k > 1, so the last two terms in the previous equality go to zero
when k — oo. Now, if 7, t/ belong to S!, then

T—1

lim =
T'—>T [[‘L’ — ‘L'/]]
and, therefore,

([[Z ]]( 20 (y5) — 2 (o )))

converges to Re(it(x4(Yoo) — %4 (Xo0))) When k — oo, which is the imaginary part of
T(%4(Yoo) — %4 (X0)). Finally, when k — oo,
[Va,(p,c,s) (Tk) — Va, (5,5 (Tk)]
[t — ]
where, in the last inequality, we have used (8). O

— [Im(7 (%4 (X0) = %a (Vo)) | = D,
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PROPOSITION 7.8. Assume the hypotheses of Theorem A. Consider w € Qr, a minimal
sequence for y. Let n > 0 with || —n > 1 and let p =log(|B| — )/ log(e™! + 1) > 0.

Then

R Re(y.
liminf R0 g lim g R0 @)
n—o00 n n—00 nP

0. 12)

Proof. We will only prove the first inequality, since the other one is similar.
We denote the prefix—suffix decomposition of w by (ps, ¢, Se)m=0. Let us assume

m?*
that there exists an increasing sequence of positive integers (nx)x>1 such that
. Re w
lim 0@ _ (13)
k—o00 ny

Let (o, cmt, sm-)m=0 be the prefix—suffix decomposition of wy = S (w), where, as

usual, S is the left shift map on the corresponding subshift. We start by showing that
o must have infinitely many non-empty suffixes in its prefix—suffix decomposition Indeed,
assume by contradiction that s, ., = ¢ for some integer n9 > 0 and every m > 0. We will
show that (p, &, so)m=0 is eventually periodic, which contradicts Lemma 5.15. We
know that a(c;”0 m le) = p,‘;’o +mc;‘fo 4m for every m > 0. Then, for every m > 0, the value
of ¢’ ., determines a unique possible value for pj .\, and ¢ . By induction, it is
easy to see that (pg, ¢, Sy )m=n 18 periodic.

Let Ni be the first integer such that (p2, c2, s2)m=n, = (P> Cos Sm Im>N;- BY
taking a subsequence, we can assume that (Ny)x>1 is an increasing sequence of integers.
Moreover, we may assume that, for k > 1:

i = C%{ =a;

(i) (PR,—1> CNp—12 SN—1) = (P> €5 8);
(iii) (P%’,i_l, C%{(_lv S[a\;];_l) =(p, ¢, 3);
(iv) pcis a prefix of p; and

V) limgeo fF =7 €S

Since pc is a prefix of p,

Wk

aNk*I(pﬁi_l) Pyt =N PR ) pleo - o (14)
for every k > 1.

We will now proceed to reverse the indices of the prefix—suffix decompositions of w
and wy in order to obtain sequences in S,. Let (xy, )k>1 and (yn, )k>1 be the sequences in
S, obtained by reversing the coordinates of (p2, ¢, s©)u=0 and (P, Cm*s P’ Jm>0 Up
to the (N, — 1)th coordinate and such that p;Nk = p,lek = ¢ for each m > Ny, as detailed
at the beginning of §5.3. By the assumptions above, xy, € Sy, (p,c,s) and yn, € S, (5,2.5)
for every k > 1.

Without loss of generality, we will assume that x, converges to X0 € Sy, (p,c,s)» Which
is the representation of a limit extreme point in E(7) by Lemma 5.13. We will show that
any limit point of yy, in 8, (5,¢,5) is the representation of an extreme point in E,(t) and
therefore that v belongs to W, .

Applying y to (14), using the definitions of xy, , yn, and multiplying by |8|~, for
every k > 1,

Nk Ni
BoE D BTy () =By Y BTy (o) + 181 Ve, (@)
m=1 m=1
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By taking real parts and rearranging the previous expression,
N, _
Re(By* (xa(yn,) — %a (X)) = 1B~ Re(y, ().

Furthermore, Re(ﬂév"xa (xn)) < Re(ﬂév"xg(yNk)) by Lemma 5.5. Then

0 < Re(By* (xa (YN — %a(xn))) = |B17™ Re(y (). (15)

On the other hand, since wow . . . w,,—1 is a subword of oM (a) and |o Nk (a)| grows as
a Nk (recall that o' > 1 is the Perron-Frobenius eigenvalue of M), ny < (e~ 4 )™k
for sufficiently large k > 1, where > 0 was given in the statement of the proposition.
Therefore, by definition of p,

n =@ )TN = (Bl =N = g
From the assumption (13),

Jim (181 — ™" Re(y (@) = lim |17 Re(y, (@) =0.

In particular, from equation (15), we obtain that any limit point yso of yy, in 84 (5,25
is such that x,(ys) is an extreme point for the direction t = lim— oo ﬁév kova(t) =
Re(t%4(¥0)). Therefore t belongs to ¥,,.

Amplifying equation (15) by AN, where A = |B|/(18] — 1) € (1, |B]), we find that

0 < AM Re(B)* (xa(yv,) — %a(xn,))) = (18] — 1)~ Re(yn, (@)

for all sufficiently large k. Hence
klggo AN Re(ﬂév" (%a(yn,) — %a(xn))) =0. (16)
We know from Lemma 5.5 that

N| N| N| N,
i By = v L (Bo) = Re(By* xalin).

We also know that Re(,B(I)V F2a(yn)) = vél\g’g 5 (ﬂév *) and, therefore, that

Re(By* (ea(yy,) — %aling)) = v - o (B — o LBy = 0. (1)

On the other hand, since xoo € Sy (p,c,s) and yoo € Sy, (5,2,5) are representations of
extreme points for 7, the w.r.p. implies that £, (, ¢,5)(t) and E, (5,5 (7) are disjoint, so,
in particular, %, (Xo0) 7 %4 (Voo). We notice at this point that the weak u.r.p. is sufficient.
Indeed, the extreme points x,(Xo) and %4 (yoo) are also limit extreme points in E} (1),
so the weak u.r.p. implies that they are different. Also notice that, by Corollary 5.14,
Ey.(t) = E} (7).

Using Lemma 5.7, we conclude that, for each £ > 1,

Nj Nk Nj Nj Nk N; _
Ve 5 (B0 = V) o (BY™) = Vapes) (BY") = Vape.y (By*) — 2CIBIN (18)

for a constant C > 0 which does not depend on k.
Finally, by (17), (18) and Lemma 7.7, we conclude that

Re(BY (xa(ywy) — %a(xw))) = D[x — BA¥] — 2C1 B~

for infinitely many k& > 1. Since y is a good eigenvector for I" and T € V,, by definition,
lim infy_, oo AN [T — ﬁév’f]] = oo. This contradicts (16). O
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7.2. Proof of Theorem B. The theorem follows from Theorem A if we prove that g
is a simple eigenvalue of M and that 8/|8| is not a root of unity. These two facts can
proved if either A is Galois-conjugate with ! or if 8 is Galois-conjugate with o and the
self-similarity comes from Rauzy—Veech renormalizations: that is, if some iteration of the
Rauzy—Veech algorithm on T and the interval [0, ) returns to T (see [Via06] for details
about the Rauzy—Veech algorithm). This last condition is natural in the following sense.
Let  be a vertex on a Rauzy class and consider a cycle starting at 77 in which every letter
wins and loses at least once. Let R be the matrix of such a cycle. Then R is primitive and
a~ ! is its Perron—Frobenius eigenvalue. Also, RA =~ ! for some positive eigenvector
A whose coordinates add up to one. The i.e.m. with combinatorial data (i, A) is periodic
for the Rauzy—Veech algorithm. Thus this algorithm provides a simple way to construct a
self-similar i.e.m.

Let ¢ : Q(&) — Q(B) be the natural field isomorphism coming from the Galois-
conjugacy, where £ is either « or a~!. The following Lemma proves what we need.

LEMMA 7.9. Let B be an eigenvalue of M that is either Galois-conjugate with a ™' or is
Galois-conjugate with o and T is periodic for the Rauzy—Veech renormalization algorithm
on [0, ). Then B has algebraic and geometric multiplicity one. Moreover, if B is not real,
then B/|B| is not a root of unity.

Proof. If B is Galois-conjugate with « !, which is the Perron-Frobenius eigenvalue of M,
then it has multiplicity one. We will now prove that if it is Galois-conjugate with «, then it
also has multiplicity one when it is further assumed that T is periodic for the Rauzy—Veech
algorithm. We will use the classical results of Veech in [Vee84], which use this fact.
Recall that R = M' is the renormalization matrix coming from the Rauzy—Veech
induction. There exists a (possibly degenerate) antisymmetric integer matrix L™ such that

RIL"R=ML"R=L". (19)

Let H(w)=L"(C%) and N(mw) =ker L™. It is easy to check from (19) that H(x) is
invariant for M and that N (;r) is invariant for R. The matrix L7 is non-degenerate when
restricted to H (r) and, therefore, R|y () is symplectic. We will show that the eigenspaces
of o, o~ ! and B are contained in H (7).

By [Vee84, Lemma 5.6], R acts as a permutation on a basis of N (7). Therefore every
eigenvalue of R|y ;) has modulus one. Let V be the eigenspace of an eigenvalue z for R
with |z| # 1. From (19), it is easy to see that L™ (V) C H (ir) is contained in the eigenspace
of z~! for M and, since V N N () = {0}, that L™ (V) is the entire eigenspace of 7z~ ! for
M. Thus, the desired eigenspaces are contained in H (7).

Let p(¢) be the characteristic polynomial of M restricted to H (;r). We know that p(¢) =
' p(1/¢) by symplecticity. The Galois-conjugacy implies that 8 has the same algebraic
multiplicity of o. Since a~! is a simple root of p(¢), so is « by the equality p(r) =
t'# p(1/1). The first part of the lemma is therefore proved.

Now, assume by contradiction that 8 is Galois-conjugate to & (with £ =« or a™!)
and that 8" is real for some integer n. Since f is also an eigenvalue of M, which is
different from B, p" = B" has algebraic multiplicity two for M”. Moreover, £ and
B" are also Galois-conjugate. Indeed, if ¢(¢) is the minimal polynomial of £", then
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q(B)=qr(E™) =y (gE™) =0. The matrix M" is also primitive and corresponds
to the induced map of T on [0, @”). We can therefore replicate the proof of the first
part of the lemma for M" and conclude that 8" has algebraic multiplicity one, which is a
contradiction. O

8. The cubic Arnoux—Yoccoz map

In this section, we illustrate Theorem A in the cubic A-Y i.e.m. This map is self-similar in
the sense of [LPV08] but not in the sense of [CG97], which is the notion we are following
in Theorem A. However, it satisfies all the other hypotheses of the theorem. Although the
main theorem is written for a self-similar i.e.m. in the sense of [CG97], this precise notion
plays a role in a very specific part of the proof of the theorem, which is ensuring that the
symbolic system associated with the i.e.m. is substitutive. It is possible to prove this fact
for the specific case of the A-Y i.e.m.

In addition, it is proved in [LPVO08] that an induced system obtained from the A-Y
i.e.m. with respect to a precise interval is a self-similar i.e.m. in the sense of [CG97], but
the resulting substitution associated with the i.e.m. is unnecessarily complex to analyse.
Nevertheless, some technical but not difficult modifications on the study that we will
develop for the A-Y i.e.m. below allow us to prove that the induced system also satisfies
the hypotheses of Theorem A.

8.1. A-Y i.em. Let a be the unique real number such that o + a4+ «? =1 and
let Gy,;, be the map exchanging both halves of the interval [#, #;) while preserving
orientation: that is,

t+ (o +1)/2 telt, (fo+1)/2),
Gon®)=1t—(to+11)/2 tel(to+1)/2, 1),
t t ¢ [to, 11).

Then the A=Y i.e.m. is givenby T = Go,1 0 Go,a © Gy 142 © Gy 42, (se€ Figures 4 and
5 for clarity). Properties of T were extensively discussed in [ABB11]. In particular, it is
proved that the map T is equal, up to rescaling and rotation, to the map induced on the
interval [0, @) and, by considering an appropriate refinement of continuity intervals of T
into nine intervals, one may encode the relation of orbits by T for this partition and the
orbits of the induced system for the induced partition by the substitution o on the alphabet
dA={1,...,9}given by

o(1)=35 o@ =17, o(7) =29,
oc(2) =45, o) =18, o) =2,
0c(3) =46, o(6)=19, o9 =3.

Then Q7 = Q5. It is easy to check that o is primitive. This solves the issue at the
beginning of the section; the symbolic system is indeed substitutive.
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FIGURE 4. The compositions that produce the cubic Arnoux—Yoccoz interval exchange map 7. The dashed lines
show the midpoints of the respective intervals.

[ 1 [2] 3 [+ T 5 Toe6l7]

2T 5 T 4 T7T6] 3 | 1 |

FIGURE 5. The cubic Arnoux—Yoccoz interval exchange map 7'.

Let M be the matrix associated with the substitution o : that is,

001010000
000110000
000101000
100000100
M=1100000010
100000001
010000001
010000000
001000000

Its characteristic polynomial is (1 — B +12+1—D(=2+ 2 +1+ 1), where the
last two factors are irreducible. The roots of 1> + 2+ — 1 are «, B and B, whereas
the roots of —13 + 2 + ¢ + 1 are o~ !, ,3_1 and B_l, where o~ ! is the Perron-Frobenius
eigenvalue. We assume that g is the eigenvalue with positive imaginary part. Numerically,
B~ —0.771845 4 1.11514i. It is proved in [Mes00] that (8~1)" is never real for any n €
Z. Furthermore, the eigenvalue f is simple and the corresponding eigenspace is generated
by

y=@*+B+1, B, B, B —B—1LB+1,p+1,-p*—p—2,-1,-1).

Therefore, it is enough to prove the u.r.p. for g.
In what follows, B and y are the corresponding eigenvalue and eigenvector of M used
in the previous sections.

8.2. Fractals associated with the A-Y i.e.m. Theorem 6.4 of [ABB11] shows that the
fractals defined in §5 exist and satisfy §» = §3, §5 = §6 and §g = Fo. An illustration of
each fractal is given in Figure 8. The boundaries of these fractals can be constructed by
combining pieces of the boundary of the standard tribonnacci fractal and can therefore be
parametrized as we will see later.
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-38%—-48-5
2

982384 —23%-33-3

J
-3 —-28-1

K1 (.ﬁ/)

Ka(R) .
8 = ko(R) Uk (R) Uno(R) 29282

FIGURE 6. The tribonnacci fractal with some important features.

8.2.1. Parametrization of the boundary of tribonnacci fractal. First, we state some
important properties of the tribonnacci fractal. We will follow [Mes00] freely. Let N be
the set of sequences in {0, 1} without three consecutive ones. The (standard) tribonnacci
fractal is defined by

R = {Z lgimam—ZQ (am)mzl € N}
m>3

For (an)m=>1 € N, we define #((am)m>1) = Zmz3 B "ay—>. For z € R, we say that
(@m)m=1 € N is a representation of z if z=+((an)m>1). Clearly, any sequence in N
starts with either 0, 10 or 11.

Ro=4 “Im= {z € *R; z has a representation starting with 0},

Rip = ,3*3 + ﬁfzi)% = {z € R; z has a representation starting with 10},
Ryu=p>+ ,3_4 +B PR ={zeM; zhasa representation starting with 11}.
These three subsets of R are scalings, rotations and translations of YR and are disjoint

except for a set of measure zero (see Figure 6).

Clearly, N is a subshift. As before, S is the shift map in V. For z € R and (a,)m>1 € N
being a representation of z, +(S((an)m=>1)) € A and

Bz ifa; =0,
B(z— B3 ifa;=1.

It is easy to see that the points in R1; are mapped bijectively into fR1g, that the points in
R0 are mapped bijectively to $Rg and that the points in Sip are mapped bijectively to R.
Now, the parametrization of the boundary of the tribonnacci fractal is constructed as
follows. Put zo=pB"%/(1 — ~3) and for each t € [0, 1] let (am)m>1 be a sequence
in {0, 1,2} such that r=3", ;3 "a,. Put «(t) =limy— o0 kKay ©Kay © - - - 0 Kq,, (20),

V(S((am)mzl)) =

m>
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where

Kko(z) =B~ + Bz,

/3_10
1—-8-3
@) =B +B 7+

ki) =B+ B0+ — B,

It is shown in [Mes00, §4] that « is bijective and that
8 =«(0, 1) =RNKR+ 8.

The set & is also part of the boundary of the tribonnacci fractal. The rest of the boundary
is obtained by scaling, rotating and translating &'.

We know that & C Ry U Ry : that is, every point in & has a representation starting
with either 0 or 11. Furthermore, & = k(&) U k1 (R) U k2 (&), which is a consequence
of [Mes00, Lemma 4], and

R NRo=ko(R)Uk1(R), K NR=k(R).

A simple computation shows that by applying the shift map to & N 93} one obtains 873 +
B2 and that by applying the shift map again one obtains S~! &, as Figure 6 shows.
Finally, we describe some basic additional properties of 2R and £ that we will need.

LEMMA 8.1.

() RN+ B*-1/2)=2;

() RN+ B>2+28+3)/2) =0, and
(i) N R=0.

8.2.2. Parametrization of the boundary of fractals associated with the cubic A-Y i.e.m.
We will use & = & — z¢ to parametrize the boundaries of each §, for each a € of. It is
not difficult to see (after a simple computation) that K is a curve with endpoints «(0) —
zo=0and k(1) — z9 = (—ﬂ2 — 28 — 1)/2. To get our parametrization, we will need the
following four lemmas that, at the end, show that the boundaries of the §, are Jordan
curves.

LEMMA 8.2. The following equalities are satisfied: that is,
B=k()—R and K=BPRUB R+ HUB 8+ 7).

Proof. The first equality comes from the fact that & is symmetric, as shown in [Mes00,
Lemma 4]. Furthermore, since & = k(&) U k1 (&) U k2 (R), by subtracting zo from both
sides, expanding and using the first equality, we get the desired result. O

The following two lemmas will serve to prove that the parts of the boundaries in the
A-Y fractals coming from the tribonacci fractal intersect in a unique point (see Figure 8).

LEMMA 83. RN (BR+ (B2+1)/2) = AN (B2R+ (B2 + 1)/2) = {0}.



2564 M. Cobo et al

Proof. Recall that zo =8"4/(1 —B73)=(—p%>—-28—-3)/2 and & =RN R+ 7).
Set Ki = RN (BRA+ (B2 +1)/2) and K» = RN (B2R + (—p2 + 1)/2).

(i) Let z € K. We will prove that —82z € K». By definition, z =¢ — z0 = B(¢’ —
20) + (B% + 1)/2, where ¢, ¢’ € . Therefore

ﬂ2+1 ﬂ2_1

!/
=Bl +—
From the discussion in §8.2.1, ¢’ has a representation starting with either 0 or 11. Let
ai, az, a3 be the first three letters of such representation and consider the point ¢’ =
B(¢" — B3ar) € M: that is, the point obtained by shifting the representation of ¢’. We
getthat ¢ =¢” + B~2a; + (B> — 1)/2, where a; € {0, 1}.

By Lemma 8.1 item (i), RN (R + (B> — 1)/2) =, so a; #0 and thus ajaraz =
110. Then, ¢’ € & NRy1, 50 " € B3+ B2/ =B 28+ (—B% — 28 — 1)/2 and, by
replacing the value of a; in previous expressions, ¢ = ¢” + (382 + 48 + 3)/2.

Finally, z € 8N (B 28+ 38% + 4B +5)/2), so

_n2 _ _
g e <M - ﬁ) N (—f28) = K»,

=8¢ —Bzo+z0+

2

where the last equality is obtained by using Lemma 8.2 and a simple computation.

(ii) Let z € K». We will prove that —8z € K|. The proof is similar to (i) so we skip
some details.

By definition, z = ¢ — zo = (¢’ — zo) + (—B% + 1)/2, where ¢, ¢’ € &. Therefore
B4, B 281

=B
As in the proof of (i), ¢’ has a representation that begins with either O or 11. Let ay, az, a3
be its first three letters and let ¢” = B%(¢' — B3a; — B~*ax) € M: that is, the point
obtained by shifting the representation of ¢’ twice. We know that ¢ =¢” + B~ 'a; +
B 2ay + (—p% — 28 — 1)/2, where ay, as € {0, 1}.

We also know that ajay # 10. If ajap =01, it would be that ¢ =¢" +
(B2 + 2B +3)/2. By Lemma 8.1 item (ii), & N (R + (8% + 28 + 3)/2) = @, so this
cannot happen. Furthermore, by item (iii) of the same lemma, & N /8_29% =J,s0aiay #
00. We obtain ajazaz =110, so ¢ =¢” + (382 4+ 4B +5)/2 and we deduce that ¢” €
B'R =B71R+ (—38% —48 —5)/2. Finally, z € RN (B~'R+ (B2 + 28 +3)/2), s0

—B2_928 —
—Bz € <% —ﬁ) N (—=BR) =K,

where the last equality is obtained by using the previous lemma.

From (i) and (ii), we find that if z belongs to either K| or K>, then {8"z, —B"z} meets
K1 U K, for infinitely many integers n > 0. Since K| U K3 is bounded and || > 1, it
must be that z = 0. O

¢ =p*%" —p*0+z20+

LEMMA 8.4. (R —2B2% =3B —4) N (R+ (=3B% — 48 — 7)/2) is a unique point.

Proof. We illustrate the proof in Figure 7. Observe that (8 — 282 — 38 — 4) C R. By the
previous lemma and a translation, a rotation and a scaling, & — 2 2_3 B — 4 is a subset
of int 9% up to one point. On the other hand, (R + (=382 —48 —7)/2) CHR —1—p~ L.
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FIGURE 7. Illustration of the proof of Lemma 8.4.

We know from [Mes00] that & — 1 — =1 € C \ int R. Then (R + (—38% —48 —7)/2)
is a subset of C \ R up to one point. O

Now we give the parametrization of the boundaries of the Arnoux—Yoccoz fractals.
Define
2

2
G=B 'HUPBIR+B+B+1U <ﬁ+ w)

2 2
U<ﬁ_2ﬁ+3ﬂ +24’3+3)u</3-1ﬁ+’3 +iﬂ+1>
2
U<ﬁ+%),
2 2
%zzﬁu(ﬂﬁ—ﬁ)u<ﬁ+ﬂ;—1)U<ﬂﬁ+ﬂ2+1>,

G=BRUB 'R+B+DHUPB T R+B+DHUBIR-B>=B—-1)

2 2
U<ﬂ_2ﬁ+ﬂ +§’3+3>U<ﬂ_lﬁ+ﬂ +§ﬂ+3>’

2 2
%SZﬂﬁU(ﬁ1ﬁ+ﬂ+l)U<ﬂﬁ+ %)U@gﬂﬁ +§ﬁ+3>7
G =p"RUMR-DUB2R-DUEB'R—p*—p—2)

2 2
(s B (g P2

52+2ﬁ+1>u(ﬁ+ﬂ2+25+1)

%g:ﬂ]ﬁu(ﬁ—l)u<ﬂ]+ 5 5

and C€3 = C@z, C@G = C@s, C@g = C@g.
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2
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FIGURE 8. Description of Arnoux—Yoccoz fractals and their features.

LEMMA 8.5. For each a € d, 6, is a Jordan curve.

Proof. In the definition of each ‘6,, the terms between unions correspond to the segments
in the boundary of §, shown in Figure 8 in the clockwise order, starting at zero. So it is
enough to see that the intersection of two consecutive segments is a single point. Indeed,
using the results for the tribonnacci fractal from [Mes00], the intersection of most of the

pairs of contiguous segments have only one point. The conclusion of the lemma follows
from the two previous lemmas.
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For example, consider the segments 8~! & and ~2& + 8% + B + 1, which are part of
;. By translating by —B~'z¢ and replacing & by & — zg, we get that these segments
intersect at a single point if and only if 7' and 2R/ + B2+ B~ do. These two
segments are part of the boundary the tribonacci fractal, which is a Jordan curve. Further
examples are the segments £ + (82 + 28 + 1)/2 and B! &, which are also part of 6.
We can amplify by 8 to get that these segments intersect at a single point if and only if &
and BR + (B2 + 1)/2 do, which is implied by Lemma 8.3. O

Now we are ready to prove that the €, are parametrizations of the boundaries of the
Arnoux—Yoccoz fractals.

LEMMA 8.6. Foreach a € d, §, is the closure of the interior (in the Jordan sense) of G,.
Furthermore, if o(a) can be written as o(a) = bc with b, c € d, then Tp Nint(y (b) +
Se) =D andintFp N (y(b) + Fc) = 2.

Proof. We will make the identifications 3 ~2, 6 ~ 5, 9 ~ 8. By the definition of 6,,

3/32+6ﬂ+7)

BB = (B ERUB R+ B2+28+2)U <5—1ﬁ+ 5

L3, 3BHO6B+T o BPH2B+3
E O B Al (e
—1 B> +2p+3
N
2 2
ﬂ_IC&:ﬂ_lﬁU(R—l)U<ﬂ_1ﬁ+%>u<ﬁ+/3 +§ﬂ+1>’
BTG =RUB R+ B+ +DUB R+ ++2)
2
U(ﬁ_3ﬁ—ﬂ2—2ﬂ—2)u<ﬁ_3ﬁ+w>
o 3BHABES
(e
2
ﬂ_1‘€5=ﬁU(ﬂ_2ﬁ—|—ﬁ2—|—ﬁ+2)u<§+W)
) 32 +4B+5
o5 FEE),
Bl6 = FRUBTIR— P =B DU BTR—p - 1)
2
U(ﬂ‘2ﬁ—2ﬂ2—3ﬂ—3)u(5—3g+%)
2
u(;ekcpr%),
2
Bl =pPRUB'R- P —B—1U </3—2 + %)
2
U(ﬂ_1ﬁ+ﬂ +§ﬂ+3>_



2568 M. Cobo et al

By using Lemma 8.2 when necessary,
Bl UB N (—B+B5) =6 UR- 1),
BB UB (=B +65) =G UBR+B2+B+2U (B R— B —28-2),

2
BTG UB (B +6) =G4 U <ﬁ‘ﬁ+ w>
5. 387 +6,3+7>
U (,3 gy BESETY
2
BB UB (B +Gs) = Gs U <ﬂ_lﬁ+ W)
2
BB UB N (—B+63) =6 U <,3_1ﬁ+ %)

,371%2 = Gg.
(20)
The following equations stated in [ABB11, (6-1)] produce a unique solution for the
given y.
J1=B""0 U (—B+TF5), F=p""'TaUB (B +35),
Ja=p' 51U BT+, Fs=B""F1UB B +3p). 1)
F1=B"HUB N (—B+Ts). Fs=p"
Finally, let §/, be the closure of the Jordan interior of 6,. We have to show that (F})aeq
satisfies (21). We know that (see Figure 8)

R—1CF, B R+P+B+DUB K-> —28-2)C 3,

2 2
<ﬂ—1ﬁ+ W) U <ﬂ—3ﬁ+ W) <3,

2 2
<ﬂ_lﬁ+ w> gg’s’ (,B_IR+ %) 93/7-

So, by (20), we conclude that (F})qeq satisfies (21), which proves that §, = §, for each
acd.
The second part of the proof follows directly from the parametrization (see Figure 8). O

The following corollary is straightforward and follows from the previous lemma.
COROLLARY 8.7. 95, =6, for each a € d.
8.2.3. Unique representation property for the A-Y i.e.m. ~We finally prove that every
extreme point of each fractal §, has a unique representation.

LEMMA 8.8. For any a € o, extreme points in the boundary of §, have a unique
representation: that is, T has the unique representation property for f.

Proof. The proof is by contradiction. We prove that extreme points in §, with more than
one representation have an eventually periodic representation. This, together with Lemma
5.8, gives a contradiction.
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Let z € 0%, be an extreme point with two representations. By shifting and using Lemma
5.6, we can assume that the first letters in these representations are different. This implies
that o (a) cannot be a single letter, so we get that o (a) = bc for some b, c € . Then
z€ B, N B~ (y(b) + F.) and, by Lemma 8.6,

2€3Fa N BT NB () +Te) =03 N OB~ 'Fp N B~ (y (b) + 3o

Now, to get the desired contradiction, we prove that these points have an eventually
periodic representation. There are seven cases (see Figure 8 to understand the cases).

(i) If a=1, then z=—1 or z_( ,32 28 —3)/2. The point x; € S, defined
by (p1 , c1 » 8] ) =(3,5,¢) and p, =¢ for every m >2 is an eventually periodic
representation of z = —1, and the point x» € §, defined by

x2=(&,3,5)(e 4,6)(1,7,8)(e, 2,9, 4,5, 7, ¢ 2,9, 4,5) ...
is an eventually periodic representation of z = (—B% — 28 — 3)/2.

(ii) If a =2, then z=—B% —2B8 —2 or z = B>+ B +2. The point x| € S, defined
by (p1 , c1 , sll) =(4,5,¢) and p; =¢ for every m >2 is an eventually perlodlc
representation of z = —f% — 2 — 2, and the point x; € S, defined by (p1 , ‘1 , slz) =
4,5, ¢), (pg , 02 , s22) = (1, 8, &) and p;,’ = & for every m > 3 is an eventually periodic
representation of z = 2 + B + 2.

(iii) If a =3, then z = —B% — 28 — 2 or z = % + B + 2. The point x| € S, defined
by ( p)f , c1 , 5] )=(4,6,¢) and p, =¢ for every m >2 is an eventljallyx perjodic
representation of z=—p% — 28 — 2, and the point x € 8, defined by (p}2, ¢}?, 51%) =
4,6, ¢), (p; , c2 , s22) =(1,9, &) and pm = ¢ for every m > 3 is an eventually periodic
representation of z = 8% + B + 2.

(v) If a =4, then z=B%+2B8+2or z=—p>—p — 1. The point x| € S, defined
by (p1'. i’ s;)=(,7,¢) and p, =¢ for every m >2 is an eventually periodic
representation of z = %+ 2B +2, and the point x, € S, defined by (p}?, 1, 51%) =
(e, 1,7), (p; , c2 , s22) = (3,5, ) and p;? = ¢ for every m > 3 is an eventually periodic
representation of z = —2 — g — 1.

(v) If a=5, then z=82+28+2 or z=(3B>+68+7)/2. The point x; €S,
defined by (py', c', s7") = (1, 8, &) and p;, = & for every m > 2 is an eventually periodic
representation of z = 82 + 28 + 2, and the point x, € S, defined by

x2=(e, 1, 8)(3,5,8)(e, 1, 8)(¢, 3,5)(4, 6, ¢)(e, 1,9)(e, 3,5)(4,6,8)(e, 1,9) ...
is an eventually periodic representation of z = (38% + 68 + 7)/2.

i) If a= 6 then 2=p>+28+2 or z = BB%+6B+7)/2. The point x| €8,
defined by (p7 1 cl , sll) = (1,9, ) and p;, = & for every m > 2 is an eventually periodic
representation of z = 2 + 28 + 2, and the point x» € S, defined by

x2=(e,1,9,5,8)(e 1, 8)(¢, 3,5)(4, 6, ¢)(e, 1,9)(e, 3,5)(4,6,8)(e, 1,9) ...
is an eventually periodic representation of z = (382 + 68 + 7)/2.

(vii) If a=7, then z=—1 or z= (,82 +28+1)/2. The point x; € S, defined
by (p)fl, c)fl, sfl) =(2,9,¢) and p; =& for every m >2 is an eventually periodic
representation of z = —1, and the point x, € §, defined by

x2=1(82,94.5,¢)(¢, 1,8)(e, 3,5)(4, 6, ¢)(e, 1,9)(e, 3,5)(4,6,6)(e, 1,9) ...
is an eventually periodic representation of z = (8% + 28 + 1)/2. O
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