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A B S T R A C T

In this paper we study the response of bodies that are residually stressed within the context of a new class
of constitutive relations, wherein the strains are assumed to be functions of the stresses. Such bodies are said
to have residual stresses if there are stresses within the bodies even though the bodies are unstrained in the
configuration of interest in the absence of external traction. Problems within the context of the norm of the
gradient of the displacement field being small are considered, with regard to the determination of the residual
stresses in an anisotropic cylindrical annulus with two preferred directions, and the nature of residual stresses
within an anisotropic slab. The residual stresses in a body that is subject to incremental stresses are also studied.

1. Introduction

This paper concerns the development of response relations for elastic
bodies when one has to take into consideration ‘residual stresses’, within
the context of implicit constitutive theories recently introduced by
Rajagopal (see Rajagopal [1,2]; see also Rajagopal and Srinivasa [3]). By
‘residual stress’ one means a body not being free of stress in the interior
of the body though it is free of traction on the boundary of the body.
Before one can embark on such a venture, one needs to first come to grips
with what one means by ‘residual stresses’. According to the Oxford
English Dictionary [4], the primary meaning ascribed to the word
‘residue’ is: The remainder, rest; that which is left. Thus, the terminology
‘residual stresses’ implies that a body, in some configuration was subject
to deformations, and at the end of the process the stresses ‘which are
left’, that is the stresses remaining within the body are the ‘residual
stresses’ in the body. The terminology ‘pre-stress’ on the other hand
refers to stresses that were present in the body before it is subject to a
particular process. Of course, it is most likely, the ‘pre-stress’ in a body
might be the ‘residual stress’ due to some prior process the body was
subject to. We may never be able to decide on whether the state of
stress in a body is a ‘pre-stress’ or ‘residual stress’. However, since we
are interested in describing the response of a body that we have in hand,
when it is subject to deformations, it would be most appropriate to refer
to the state of stress prior to our deforming the body as ‘pre-stress’ rather
than ‘residual stress’. We shall however refer to it as ‘residual stress’ in
keeping with the current usage.

* Corresponding author.
E-mail address: rogbusta@ing.uchile.cl (R. Bustamante).

The stress free configuration that corresponds to the current ‘residu-
ally stressed’ configuration is determined experimentally by carrying out
‘cuts’ (see Fung [5]) that supposedly relieve the ‘residual stresses’ within
the body. Unfortunately, such ‘cuts’ cannot be described within the con-
text of classical continuum mechanics as they are not diffeomorphisms,
they lack the smoothness which is usually required of the motion.
Nonetheless, a stress-free configuration so obtained by making cuts is
used to determine the stress in the ‘residually stressed’ configuration.

In the classical theory of Cauchy elasticity, the reference config-
uration is usually considered to be free of stress (see Truesdell and
Noll [6]) but there are several applications, especially in biomechanics,
geomechanics, manufacturing, etc., wherein one has to develop models
for the response of bodies which are in a state that is not free of stress
(see, for example, in biomechanics [5,7,8], in welded structures [9,10],
and in manufacturing [11–13]1).

Several methods have been used to study ‘residually stressed’ bodies:
The first method models the whole process that creates such stresses in
the body, such as the modelling of growth, adaptation, modification,
remodelling, development, maintenance, and healing of soft tissue
(see, for example, [8], §4.3 of [15] and [16–20]), and elastic–plastic
deformations (including phase transition) that have been considered for
welding [9]. In biomechanics most of the approaches merely appeal
to geometric ideas though there has been some effort to describe

1 See also the introduction in the recent paper [14].
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the complicated mixture that comprises tissues (see Humphrey and
Rajagopal [21]).

One approach to study the response of bodies that are in a configu-
ration in which they are not stress free, is to hypothetically associate a
stress free configuration with the current stressed configuration, which
is at the heart of the notion of a ‘natural configuration’ associated with
the current configuration of a body (see [22] for a discussion of the
notion of ‘natural configurations’). While in these studies the ‘natural
configuration’ and its evolution have thermodynamic origins, the idea
is similar to the use of an intermediate configuration in studying the
response of inelastic bodies (see [23]). As observed earlier, the stress free
configuration of a body can be determined experimentally by carrying
out ‘cuts’ to relieve the stresses. For a Cauchy elastic body that is defined
through 𝐓 = G(𝐅) (where 𝐅 is the deformation gradient tensor) we have
𝐓R = G(𝐅R), where 𝐅R is calculated from the stress free configuration
to the reference configuration which is residually stressed [24]. If the
body is isotropic, then the stress is given by 𝐓 = G(𝐁) and 𝐓R = G(𝐁R),
where 𝐁 is the left Cauchy–Green tensor and 𝐁R = 𝐅R𝐅T

R. A problem with
this method is that it is not always possible to determine the stress free
configuration from which 𝐁R can be determined so that 𝟎 = div𝐓R + 𝜌𝐛
for the body and 𝐓R𝐧 = 𝟎 on the boundary of the body.2

Yet another method to study problems involving residual stresses is
by using the residual stress as an additional variable, say 𝐓R and express
the Cauchy stress as 𝐓 = G(𝐁,𝐓R), with the restriction that we must
have 𝐓R = G(𝐁,𝐓R) (see, for example, [27–30]). This approach could
be useful especially if we do not have information about the stress-free
configuration for the body.

In the present paper we depart from the above approaches by
considering subclasses of some constitutive equations, which belong to
the implicit constitutive theory for elastic bodies proposed by Rajagopal
and co-workers [1–3,31–33]. One such implicit relation corresponds to
F(𝐓,𝐁) = 𝟎, the classical Cauchy elastic body 𝐓 = G(𝐁) along with the
constitutive equation 𝐁 = H(𝐓) and its subclass 𝜺 = h(𝐓), where 𝜺 is
the linearized strain tensor [34,35] being special cases. For example,
in the case of the class of models defined by 𝐁 = H(𝐓) the reference
configuration is residually stressed if 𝐈 = H(𝐓R) and 𝟎 = div𝐓R + 𝜌𝐛 for
the body with 𝐓R𝐧 = 𝟎 on the boundary of the body.

In Section 2 after some preliminary discussion of the kinematics, we
turn to a discussion of some basic concepts concerning what we mean by
a body being elastic and we introduce implicit constitutive theories and
their subclasses that describe elastic bodies. In Sections 3.1 and 3.2 we
present the basic aspects of the modelling of residually stressed bodies
within the context of some of the subclasses of constitutive relations
presented in the previous section. In Section 3.3 we speak briefly about
the use of the stress potential for problems concerning residual stresses.
In Section 4.1 we present explicit expressions for h(𝐓) when h leads
to a response that is isotropic, transversely isotropic or a function that
depends on the stress as the response has two preferred directions. In
Section 4.2 we study the problem of the opening of a residually stressed
annulus, when the response is isotropic and transversely isotropic, re-
spectively, while in Section 4.3 we analyse the case of an annulus whose
response depends on two preferred directions. The results presented in
those two sections are used in order to choose an expression for h,
from which we could obtain more interesting results. In Section 5 we
discuss the problem of residual stresses in a cylindrical annulus, whose
response exhibits dependence on two preferred directions, and obtain
some numerical results for the stresses and strains. In Section 6 the state
of residual stresses within a slab is analysed, and finally, in Section 7 we
present an incremental formulation that can be used to study the effect
of residual stresses on elastic bodies, by analysing the behaviour of such
bodies when a small additional external traction is applied to them.
We conclude in Section 8 with some remarks concerning the results
presented in this work.

2 See [25,26] for different concepts on residual stresses, especially in the
context of the classical theory of nonlinear elasticity.

2. Basic equations

2.1. Kinematics and the equations of motion

Let a particle 𝑋 ∈ ℬ in an abstract body ℬ occupy the position
𝐗 ∈ 𝜅R(ℬ) in the reference configuration 𝜅R(ℬ), and 𝐱 ∈ 𝜅t (ℬ) in the
configuration at time 𝑡, 𝜅t (ℬ). It is assumed that there exists a one-to-one
mapping 𝝌 such that 𝐱 = 𝝌(𝐗, 𝑡). The deformation gradient 𝐅, the left
Cauchy–Green tensor 𝐁, the displacement vector 𝐮, and the linearized
strain tensor 𝜺 are defined through:

𝐅 =
𝜕𝝌
𝜕𝐗

, 𝐁 = 𝐅𝐅T, 𝐮 = 𝐱 − 𝐗, 𝜺 = 1
2

(

𝜕𝐮
𝜕𝐱

+ 𝜕𝐮
𝜕𝐱

T)

. (1)

The Cauchy stress tensor is denoted by 𝐓 and satisfies the equations
of motion

𝜌�̈� = div𝐓 + 𝜌𝐛, (2)

where 𝜌 is the density of the body and 𝐛 represents the specific body
forces acting on the current configuration, and where we have used the
notation ̇( ) for the material time derivative. More details concerning
kinematics and the basic balance laws can be found, for example,
in [36].

2.2. Constitutive relations

In [1–3,31] Rajagopal and co-workers have proposed implicit con-
stitutive relations to describe the behaviour of elastic bodies. One such
relation for isotropic bodies is of the form3

F(𝐓,𝐁) = 𝟎, (3)

which includes as a sub-class the classical Cauchy elastic body [6]
𝐓 = G(𝐁) and the class of models (see, for example, [37])

𝐁 = H(𝐓). (4)

An important restriction that H has to meet is that for any stress the
eigenvalues of H(𝐓) are positive.

In the case of the approximation that |∇𝐮| ∼ 𝑂(𝛿), 𝛿 ≪ 1 we have
the approximation 𝐁 ≈ 2𝜺 + 𝐈 and from (4) we have the subclass4

𝜺 = h(𝐓), (5)

which is an important new class of constitutive relations in its own right,
and has been proposed for the modelling of the problem of fracture in
elastic bodies, and in describing the behaviour of some metallic alloys
and rock, see, for example, [35,39–42]. It is important to recognize that
the linearization based on the displacement gradient being small leads
to models wherein one can have a nonlinear relationship between the
linearized strain and the stress, an impossibility within the context of
Cauchy elasticity.

In the present work we can also consider inhomogeneous bodies
namely the situation when the functions H and h can also depend on the
position 𝐗. In the rest of the work we assume that 𝐓 has been divided
by a characteristic stress 𝜎𝑜, and for the sake of simplicity we continue
to use 𝐓 to denote the dimensionless stress.

2.3. Boundary value problems

In order to solve a boundary value problem concerning such materi-
als, one needs to solve simultaneously the constitutive relations and the
balance equations of mass and linear momentum, for example, in the

3 The meaning of what is meant by anisotropy and its classification for bodies
defined by implicit constitutive relations is provided in [51].

4 See the papers by Rajagopal [35,38] concerning the status of such approxi-
mations.
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Fig. 1. (a) Residually stressed body in the reference configuration 𝜅R(ℬ). (b) After an imaginary slice.

case of (4) we need to look for 𝜌, 𝐓 and 𝝌 such that they satisfy (2), (1)2
and (4)

�̇� + 𝜌div �̇� = 0, 𝜌�̈� = div𝐓 + 𝜌𝐛, 𝜕𝝌
𝜕𝐗

𝜕𝝌
𝜕𝐗

T
= H(𝐓). (6)

While considering (5) we need to look for 𝜌, 𝐓 and 𝐮 such that (2), (1)4
and (5) are satisfied, i.e.

�̇� + 𝜌div �̇� = 0 𝜌�̈� = div𝐓 + 𝜌𝐛, 1
2

(

𝜕𝐮
𝜕𝐱

+ 𝜕𝐮
𝜕𝐱

T)

= h(𝐓). (7)

We shall only consider the balance of linear momentum and the
constitutive equations to determine the stress and the displacement.
Once the displacement is determined, the balance of mass can be used
to determine the density. In the rest of this paper we will ignore
the balance of mass and the determination of the density using the
same.

3. Residually stressed bodies

3.1. The case of large elastic deformations

By a body in static equilibrium with residual stresses we mean a
body which in a reference configuration 𝜅R(ℬ) is not free of stresses,
i.e., there is a distribution of stresses, which we denote by 𝐓R, such that
we have

Div𝐓R = 𝟎, 𝐈 = H(𝐓R) in 𝐗 ∈ 𝜅R(ℬ),

𝐓R𝐍 = 𝟎 on 𝐗 ∈ 𝜕𝜅R(ℬ), (8)

where 𝐍 is the outward normal unit vector to the surface 𝜕𝜅R(ℬ). The
above equation (8) must be understood not only as a restriction on 𝐓R,
but also on H as explained in detail in Section 5 for the case of h (see
(5)).

Let us assume that a body with residual stresses is cut by an
imaginary surface 𝒮 as shown in Fig. 1. Eq. (8)3 implies that there is
no external load (see Fig. 1(a)), however, when we cut the body along
the imaginary surface, on that new surface (see Fig. 1(b)) we do have
a distribution of traction 𝐭 = 𝐓R𝐍. If 𝜕𝜅R(ℬ) = 𝜕𝜅R(ℬ)𝑎 ∪ 𝜕𝜅R(ℬ)𝑏, for
the part of the body presented in Fig. 1(b) we have ∫𝒮∪𝜕𝜅R(ℬ)𝑏

𝐭 d𝐴 = 𝟎,
which is equivalent to ∫𝒮 𝐭 d𝐴 = 𝟎 and thus we obtain

∫𝒮
𝐓R𝐍 d𝐴 = 𝟎, (9)

which must be satisfied on every surface that results from an imaginary
cutting of the body. It is necessary to observe that (9) in general is not
an extra requirement placed on 𝐓R, as it is satisfied automatically if
Div𝐓R = 𝟎. In Section 6 we consider (9) for a particular boundary value
problem for which such condition is not satisfied trivially.

Assume now it is possible to reach a stress-free configuration 𝜅C(ℬ)
by performing a number of ‘cuts’5 (see, Fig. 2). Let 𝐱C = 𝝌C(𝐗) be a
map to 𝜅C(ℬ), so that

𝐅C =
𝜕𝝌C
𝜕𝐗

, 𝐁C = 𝐅C𝐅T
C. (10)

If in that configuration we assume there is no residual stress, then from
(4) we have

𝐁C = H(𝟎), (11)

3.2. The case of infinitesimal deformations

In this section we repeat briefly the theory presented above for the
constitutive expression (5). A body in static equilibrium is said to be
residually stressed if there exists a stress field 𝐓R such that

div𝐓R = 𝟎, 𝟎 = h(𝐓R) in 𝐱 ∈ 𝜅R(ℬ),

𝐓R𝐧 = 𝟎 on 𝐱 ∈ 𝜕𝜅R(ℬ). (12)

As in Section 3.1 the above equation could be interpreted as restrictions
on 𝐓R and h.

Let us assume again that the body is cut (see Fig. 2) and that all
residual stresses are released producing as a result a displacement field
𝐮C. We can define the linearized strain tensor, associated with such
deformation as

𝜺C = 1
2
(∇𝐮C + ∇𝐮TC). (13)

and since there are no residual stresses we have (compare with (11))

𝜺C = h(𝟎). (14)

The above situation is possible if and only if h(𝟎) satisfies the compati-
bility equations (for the linearized case, see, for example, §4.10 in [43]).

3.3. On the stress potential

In the above two sections we have defined 𝐓R as the residual stress
that satisfies the equation of equilibrium, such that when replaced in the
constitutive equation (10), (4) and (5) there is no associated deformation
(see (8)2, (12)2). In the case |∇𝐮| ∼ 𝑂(𝛿), 𝛿 ≪ 1, when we have

5 Here we are speaking about a real cut, unlike in the discussion about Fig. 1.
From now on when we speak about a body being cut we mean a real cut, and if
we refer to an imaginary cut, we will state that explicitly.
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Fig. 2. Residually stressed body in the reference configuration 𝜅R(ℬ), and in
the cut configuration 𝜅C(ℬ), where it is assumed that the body is stress-free.

infinitesimal deformations, (12) in index notation (assuming the use of,
for example, Cartesian coordinates) becomes
𝜕𝑇R𝑖𝑗

𝜕𝑥𝑗
= 0, 0 = h𝑖𝑗 (𝑇R𝑘𝑙

) in 𝑥𝑖 ∈ 𝜅𝑟(ℬ),

𝑇R𝑖𝑗
𝑛𝑗 = 0 on 𝑥 ∈ 𝜕𝜅𝑟(ℬ). (15)

It was stated that the six independent components of 𝐓R should sat-
isfy the three equilibrium equations (15)1 plus the six constitutive
equations6 (15)2. Since in general that may not be possible, we have
indicated that such equations should be seen also as restrictions on h

(we assume that the body is inhomogeneous, i.e., h = h(𝐓, 𝐱), but we do
not explicitly express the dependence on x).

On the other hand the stresses can be expressed in terms of a stress
potential 𝜱, and in that case the number of equations to be solved is
reduced. From §227 of [36] we have the representation

𝑇R𝑖𝑗
= 𝜖𝑖𝑘𝑙𝜖𝑗𝑚𝑛

𝜕2𝛷𝑘𝑚
𝜕𝑥𝑙𝜕𝑥𝑛

, (16)

where 𝛷𝑘𝑚 = 𝛷𝑚𝑘. Using (16) in (15)1 that equation is satisfied, and the
six independent components of 𝜱 should satisfy the six nonlinear partial
differential equations (15)2

h𝑖𝑗

(

𝜖𝑝𝑘𝑙𝜖𝑞𝑚𝑛
𝜕2𝛷𝑘𝑚
𝜕𝑥𝑙𝜕𝑥𝑛

)

= 0, 𝑥𝑖 ∈ 𝜅𝑟(ℬ), (17)

where it should be understood that the functions h𝑖𝑗 are evaluated at
𝜖𝑝𝑘𝑙𝜖𝑞𝑚𝑛

𝜕2𝛷𝑘𝑚
𝜕𝑥𝑙𝜕𝑥𝑛

. For the above equations we have the boundary conditions
(15)3

𝜖𝑖𝑘𝑙𝜖𝑗𝑚𝑛
𝜕2𝛷𝑘𝑚
𝜕𝑥𝑙𝜕𝑥𝑛

𝑛𝑗 = 0, 𝑥𝑖 ∈ 𝜕𝜅𝑟(ℬ). (18)

It can be seen that the nonlinear partial differential equations (17) must
be solved in conjunction with the boundary conditions (18), where the
order of the derivatives is the same as in the original equations (17).
This is not a feature that is standard, and in general for (17) and (18)
to be satisfied simultaneously some restrictions on h𝑖𝑗 would come into
play. In the following sections we choose not to work with the stress
potential.

6 We note that we have the 6 components of 𝐓R that would need to satisfy
the 3 equilibrium equations plus the 6 components of the constitutive equation.

4. The opening of an annulus

In this section we study the problem of a cylindrical annulus with
residual stresses, which after a radial cut along the axis displays an
angular opening resulting in the release of all the stresses. The objective
is use the information obtained from the opening of the annulus, in
order to see which expression for h(𝐓) would be more interesting for the
analysis to be carried out in the following sections. First, in Section 4.1
we present expressions for h(𝐓) in the case of bodies exhibiting isotropic,
transversely isotropic and two directional anisotropy, then in Section 4.2
we study (14) in the case of an isotropic and transversely isotropic
annulus, while in Section 4.3 we analyse (14) for the case of an annulus
with two directional anisotropy.

4.1. Isotropic bodies, transversely isotropic bodies, and two directional
anisotropy

We study a class of models for which there a exist scalar function
𝛱(𝐓) such that (see [44])

𝜺 = h(𝐓) = 𝜕𝛱
𝜕𝐓

. (19)

In the problems analysed in the following sections we discuss the
solvability of (12), for which we will consider three cases, namely
when 𝛱 is an isotropic function, a transversely isotropic function and
a function with two preferred directions. If 𝛱 is an isotropic function,
then 𝛱 = 𝛱(𝐼1, 𝐼2, 𝐼3), where

𝐼1 = tr (𝐓), 𝐼2 =
1
2

tr (𝐓2), 𝐼3 =
1
3

tr (𝐓3), (20)

and from (19) we obtain the representation

𝜺 = 𝛱1𝐈 +𝛱2𝐓 +𝛱3𝐓2, (21)

where 𝛱𝑖 =
𝜕𝛱
𝜕𝐼𝑖

, 𝑖 = 1, 2, 3.
If 𝛱 is a transversely isotropic function, we have that 𝛱 = 𝛱(𝐓, 𝐚),

where 𝐚 is a vector field representing the direction with regard to
which the body is transversely isotropic and |𝐚| = 1. In this case7

𝛱 = 𝛱(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5), where 𝐼1, 𝐼2 and 𝐼3 are given in (20) and 𝐼4,
𝐼5 are defined as (see [47])

𝐼4 = 𝐚 ⋅ (𝐓𝐚), 𝐼5 = 𝐚 ⋅ (𝐓2𝐚), (22)

and from (19) we obtain

𝜺 = 𝛱1𝐈 +𝛱2𝐓 +𝛱3𝐓2 +𝛱4𝐚⊗ 𝐚 +𝛱5[(𝐓𝐚)⊗ 𝐚 + 𝐚⊗ (𝐓𝐚)], (23)

where 𝛱𝑖 =
𝜕𝛱
𝜕𝐼𝑖

, 𝑖 = 1, 2, 3, 4, 5.
Finally, let us consider the case 𝛱 = 𝛱(𝐓, 𝐚,𝐛), where there is

another direction preference along the vector field 𝐛 with |𝐛| = 1. In
this case 𝛱 = 𝛱(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8, 𝐼9), where 𝐼𝑗 , 𝑗 = 1, 2,… , 9
are given in (20), (22) and

𝐼6 = 𝐛 ⋅ (𝐓𝐛), 𝐼7 = 𝐛 ⋅ (𝐓2𝐛), 𝐼8 = (𝐚 ⋅ 𝐛)[𝐚 ⋅ (𝐓𝐛) + 𝐛 ⋅ (𝐓𝐚)], (24)

𝐼9 = (𝐚 ⋅ 𝐛)[𝐚 ⋅ (𝐓2𝐛) + 𝐛 ⋅ (𝐓2𝐚)], (25)

and from (19) we have

𝜺 = 𝛱1𝐈 +𝛱2𝐓 +𝛱3𝐓2 +𝛱4𝐚⊗ 𝐚 +𝛱5[(𝐓𝐚)⊗ 𝐚 + 𝐚⊗ (𝐓𝐚)] +𝛱6𝐛⊗ 𝐛
+𝛱7[(𝐓𝐛)⊗ 𝐛 + 𝐛⊗ (𝐓𝐛)] +𝛱8(𝐚 ⋅ 𝐛)[𝐚⊗ 𝐛 + 𝐛⊗ 𝐚]

+𝛱9(𝐚 ⋅ 𝐛)[𝐚⊗ (𝐓𝐛) + (𝐓𝐛)⊗ 𝐚 + 𝐛⊗ (𝐓𝐚) + (𝐓𝐚)⊗ 𝐛], (26)

where 𝛱𝑖 =
𝜕𝛱
𝜕𝐼𝑖

, 𝑖 = 1, 2,… , 9.

7 In [45,46] a new set of invariants have been proposed for the case of
transversely isotropic functions, and functions that depend on two vector fields.
In these works it has been proved that some of the invariants presented in [47]
are not independent.
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4.2. The opening of an annulus, the case of an isotropic and a transversely
isotropic annulus

Let us consider the cylindrical annulus in the reference configuration
defined through

𝑟i ≤ 𝑟 ≤ 𝑟o, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑧 ≤ 𝐿. (27)

We assume that this tube has a residual stress distribution of the form

𝐓R = 𝐓R(𝑟). (28)

For such a body the surfaces for which (12)3 must be satisfied are the
surfaces 𝑟 = 𝑟i, 𝑟 = 𝑟o for which 𝐧 = ∓𝐞𝑟, respectively, and the surfaces
𝑧 = 0, 𝑧 = 𝐿 for which we have 𝐧 = ∓𝐞𝑧, respectively. It follows from
(12)3 and (28) that

𝑇R𝑟𝑟
(𝑟i) = 0, 𝑇R𝑟𝑟

(𝑟o) = 0, 𝑇R𝑟𝜃
(𝑟i) = 0, 𝑇R𝑟𝜃

(𝑟o) = 0, (29)

𝑇R𝑟𝑧
(𝑟) = 0, 𝑇R𝜃𝑧

(𝑟) = 0, 𝑇R𝑧𝑧
(𝑟) = 0. (30)

The non-zero components of the residual stress tensor must satisfy the
equilibrium equations (12)1, which in this case become
d𝑇R𝑟𝑟

d𝑟
+ 1

𝑟
(𝑇R𝑟𝑟

− 𝑇R𝜃𝜃
) = 0,

d𝑇R𝑟𝜃

d𝑟
+ 2

𝑟
𝑇R𝑟𝜃

= 0, (31)

and this last equation is satisfied if 𝑇R𝑟𝜃
(𝑟) = 𝑐𝑜

𝑟2
, which from (29)3,4 is

possible if and only if 𝑐𝑜 = 0.
We shall assume that 𝛱 has the form

𝛱 = 𝛱(𝐓, 𝑟). (32)

From (12)2 and (21) and the above assumptions we obtain

𝛱1(𝐼R1 , 𝐼R2 , 𝐼R3 , 𝑟) +𝛱2(𝐼R1 , 𝐼R2 , 𝐼R3 , 𝑟)𝑇R𝑟𝑟 +𝛱3(𝐼R1 , 𝐼R2 , 𝐼R3 , 𝑟)𝑇
2
R𝑟𝑟

= 0, (33)

𝛱1(𝐼R1 , 𝐼R2 , 𝐼R3 , 𝑟) +𝛱2(𝐼R1 , 𝐼R2 , 𝐼R3 , 𝑟)𝑇R𝜃𝜃 +𝛱3(𝐼R1 , 𝐼R2 , 𝐼R3 , 𝑟)𝑇
2
R𝜃𝜃

= 0, (34)

𝛱1(𝐼R1 , 𝐼R2 , 𝐼R3 , 𝑟) = 0, (35)

where 𝐼R1
= 𝑇R𝑟𝑟

+ 𝑇R𝜃𝜃
, 𝐼R2

= 1
2 (𝑇

2
R𝑟𝑟

+ 𝑇 2
R𝜃𝜃

) and 𝐼R3
= 1

3 (𝑇
3
R𝑟𝑟

+ 𝑇 3
R𝜃𝜃

).
Eqs. (31)1 and (33)–(35) must be satisfied by 𝑇R𝑟𝑟

, 𝑇R𝜃𝜃
and 𝛱 . It is

imperative to recognize that the residual stress has been treated as a part
of the constitutive relation. If the body is cut and the residual stresses
are relieved, the function 𝛱 will need to satisfy additional restrictions
as shown below.

Let us assume now that the cylindrical annulus is cut in the radial
direction along the axis, and that due to that cut all residual stresses
are relieved, such that (14) is met. Furthermore, let us suppose that the
displacement field 𝐮C is of the form

𝑢C𝑟
= 𝑈 (𝑟), 𝑢C𝜃

= (𝑘 − 1)𝜃𝑟, 𝑢C𝑧
= (𝜆𝑧 − 1)𝑧, (36)

where 𝑘 = 2𝜋−𝛼
2𝜋 , 𝛼 being the opening angle and 𝜆𝑧 > 0 is a constant, and

leads to a diagonal 𝜺 as required by (14) and (21). It follows from (14)
and (36) that

𝜀C𝑟𝑟
= d𝑈

d𝑟
= 𝛱1(𝟎, 𝑟), 𝜀C𝜃𝜃

= 𝑘 − 1 + 𝑈
𝑟

= 𝛱1(𝟎, 𝑟),

𝜀C𝑧𝑧
= 𝜆𝑧 − 1 = 𝛱1(𝟎, 𝑟). (37)

From (37)3 in (37)1 we obtain 𝑈 = (𝜆𝑧−1)𝑟+𝐶1, where 𝐶1 is a constant,
whereas using (37)3 in (37)2 we obtain 𝑈 = (𝜆𝑧 − 𝑘)𝑟 + 𝐶2, where 𝐶2
is a constant. These two solutions are compatible if 𝑘 = 1, i.e., 𝛼 = 0.
Another way to solve (37) is to consider first (37)(1,2) from where we
obtain d𝑈

d𝑟 = 𝑘 − 1 + 𝑈
𝑟 , whose solution is 𝑈 (𝑟) = 𝐶𝑟 + (𝑘 − 1)𝑟 ln 𝑟,

where 𝐶 is a constant. But from this solution we have that 𝛱1(𝟎, 𝑟) =
d𝑈
d𝑟 = 𝐶 + (𝑘 − 1)(1 + ln 𝑟), which is compatible with the fact that 𝜆𝑧 is a

constant (see (37)3) if 𝑘 = 1.
There are three other possibilities wherein we can obtain more

interesting results:

∙ In the case of anisotropic bodies.
∙ In the case the distributions of the residual stresses that would

depend on the axial and angular position.
∙ In the case of a more general and complex form for the displace-

ment 𝐮C.

Let us explore briefly the case of a transversely isotropic body with a
stress distribution as in (28) (in the following section we consider more
general expressions for the residual stresses). Let us assume that 𝐚 = 𝐞𝑧
and that 𝛱 = 𝛱(𝐓, 𝐚, 𝑟) then from (23), (12)2 we have

𝛱1(𝐼R1
, 𝐼R2

, 𝐼R3
, 𝐼R4

, 𝐼R5
, 𝑟) +𝛱2(𝐼R1

, 𝐼R2
, 𝐼R3

, 𝐼R4
, 𝐼R5

, 𝑟)𝑇R𝑟𝑟

+𝛱3(𝐼R1
, 𝐼R2

, 𝐼R3
, 𝐼R4

, 𝐼R5
, 𝑟)𝑇 2

R𝑟𝑟
= 0, (38)

𝛱1(𝐼R1
, 𝐼R2

, 𝐼R3
, 𝐼R4

, 𝐼R5
, 𝑟) +𝛱2(𝐼R1

, 𝐼R2
, 𝐼R3

, 𝐼R4
, 𝐼R5

, 𝑟)𝑇R𝜃𝜃

+𝛱3(𝐼R1
, 𝐼R2

, 𝐼R3
, 𝐼R4

, 𝐼R5
, 𝑟)𝑇 2

R𝜃𝜃
= 0, (39)

𝛱1(𝐼R1
, 𝐼R2

, 𝐼R3
, 𝐼R4

, 𝐼R5
, 𝑟) +𝛱4(𝐼R1

, 𝐼R2
, 𝐼R3

, 𝐼R4
, 𝐼R5

, 𝑟) = 0. (40)

Let us consider the same form for the displacement field, namely (36),
if the tube is cut radially and axially, then from (14) and (23) we obtain

d𝑈
d𝑟

= 𝛱1(𝟎, 𝑟), 𝑘 − 1 + 𝑈
𝑟

= 𝛱1(𝟎, 𝑟), 𝜆𝑧 − 1 = 𝛱1(𝟎, 𝑟) +𝛱4(𝟎, 𝑟).(41)

From (41)(1,2) we have d𝑈
d𝑟 = 𝑘 − 1 + 𝑈

𝑟 whose solution is 𝑈 (𝑟) =
𝐶𝑟 + (𝑘 − 1)𝑟 ln 𝑟, where 𝐶 is a constant. From (41)3 such a solution is
possible if 𝛱4(𝟎, 𝑟) = 𝜆𝑧−1+𝐶+(1−𝑘)(ln 𝑟+1). Other similar interesting
cases can be obtained if we assume 𝐚 = 𝐞𝑟 or 𝐚 = 𝐞𝜃 .

With the purpose of obtaining a more general expression for 𝑈 (𝑟)
in the next section we consider the case of an elastic annulus with two
preferred directions.

4.3. The opening of an annulus comprised of an anisotropic body with two
preferred directions

In this section the same problem presented in the previous section is
studied for the special case

𝐚 = 𝑐𝐞𝜃 + 𝑠𝐞𝑧, 𝐛 = 𝑐𝐞𝜃 − 𝑠𝐞𝑧, (42)

where 𝑐 = cos 𝛽 and 𝑠 = sin 𝛽.
In the event that 𝐓 = 𝐓(𝑟) from (29), (30) we find that the nonzero

components of the stress tensor are 𝑇𝑟𝑟 and 𝑇𝜃𝜃 . We will now assume
that 𝛱 = 𝛱(𝐓, 𝐚,𝐛, 𝑟), and from (26) and (12)2 we have

𝛱1(𝐼R𝑗
, 𝑟) +𝛱2(𝐼R𝑗

, 𝑟)𝑇R𝑟𝑟
+𝛱3(𝐼R𝑗

, 𝑟)𝑇 2
R𝑟𝑟

= 0, (43)

𝛱1(𝐼R𝑗
, 𝑟) +𝛱2(𝐼R𝑗

, 𝑟)𝑇R𝜃𝜃
+𝛱3(𝐼R𝑗

, 𝑟)𝑇 2
R𝜃𝜃

+𝛱4(𝐼R𝑗
, 𝑟)𝑐2

+ 2𝛱5(𝐼R𝑗
, 𝑟)𝑐2𝑇R𝜃𝜃

+𝛱6(𝐼R𝑗
, 𝑟)𝑐2 + 2𝛱7(𝐼R𝑗

, 𝑟)𝑐2𝑇R𝜃𝜃

+ 2𝛱8(𝐼R𝑗
, 𝑟)(1 − 2𝑠2)𝑐2 + 4𝛱9(𝐼R𝑗

, 𝑟)(1 − 2𝑠2)𝑐2𝑇R𝜃𝜃
= 0, (44)

𝛱1(𝐼R𝑗
, 𝑟) +𝛱4(𝐼R𝑗

, 𝑟)𝑠2 +𝛱6(𝐼R𝑗
, 𝑟)𝑠2 − 2𝛱8(𝐼R𝑗

, 𝑟)(1 − 2𝑠2)𝑠2 = 0, (45)

(𝛱4(𝐼R𝑗
, 𝑟) −𝛱6(𝐼R𝑗

, 𝑟))𝑐𝑠 = 0, (46)

where 𝐼R𝑗
, 𝑗 = 1, 2,… , 9 are defined through (20), (22) and (24). The

four equations given above and (31)1 must be satisfied by 𝐓R and the
choice of 𝛱 . In particular, from (46) we find that the equation is satisfied
for any 𝑟 and 𝛽 if

𝛱4(𝐼R𝑗
, 𝑟) = 𝛱6(𝐼R𝑗

, 𝑟). (47)

As mentioned in our discussion of the two cases considered earlier in
Section 4, in general Eqs. (43)–(45) and (31)1 must be considered as
restrictions not only on 𝑇R𝑟𝑟

and 𝑇R𝜃𝜃
but also on 𝛱(𝐓, 𝑟).

Let us assume that the tube is cut in the radial and axial directions so
that all residual stresses are released, assuming that due to the cuts the
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tube deforms in a manner described by (36), then from (14) and (26)
we obtain that

d𝑈
d𝑟

= 𝛱1(𝟎, 𝑟), (48)

𝑘 − 1 + 𝑈
𝑟

= 𝛱1(𝟎, 𝑟) +𝛱4(𝟎, 𝑟)𝑐2 +𝛱6(𝟎, 𝑟)𝑐2 + 2𝛱8(𝟎, 𝑟)(1 − 2𝑠2)𝑐2, (49)

𝜆𝑧 − 1 = 𝛱1(𝟎, 𝑟) +𝛱4(𝟎, 𝑟)𝑠2 +𝛱6(𝟎, 𝑟)𝑠2 − 2𝛱8(𝟎, 𝑟)(1 − 2𝑠2)𝑠2, (50)

0 = [𝛱4(𝟎, 𝑟) −𝛱6(𝟎, 𝑟)]𝑐𝑠. (51)

When 𝑈 (𝑟), 𝑘 and 𝜆𝑧 are known, these must be seen as restrictions on
𝛱 . In general we may have limited or partial knowledge concerning the
function 𝑈 (𝑟), i.e., from experiments we may be able to measure 𝑈 (𝑟i)
and 𝑈 (𝑟o) but we might not have information with regard to 𝑈 at other
radial positions. On the other hand we should be able to measure 𝑘 and
𝜆𝑧. Then from (48) we would obtain

𝑈 (𝑟) = ∫

𝑟

𝑟i
𝛱1(𝟎, 𝜉) d𝑟 + 𝑈 (𝑟i), (52)

where 𝛱(𝐓, 𝑟) should be such that ∫ 𝑟o
𝑟i

𝛱1(𝟎, 𝜉) d𝑟 + 𝑈 (𝑟i) = 𝑈 (𝑟o). In
Section 5 we study this problem in more detail for a specific expression
for 𝛱 . The special cases when the body is isotropic or transversely
isotropic can be obtained as special subclasses of (26).

5. A specific model for 𝜫 and some numerical results for the
problem of the opening of an annulus

In this section we study in more detail the problem presented in the
previous section for the following special case for the function 𝛱

𝛱(𝐓, 𝐚,𝐛, 𝑟) = 𝑐0𝐼1 + 𝑐1𝐼
2
1 +

9
∑

𝑖=2
𝑐𝑖𝐼𝑖, (53)

wherein we assume 𝑐𝑗 = 𝑐𝑗 (𝑟), 𝑗 = 0, 1, 2...9.
In Section 5.1 we consider the case of an annulus with two preferred

directions and residual stresses that only depend on the radial position.
We do not use information from a radial cut. In Section 5.2 we study in
more detail the problem presented in Section 4.3, in particular looking
for the equations that the components of the residual stresses and the
functions 𝑐𝑗 (𝑟) have to satisfy, when assuming that some information
from a radial cut of an annulus with two preferred directions is known.
Finally, in Section 5.3 we study the behaviour of the cylindrical annulus
which deforms under external loads, considering for simplicity the
expressions for the functions 𝑐𝑗 (𝑟) obtained from Section 5.1.

5.1. The case of a residually stressed cylindrical annulus when the residual
stresses are known and depend on the radial position

When we assume that the residual stresses depend only on the radial
position for a cylindrical annulus, from (31)1 we find that 𝑇R𝜃𝜃

=
d
d𝑟 (𝑟𝑇R𝑟𝑟

) and the boundary conditions (29)1,2 are 𝑇R𝑟𝑟
(𝑟i) = 0 and

𝑇R𝑟𝑟
(𝑟o) = 0. In this section we do not consider any cuts that relieve

the stresses in the body, thus we are only interested in solving (31)1,
(43)–(46). As a simplification we consider a distribution for 𝑇R𝑟𝑟

that
satisfies the conditions (29)1,2. One such possibility is (see, for example
Eq. (46) of [29])

𝑇R𝑟𝑟
(𝑟) = 𝑑0(𝑟 − 𝑟i)(𝑟 − 𝑟o), (54)

where 𝑑0 is a constant. The validity or usefulness of the above expression
for 𝑇R𝑟𝑟

, and in particular for a possible value for 𝑑0 can be assessed
indirectly by studying the behaviour of the same cylindrical annulus
subject to some known external loads, as investigated in Section 5.3,
and also by studying the behaviour of the cylindrical annulus subject to
incremental stresses as presented in Section 7.1.

From 𝑇R𝜃𝜃
= d

d𝑟 (𝑟𝑇R𝑟𝑟
) we obtain that

𝑇R𝜃𝜃
(𝑟) = 𝑑0[(𝑟 − 𝑟i)(𝑟 − 𝑟o) + 𝑟(𝑟 − 𝑟o) + 𝑟(𝑟 − 𝑟i)]. (55)

In the above system of equations 𝑇R𝑧𝑧
= 0 and 𝑇R𝑖𝑗

= 0 if 𝑖 ≠ 𝑗.
Considering the simplified expression for 𝛱 presented in (53), Eqs.

(43)–(46) become

𝑐0 + 2𝑐1𝐼R1
+ 𝑐2𝑇R𝑟𝑟

+ 𝑐3𝑇
2
R𝑟𝑟

= 0, (56)

𝑐0 + 2𝑐1𝐼R1
+ 𝑐2𝑇R𝜃𝜃

+ 𝑐3𝑇
2
R𝜃𝜃

+ 𝑐4𝑐
2 + 2𝑐5𝑐2𝑇R𝜃𝜃

+ 𝑐6𝑐
2

+ 2𝑐7𝑐2𝑇R𝜃𝜃
+ 2𝑐8(1 − 2𝑠2)𝑐2 + 4𝑐9(1 − 2𝑠2)𝑐2𝑇R𝜃𝜃

= 0, (57)

𝑐0 + 2𝑐1𝐼R1
+ 𝑐4𝑠

2 + 𝑐6𝑠
2 − 2𝑐8(1 − 2𝑠2)𝑠2 = 0, (58)

(𝑐4 − 𝑐6)𝑐𝑠 = 0, (59)

where 𝐼R1
= 𝑇R𝑟𝑟

+ 𝑇R𝜃𝜃
.

In this problem 𝑇R𝑟𝑟
(𝑟) and 𝑇R𝜃𝜃

(𝑟) are known (up to a constant 𝑑0)
and given by (54), (55), therefore (56)–(59) must be solved for some
of the functions 𝑐𝑖 = 𝑐𝑖(𝑟). Eq. (59) is solved easily if we assume that
𝑐4 = 𝑐6. Let us choose 𝑐0, 𝑐4 and 𝑐8 as the functions to be found from
(56)–(59) in terms of 𝑐1, 𝑐2, 𝑐3, 𝑐5 and 𝑐9 (assuming as well that 𝑐7 = 𝑐5),
we obtain that

𝑐0(𝑟) = −2𝑐1𝐼R1
− 𝑇R𝑟𝑟

(𝑐2 + 𝑐3𝑇R𝑟𝑟
), (60)

𝑐4(𝑟) = 1
4
{𝑇R𝑟𝑟

(𝑐2 + 𝑐3𝑇R𝑟𝑟
) csc2 𝛽 − 4𝑇R𝜃𝜃

[𝑐5 + 𝑐9 cos(2𝛽)]

+ (𝑇R𝑟𝑟
− 𝑇R𝜃𝜃

)[𝑐2 + 𝑐3(𝑇R𝑟𝑟
+ 𝑇R𝜃𝜃

)]sec2𝛽}, (61)

𝑐8(𝑟) = −1
4

{4𝑇R𝜃𝜃
[𝑐5 + 𝑐9 cos(2𝛽)] + 4𝑇R𝑟𝑟

(𝑐2 + 𝑐3𝑇R𝑟𝑟
) cot(2𝛽) csc(2𝛽)

+𝑇R𝜃𝜃
(𝑐2 + 𝑐3𝑇R𝜃𝜃

)sec2𝛽} sec(2𝛽). (62)

5.2. A residual stress tensor that depends on the radial position and an
opening angle that is constant due a radial cut of the annulus

In this section we explore the same problem as that considered in
Section 5.1, but now assuming that the cylindrical annulus has been
cut in order to relieve the residual stresses, which provide additional
information about the body. We are in particular interested in obtaining
the equations that some of the functions 𝑐𝑗 (𝑟) and the components of the
residual stress must satisfy for this problem.

In this problem the residual stress tensor 𝐓R has two components
𝑇R𝑟𝑟

, 𝑇R𝜃𝜃
, and from the equilibrium equations (31)1 they have to satisfy

𝑇R𝜃𝜃
= d

d𝑟 (𝑟𝑇R𝑟𝑟
).

In this case, from the results presented in Section 4.3, it follows from
(53) and (52) that

𝑈 (𝑟) = ∫

𝑟

𝑟i
𝑐0(𝜉) d𝜉 + 𝑈 (𝑟i). (63)

Eq. (51) (see also (46)) is satisfied if 𝛱4 = 𝛱6 which in the case of
(53) is possible if

𝑐4(𝑟) = 𝑐6(𝑟). (64)

From (49) and (50), in virtue of the above results we obtain that

𝑘 − 1 + 1
𝑟

[

∫

𝑟

𝑟i
𝑐0(𝜉) d𝜉 + 𝑈 (𝑟i)

]

= 𝑐0(𝑟) + 2𝑐4(𝑟)𝑐2 + 2𝑐8(𝑟)(1 − 2𝑠2)𝑐2, (65)

𝜆𝑧 − 1 = 𝑐0(𝑟) + 2𝑐4(𝑟)𝑠2 − 2𝑐8(𝑟)(1 − 2𝑠2)𝑠2. (66)

If 𝑈 (𝑟i) and 𝑈 (𝑟o) are known from experiments, then in view of (63),
𝑐0(𝑟) should satisfy

∫

𝑟o

𝑟i
𝑐0(𝜉) d𝜉 = 𝑈 (𝑟o) − 𝑈 (𝑟i). (67)

The constants 𝑘 and 𝜆𝑧 in (65), (66) could also be determined by
corroboration against experimental data.

From (53) we have

𝛱1(𝐼R𝑗
, 𝑟) = 𝑐0(𝑟) + 2𝑐1(𝑟)𝐼R1

, (68)
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where

𝐼R1
(𝑟) = 𝑇R𝑟𝑟

(𝑟) + 𝑇R𝜃𝜃
(𝑟), (69)

and thus from (45) we have

𝑐0(𝑟) + 2𝑐1(𝑟)𝐼R1
(𝑟) + 2𝑐4(𝑟)𝑠2 − 2𝑐8(𝑟)(1 − 2𝑠2)𝑠2 = 0, (70)

which in virtue of (66) becomes 2𝑐1(𝑟)𝐼R1
+ 𝜆𝑧 − 1 = 0, which suggests

that in general 𝑐1(𝑟) should be found as a part of the solution to the
problem rather than be given as a known function a priori. In this case
we obtain

𝑐1(𝑟) =
1 − 𝜆𝑧
2𝐼R1

(𝑟)
. (71)

It follows from (43) and (71) that

𝑐0(𝑟) + 1 − 𝜆𝑧 + 𝑐2(𝑟)𝑇R𝑟𝑟
(𝑟) + 𝑐3(𝑟)𝑇 2

R𝑟𝑟
(𝑟) = 0. (72)

From (44), (71), (31)1 and (64) we obtain that

𝑐0(𝑟) + 1 − 𝜆𝑧 + 𝑐2(𝑟)
d
d𝑟

(𝑟𝑇R𝑟𝑟
) + 𝑐3(𝑟)

[ d
d𝑟

(𝑟𝑇R𝑟𝑟
)
]2

+2𝑐4(𝑟)𝑐2 + 2𝑐5(𝑟)𝑐2
d
d𝑟

(𝑟𝑇R𝑟𝑟
) + 2𝑐7(𝑟)𝑐2

d
d𝑟

(𝑟𝑇R𝑟𝑟
)

+2𝑐8(𝑟)(1 − 2𝑠2)𝑐2 + 2𝑐9(1 − 2𝑠2)𝑐2 d
d𝑟

(𝑟𝑇R𝑟𝑟
) = 0. (73)

In view of (65), (66), (72) and (73) we have four equations for 𝑇R𝑟𝑟
,

𝑐0(𝑟), 𝑐2(𝑟), 𝑐3(𝑟), 𝑐4(𝑟), 𝑐5(𝑟), 𝑐7(𝑟), 𝑐8(𝑟) and 𝑐9(𝑟). Some of these functions
𝑐𝑘(𝑟) could be obtained by corroboration against experimental data. Let
us assume that

𝑐5(𝑟) = 𝑐7(𝑟), (74)

and that 𝑐0(𝑟), 𝑐3(𝑟), 𝑐5(𝑟) and 𝑐9(𝑟) are obtained by correlations with
experimental results. From (66) we have

2𝑐4(𝑟) =
𝜆𝑧 − 1 − 𝑐0(𝑟)

𝑠2
+ 2𝑐8(𝑟)(1 − 2𝑠2), (75)

and using this in (65) we obtain

2𝑐8(𝑟)(1 − 2𝑠2)𝑐2 = 1
2

{

𝑘 − 1 + 1
𝑟

[

∫

𝑟

𝑟i
𝑐0(𝜉) d𝜉 + 𝑈 (𝑟i)

]

+ 𝑐0(𝑟)(cot2𝛽 − 1) + (1 − 𝜆𝑧)cot2𝛽
}

, (76)

and replacing this expression for 2𝑐8(𝑟)(1 − 2sin2𝛽)cos2𝛽 in (75) we have

2𝑐4(𝑟) =
𝜆𝑧 − 1 − 𝑐0(𝑟)

𝑠2
+ 1

2𝑐2

{

𝑘 − 1 + 1
𝑟

[

∫

𝑟

𝑟i
𝑐0(𝜉) d𝜉 + 𝑈 (𝑟i)

]

+ 𝑐0(𝑟)(cot2𝛽 − 1) + (1 − 𝜆𝑧)cot2𝛽
}

. (77)

From (72) we can express, for example, 𝑐2(𝑟) in terms of 𝑇R𝑟𝑟
(𝑟), 𝑐3(𝑟)

and 𝑐0(𝑟) as

𝑐2(𝑟) =
𝜆𝑧 − 1 − 𝑐0(𝑟)

𝑇R𝑟𝑟

− 𝑐3(𝑟)𝑇R𝑟𝑟
. (78)

From (73) we finally have
[

𝑐3(𝑟)
d
d𝑟

(𝑟𝑇R𝑟𝑟
) +

𝜆𝑧 − 1 − 𝑐0(𝑟)
𝑇R𝑟𝑟

− 𝑐3(𝑟)𝑇R𝑟𝑟
+ 4𝑐5(𝑟)𝑐2

+4𝑐9(1 − 2𝑠2)𝑐2
]

d
d𝑟

(𝑟𝑇R𝑟𝑟
) = 𝜆𝑧 − 𝑘 − 1

𝑟

[

∫

𝑟

𝑟i
𝑐0(𝜉) d𝜉 + 𝑈 (𝑟i)

]

. (79)

The above equation could be used to determine 𝑇R𝑟𝑟
(𝑟); regarding the

functions 𝑐0(𝑟), 𝑐3(𝑟), 𝑐5(𝑟) and 𝑐9(𝑟), we could assume they are given
data. The functions 𝑇R𝑟𝑟

(𝑟) and 𝑐0(𝑟) would need to satisfy the conditions
𝑇R𝑟𝑟

(𝑟i) = 0, 𝑇R𝑟𝑟
(𝑟o) = 0 and ∫ 𝑟o

𝑟i
𝑐0(𝜉) d𝜉 = 𝑈 (𝑟o) − 𝑈 (𝑟i). The above

equation is a first order nonlinear ordinary differential equation, and
only one of the conditions 𝑇R𝑟𝑟

(𝑟i) = 0, 𝑇R𝑟𝑟
(𝑟o) = 0 could be applied

directly, say 𝑇R𝑟𝑟
(𝑟i) = 0, the other condition 𝑇R𝑟𝑟

(𝑟o) = 0 should be
satisfied indirectly, for example, by looking for appropriate expressions
for 𝑐𝑘(𝑟), 𝑘 = 0, 3, 5, 9 so that 𝑇R𝑟𝑟

(𝑟o) = 0 would be satisfied.
There are other ways to solve the problem of determining the

constants 𝑐𝑗 (𝑟), where we assume we have information concerning the
annulus when it is cut in the radial direction. For example, we could
assume as in Section 5.1 that 𝑇R𝑟𝑟

is known and given by (54), and
from (79) we could find, for example, 𝑐0(𝑟). We choose not to study this
problem further, under the understanding that the study of the opening
of the annulus (see Section 4) has provided already useful information
about the structure of the function.

5.3. The residually stressed annulus under inflation, torsion and axial
extension when the residual stresses depend on the radial position

With knowledge of 𝐓R and the expressions for 𝑐𝑖 = 𝑐𝑖(𝑟) from
the previous Sections 5.2, 5.1, we are now in a position to solve
some boundary value problems. It is important to note that from the
practical point of view, it is by carrying out such a study that we can
actually assess the appropriateness of all the previous assumptions and
simplifications regarding the specific expression for 𝛱 presented in (53).
We should solve different boundary value problems and compare the
results with the corresponding experimental results obtained, as a way
to check if the many assumptions we have made are meaningful and
physically faithful.

In this section for simplicity we study the case of the residually
stressed annulus described in Section 5.1, using the expressions for 𝑐𝑗
presented in (60)–(62), now being subjected to external loads on the
surfaces 𝑧 = 𝐿 and 𝑟 = 𝑟i, in particular we consider an axial load applied
on 𝑧 = 𝐿, a shear load along the circumferential direction on the same
surface, and a radial load on the surface 𝑟 = 𝑟i. Under the influence of
such external loads we assume that the stress tensor in the tube is of the
form

𝐓 = 𝑇𝑟𝑟(𝑟)𝐞𝑟 ⊗ 𝐞𝑟 + 𝑇𝜃𝜃(𝑟)𝐞𝜃 ⊗ 𝐞𝜃 + 𝑇𝑧𝑧(𝑟)𝐞𝑧 ⊗ 𝐞𝑧
+𝑇𝜃𝑧(𝑟)(𝐞𝜃 ⊗ 𝐞𝑧 + 𝐞𝑧 ⊗ 𝐞𝜃). (80)

This stress tensor must satisfy the equilibrium equation
d𝑇𝑟𝑟
d𝑟

+ 1
𝑟
(𝑇𝑟𝑟 − 𝑇𝜃𝜃) = 0. (81)

Following the procedure described, for example, in [48], we assume
now that the above stress field (80) produces a displacement field
𝐮 = 𝑢𝑟𝐞𝑟 + 𝑢𝜃𝐞𝜃 + 𝑢𝑧𝐞𝑧 of the form

𝑢𝑟 = 𝑣(𝑟), 𝑢𝜃 = 𝜅𝑧𝑟, 𝑢𝑧 = (𝜆 − 1)𝑧, (82)

where 𝜅 and 𝜆 are positive constants. It follows from (80), (82) and (26)
that

d𝑣
d𝑟

= h11(𝐓) = 𝑐0(𝑟) + 2𝑐1(𝑟)𝐼1 + 𝑐2(𝑟)𝑇𝑟𝑟 + 𝑐3(𝑟)𝑇 2
𝑟𝑟, (83)

𝑣
𝑟
= h22(𝐓) = 𝑐0(𝑟) + 2𝑐1(𝑟)𝐼1 + 𝑐2(𝑟)𝑇𝜃𝜃 + 𝑐3(𝑟)(𝑇 2

𝜃𝜃 + 𝑇 2
𝜃𝑧)

+2𝑐4(𝑟)𝑐2 + 4𝑐5(𝑟)𝑐2𝑇𝜃𝜃 + 2𝑐8(𝑟)(1 − 2𝑠2)𝑐2

+4𝑐9(𝑟)(1 − 2𝑠2)𝑐2𝑇𝜃𝜃 , (84)
𝜆 − 1 = h33(𝐓) = 𝑐0(𝑟) + 2𝑐1(𝑟)𝐼1 + 𝑐2(𝑟)𝑇𝑧𝑧 + 𝑐3(𝑟)(𝑇 2

𝜃𝑧 + 𝑇 2
𝑧𝑧)

+2𝑐4(𝑟)𝑠2 − 2𝑐8(𝑟)(1 − 2𝑠2)𝑠2 − 4𝑐9(𝑟)(1 − 2𝑠2)𝑐2𝑇𝑧𝑧, (85)
𝜅𝑟
2

= h23(𝐓) = 𝑐2(𝑟)𝑇𝜃𝑧 + 𝑐3(𝑟)(𝑇𝜃𝜃 + 𝑇𝑧𝑧)𝑇𝜃𝑧 + 2𝑐5𝑇𝜃𝑧

+2𝑐9(𝑟)(1 − 2𝑠2)2𝑇𝜃𝑧, (86)

where

𝐼1 = 𝑇𝑟𝑟 + 𝑇𝜃𝜃 + 𝑇𝑧𝑧. (87)

Eqs. (83)–(86) are solved using the finite element method in a
manner similar to that carried out in [48]. From (81) we have

𝑇𝜃𝜃 = d
d𝑟

(𝑟𝑇𝑟𝑟), (88)
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Table 1
Constants for (53).

𝑐1 𝑐2 𝑐3 𝑐5 𝑐9
10−4 10−4 10−6 10−4 10−4

therefore 𝐓 is determined by knowing 𝑇𝑟𝑟,
d𝑇𝑟𝑟
d𝑟 , 𝑇𝑧𝑧 and 𝑇𝜃𝑧. From (84)

we have 𝑣 = 𝑟h22(𝐓) so substituting in (83) we obtain that

d
d𝑟

[𝑟h22(𝐓)] = h11(𝐓). (89)

In (85) we have 𝜆 − 1 = h33(𝐓), taking the derivative of that equation
with respect to 𝑟 we obtain that

0 = d
d𝑟

[h33(𝐓)]. (90)

Finally from (86) we have 𝜅𝑟
2 = h23(𝐓) and taking the derivative of this

equation with respect to 𝑟 we have

𝜅
2
= d

d𝑟
[h23(𝐓)]. (91)

Let us introduce the auxiliary functions 𝜍𝑧 = 𝜍𝑧(𝑟) and 𝜍𝜃𝑧 = 𝜍𝜃𝑧(𝑟)
through

𝑇𝑧𝑧 =
d𝜍𝑧
d𝑟

, 𝑇𝜃𝑧 =
d𝜍𝜃𝑧
d𝑟

. (92)

Eqs. (89)–(91) are solved using the finite element method (Comsol
3.4 [49]) for the functions 𝑇𝑟𝑟(𝑟), 𝜍𝑧(𝑟) and 𝜍𝜃𝑧(𝑟), subject to the boundary
conditions

𝑇𝑟𝑟(𝑟i) = −𝑃i, 𝑇𝑟𝑟(𝑟i) = 0, h33(𝐓(𝑟i)) = 𝜆 − 1, 𝜍𝑧(𝑟o) = 0, (93)

h23(𝐓(𝑟i)) =
1
2
𝜅𝑟i, 𝜍𝜃𝑧(𝑟o) = 0, (94)

and using the notation �̄� = 𝑟∕𝑟i, where we have chosen the values
𝑟i = 0.01 and 𝑟o = 0.011. In Table 1 we have the set of values for some
of the constants that appear in the model (53). Such values for the
constants 𝑐𝑗 , 𝑗 = 1, 2, 3, 5, 9 have been chosen so that for the magnitude
of the stresses obtained for the different problems studied in this paper,
the magnitude of the strains from (26) are small.

In Fig. 3 we portray the results for the circumferential component
of the stress 𝐓 for different values of 𝑑0, which from (54) indicates the
‘intensity’ of the residual stress, and for different cases, in the case of a
traction applied on the inner surface of the tube (case (a)), torsion (case
(b)), and axial extension (case (c)). In Fig. 4 we present results for all
the non-zero components of the stress 𝐓, for different values for 𝑑0 when
𝜅 = 0, 𝜆 = 1 and 𝑃i = 10. In all the cases studied 𝑇𝜃𝑧(𝑟) = 0. In Fig. 5
results are shown for the different components of the stress tensor, for
different values of 𝑑0 for the case 𝜅 = 2, 𝜆 = 1.01 and 𝑃i = 10. Finally,
in Fig. 6 results are presented for the components of the strain tensor
for different values for 𝑑0 (see (54)), for the case 𝜅 = 2, 𝜆 = 1.01 and
𝑃i = 10.

From Fig. 3 we see that as 𝑑0 increases in value, the value of 𝑇𝜃𝜃 at
𝑟 = 𝑟i decreases. For the problem of inflation of a cylindrical annulus in
linearized elasticity, it is known that as 𝑃i increases so does 𝑇𝜃𝜃(𝑟i), and
that this stress can be very high and is usually responsible of the failure
of the annulus. We see that with the residual stresses the value of 𝑇𝜃𝜃(𝑟i)
would be lesser than in the case when there are no residual stresses,
for a given value of 𝑃i. The same effect is expected for the problem
presented here where we have considered a nonlinear expression for
h(𝐓). Interestingly the same effect is observed with respect to 𝑇𝜃𝜃(𝑟i) for
the cases (b) and (c) of Fig. 3, i.e., for the nonlinear constitutive equation
used here there is coupling between the torsion 𝜅 and the axial extension
𝜆 with the component 𝑇𝜃𝜃 of the stress tensor. From Figs. 4 and 5 we
can see again that the component of the stress 𝑇𝑧𝑧 is also affected by the
residual stresses following a tendency similar to 𝑇𝜃𝜃 .

6. Deformation of a residually stressed slab

In this section we study residual stresses in a slab defined through

− 𝐿𝑥 ≤ 𝑥 ≤ 𝐿𝑥, 0 ≤ 𝑦 ≤ 𝐻, −𝐿𝑧 ≤ 𝑧 ≤ 𝐿𝑧, (95)

where we have used the notation 𝑥, 𝑦, 𝑧 for 𝑥1, 𝑥2 and 𝑥3, respectively.
Let us assume that 𝐿𝑧 ≫ 𝐿𝑥 and 𝐿𝑧 ≫ 𝐻 and that the distribution of
residual stresses only depend on the coordinates 𝑥, 𝑦, i.e.

𝑇R𝑖𝑗
= 𝑇R𝑖𝑗

(𝑥, 𝑦), 𝑖, 𝑗 = 1, 2, 3. (96)

In this case the equations of equilibrium, under the assumption that
there is no body force, reduce to
𝜕𝑇R11

𝜕𝑥
+

𝜕𝑇R12

𝜕𝑦
= 0,

𝜕𝑇R12

𝜕𝑥
+

𝜕𝑇R22

𝜕𝑦
= 0,

𝜕𝑇R13

𝜕𝑥
+

𝜕𝑇R23

𝜕𝑦
= 0. (97)

Regarding the boundary condition (12)3 we demand that such condi-
tions be satisfied on the surfaces 𝑦 = 0, 𝑦 = 𝐻 and 𝑥 = ±𝐿𝑥. Recalling
that in the 𝑧-direction the slab is assumed to be very long, we enforce

𝑇R12
(𝑥, 0) = 0, 𝑇R12

(𝑥,𝐻) = 0, 𝑇R22
(𝑥, 0) = 0, 𝑇R22

(𝑥,𝐻) = 0, (98)

𝑇R23
(𝑥, 0) = 0, 𝑇R23

(𝑥,𝐻) = 0, (99)

𝑇R11
(𝐿𝑥, 𝑦) = 0, 𝑇R11

(−𝐿𝑥, 𝑦) = 0, 𝑇R12
(𝐿𝑥, 𝑦) = 0, 𝑇R12

(−𝐿𝑥, 𝑦) = 0, (100)

𝑇R13
(𝐿𝑥, 𝑦) = 0, 𝑇R13

(−𝐿𝑥, 𝑦) = 0. (101)

The assumptions 𝐿𝑧 ≫ 𝐿𝑥 and 𝐿𝑧 ≫ 𝐻 are used in order to
simplify the distribution of stresses so that we can assume the simplified
form given in (96). Under such assumptions the condition 𝐓R𝐧 = 𝟎 is
not required on the surface 𝑧 = ±𝐿𝑧 since they are considered to be
essentially located at infinity; however, because the condition (9) is not
satisfied trivially, we need to impose such a restriction explicitly on the
surface (obtained from an imaginary cut) 𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, −𝐿𝑥 ≤ 𝑥 ≤ 𝐿𝑥,
0 ≤ 𝑦 ≤ 𝐻 . In this case Eq. (9) becomes ∫ 𝐻

0 ∫ 𝐿𝑥
𝐿𝑥

𝐓R𝐧 d𝑥d𝑦 = 𝟎, which
implies that

∫

𝐻

0 ∫

𝐿𝑥

𝐿𝑥

𝑇R33
d𝑥d𝑦 = 0, ∫

𝐻

0 ∫

𝐿𝑥

𝐿𝑥

𝑇R13
d𝑥d𝑦 = 0,

∫

𝐻

0 ∫

𝐿𝑥

𝐿𝑥

𝑇R23
d𝑥d𝑦 = 0.

(102)

Regarding the specific expressions for 𝐚 and 𝐛, we assume that
𝐚 =

∑3
𝑖=1𝑎𝑖(𝑥, 𝑦)𝐞𝑖 and 𝐛 =

∑3
𝑖=1𝑏𝑖(𝑥, 𝑦)𝐞𝑖.

It follows from (12)2, (96) and (26) that

𝛱1 +𝛱2𝑇R11
+𝛱3(𝑇 2

R11
+ 𝑇 2

R12
+ 𝑇 2

R13
) +𝛱4𝑎

2
1 + 2𝛱5(𝑇R11

𝑎1
+𝑇R12

𝑎2 + 𝑇R13
𝑎3)𝑎1 +𝛱6𝑏

2
1 + 2𝛱7(𝑇R11

𝑏1 + 𝑇R12
𝑏2 + 𝑇R13

𝑏3)𝑏1
+2𝛱8(𝐚 ⋅ 𝐛)𝑎1𝑏1 + 2𝛱9(𝐚 ⋅ 𝐛)[𝑎1(𝑏1𝑇R11

+ 𝑏2𝑇R12
+ 𝑏3𝑇R13

)

+𝑏1(𝑎1𝑇R11
+ 𝑎2𝑇R12

+ 𝑎3𝑇R33
)] = 0, (103)

𝛱1 +𝛱2𝑇R22
+𝛱3(𝑇 2

R12
+ 𝑇 2

R22
+ 𝑇 2

R23
) +𝛱4𝑎

2
2 + 2𝛱5(𝑇R12

𝑎1
+𝑇R22

𝑎2 + 𝑇R23
𝑎3)𝑎2 +𝛱6𝑏

2
2 + 2𝛱7(𝑇R12

𝑏1 + 𝑇R22
𝑏2

+𝑇R23
𝑏3)𝑏2 + 2𝛱8(𝐚 ⋅ 𝐛)𝑎2𝑏2 + 2𝛱9(𝐚 ⋅ 𝐛)[𝑎2(𝑏1𝑇R12

+ 𝑏2𝑇R22
+ 𝑏3𝑇R23

)

+𝑏2(𝑎1𝑇R12
+ 𝑎2𝑇R22

+ 𝑎3𝑇R23
)] = 0, (104)

𝛱1 +𝛱2𝑇R33
+𝛱3(𝑇 2

R13
+ 𝑇 2

R23
+ 𝑇 2

R33
) +𝛱4𝑎

2
3 + 2𝛱5(𝑇R13

𝑎1
+𝑇R23

𝑎2 + 𝑇R33
𝑎3)𝑎3 +𝛱6𝑏

2
3 + 2𝛱7(𝑇R13

𝑏1 + 𝑇R23
𝑏2

+𝑇R33
𝑏3)𝑏3 + 2𝛱8(𝐚 ⋅ 𝐛)𝑎3𝑏3 + 2𝛱9(𝐚 ⋅ 𝐛)[𝑎3(𝑏1𝑇R13

+ 𝑏2𝑇R23
+ 𝑏3𝑇R33

)

+𝑏3(𝑎1𝑇R13
+ 𝑎2𝑇R23

+ 𝑎3𝑇R33
)] = 0, (105)

𝛱2𝑇R12
+𝛱3(𝑇R11

𝑇R12
+ 𝑇R12

𝑇R22
+ 𝑇R13

𝑇R23
) +𝛱4𝑎1𝑎2

+𝛱5[(𝑇R11
𝑎1 + 𝑇R12

𝑎2 + 𝑇R13
𝑎3)𝑎2 + (𝑇R12

𝑎1 + 𝑇R22
𝑎2 + 𝑇R23

𝑎3)𝑎1]
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Fig. 3. Results for the circumferential component of the stress 𝑇𝜃𝜃 for different values of 𝑑0 (see (54)). Case (a) 𝜅 = 0, 𝜆 = 1 and 𝑃i = 10. Case (b) 𝜅 = 2, 𝜆 = 1 and
𝑃i = 0. Case (c) 𝜅 = 0, 𝜆 = 1.01 and 𝑃i = 0.

Fig. 4. Results for the different components of the stress tensor 𝐓 for different values for 𝑑0 (see (54)), when 𝜅 = 0, 𝜆 = 1 and 𝑃i = 10.
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Fig. 5. Results for the different components of the stress tensor 𝐓 for different values for 𝑑0 (see (54)), for the case 𝜅 = 2, 𝜆 = 1.01 and 𝑃i = 10.

Fig. 6. Results for the components 𝜀𝑟𝑟 and 𝜀𝜃𝜃 of the strain tensor, for different values for 𝑑0 (see (54)), for the case 𝜅 = 2, 𝜆 = 1.01 and 𝑃i = 10.

+𝛱6𝑏1𝑏2 + 2𝛱7[(𝑇R11
𝑏1 + 𝑇R12

𝑏2 + 𝑇R13
𝑏3)𝑏2

+(𝑇R12
𝑏1 + 𝑇R22

𝑏2 + 𝑇R23
𝑏3)𝑏1] +𝛱8(𝐚 ⋅ 𝐛)(𝑎1𝑏2 + 𝑏1𝑎2)

+𝛱9(𝐚 ⋅ 𝐛)[𝑎1(𝑏1𝑇R12
+ 𝑏2𝑇R22

+ 𝑏3𝑇R23
)

+𝑎2(𝑏1𝑇R11
+ 𝑏2𝑇R12

+ 𝑏3𝑇R13
) + 𝑏1(𝑎1𝑇R12

+ 𝑎2𝑇R22
+ 𝑎3𝑇R23

)

+𝑏2(𝑎1𝑇R11
+ 𝑎2𝑇R12

+ 𝑎3𝑇R13
)] = 0, (106)

𝛱2𝑇R13
+𝛱3(𝑇R11

𝑇R13
+ 𝑇R12

𝑇R23
+ 𝑇R13

𝑇R33
)

+𝛱4𝑎1𝑎3 +𝛱5[(𝑇R11
𝑎1 + 𝑇R12

𝑎2 + 𝑇R13
𝑎3)𝑎3

+(𝑇R13
𝑎1 + 𝑇R23

𝑎2 + 𝑇R33
𝑎3)𝑎1] +𝛱6𝑏1𝑏3

+2𝛱7[(𝑇R11
𝑏1 + 𝑇R12

𝑏2 + 𝑇R13
𝑏3)𝑏3 + (𝑇R13

𝑏1 + 𝑇R23
𝑏2 + 𝑇R33

𝑏3)𝑏1]

+𝛱8(𝐚 ⋅ 𝐛)(𝑎1𝑏3 + 𝑏1𝑎3) +𝛱9(𝐚 ⋅ 𝐛)[𝑎1(𝑏1𝑇R13
+ 𝑏2𝑇R23

+𝑏3𝑇R33
) + 𝑎3(𝑏1𝑇R11

+ 𝑏2𝑇R12
+ 𝑏3𝑇R13

) + 𝑏1(𝑎1𝑇R13
+ 𝑎2𝑇R23

+ 𝑎3𝑇R33
)

+𝑏3(𝑎1𝑇R11
+ 𝑎2𝑇R12

+ 𝑎3𝑇R13
)] = 0, (107)

𝛱2𝑇R23
+𝛱3(𝑇R12

𝑇R13
+ 𝑇R22

𝑇R23
+ 𝑇R23

𝑇R33
) +𝛱4𝑎2𝑎3

+𝛱5[(𝑇R12
𝑎1 + 𝑇R22

𝑎2 + 𝑇R23
𝑎3)𝑎3 + (𝑇R13

𝑎1 + 𝑇R23
𝑎2 + 𝑇R33

𝑎3)𝑎2]

+𝛱6𝑏2𝑏3 + 2𝛱7[(𝑇R12
𝑏1 + 𝑇R22

𝑏2 + 𝑇R23
𝑏3)𝑏3 + (𝑇R13

𝑏1
+𝑇R23

𝑏2 + 𝑇R33
𝑏3)𝑏2] +𝛱8(𝐚 ⋅ 𝐛)(𝑎2𝑏3 + 𝑏2𝑎3)

+𝛱9(𝐚 ⋅ 𝐛)[𝑎2(𝑏1𝑇R13
+ 𝑏2𝑇R23

+ 𝑏3𝑇R33
)

+𝑎3(𝑏1𝑇R12
+ 𝑏2𝑇R22

+ 𝑏3𝑇R23
) + 𝑏2(𝑎1𝑇R13

+ 𝑎2𝑇R23
+ 𝑎3𝑇R33

)

+𝑏3(𝑎1𝑇R12
+ 𝑎2𝑇R22

+ 𝑎3𝑇R23
)] = 0. (108)

To find the distribution of the residual stresses in the slab, we need
to solve (97) and (103)–(108). We have a total 9 equations for the
6 components of the residual stress tensor 𝐓R, therefore, in general
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apart from considering the components of the residual stress tensor as
unknowns, we assume that some of the parameters of the constitutive
equation 𝛱 are also unknowns.

In order to make some progress with this boundary value problem,
we consider the same special expression for 𝛱 as in (53): 𝛱(𝐓, 𝐚,𝐛, 𝑟) =
𝑐0𝐼1 + 𝑐1𝐼21 +

∑9
𝑖=2𝑐𝑖𝐼𝑖, from which we obtain

𝛱1 = 𝑐0 + 2𝑐1𝐼1, 𝛱𝑘 = 𝑐𝑘, 𝑘 = 2, 3,… , 9, (109)

where in the present case we suppose that 𝑐𝑘 = 𝑐𝑘(𝑥, 𝑦), 𝑘 = 0, 1, 2,… , 9
and where

𝐼1 = 𝑇11 + 𝑇22 + 𝑇33. (110)

Let us now explore a method for solving the problem, similar in
spirit to one of the procedures used to determine the residual stresses in
a cylindrical annulus (see Section 5.1). We only consider (97), (103)–
(108) and we assume that we do not have information as a consequence
of the slab being cut. Additionally, for simplicity we consider expres-
sions for some of the components of 𝐓R as given a priori and from (103)–
(108) we obtain some information associated with the functions 𝑐𝑖(𝑥, 𝑦)
that characterize the model (109).

Let us now solve (97)1,2, under the assumption that 𝑇R11
and 𝑇R22

are
expressed in terms of 𝑇R12

. We have

𝑇R11
(𝑥, 𝑦) = −∫

𝑥

−𝐿𝑥

𝜕𝑇R12

𝜕𝑦
(𝜉, 𝑦) d𝜉 + 𝐹 (𝑦),

𝑇R22
(𝑥, 𝑦) = −∫

𝑦

0

𝜕𝑇R12

𝜕𝑥
(𝑥, 𝜂) d𝜂 + 𝐺(𝑥),

(111)

which in virtue of the boundary conditions (100)1,2, (98)3,4 leads to
𝐹 (𝑦) = 0 and 𝐺(𝑥) = 0. In view of the boundary conditions (98)1,2,
(100)3,4 we impose the restrictions

∫

𝐿𝑥

−𝐿𝑥

𝜕𝑇R12

𝜕𝑦
(𝜉, 𝑦) d𝜉 = 0, ∫

𝐻

0

𝜕𝑇R12

𝜕𝑥
(𝑥, 𝜂) d𝜂 = 0. (112)

Following a similar procedure we obtain 𝑇R13
from (111), (112) and

(97)3 in terms of 𝑇R23
as

𝑇R13
(𝑥, 𝑦) = −∫

𝑥

−𝐿𝑥

𝜕𝑇R23

𝜕𝑦
(𝜉, 𝑦) d𝜉,

where ∫

𝐿𝑥

−𝐿𝑥

𝜕𝑇R23

𝜕𝑦
(𝜉, 𝑦) d𝜉 = 0. (113)

We notice that the boundary conditions (101) are satisfied.
Let us assume an approximate expression for 𝑇R12

of the form

𝑇R12
(𝑥, 𝑦) ≈

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1

{

𝑚𝑛 cos
[

𝜋(2𝑚 − 1)𝑥
2𝐿𝑥

]

+ 𝑚𝑛 sin
(

𝜋𝑚𝑥
𝐿𝑥

)}

sin
(𝜋𝑛𝑦

𝐻

)

, (114)

where 𝑚𝑛 and 𝑚𝑛 are constants. It is easy to show that the boundary
conditions (100)3,4 𝑇R12

(±𝐿𝑥, 𝑦) = 0 are satisfied for all 𝑦 such that
0 ≤ 𝑦 ≤ 𝐻 . Similarly, for the boundary conditions (98)1,2 𝑇R12

(𝑥, 0) = 0,
𝑇R12

(𝑥,𝐻) = 0. From (111)1 and (114) we have

𝑇R11
(𝑥, 𝑦) =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1

𝐿𝑥𝑛
𝐻

{

− 2
(2𝑚 − 1)

𝑚𝑛

(

sin
[

𝜋(2𝑚 − 1)𝑥
2𝐿𝑥

]

+ (−1)𝑚+1
)

+
𝑚𝑛
𝑚

(

cos
(

𝜋𝑚𝑥
𝐿𝑥

)

+ (−1)𝑚+1
)}

cos
(𝜋𝑛𝑦

𝐻

)

. (115)

The condition (100)1 (see (112)1) that 𝑇R11
(𝐿𝑥, 𝑦) = 0 is satisfied if, for

example

1𝑛 =
𝑀
∑

𝑚=2

𝑚𝑛(−1)𝑚

(2𝑚 − 1)
. (116)

Regarding 𝑇R22
, from (111)2 and (114) we have

𝑇R22
(𝑥, 𝑦) =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1

𝐻
𝐿𝑥𝑛

{

−
(2𝑚 − 1)

2
𝑚𝑛 sin

[

𝜋(2𝑚 − 1)𝑥
2𝐿𝑥

]

+𝑚𝑚𝑛 cos
(

𝜋𝑚𝑥
𝐿𝑥

)}

[

cos
(𝜋𝑛𝑦

𝐻

)

− 1
]

. (117)

The boundary conditions (98)3,4 are satisfied automatically.
With regard to 𝑇R23

let us assume an approximate expression of the
form

𝑇R23
(𝑥, 𝑦) ≈

𝑁
∑

𝑛=1
0𝑛 sin

(𝜋𝑛𝑦
𝐻

)

+
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1

{

𝑚𝑛 cos
[

𝜋(2𝑚 − 1)𝑥
2𝐿𝑥

]

+𝑚𝑛 sin
(

𝜋𝑚𝑥
𝐿𝑥

)}

sin
(𝜋𝑛𝑦

𝐻

)

, (118)

where 𝑚𝑛 and 𝑚𝑛 are constants. It possible to show that the conditions
(99) are satisfied automatically. From (113)1 and (118) we obtain that

𝑇R13
(𝑥, 𝑦) = −(𝑥 + 𝐿𝑥)

𝜋
𝐻

𝑁
∑

𝑛=1
𝑛0𝑛 cos

(𝜋𝑛𝑦
𝐻

)

+
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1

𝐿𝑥𝑛
𝐻

{

− 2
(2𝑚 − 1)

𝑚𝑛

(

sin
[

𝜋(2𝑚 − 1)𝑥
2𝐿𝑥

]

+ (−1)𝑚+1
)

+
𝑚𝑛
𝑚

(

cos
(

𝜋𝑚𝑥
𝐿𝑥

)

+(−1)𝑚+1
)}

cos
(𝜋𝑛𝑦

𝐻

)

. (119)

The condition (101)1 (see (113)2) 𝑇R13
(𝐿𝑥, 𝑦) = 0 is satisfied if, for

example

0𝑛 =
1
𝜋

𝑀
∑

𝑚=1

𝑚𝑛(−1)𝑚

(2𝑚 − 1)
. (120)

Finally, regarding 𝑇R33
, as there is no boundary condition that the

component of the stress has to satisfy (as the plate is infinitely long in
the direction 𝑧), we assume the following approximate expression for
that component of the residual stress

𝑇R33
(𝑥, 𝑦) ≈ 00 +

𝑀
∑

𝑚=1

{

𝑚0 cos
(

𝜋𝑚𝑥
𝐿𝑥

)

+ 𝑚0 sin
(

𝜋𝑚𝑥
𝐿𝑥

)}

+
𝑁
∑

𝑛=1

{

0𝑛 cos
(𝜋𝑛𝑦

𝐻

)

+0𝑛 sin
(𝜋𝑛𝑦

𝐻

)}

+
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1

{

𝑚𝑛 cos
(

𝜋𝑚𝑥
𝐿𝑥

)

cos
(𝜋𝑛𝑦

𝐻

)

+𝑚𝑛 sin
(

𝜋𝑚𝑥
𝐿𝑥

)

cos
(𝜋𝑛𝑦

𝐻

)

+ 𝑚𝑛 cos
(

𝜋𝑚𝑥
𝐿𝑥

)

sin
(𝜋𝑛𝑦

𝐻

)

+𝑚𝑛 sin
(

𝜋𝑚𝑥
𝐿𝑥

)

sin
(𝜋𝑛𝑦

𝐻

)

}

, (121)

where 𝑚𝑛, 𝑚𝑛, 𝑚𝑛 and 𝑚𝑛 are constants.
In view of the above representations with regard to 𝑇R33

, the condi-
tion (102)1 is satisfied if, for example

00 =
𝑁
∑

𝑛=1

1
𝜋𝑛

[(−1)𝑛 − 1]0𝑛. (122)

Regarding 𝑇R23
, from (118) we conclude that (102)3 is satisfied if the

following relation holds
𝑁
∑

𝑛=1
0𝑛

1
𝑛
[(−1)𝑛 − 1] =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1

2𝑚𝑛
(2𝑚 − 1)

(−1)𝑚

𝜋𝑛
[(−1)𝑚 − 1]. (123)

In the case of 𝑇R13
from (119) we note that (102)2 is satisfied automati-

cally.
Finally, (120) and (123) are satisfied if, for example

11 =
𝑀
∑

𝑚=2

{

𝑚1
(2𝑚 − 1)

(−1)𝑚+1 +
𝑁
∑

𝑛=2

𝑚𝑛
2(2𝑚 − 1)

(−1)𝑚+1

𝑛
[(−1)𝑛 − 1]

}

.

(124)

It follows from (114), (115), (117), (118), (119), (121) and (103)–
(108) that we can obtain, 𝑐0, 𝑐4, 𝑐5, 𝑐6, 𝑐7 and 𝑐8. The system of equations
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(103)–(108) can be rewritten as the following system of linear equations

[M][C] = [D], (125)

where the 6 × 6 matrix [M] and the 6 × 1 vectors [C] and [D] are defined
as

[M] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 𝑎21 2𝑙1 𝑏21 2𝑤1 2(𝐚 ⋅ 𝐛)𝑎1𝑏1
1 𝑎22 2𝑙2 𝑏22 2𝑤2 2(𝐚 ⋅ 𝐛)𝑎2𝑏2
1 𝑎23 2𝑙3 𝑏23 2𝑤3 2(𝐚 ⋅ 𝐛)𝑎3𝑏3
0 𝑎1𝑎2 𝑙4 𝑏1𝑏2 𝑤4 (𝐚 ⋅ 𝐛)(𝑎1𝑏2 + 𝑏1𝑎2)
0 𝑎1𝑎3 𝑙5 𝑏1𝑏3 𝑤5 (𝐚 ⋅ 𝐛)(𝑎1𝑏3 + 𝑏1𝑎3)
0 𝑎2𝑎3 𝑙6 𝑏2𝑏3 𝑤6 (𝐚 ⋅ 𝐛)(𝑎2𝑏3 + 𝑏2𝑎3)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

[C] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑐0
𝑐4
𝑐5
𝑐6
𝑐7
𝑐8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, [D] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑟0
𝑟4
𝑟5
𝑟6
𝑟7
𝑟8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(126)

where 𝑙𝑘, 𝑤𝑘 and 𝑟𝑘, 𝑘 = 1, 2, 3, 4, 5, 6 are variables defined in terms
of the components of 𝐓R, 𝐚, 𝐛, and 𝑐1, 𝑐2, 𝑐3 and 𝑐9, and are given in
Appendix A. The above system of linear equations can be solve uniquely
if8 det[M] ≠ 0. Eq. (125) can be solved symbolically or numerically, in
this last case we need to completely know an expression for 𝐓R.

7. On the use of incremental equations to study the properties of
residually stressed bodies

In the previous sections we assumed that information about the
properties of residually stressed bodies can be obtained by assuming
that such bodies on being cut attain a configuration that is free of stress.
From the practical point of view it may not be possible or convenient to
cut a body in order to obtain information about the material properties
and the distributions of residual stresses and moreover a ‘cut’ is not a
diffeomorphism. In the present section we explore a different method
to obtain information concerning the residually stressed body, working
with the incremental formulation presented in [50] (see also [30] for a
similar analysis, but for a subclass of G(𝐁,𝐓R)). Recall the definitions
presented in Section 3.2, the residual stresses 𝐓R must satisfy the
equations (see (12))

div𝐓R = 𝟎, 𝟎 = h(𝐓R) on 𝜅𝑟(), 𝐓R𝐧 = 𝟎 on 𝜕𝜅𝑟().

Let us consider the application of a small external load 𝛥�̂�, which is
applied on some parts of the boundary of the body, such that the stresses
change according to 𝐓 = 𝐓R + 𝛥𝐓 and such that |𝛥𝐓| ≪ |𝐓R|. Of course
this last assumption in most cases can be only verified a posteriori,
as in general the residual stresses 𝐓R are unknown. The total stress
𝐓 = 𝐓R + 𝛥𝐓 must satisfy the equation of motion9 𝜌 𝜕2𝐮

𝜕𝑡2
= div𝐓 and

(12) and we obtain

𝜌 𝜕
2𝛥𝐮
𝜕𝑡2

= div𝛥𝐓, (127)

where 𝛥𝐮 is the displacement field that appears when the incremental
external load 𝛥�̂� is applied on the boundary of the body. Let 𝛥𝜺 denote
the strain tensor associated with such a displacement field, we have (in
index notation and Cartesian co-ordinates)

𝛥𝜀𝑖𝑗 =
1
2

(

𝜕𝛥𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝛥𝑢𝑗
𝜕𝑥𝑖

)

, (128)

and from 𝜺 = h(𝐓) since |𝛥𝐓| ≪ |𝐓R| and since (12)1 must be satisfied,
we have the approximate expression

𝛥𝜀𝑖𝑗 ≈
𝜕h𝑖𝑗
𝜕𝑇𝑘𝑙

|

|

|

|

|𝐓R

𝛥𝑇𝑘𝑙 , (129)

8 det[M] ≠ 0 is a condition that may not be always satisfied. Even if det[M] = 0
we can still find 𝑐0, 𝑐4, 𝑐5, 𝑐6, 𝑐7 and 𝑐8, but some of them would not be
independent.

9 For simplicity we do not consider body forces.

which in the case of (19) becomes

𝛥𝜀𝑖𝑗 ≈
𝜕2𝛱

𝜕𝑇𝑖𝑗𝜕𝑇𝑘𝑙

|

|

|

|

|𝐓R

𝛥𝑇𝑘𝑙 . (130)

From (127) and (130) we see that these linearized equations contain
information concerning the residual stresses.

As a summary, for a given distribution of residual stresses𝐓R we need
to find 𝛥𝐓 and 𝛥𝐮 solving in parallel the partial differential equations10

𝜌
𝜕2𝛥𝑢𝑖
𝜕𝑡2

=
𝜕𝛥𝑇𝑖𝑗
𝜕𝑥𝑗

, 1
2

(

𝜕𝛥𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝛥𝑢𝑗
𝜕𝑥𝑖

)

= 𝜕2𝛱
𝜕𝑇𝑖𝑗𝜕𝑇𝑘𝑙

|

|

|

|

|𝐓R

𝛥𝑇𝑘𝑙 , (131)

subject to the boundary conditions

𝛥𝑇𝑖𝑗𝑛𝑗 = 𝛥𝑡𝑖 on 𝜕𝜅𝑟()𝑡, 𝛥𝑢𝑖 = 𝛥�̂�𝑖 on 𝜕𝜅𝑟()𝑢, (132)

where 𝛥�̂� is the prescribed boundary displacement on 𝜕𝜅𝑟()𝑢, and
𝜕𝜅𝑟() = 𝜕𝜅𝑟()𝑢 ∪ 𝜕𝜅𝑟()𝑡 and 𝜕𝜅𝑟()𝑢 ∩ 𝜕𝜅𝑟()𝑡 = ∅.

In principle, we could apply a variety of small external loads 𝛥�̂� on
the residually stressed body on the surface 𝜕𝜅𝑟()𝑡, and we should be
able to measure the displacement field 𝛥𝐮 that such loads generate on
the same surface 𝜕𝜅𝑟()𝑡. This experimental information could be used to
help us characterize the residual stresses 𝐓R or the constitutive function
𝛱 = 𝛱(𝐓, 𝐚,𝐛) as shown in the example presented below.

In order to see how the incremental formulation presented above
can help us to understand the response of residually stressed bodies,
it is necessary to consider some boundary value problems, and as first
step we need the expression for 𝜕2𝛱

𝜕𝑇𝑖𝑗𝜕𝑇𝑘𝑙
. From (26) (see (19)) we have

in index notation (Cartesian co-ordinates)

𝜕𝛱
𝜕𝑇𝑘𝑙

= 𝛱1𝛿𝑘𝑙 +𝛱2𝑇𝑘𝑙 +𝛱3𝑇𝑘𝑚𝑇𝑚𝑙 +𝛱4𝑎𝑘𝑎𝑙

+𝛱5(𝑇𝑘𝑚𝑎𝑚𝑎𝑙 + 𝑎𝑘𝑇𝑙𝑚𝑎𝑚) +𝛱6𝑏𝑘𝑏𝑙
+𝛱7(𝑇𝑘𝑚𝑏𝑚𝑏𝑙 + 𝑏𝑘𝑇𝑙𝑚𝑏𝑚) +𝛱8(𝐚 ⋅ 𝐛)(𝑎𝑘𝑏𝑙 + 𝑎𝑙𝑏𝑘)

+𝛱9(𝐚 ⋅ 𝐛)(𝑎𝑘𝑇𝑙𝑚𝑏𝑚 + 𝑇𝑘𝑚𝑏𝑚𝑎𝑙 + 𝑏𝑘𝑇𝑙𝑚𝑎𝑚 + 𝑇𝑘𝑚𝑎𝑚𝑏𝑙), (133)

where we recall that 𝛱𝑝 = 𝜕𝛱
𝜕𝐼𝑝

, 𝑝 = 1, 2,… , 9. The second derivatives
𝜕2𝛱

𝜕𝑇𝑖𝑗𝜕𝑇𝑘𝑙
can be found by taking the derivative of the above expression

with respect to 𝑇𝑖𝑗 taking into consideration the expression

𝜕𝛱𝑝

𝜕𝑇𝑖𝑗
= 𝛱𝑝1𝛿𝑖𝑗 +𝛱𝑝2𝑇𝑖𝑗 +𝛱𝑝3𝑇𝑖𝑛𝑇𝑛𝑗 +𝛱𝑝4𝑎𝑖𝑎𝑗

+𝛱𝑝5(𝑇𝑖𝑛𝑎𝑛𝑎𝑗 + 𝑎𝑖𝑇𝑗𝑛𝑎𝑛) +𝛱𝑝6𝑏𝑖𝑏𝑗
+𝛱𝑝7(𝑇𝑖𝑛𝑏𝑛𝑏𝑗 + 𝑏𝑖𝑇𝑗𝑛𝑏𝑛) +𝛱𝑝8(𝐚 ⋅ 𝐛)(𝑎𝑖𝑏𝑗 + 𝑏𝑖𝑎𝑗 )

+𝛱𝑝9(𝐚 ⋅ 𝐛)(𝑎𝑖𝑇𝑗𝑛𝑏𝑛 + 𝑇𝑖𝑛𝑏𝑛𝑎𝑗 + 𝑏𝑖𝑇𝑗𝑛𝑎𝑛 + 𝑇𝑖𝑛𝑎𝑛𝑏𝑗 ), (134)

where we have used the notation 𝛱𝑝𝑞 = 𝜕2𝛱
𝜕𝐼𝑝𝜕𝐼𝑞

. The procedure to

obtain 𝜕2𝛱
𝜕𝑇𝑖𝑗𝜕𝑇𝑘𝑙

is straightforward but since the expression is very long
we provide it in Appendix B. In the case of the model (53) where we
have 𝛱11 = 2𝑐1, 𝛱𝑢𝑣 = 0 (when 𝑢 ≠ 1 and 𝑣 ≠ 1), 𝛱1 = 𝑐0 + 2𝑐1𝐼1,
𝛱𝑤 = 𝑐𝑤, 𝑤 = 2, 3,… , 9, from (220) (see Appendix B) we obtain that

𝜕2𝛱
𝜕𝑇𝑖𝑗𝜕𝑇𝑘𝑙

= 2𝑐1𝛿𝑖𝑗𝛿𝑘𝑙 +
1
2
𝑐2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙) +

1
2
𝑐3(𝛿𝑖𝑘𝑇𝑗𝑙 + 𝑇𝑖𝑘𝛿𝑙𝑗 + 𝛿𝑘𝑗𝑇𝑖𝑙

+ 𝑇𝑘𝑗𝛿𝑙𝑖) +
1
2
𝑐5(𝛿𝑖𝑘𝑎𝑗𝑎𝑙 + 𝑎𝑘𝛿𝑙𝑖𝑎𝑗 + 𝛿𝑘𝑗𝑎𝑖𝑎𝑙 + 𝑎𝑘𝛿𝑙𝑗𝑎𝑖)

+ 1
2
𝑐7(𝛿𝑖𝑘𝑏𝑗𝑏𝑙 + 𝑏𝑘𝛿𝑙𝑖𝑏𝑗 + 𝛿𝑘𝑗𝑏𝑖𝑏𝑙 + 𝑏𝑘𝛿𝑙𝑗𝑏𝑖). (135)

To summarize, in the case of (53) we need to find 𝐓R, 𝛥𝐓 and 𝛥𝐮 by
solving the Eqs. (12)1,2 and (131) (see (135))

(𝑐0 + 2𝑐1𝑇R𝑘𝑘
)𝛿𝑖𝑗 + 𝑐2𝑇R𝑖𝑗

+ 𝑐3𝑇R𝑖𝑘
𝑇R𝑘𝑗

+ 𝑐4𝑎𝑖𝑎𝑗 + 𝑐5(𝑇R𝑖𝑘
𝑎𝑘𝑎𝑗 + 𝑎𝑖𝑇R𝑗𝑘

𝑎𝑘)

10 Here we assume that 𝜌 is approximately constant as a function of the
deformation.
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+ 𝑐6𝑏𝑖𝑏𝑗 + 𝑐7(𝑇R𝑖𝑘
𝑏𝑘𝑏𝑗 + 𝑏𝑖𝑇R𝑗𝑘

𝑏𝑘) + 𝑐8(𝐚 ⋅ 𝐛)(𝑎𝑖𝑏𝑗 + 𝑏𝑖𝑎𝑗 )

+ 𝑐9(𝐚 ⋅ 𝐛)(𝑎𝑖𝑇𝑗𝑘𝑏𝑘 + 𝑇𝑖𝑘𝑏𝑘𝑎𝑗 + 𝑏𝑖𝑇𝑗𝑘𝑎𝑘 + 𝑇𝑖𝑘𝑎𝑘𝑏𝑗 ) = 0, (136)
𝜕𝑇R𝑖𝑗

𝜕𝑥𝑗
= 0, 𝜌

𝜕2𝛥𝑢𝑖
𝜕𝑡2

=
𝜕𝛥𝑇𝑖𝑗
𝜕𝑥𝑗

, (137)

1
2

(

𝜕𝛥𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝛥𝑢𝑗
𝜕𝑥𝑖

)

= 2𝑐1𝛿𝑖𝑗𝛥𝑇𝑘𝑘 + 𝑐2𝛥𝑇𝑖𝑗 + 𝑐3(𝛥𝑇𝑖𝑘𝑇R𝑘𝑗
+ 𝑇R𝑖𝑘

𝛥𝑇𝑘𝑗 )

+ 𝑐5(𝛥𝑇𝑖𝑘𝑎𝑘𝑎𝑗 + 𝑎𝑖𝛥𝑇𝑗𝑘𝑎𝑘) + 𝑐7(𝛥𝑇𝑖𝑘𝑏𝑘𝑏𝑗 + 𝑏𝑖𝛥𝑇𝑗𝑘𝑏𝑘), (138)

subject to the boundary conditions
𝑇R𝑖𝑗

𝑛𝑗 = 0 on 𝜕𝜅𝑟(), 𝛥𝑇𝑖𝑗𝑛𝑗 = 𝛥𝑡𝑖 on 𝜕𝜅𝑟()𝑡,

𝛥𝑢𝑖 = 𝛥�̂�𝑖 on 𝜕𝜅𝑟()𝑢.
(139)

7.1. Analysis for a cylindrical annulus

In this section we solve (136)–(138) for the special case of a
cylindrical annulus, the relevant variables only depend on the radial
position and not on time (quasi-static analysis). Recalling the results
presented in Section 5.1, here we consider the annulus 𝑟i ≤ 𝑟 ≤ 𝑟o,
0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑧 ≤ 𝐿, where the residual stresses are assumed
to be of the form 𝑇R𝑟𝑟

= 𝑇R𝑟𝑟
(𝑟) and 𝑇R𝜃𝜃

= 𝑇R𝜃𝜃
(𝑟) where the rest

of the components are assumed to be equal to zero. The equations
of equilibrium (137)1 reduces to 𝑇R𝜃𝜃

(𝑟) = d
d𝑟 (𝑟𝑇R𝑟𝑟

(𝑟)) with boundary
conditions 𝑇R𝑟𝑟

(𝑟i) = 0, 𝑇R𝑟𝑟
(𝑟o) = 0. For simplicity we use the solution

for 𝐓R and the expressions for 𝑐𝑘, 𝑘 = 1, 2,… , 9 presented in (54) for the
case of a residually stressed tube when the residual stresses are known
and depend on the radial position without considering a radial cut for
the annulus. In this case 𝑇R𝑟𝑟

(𝑟) = 𝑑0(𝑟 − 𝑟i)(𝑟 − 𝑟o).
Regarding 𝛥𝐓 and 𝛥𝐮 let us assume that they are of the form

𝛥𝑇𝑟𝑟 = 𝛥𝑇𝑟𝑟(𝑟), 𝛥𝑇𝜃𝜃 = 𝛥𝑇𝜃𝜃(𝑟), 𝛥𝑇𝑧𝑧 = 𝛥𝑇𝑧𝑧(𝑟) and 𝛥𝑇𝑖𝑗 = 0, 𝑖 ≠ 𝑗, and
𝛥𝐮 = 𝛥𝑢𝑟(𝑟)𝐞𝑟. We assume that the boundary condition (139)2 satisfy

𝛥𝑇𝑟(𝑟i) = −𝛥𝑃i, 𝛥𝑇𝑟(𝑟o) = 0, 𝛥𝑇𝑧 (𝑟) = 𝑡𝑧 (𝑟) . (140)

We should be able to measure experimentally the radial displacements
𝛥𝑢𝑟(𝑟i) and 𝛥𝑢𝑟(𝑟o). The equation of motion (137)2 becomes

𝛥𝑇𝜃𝜃(𝑟) =
d
d𝑟

[𝑟𝛥𝑇𝑟𝑟(𝑟)]. (141)

In the case of (138), from the previous expressions we obtain that
d𝛥𝑢𝑟
d𝑟

= 2𝑐1(𝛥𝑇𝑟𝑟 + 𝛥𝑇𝜃𝜃 + 𝛥𝑇𝑧𝑧) + 𝑐2𝛥𝑇𝑟𝑟 + 2𝑐3𝛥𝑇𝑟𝑟𝑇R𝑟𝑟
, (142)

𝛥𝑢𝑟
𝑟

= 2𝑐1(𝛥𝑇𝑟𝑟 + 𝛥𝑇𝜃𝜃 + 𝛥𝑇𝑧𝑧) + 𝑐2𝛥𝑇𝜃𝜃 + 2𝑐3𝛥𝑇𝜃𝜃𝑇R𝜃𝜃

+ 2𝑐5𝛥𝑇𝜃𝜃𝑎22 + 2𝑐7𝛥𝑇𝜃𝜃𝑏22, (143)
0 = 2𝑐1(𝛥𝑇𝑟𝑟 + 𝛥𝑇𝜃𝜃 + 𝛥𝑇𝑧𝑧) + 𝑐2𝛥𝑇𝑧𝑧 + 2𝑐5𝛥𝑇𝑧𝑧𝑎23 + 2𝑐7𝛥𝑇𝑧𝑧𝑏23, (144)

where 𝑎2 = 𝑏2 = cos 𝛽 and 𝑎3 = −𝑏3 = sin 𝛽. The above system of
equations is linear in 𝛥𝐓 and 𝛥𝐮, and in particular (144) can be used
to obtain 𝛥𝑇𝑧𝑧 in terms of 𝛥𝑇𝑟𝑟 and 𝛥𝑇𝜃𝜃 as

𝛥𝑇𝑧𝑧 = −ℵ(𝛥𝑇𝑟𝑟 + 𝛥𝑇𝜃𝜃), (145)

where we have defined

ℵ =
2𝑐1

(2𝑐1 + 𝑐2 + 2𝑐5𝑎23 + 2𝑐7𝑏23)
, (146)

and where we have assumed that 2𝑐1+𝑐2+2𝑐5𝑎23+2𝑐7𝑏23 ≠ 0. From (143)
we have 𝛥𝑢𝑟 = 𝑟[2𝑐1(𝛥𝑇𝑟𝑟+𝛥𝑇𝜃𝜃+𝛥𝑇𝑧𝑧)+𝑐2𝛥𝑇𝜃𝜃+2𝑐3𝛥𝑇𝜃𝜃𝑇R𝜃𝜃

+2𝑐5𝛥𝑇𝜃𝜃𝑎22+
2𝑐7𝛥𝑇𝜃𝜃𝑏22], therefore, replacing this in (142), and considering (141) we
obtain that
d
d𝑟

{

𝑟
[

2𝑐1(1 − ℵ)𝛥𝑇𝑟𝑟 + 𝓁2
d
d𝑟

(𝑟𝛥𝑇𝑟𝑟)
]}

= 𝓁1𝛥𝑇𝑟𝑟 + 2𝑐1(1 − ℵ) d
d𝑟

(𝑟𝛥𝑇𝑟𝑟), (147)

where we have used the definitions
𝓁1 = 2𝑐1(1 − ℵ) + 𝑐2 + 2𝑐3𝑇R𝑟𝑟

,

𝓁2 = 2𝑐1(1 − ℵ) + 𝑐2 + 2𝑐3𝑇R𝜃𝜃
+ 2𝑐5𝑎22 + 2𝑐7𝑏22.

(148)

Eq. (147) is solved using the finite element method using the
program Comsol 3.4 [49]. The expressions for 𝑇R𝑟𝑟

, 𝑇R𝜃𝜃
and 𝑐0,

𝑐4 and 𝑐8 are taken from (54), (55), and from (60)–(62) we have:
𝑐0(𝑟) = −2𝑐1𝐼R1

− 𝑇R𝑟𝑟
(𝑐2 + 𝑐3𝑇R𝑟𝑟

), 𝑐4(𝑟) = 1
4 {𝑇R𝑟𝑟

(𝑐2 + 𝑐3𝑇R𝑟𝑟
)csc2𝛽 −

4𝑇R𝜃𝜃
[𝑐5 + 𝑐9 cos(2𝛽)] + (𝑇R𝑟𝑟

− 𝑇R𝜃𝜃
)[𝑐2 + 𝑐3(𝑇R𝑟𝑟

+ 𝑇R𝜃𝜃
)]sec2𝛽}and 𝑐8(𝑟) =

− 1
4 {4𝑇R𝜃𝜃

[𝑐5 + 𝑐9 cos(2𝛽)] + 4𝑇R𝑟𝑟
(𝑐2 + 𝑐3𝑇R𝑟𝑟

) cot(2𝛽) csc(2𝛽) + 𝑇R𝜃𝜃
(𝑐2 +

𝑐3𝑇R𝜃𝜃
)sec2𝛽} sec(2𝛽). We assume that 𝑐1, 𝑐2, 𝑐3, 𝑐5 = 𝑐7 and 𝑐9 are

constant, and use the values presented in Section 5.3 and shown in
Table 1.

In Fig. 7 results are presented for the components of the incremental
stress 𝛥𝐓 and 𝛥𝑢𝑟 (the incremental radial displacement), for different
values for the constant 𝑑0 (see (54)), in terms of the dimensionless radius
�̄� = 𝑟∕𝑟i, for the case 𝛥𝑃i = 10−3.

The behaviour of the solid for the case 𝑑0 = 0 would be that of a
linearized anisotropic solid whose response has two preferred directions.
It is interesting to compare the results for 𝛥𝑇𝑟𝑟 and 𝛥𝑇𝜃𝜃 for the other
values for 𝑑0. For 𝛥𝑇𝑟𝑟 we observe that the component of the incremental
stress increases near the middle of the annulus as 𝑑0 increases. The same
happens with regard to 𝛥𝑇𝜃𝜃(𝑟i) as 𝑑0 increases, which is the opposite of
the tendency observed in the full nonlinear problem in Section 5.3. On
the other hand, the behaviour of 𝛥𝑇𝑧𝑧 is similar (in a qualitative manner)
with the behaviour of 𝑇𝑧𝑧 for the nonlinear problem (see Section 5.3).
Regarding the behaviour of 𝛥𝑢𝑟 we see that as 𝑑0 increases 𝛥𝑢𝑟, which is
positive, decreases globally on the surface of the annulus, i.e., as the
residual stresses increases, it would be more difficult to deform the
annulus, which would be in keeping with our expectations, since the
distribution of residual stresses is such that 𝑇R𝑟𝑟

is negative for the whole
annulus, while 𝑇R𝜃𝜃

is negative for some interval of the form 𝑟i ≤ 𝑟 ≤ 𝑟∗,
i.e., in order to deform the annulus the incremental load 𝛥𝑃i first must
overcome such initial stresses, and that is the reason 𝛥𝑢𝑟 decreases as 𝑑0
increases.

8. Further remarks

In the present paper we have studied how residual stresses in elastic
bodies can be modelled, when considering some classes of constitutive
equations where the strain is given as a function of the stress, namely
𝜺 = h(𝐓). It has been found that the definition of residual stresses
in this case is very simple and appealing from the physical point of
view, since if for a reference configuration we have residual stresses
𝐓R, we simply require that such residual stresses satisfy the equilibrium
equation div𝐓R = 𝟎, the traction free boundary condition 𝐓R𝐧 = 𝟎,
plus the additional condition 𝟎 = h(𝐓R). Using such theory we have
studied in detail the problem of residual stresses in a cylindrical annulus,
assuming that all the non-zero components of the stress depend only on
the radial position. The residual stresses can be assumed to be known
(up to the value of some constants), and from 𝟎 = h(𝐓R) we have
obtained the expressions for some of the material parameters for a
simple constitutive model h(𝐓) (see Section 5.1). Alternatively, we could
assume we have additional information from the residually stressed
body, when this is cut, assuming that the cut will release the residual
stresses. In such a case denoting 𝐮C as the displacement field due to
the body being cut, the additional condition 𝜺C = h(𝟎) (where 𝜺C is
the strain field calculated with 𝐮C) can be used to obtain additional
restrictions on the material parameters for the model. In the case of the
cylindrical annulus that has been studied in Section 5.2, we obtained
an equation (see Eq. (79)) that can be used either to find one of the
material parameters in terms of the radial component of the residual
stress, or to find the components of the stress if the material parameters
are known. We have presented two ways to assess the appropriateness
of the different assumptions for our model, one is to study the same
body under the influence of stresses that are of magnitude equal or
greater than the residual stresses, investigating how the body behaves
for different values of the parameters. Another method is to apply small
external loads, assuming that such loads will generate small stresses
(in comparison to the residual stresses) in the body, and using this
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Fig. 7. Results for the different components of the incremental stress tensor 𝛥𝐓 and the incremental radial displacement 𝛥𝑢𝑟, for different values for 𝑑0 (see (54))
and 𝛥𝑃i = 10−3.

fact to linearize the equations. In the case of the annulus, we have
studied these two methods, in Section 5.3 we studied the same residually
stressed annulus analysed in Section 5.1, now under the influence of
external loads, and we obtained results by exploring the influence
of the residual stresses on the stress 𝐓 and the displacement 𝐮. In
Section 7 the same annulus is studied, but now considering incremental
equations under the assumption that the external loads are very small.
This second approach can be very important in its own right, since
from the practical point of view, for a residually stressed body we can
assume some expression for 𝐓R such that div𝐓R = 𝟎 and 𝐓R𝐧 = 𝟎 are
satisfied, obtaining restrictions on h(𝐓), and thereafter, we can apply
many different external small loads to the same body, obtaining the
incremental stresses and in particular the incremental displacements,
which we can compare against experimental results, thereby assessing
if the expressions for the residual stress and the constitutive equations
are valid.
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Appendix A

The variables 𝑙𝑘 presented in (126) are defined as

𝑙1 = (𝑇R11
𝑎1 + 𝑇R12

𝑎2 + 𝑇R13
𝑎3)𝑎1,

𝑙2 = (𝑇R12
𝑎1 + 𝑇R22

𝑎2 + 𝑇R23
𝑎3)𝑎2,

(149)

𝑙3 = (𝑇R13
𝑎1 + 𝑇R23

𝑎2 + 𝑇R33
𝑎3)𝑎3, (150)

𝑙4 = (𝑇R11
𝑎1 + 𝑇R12

𝑎2 + 𝑇R13
𝑎3)𝑎2 + (𝑇R12

𝑎1 + 𝑇R22
𝑎2 + 𝑇R23

𝑎3)𝑎1, (151)

𝑙5 = (𝑇R11
𝑎1 + 𝑇R12

𝑎2 + 𝑇R13
𝑎3)𝑎2 + (𝑇R13

𝑎1 + 𝑇R23
𝑎2 + 𝑇R33

𝑎3)𝑎1, (152)

𝑙6 = (𝑇R12
𝑎1 + 𝑇R22

𝑎2 + 𝑇R23
𝑎3)𝑎3 + (𝑇R13

𝑎1 + 𝑇R23
𝑎2 + 𝑇R33

𝑎3)𝑎2. (153)

Also 𝑤𝑘 are defined through

𝑤1 = (𝑇R11
𝑏1 + 𝑇R12

𝑏2 + 𝑇R13
𝑏3)𝑏1,

𝑤2 = (𝑇R12
𝑏1 + 𝑇R22

𝑏2 + 𝑇R23
𝑏3)𝑏2,

(154)

𝑤3 = (𝑇R13
𝑏1 + 𝑇R23

𝑏2 + 𝑇R33
𝑏3)𝑏3, (155)

𝑤4 = (𝑇R11
𝑏1 + 𝑇R12

𝑏2 + 𝑇R13
𝑏3)𝑏2 + (𝑇R12

𝑏1 + 𝑇R22
𝑏2 + 𝑇R23

𝑏3)𝑏1, (156)

𝑤5 = (𝑇R11
𝑏1 + 𝑇R12

𝑏2 + 𝑇R13
𝑏3)𝑏2 + (𝑇R13

𝑏1 + 𝑇R23
𝑏2 + 𝑇R33

𝑏3)𝑏1, (157)

𝑤6 = (𝑇R12
𝑏1 + 𝑇R22

𝑏2 + 𝑇R23
𝑏3)𝑏3 + (𝑇R13

𝑏1 + 𝑇R23
𝑏2 + 𝑇R33

𝑏3)𝑏2, (158)

and 𝑟𝑘 are defined through

𝑟1 = −(𝑐1𝐼R1
+ 𝑐2𝑇R11

+ 𝑐3𝑗1 + 2𝑐9𝑧1),
𝑟2 = −(𝑐1𝐼R1

+ 𝑐2𝑇R22
+ 𝑐3𝑗2 + 2𝑐9𝑧2),

(159)

𝑟3 = −(𝑐1𝐼R1
+ 𝑐2𝑇R33

+ 𝑐3𝑗3 + 2𝑐9𝑧3),
𝑟4 = −(𝑐2𝑇R12

+ 𝑐3𝑗4 + 𝑐9𝑧4),
(160)

𝑟5 = −(𝑐2𝑇R13
+ 𝑐3𝑗5 + 𝑐9𝑧5), 𝑟6 = −(𝑐2𝑇R23

+ 𝑐3𝑗6 + 𝑐9𝑧6), (161)
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where
𝑗1 = 𝑇 2

R11
+ 𝑇 2

R12
+ 𝑇 2

R13
, 𝑗2 = 𝑇 2

R12
+ 𝑇 2

R22
+ 𝑇 2

R23
,

𝑗3 = 𝑇 2
R13

+ 𝑇 2
R23

+ 𝑇 2
R33

,
(162)

𝑗4 = 𝑇R11
𝑇R12

+ 𝑇R12
𝑇R22

+ 𝑇R13
𝑇R23

,
𝑗5 = 𝑇R11

𝑇R13
+ 𝑇R12

𝑇R23
+ 𝑇R13

𝑇R33
,

(163)

𝑗6 = 𝑇R12
𝑇R13

+ 𝑇R22
𝑇R23

+ 𝑇R23
𝑇R33

, (164)
𝑧1 = (𝐚 ⋅ 𝐛)[𝑎1(𝑏1𝑇R11

+ 𝑏2𝑇R12
+ 𝑏3𝑇R13

)

+𝑏1(𝑎1𝑇R11
+ 𝑎2𝑇R12

+ 𝑎3𝑇R13
)], (165)

𝑧2 = (𝐚 ⋅ 𝐛)[𝑎2(𝑏1𝑇R12
+ 𝑏2𝑇R22

+ 𝑏3𝑇R23
)

+𝑏2(𝑎1𝑇R12
+ 𝑎2𝑇R22

+ 𝑎3𝑇R23
)], (166)

𝑧3 = (𝐚 ⋅ 𝐛)[𝑎3(𝑏1𝑇R13
+ 𝑏2𝑇R23

+ 𝑏3𝑇R33
)

+𝑏3(𝑎1𝑇R13
+ 𝑎2𝑇R23

+ 𝑎3𝑇R33
)], (167)

𝑧4 = (𝐚 ⋅ 𝐛)[𝑎1(𝑏1𝑇R12
+ 𝑏2𝑇R22

+ 𝑏3𝑇R23
)

+𝑎2(𝑏1𝑇R11
+ 𝑏2𝑇R12

+ 𝑏3𝑇R13
)

+ 𝑏1(𝑎1𝑇R12
+ 𝑎2𝑇R22

+ 𝑎3𝑇R23
)

+𝑏2(𝑎1𝑇R11
+ 𝑎2𝑇R12

+ 𝑎3𝑇R13
)], (168)

𝑧5 = (𝐚 ⋅ 𝐛)[𝑎1(𝑏1𝑇R13
+ 𝑏2𝑇R23

+ 𝑏3𝑇R33
)

+𝑎3(𝑏1𝑇R11
+ 𝑏2𝑇R12

+ 𝑏3𝑇R13
)

+ 𝑏1(𝑎1𝑇R13
+ 𝑎2𝑇R23

+ 𝑎3𝑇R33
)

+𝑏3(𝑎1𝑇R11
+ 𝑎2𝑇R12

+ 𝑎3𝑇R13
)], (169)

𝑧6 = (𝐚 ⋅ 𝐛)[𝑎2(𝑏1𝑇R13
+ 𝑏2𝑇R23

+ 𝑏3𝑇R33
)

+𝑎3(𝑏1𝑇R12
+ 𝑏2𝑇R22

+ 𝑏3𝑇R23
)

+ 𝑏2(𝑎1𝑇R13
+ 𝑎2𝑇R23

+ 𝑎3𝑇R33
)

+𝑏3(𝑎1𝑇R12
+ 𝑎2𝑇R22

+ 𝑎3𝑇R23
)]. (170)

Appendix B

In this section we document the explicit expression for the second
derivative of 𝛱 , which is used in Section 7:

𝜕2𝛱
𝜕𝑇𝑖𝑗𝜕𝑇𝑘𝑙

= 𝛱11𝒜
(1)
𝑖𝑗𝑘𝑙 +𝛱12𝒜

(2)
𝑖𝑗𝑘𝑙 +𝛱13𝒜

(3)
𝑖𝑗𝑘𝑙

+𝛱14𝒜
(4)
𝑖𝑗𝑘𝑙 +𝛱15𝒜

(5)
𝑖𝑗𝑘𝑙 +𝛱16𝒜

(6)
𝑖𝑗𝑘𝑙

+𝛱17𝒜
(7)
𝑖𝑗𝑘𝑙 +𝛱18𝒜

(8)
𝑖𝑗𝑘𝑙 +𝛱19𝒜

(9)
𝑖𝑗𝑘𝑙

+𝛱22𝒜
(10)
𝑖𝑗𝑘𝑙 +𝛱23𝒜

(11)
𝑖𝑗𝑘𝑙 +𝛱24𝒜

(12)
𝑖𝑗𝑘𝑙

+𝛱25𝒜
(13)
𝑖𝑗𝑘𝑙 +𝛱26𝒜

(14)
𝑖𝑗𝑘𝑙 +𝛱27𝒜

(15)
𝑖𝑗𝑘𝑙

+𝛱28𝒜
(16)
𝑖𝑗𝑘𝑙 +𝛱29𝒜

(17)
𝑖𝑗𝑘𝑙 +𝛱33𝒜

(18)
𝑖𝑗𝑘𝑙

+𝛱34𝒜
(19)
𝑖𝑗𝑘𝑙 +𝛱35𝒜

(20)
𝑖𝑗𝑘𝑙 +𝛱36𝒜

(21)
𝑖𝑗𝑘𝑙

+𝛱37𝒜
(22)
𝑖𝑗𝑘𝑙 +𝛱38𝒜

(23)
𝑖𝑗𝑘𝑙 +𝛱39𝒜

(24)
𝑖𝑗𝑘𝑙

+𝛱44𝒜
(25)
𝑖𝑗𝑘𝑙 +𝛱45𝒜

(26)
𝑖𝑗𝑘𝑙 +𝛱46𝒜

(27)
𝑖𝑗𝑘𝑙

+𝛱47𝒜
(28)
𝑖𝑗𝑘𝑙 +𝛱48𝒜

(29)
𝑖𝑗𝑘𝑙 +𝛱49𝒜

(30)
𝑖𝑗𝑘𝑙

+𝛱55𝒜
(31)
𝑖𝑗𝑘𝑙 +𝛱56𝒜

(32)
𝑖𝑗𝑘𝑙 +𝛱57𝒜

(33)
𝑖𝑗𝑘𝑙

+𝛱58𝒜
(34)
𝑖𝑗𝑘𝑙 +𝛱59𝒜

(35)
𝑖𝑗𝑘𝑙 +𝛱66𝒜

(36)
𝑖𝑗𝑘𝑙

+𝛱67𝒜
(37)
𝑖𝑗𝑘𝑙 +𝛱68𝒜

(38)
𝑖𝑗𝑘𝑙 +𝛱69𝒜

(39)
𝑖𝑗𝑘𝑙

+𝛱77𝒜
(40)
𝑖𝑗𝑘𝑙 +𝛱78𝒜

(41)
𝑖𝑗𝑘𝑙 +𝛱79𝒜

(42)
𝑖𝑗𝑘𝑙

+𝛱88𝒜
(43)
𝑖𝑗𝑘𝑙 +𝛱89𝒜

(44)
𝑖𝑗𝑘𝑙 +𝛱99𝒜

(45)
𝑖𝑗𝑘𝑙

+𝛱2𝒞
(1)
𝑖𝑗𝑘𝑙 +𝛱3𝒞

(2)
𝑖𝑗𝑘𝑙 +𝛱5𝒞

(3)
𝑖𝑗𝑘𝑙

+𝛱7𝒞
(1)
𝑖𝑗𝑘𝑙 , (171)

where we recall that 𝛱𝑖𝑗 =
𝜕2𝛱
𝜕𝐼𝑖𝜕𝐼𝑗

and where we have defined

𝒜 (1)
𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑗𝛿𝑘𝑙 , (172)

𝒜 (2)
𝑖𝑗𝑘𝑙 = 𝑇𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑗𝑇𝑘𝑙 , (173)

𝒜 (3)
𝑖𝑗𝑘𝑙 = 𝑇𝑖𝑛𝑇𝑛𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑗𝑇𝑘𝑛𝑇𝑛𝑙 , (174)

𝒜 (4)
𝑖𝑗𝑘𝑙 = 𝑎𝑖𝑎𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑗𝑎𝑘𝑎𝑙 , (175)

𝒜 (5)
𝑖𝑗𝑘𝑙 = (𝑇𝑖𝑛𝑎𝑛𝑎𝑗 + 𝑎𝑖𝑇𝑗𝑛𝑎𝑛)𝛿𝑘𝑙 + 𝛿𝑖𝑗 (𝑇𝑘𝑛𝑎𝑛𝑎𝑙 + 𝑎𝑘𝑇𝑙𝑛𝑎𝑛), (176)

𝒜 (6)
𝑖𝑗𝑘𝑙 = 𝑏𝑖𝑏𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑗𝑏𝑘𝑏𝑙 , (177)

𝒜 (7)
𝑖𝑗𝑘𝑙 = (𝑇𝑖𝑛𝑏𝑛𝑏𝑗 + 𝑏𝑖𝑇𝑗𝑛𝑏𝑛)𝛿𝑘𝑙 + 𝛿𝑖𝑗 (𝑇𝑘𝑛𝑏𝑛𝑏𝑙 + 𝑏𝑘𝑇𝑙𝑛𝑏𝑛), (178)

𝒜 (8)
𝑖𝑗𝑘𝑙 = (𝐚 ⋅ 𝐛)[(𝑎𝑖𝑏𝑗 + 𝑏𝑖𝑎𝑗 )𝛿𝑘𝑙 + 𝛿𝑖𝑗 (𝑎𝑘𝑏𝑙 + 𝑎𝑙𝑏𝑘)], (179)

𝒜 (9)
𝑖𝑗𝑘𝑙 = (𝐚 ⋅ 𝐛)[𝛿𝑖𝑗 (𝑎𝑘𝑇𝑙𝑛𝑏𝑛 + 𝑇𝑘𝑛𝑏𝑛𝑎𝑙 + 𝑏𝑘𝑇𝑙𝑛𝑎𝑛 + 𝑇𝑘𝑛𝑎𝑛𝑏𝑙)

+(𝑎𝑖𝑇𝑗𝑛𝑏𝑛 + 𝑇𝑖𝑛𝑏𝑛𝑎𝑗 + 𝑏𝑖𝑇𝑗𝑛𝑎𝑛 + 𝑇𝑖𝑛𝑎𝑛𝑏𝑗 )𝛿𝑘𝑙], (180)

𝒜 (10)
𝑖𝑗𝑘𝑙 = 𝑇𝑖𝑗𝑇𝑘𝑙 , (181)

𝒜 (11)
𝑖𝑗𝑘𝑙 = 𝑇𝑖𝑛𝑇𝑛𝑗𝑇𝑘𝑙 + 𝑇𝑖𝑗𝑇𝑘𝑛𝑇𝑛𝑙 , (182)

𝒜 (12)
𝑖𝑗𝑘𝑙 = 𝑎𝑖𝑎𝑗𝑇𝑘𝑙 + 𝑇𝑖𝑗𝑎𝑘𝑎𝑙 , (183)

𝒜 (13)
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