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In this paper we study the response of bodies that are residually stressed within the context of a new class
of constitutive relations, wherein the strains are assumed to be functions of the stresses. Such bodies are said
to have residual stresses if there are stresses within the bodies even though the bodies are unstrained in the
configuration of interest in the absence of external traction. Problems within the context of the norm of the

gradient of the displacement field being small are considered, with regard to the determination of the residual
stresses in an anisotropic cylindrical annulus with two preferred directions, and the nature of residual stresses
within an anisotropic slab. The residual stresses in a body that is subject to incremental stresses are also studied.

1. Introduction

This paper concerns the development of response relations for elastic
bodies when one has to take into consideration ‘residual stresses’, within
the context of implicit constitutive theories recently introduced by
Rajagopal (see Rajagopal [1,2]; see also Rajagopal and Srinivasa [3]). By
‘residual stress’ one means a body not being free of stress in the interior
of the body though it is free of traction on the boundary of the body.
Before one can embark on such a venture, one needs to first come to grips
with what one means by ‘residual stresses’. According to the Oxford
English Dictionary [4], the primary meaning ascribed to the word
‘residue’ is: The remainder, rest; that which is left. Thus, the terminology
‘residual stresses’ implies that a body, in some configuration was subject
to deformations, and at the end of the process the stresses ‘which are
left’, that is the stresses remaining within the body are the ‘residual
stresses’ in the body. The terminology ‘pre-stress’ on the other hand
refers to stresses that were present in the body before it is subject to a
particular process. Of course, it is most likely, the ‘pre-stress’ in a body
might be the ‘residual stress’ due to some prior process the body was
subject to. We may never be able to decide on whether the state of
stress in a body is a ‘pre-stress’ or ‘residual stress’. However, since we
are interested in describing the response of a body that we have in hand,
when it is subject to deformations, it would be most appropriate to refer
to the state of stress prior to our deforming the body as ‘pre-stress’ rather
than ‘residual stress’. We shall however refer to it as ‘residual stress’ in
keeping with the current usage.
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The stress free configuration that corresponds to the current ‘residu-
ally stressed’ configuration is determined experimentally by carrying out
‘cuts’ (see Fung [5]) that supposedly relieve the ‘residual stresses’ within
the body. Unfortunately, such ‘cuts’ cannot be described within the con-
text of classical continuum mechanics as they are not diffeomorphisms,
they lack the smoothness which is usually required of the motion.
Nonetheless, a stress-free configuration so obtained by making cuts is
used to determine the stress in the ‘residually stressed’ configuration.

In the classical theory of Cauchy elasticity, the reference config-
uration is usually considered to be free of stress (see Truesdell and
Noll [6]) but there are several applications, especially in biomechanics,
geomechanics, manufacturing, etc., wherein one has to develop models
for the response of bodies which are in a state that is not free of stress
(see, for example, in biomechanics [5,7,8], in welded structures [9,10],
and in manufacturing [11-13]1).

Several methods have been used to study ‘residually stressed’ bodies:
The first method models the whole process that creates such stresses in
the body, such as the modelling of growth, adaptation, modification,
remodelling, development, maintenance, and healing of soft tissue
(see, for example, [8], §4.3 of [15] and [16-20]), and elastic—plastic
deformations (including phase transition) that have been considered for
welding [9]. In biomechanics most of the approaches merely appeal
to geometric ideas though there has been some effort to describe

! See also the introduction in the recent paper [14].
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the complicated mixture that comprises tissues (see Humphrey and
Rajagopal [21]).

One approach to study the response of bodies that are in a configu-
ration in which they are not stress free, is to hypothetically associate a
stress free configuration with the current stressed configuration, which
is at the heart of the notion of a ‘natural configuration’ associated with
the current configuration of a body (see [22] for a discussion of the
notion of ‘natural configurations’). While in these studies the ‘natural
configuration’ and its evolution have thermodynamic origins, the idea
is similar to the use of an intermediate configuration in studying the
response of inelastic bodies (see [23]). As observed earlier, the stress free
configuration of a body can be determined experimentally by carrying
out ‘cuts’ to relieve the stresses. For a Cauchy elastic body that is defined
through T = &(F) (where F is the deformation gradient tensor) we have
Tr = &(FyR), where Fy, is calculated from the stress free configuration
to the reference configuration which is residually stressed [24]. If the
body is isotropic, then the stress is given by T = &(B) and Ty = &(By),
where B is the left Cauchy—Green tensor and By = FRF; A problem with
this method is that it is not always possible to determine the stress free
configuration from which By can be determined so that 0 = div Ty + pb
for the body and Txn = 0 on the boundary of the body.?

Yet another method to study problems involving residual stresses is
by using the residual stress as an additional variable, say Ty and express
the Cauchy stress as T = &(B, Ty), with the restriction that we must
have Ty = &(B, Ty) (see, for example, [27-30]). This approach could
be useful especially if we do not have information about the stress-free
configuration for the body.

In the present paper we depart from the above approaches by
considering subclasses of some constitutive equations, which belong to
the implicit constitutive theory for elastic bodies proposed by Rajagopal
and co-workers [1-3,31-33]. One such implicit relation corresponds to
F(T,B) = 0, the classical Cauchy elastic body T = &(B) along with the
constitutive equation B = $(T) and its subclass ¢ = h(T), where ¢ is
the linearized strain tensor [34,35] being special cases. For example,
in the case of the class of models defined by B = $(T) the reference
configuration is residually stressed if I = $(Ty) and 0 = div Ty + pb for
the body with Tyn = 0 on the boundary of the body.

In Section 2 after some preliminary discussion of the kinematics, we
turn to a discussion of some basic concepts concerning what we mean by
a body being elastic and we introduce implicit constitutive theories and
their subclasses that describe elastic bodies. In Sections 3.1 and 3.2 we
present the basic aspects of the modelling of residually stressed bodies
within the context of some of the subclasses of constitutive relations
presented in the previous section. In Section 3.3 we speak briefly about
the use of the stress potential for problems concerning residual stresses.
In Section 4.1 we present explicit expressions for h(T) when h leads
to a response that is isotropic, transversely isotropic or a function that
depends on the stress as the response has two preferred directions. In
Section 4.2 we study the problem of the opening of a residually stressed
annulus, when the response is isotropic and transversely isotropic, re-
spectively, while in Section 4.3 we analyse the case of an annulus whose
response depends on two preferred directions. The results presented in
those two sections are used in order to choose an expression for b,
from which we could obtain more interesting results. In Section 5 we
discuss the problem of residual stresses in a cylindrical annulus, whose
response exhibits dependence on two preferred directions, and obtain
some numerical results for the stresses and strains. In Section 6 the state
of residual stresses within a slab is analysed, and finally, in Section 7 we
present an incremental formulation that can be used to study the effect
of residual stresses on elastic bodies, by analysing the behaviour of such
bodies when a small additional external traction is applied to them.
We conclude in Section 8 with some remarks concerning the results
presented in this work.

2 See [25,26] for different concepts on residual stresses, especially in the
context of the classical theory of nonlinear elasticity.
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2. Basic equations
2.1. Kinematics and the equations of motion

Let a particle X € % in an abstract body % occupy the position
X € kr(X) in the reference configuration (%), and x € (%) in the
configuration at time #, k,(2). It is assumed that there exists a one-to-one
mapping y such that x = y(X, 7). The deformation gradient F, the left
Cauchy-Green tensor B, the displacement vector u, and the linearized
strain tensor ¢ are defined through:

(5%
ox

The Cauchy stress tensor is denoted by T and satisfies the equations
of motion

Ju

ox

_ 9

T X’

1
£ = —

B = FF',
2

F (@)

u=x-X,

px =divT + pb, (2)

where p is the density of the body and b represents the specific body
forces acting on the current configuration, and where we have used the
notation () for the material time derivative. More details concerning
kinematics and the basic balance laws can be found, for example,
in [36].

2.2. Constitutive relations

In [1-3,31] Rajagopal and co-workers have proposed implicit con-
stitutive relations to describe the behaviour of elastic bodies. One such
relation for isotropic bodies is of the form?®

$(T.B) =0, 3

which includes as a sub-class the classical Cauchy elastic body [6]
T = &(B) and the class of models (see, for example, [37])

B = H(T). @

An important restriction that $) has to meet is that for any stress the
eigenvalues of $)(T) are positive.

In the case of the approximation that |Vu| ~ O(5), § < 1 we have
the approximation B ~ 2¢ + I and from (4) we have the subclass?

£ =b(D), (5)

which is an important new class of constitutive relations in its own right,
and has been proposed for the modelling of the problem of fracture in
elastic bodies, and in describing the behaviour of some metallic alloys
and rock, see, for example, [35,39-42]. It is important to recognize that
the linearization based on the displacement gradient being small leads
to models wherein one can have a nonlinear relationship between the
linearized strain and the stress, an impossibility within the context of
Cauchy elasticity.

In the present work we can also consider inhomogeneous bodies
namely the situation when the functions $) and § can also depend on the
position X. In the rest of the work we assume that T has been divided
by a characteristic stress ¢,, and for the sake of simplicity we continue
to use T to denote the dimensionless stress.

2.3. Boundary value problems

In order to solve a boundary value problem concerning such materi-
als, one needs to solve simultaneously the constitutive relations and the
balance equations of mass and linear momentum, for example, in the

3 The meaning of what is meant by anisotropy and its classification for bodies
defined by implicit constitutive relations is provided in [51].

4 See the papers by Rajagopal [35,38] concerning the status of such approxi-
mations.
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t =TrN

Fig. 1. (a) Residually stressed body in the reference configuration xz(%). (b) After an imaginary slice.

case of (4) we need to look for p, T and y such that they satisfy (2), (1),
and (4)
ay ox"
LA~ H/).
0X 0X H(M

While considering (5) we need to look for p, T and u such that (2), (1),
and (5) are satisfied, i.e.

1

2

We shall only consider the balance of linear momentum and the
constitutive equations to determine the stress and the displacement.
Once the displacement is determined, the balance of mass can be used
to determine the density. In the rest of this paper we will ignore
the balance of mass and the determination of the density using the
same.

p+pdivy =0, py=divT + pb, 6)

ou  ou”l
_+_

p+pdivai=0 pi=divT + pb,
0x  0x

> =h(T). )

3. Residually stressed bodies
3.1. The case of large elastic deformations

By a body in static equilibrium with residual stresses we mean a
body which in a reference configuration xz(%) is not free of stresses,
i.e., there is a distribution of stresses, which we denote by Ty, such that
we have
DivT, =0, I=$(Ty) in
TrN=0 on X € dkp(A),

X € kp(B),
®

where N is the outward normal unit vector to the surface dky(2). The
above equation (8) must be understood not only as a restriction on Ty,
but also on $) as explained in detail in Section 5 for the case of § (see
(5)).

Let us assume that a body with residual stresses is cut by an
imaginary surface & as shown in Fig. 1. Eq. (8); implies that there is
no external load (see Fig. 1(a)), however, when we cut the body along
the imaginary surface, on that new surface (see Fig. 1(b)) we do have
a distribution of traction t = TgN. If 0kz(RB) = dkx(B), U 0kr(%),, for
the part of the body presented in Fig. 1(b) we have /. sUng (), b dA =0,
which is equivalent to /¢ t dA = 0 and thus we obtain

/ TN dA =0,
£}

which must be satisfied on every surface that results from an imaginary
cutting of the body. It is necessary to observe that (9) in general is not
an extra requirement placed on Ty, as it is satisfied automatically if
Div Ty = 0. In Section 6 we consider (9) for a particular boundary value
problem for which such condition is not satisfied trivially.

9

115

Assume now it is possible to reach a stress-free configuration «-(%)
by performing a number of ‘cuts™® (see, Fig. 2). Let xo = x¢(X) be a
map to kc(%), so that

_dxc

X’
If in that configuration we assume there is no residual stress, then from
(4) we have

(10)

c B = F(FY.

Bc = $(0), 1D

3.2. The case of infinitesimal deformations

In this section we repeat briefly the theory presented above for the
constitutive expression (5). A body in static equilibrium is said to be
residually stressed if there exists a stress field Ty such that

divTp =0, 0=H(Ty)
Trkn=0 on x € Jkg(AH).

in x € ky(AB),
12)

As in Section 3.1 the above equation could be interpreted as restrictions
on Ty and b.

Let us assume again that the body is cut (see Fig. 2) and that all
residual stresses are released producing as a result a displacement field
uc. We can define the linearized strain tensor, associated with such
deformation as

ec= %(Vuc +vul). a3)

and since there are no residual stresses we have (compare with (11))

ec = H(0). 14)

The above situation is possible if and only if §(0) satisfies the compati-
bility equations (for the linearized case, see, for example, §4.10 in [43]).

3.3. On the stress potential

In the above two sections we have defined Ty as the residual stress
that satisfies the equation of equilibrium, such that when replaced in the
constitutive equation (10), (4) and (5) there is no associated deformation
(see (8),, (12),). In the case |Vu| ~ O(5), 6 < 1, when we have

5 Here we are speaking about a real cut, unlike in the discussion about Fig. 1.
From now on when we speak about a body being cut we mean a real cut, and if
we refer to an imaginary cut, we will state that explicitly.
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Fig. 2. Residually stressed body in the reference configuration xz(%), and in
the cut configuration x-(%), where it is assumed that the body is stress-free.

infinitesimal deformations, (12) in index notation (assuming the use of,

for example, Cartesian coordinates) becomes

0TR”

0x; =0,
TRUnj =0 on x € dk.(AB).

0=b;(Ty,) in x €x.(B),
(15)

It was stated that the six independent components of Ty should sat-
isfy the three equilibrium equations (15); plus the six constitutive
equations® (15),. Since in general that may not be possible, we have
indicated that such equations should be seen also as restrictions on §
(we assume that the body is inhomogeneous, i.e., h = h(T, x), but we do
not explicitly express the dependence on x).

On the other hand the stresses can be expressed in terms of a stress
potential @, and in that case the number of equations to be solved is
reduced. From §227 of [36] we have the representation

’d,,

5 = Cm G (16)

Ty

where @, = @,,,. Using (16) in (15), that equation is satisfied, and the
six independent components of @ should satisfy the six nonlinear partial
differential equations (15),

’°d,,,
hij €pkl€gmn W

where it should be understood that the functions b;; are evaluated at

> =0, x; €k.(AB), a7n

2
€pict €gmn gxf)’;’: . For the above equations we have the boundary conditions
(15)5
*d,,,
n; =0, x; €0k.(B). (18)

eiklejmnaxl_axﬂ j
It can be seen that the nonlinear partial differential equations (17) must
be solved in conjunction with the boundary conditions (18), where the
order of the derivatives is the same as in the original equations (17).
This is not a feature that is standard, and in general for (17) and (18)
to be satisfied simultaneously some restrictions on b;; would come into
play. In the following sections we choose not to work with the stress
potential.

© We note that we have the 6 components of Ty that would need to satisfy
the 3 equilibrium equations plus the 6 components of the constitutive equation.
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4. The opening of an annulus

In this section we study the problem of a cylindrical annulus with
residual stresses, which after a radial cut along the axis displays an
angular opening resulting in the release of all the stresses. The objective
is use the information obtained from the opening of the annulus, in
order to see which expression for §(T) would be more interesting for the
analysis to be carried out in the following sections. First, in Section 4.1
we present expressions for h(T) in the case of bodies exhibiting isotropic,
transversely isotropic and two directional anisotropy, then in Section 4.2
we study (14) in the case of an isotropic and transversely isotropic
annulus, while in Section 4.3 we analyse (14) for the case of an annulus
with two directional anisotropy.

4.1. Isotropic bodies, transversely isotropic bodies, and two directional
anisotropy

We study a class of models for which there a exist scalar function
II(T) such that (see [44])

oIl
5T

In the problems analysed in the following sections we discuss the
solvability of (12), for which we will consider three cases, namely
when [T is an isotropic function, a transversely isotropic function and
a function with two preferred directions. If IT is an isotropic function,

then IT = II(1}, I, I3), where

e=h(T) = (19)

I =tr(T), I,= %tr (T, I = %tr (T, (20)
and from (19) we obtain the representation

€= I+ I,T + IT,T?, (21)
where II; = 3—’;, i=1,2,3.

If IT is a transversely isotropic function, we have that IT = I1(T, a),
where a is a vector field representing the direction with regard to
which the body is transversely isotropic and |a| = 1. In this case’
I = II(1,.1,, I3, 1,, I5), where I, I, and I are given in (20) and I,
I5 are defined as (see [47])

I, =a-(Ta), I5=a-(T?a), (22)
and from (19) we obtain
=111+ ILT+ ;T + M,a®a+ I15[(Ta) ® a+ a ® (Ta)], (23)

where I, = 2%, i = 1,2,3,4,5.

Finally, let us consider the case IT I1(T,a,b), where there is
another direction preference along the vector field b with |b| = 1. In
this case IT = II(1}, I,, I3, 1, Is, Iy, 15, Ig, Iy), where L, j=12..9
are given in (20), (22) and

Ig =b-(Tb), I,;=b-(T’b), Iy=(a-b)a-(Th)+b-(Ta)],  (24)

Iy = (a-b)[a- (T?b) + b - (T?a)], (25)

and from (19) we have

e =M1+ ILT+ILT>+ Ma®a+ I5[(Ta)@a+a® (Ta)] + [I(b®b
+1L[(Th)®b+b ® (Th)] + ITg(a-b)a®b+b ®a]

+Ily(a-b)la® (Th)+ (Th) ® a+ b ® (Ta) + (Ta) @ b], (26)

orr .
where II; = o i=1,2,...,9.

7 In [45,46] a new set of invariants have been proposed for the case of
transversely isotropic functions, and functions that depend on two vector fields.
In these works it has been proved that some of the invariants presented in [47]
are not independent.
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4.2. The opening of an annulus, the case of an isotropic and a transversely
isotropic annulus

Let us consider the cylindrical annulus in the reference configuration
defined through
0<6<2z, 0<z<L.

r<r<r,, 27)

We assume that this tube has a residual stress distribution of the form

Tg = Tr(r). (28)

For such a body the surfaces for which (12); must be satisfied are the
surfaces r = rj, r = r, for which n = Fe,, respectively, and the surfaces
z = 0, z = L for which we have n = Fe,, respectively. It follows from
(12); and (28) that

Ty, (r) = 0, Ty, (ro) = 0, (29)

Tp,(r) =0, Tg,(ry) =0,

Ty, (=0, Tg, (=0, Tg_(r)=0. (30)

The non-zero components of the residual stress tensor must satisfy the
equilibrium equations (12);, which in this case become

ATy dTy
—L 4+ —(Tx. —Tg,,) =0, 2

dr + r( Ry Rao) dr
and this last equation is satisfied if Ty  (r) = j—;, which from (29);, is
possible if and only if ¢, = 0.
We shall assume that I7 has the form

2

+ 2Ty (31)

=0,

r0

IT = II(T, r). (32)
From (12), and (21) and the above assumptions we obtain
Iy, . Ipy Iry. 1) + (g, Iry Iy DTk, + 3R gy Iry DT = 0, (33)
(g, Iy, Iryo 1) + I Try s Iy - DTy, + H3(IR1,IR2,IR3,r)TR2W =0, (34
(g, Iy Iryor) = 0, (35)

1 1

, = E(Tlgﬂ + Tlfeg) and Iy, = ; (T]g” + ngﬁ).
Egs. (31), and (33)—(35) must be satisfied by Tx,,» Tx,, and I1. It is
imperative to recognize that the residual stress has been treated as a part
of the constitutive relation. If the body is cut and the residual stresses
are relieved, the function /7 will need to satisfy additional restrictions
as shown below.

Let us assume now that the cylindrical annulus is cut in the radial
direction along the axis, and that due to that cut all residual stresses
are relieved, such that (14) is met. Furthermore, let us suppose that the
displacement field uc is of the form

where Iy =Ty +Tg,, Ir

uc, =U(r), uc, = (k = 1)0r, uc, = (4, — D)z, (36)

where k = 2’;”‘, « being the opening angle and 4, > 0 is a constant, and
leads to a diagonal ¢ as required by (14) and (21). It follows from (14)

and (36) that

_aw
T odr
ec, =4, —1=1,0,r).

ec = I1,(0,r), ecw=k—l+%=ﬂl(0,i’),

"

37)

From (37); in (37), we obtain U = (A, — 1)r+C;, where C, is a constant,
whereas using (37); in (37), we obtain U = (A, — k)r + C,, where C,
is a constant. These two solutions are compatible if k = 1, i.e., « = 0.
Another way to solve (37) is to consider first B2 from where we
obtain i_lr] =k-1+ %, whose solution is U(r) = Cr + (k — Drlnr,
where C is a constant. But from this solution we have that I7,(0,r) =
‘L—lr/ = C + (k — 1)(1 + Inr), which is compatible with the fact that 4, is a
constant (see (37)3) if k = 1.

There are three other possibilities wherein we can obtain more

interesting results:
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« In the case of anisotropic bodies.

« In the case the distributions of the residual stresses that would
depend on the axial and angular position.

« In the case of a more general and complex form for the displace-
ment uc.

Let us explore briefly the case of a transversely isotropic body with a
stress distribution as in (28) (in the following section we consider more
general expressions for the residual stresses). Let us assume that a =e_
and that IT = I1(T, a, r) then from (23), (12), we have

(I, Iy, Ipy Ir, - Irg- ) + Ty Iy, Iy Iry - Ty DTk,

+ I3(Ig, Ig, I, I, Iy TR =0, (38)

M (Ig,, Iy, » Iy Iryo Irgo 1) + (g o Ijy» Iry Iy, Trg DT,
+HS(IRI’lR2’IR3le471R57r)TI%69 =0, (39)
(I, Iy Iy Tryo Irgo 1) + Iy s Iy Ty Iy Trgo ) = 0. (40)

Let us consider the same form for the displacement field, namely (36),
if the tube is cut radially and axially, then from (14) and (23) we obtain

dU

dr —

A

1,00,r), k—-1+ v_ 11,(0,r), — 1= 11,00, r) + I1,(0,r)(41)
r

z

du

From (41),, we have - k—1+ r whose solution is U(r) =
Cr + (k — Drlnr, where C is a constant. From (41); such a solution is
possible if I7,(0,r) = A, — 1+ C+(1 —k)(Inr+1). Other similar interesting
cases can be obtained if we assume a = e, or a = e,.

With the purpose of obtaining a more general expression for U(r)
in the next section we consider the case of an elastic annulus with two
preferred directions.

4.3. The opening of an annulus comprised of an anisotropic body with two
preferred directions

In this section the same problem presented in the previous section is
studied for the special case
(42)

a=cey+se, b=ce)—se,

where ¢ = cos f and s = sin f.

In the event that T = T(r) from (29), (30) we find that the nonzero
components of the stress tensor are 7,, and T,,. We will now assume
that IT = II(T, a, b, r), and from (26) and (12), we have

I (Ig,.r) + My(Ig,. Ny + Mg, . NT = 0, (43)
(I, ) + Mg, DTy, + (g, DT+ (g 1)’
2 2 2
+ 2H5(IR/,, reTy,, + HG(IRj,r)c + 2H7(IRj,r)c Try,,

+ 25Ty . (1 = 25)¢ + 41Ty (I r)(1 = 257’ Ty, = 0, (44)

Iy, r) + (I, r)s> + (I, . r)s* = 2Mg(Ig . r)(1 = 25°)s> = 0, (45)

(H4(1Rj,r) - H6(1Rj,r))cs =0, (46)

where IRj, j =1,2,...,9 are defined through (20), (22) and (24). The
four equations given above and (31); must be satisfied by Ty and the
choice of I1. In particular, from (46) we find that the equation is satisfied
for any r and g if

H4(IR/_,r) = HG(IR/,r). (47)

As mentioned in our discussion of the two cases considered earlier in
Section 4, in general Egs. (43)-(45) and (31), must be considered as
restrictions not only on Ty and Ty, but also on II(T, ).

Let us assume that the tube is cut in the radial and axial directions so
that all residual stresses are released, assuming that due to the cuts the
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tube deforms in a manner described by (36), then from (14) and (26)
we obtain that

dU

5 = mo.n, (48)
k—1+ % = IT,(0,7) + IT,(0, r)c* + Mg(0, r)c? + 2IT4 (0, r)(1 — 25%)c?,  (49)
A, =1 = I0,r) + I,(0,r)s* + (0, r)s> — 2MT5(0, r)(1 — 25%)s%,  (50)

0 = [I1,(0,r) — II4(0, r)]cs. (51)

When U(r), k and 4, are known, these must be seen as restrictions on
I1. In general we may have limited or partial knowledge concerning the
function U(r), i.e., from experiments we may be able to measure U (r;)
and U(r,) but we might not have information with regard to U at other
radial positions. On the other hand we should be able to measure k and
A,. Then from (48) we would obtain
r
u@) =/ I1,(0,8) dr + U(ry), (52)
"

where I1(T, r) should be such that fr" 0,8 dr + U(ry) = U(r,). In
Section 5 we study this problem in more detail for a specific expression
for I1. The special cases when the body is isotropic or transversely
isotropic can be obtained as special subclasses of (26).

5. A specific model for IT and some numerical results for the
problem of the opening of an annulus

In this section we study in more detail the problem presented in the
previous section for the following special case for the function IT
9
I(T,a,b,r) = coly + ¢ 17 + Y ¢,
i=2

(53)

wherein we assume ¢;=¢;(r), j=0,1,2.9.

In Section 5.1 we consider the case of an annulus with two preferred
directions and residual stresses that only depend on the radial position.
We do not use information from a radial cut. In Section 5.2 we study in
more detail the problem presented in Section 4.3, in particular looking
for the equations that the components of the residual stresses and the
functions ¢;(r) have to satisfy, when assuming that some information
from a radial cut of an annulus with two preferred directions is known.
Finally, in Section 5.3 we study the behaviour of the cylindrical annulus
which deforms under external loads, considering for simplicity the
expressions for the functions ¢ () obtained from Section 5.1.

5.1. The case of a residually stressed cylindrical annulus when the residual
stresses are known and depend on the radial position

When we assume that the residual stresses depend only on the radial
position for a cylindrical annulus, from (31); we find that Ty, =
%(rTR”) and the boundary conditions (29),, are Ty (r;) = 0 and
Ty, (r,) = 0. In this section we do not consider any cuts that relieve
the stresses in the body, thus we are only interested in solving (31),
(43)—(46). As a simplification we consider a distribution for Tx,, that
satisfies the conditions (29) ,. One such possibility is (see, for example
Eq. (46) of [29])

Ty, (1) = =1y, (54)

where d, is a constant. The validity or usefulness of the above expression
for Ty , and in particular for a possible value for d, can be assessed
indirectly by studying the behaviour of the same cylindrical annulus
subject to some known external loads, as investigated in Section 5.3,
and also by studying the behaviour of the cylindrical annulus subject to
incremental stresses as presented in Section 7.1.

From Ty, = d%(’TRrr) we obtain that

dy(r —

Ty,, (1) = dol(r = r)(r = o) + r(r = ry) + r(r =yl (55)
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In the above system of equations Ty _ = 0 and T R,; =0 if i # j.
Considering the simplified expresswn for T presented in (53), Egs.
(43)—(46) become

¢ +2¢ Iy, +ooTg, + C3Tl§" =0, (56)
¢ +2¢cdg, + Ty, + c3Tl§99 +eue + ZCSCZTRM + cgc?
+20,07 Ty, +2¢5(1 = 257)c” + deg(1 = 25°)c* Ty, = O, (57)
2 2 2y¢2 —
co+ ZCIIR] + 45" + c5” — 2cg(1 = 257)s 0, (58)
(cy —cg)es = 0, (59)

where Iy =Ty +Tg,,-

In this problem T (r) and Ty, (r) are known (up to a constant d;)
and given by (54), (55), therefore (56)—(59) must be solved for some
of the functions ¢; = ¢;(r). Eq. (59) is solved easily if we assume that
¢y = ¢q. Let us choose ¢, ¢, and ¢z as the functions to be found from
(56)-(59) in terms of ¢y, ¢,, ¢3, c5 and ¢q (assuming as well that ¢; = ¢s),
we obtain that

co(r) = —2¢ Iy =Ty (3 + 3Ty ), (60)
cy(r) = %{TR” (e + c3TR”) csc? B - 4TR99 [e5 + cg cos(2p)]
+(Ty,, — Try,)er + e3(Ty, + Ty, )sec® B}, (61)
cg(r) = —%{4TR% les + ¢ cos(2/)] + 4Ty (¢ + e3Tg ) cot(2p) csc(2p)
+Tg,, (¢ + 3Ty, )sec” B} sec(2p). (62)

5.2. A residual stress tensor that depends on the radial position and an
opening angle that is constant due a radial cut of the annulus

In this section we explore the same problem as that considered in
Section 5.1, but now assuming that the cylindrical annulus has been
cut in order to relieve the residual stresses, which provide additional
information about the body. We are in particular interested in obtaining
the equations that some of the functions c;(r) and the components of the
residual stress must satisfy for this problem.

In this problem the residual stress tensor Ty has two components
Ty,,» Tg,,> and from the equilibrium equations (31), they have to satisfy

Tryy = %(rTR”).
In this case, from the results presented in Section 4.3, it follows from
(53) and (52) that

U(r) =/ ¢o(&) d§ + U (ry). (63)

Eq. (51) (see also (46)) is satisfied if 1T, = IT, which in the case of
(53) is possible if

cy(r) = cg(r). (64)

From (49) and (50), in virtue of the above results we obtain that

k—1+ % [ / ' (&) de + U(ri)] = ¢o(r) + 2¢4(r)c? + 2¢5(r)(1 — 25%)c?,  (65)

Ay — 1= co(r) + 2¢,(r)s = 2¢5(r)(1 — 25%)s*. (66)

If U(ry) and U(r,) are known from experiments, then in view of (63),
co(r) should satisfy

/ " @) dE = Ury) = Ur,).

i

(67)

The constants k and 4, in (65), (66) could also be determined by
corroboration against experimental data.
From (53) we have

I (Ig , 1) = ¢o(r) + 2¢ (N1, (68)
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where

Iz, () =Ty (r) + T, (1), (69)
and thus from (45) we have

co(r) + 2¢; (NI, (r) + 2¢4(r)s* = 2¢5(r)(1 = 25%)s* = 0, (70)

which in virtue of (66) becomes 2¢,(r)Ig, + 4; — 1 = 0, which suggests
that in general ¢,(r) should be found as a part of the solution to the
problem rather than be given as a known function a priori. In this case
we obtain

i. (71)
21, (r)

It follows from (43) and (71) that

cy(r) =

() + 1= 2+ (T, (1) + (0T () =0. (72)
From (44), (71), (31), and (64) we obtain that
Qo+ 1= 4+ eS0T )+ o] Lot )|
+2¢4(r)c? + 2¢s (r)CZ%(rTR”) +2¢; (r)czi(rTR”)
+2e5(A(1 = 257)c? + 2¢o(1 252)8%(#&’) = o0. 73)

In view of (65), (66), (72) and (73) we have four equations for Ty,
co(r), e (r), c3(r), ca(r), e5(r), c7(r), cg(r) and cy(r). Some of these functions
¢,(r) could be obtained by corroboration against experimental data. Let
us assume that

es(r) = ¢4(r), 74

and that ¢y(r), c3(r), ¢s(r) and co(r) are obtained by correlations with
experimental results. From (66) we have

2, = 2221200 e - 22, 75)
N
and using this in (65) we obtain
2e5(r)(1 = 25%)c? = % {k 1+ % [/ co(&) dé + U(ri)]
+co(r(cot’f — 1) + (1 — Az)cotzﬁ} , (76)

and replacing this expression for 2¢g(r)(1 — 2sin’B)cos? B in (75) we have

1 1 "
+ﬁ{k_1+; [/r co(é)d§+U(ri)]

+¢o((cot?f — 1) + (1 — Az)cotzﬂ} .

Ay =1 —=co(r)

2e(r) = = 2

(77)

From (72) we can express, for example, ¢,(r) in terms of 7; R, (M, c3(r)
and cy(r) as

Ay =1 —=¢o(r)

c(r) = -y, - (78)
R,
From (73) we finally have
d Ay =1 —=co(r)
[Q(r)a(rTRrr) + TO — e3(NTy,, +4cs(r)e?
22| d 1 "
+4co(1 —25%)c ] g(rTR”) =A,—k- - [/ co(§) d& + U(ri)] . (79)

The above equation could be used to determine Ty (r); regarding the
functions c¢y(r), ¢3(r), ¢5(r) and co(r), we could assume they are given
data. The functions Ty, () and ¢((r) would need to satisfy the conditions
Ty, (r;) = 0, Ty (r) = 0 and [’ ¢y(¢) d& = U(r,) — U(r;). The above
equation is a first order nonlinear ordinary differential equation, and
only one of the conditions Ty (r)) = 0, T (r,) = 0 could be applied
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directly, say Ty (r;) = 0, the other condition Ty (r,) = 0 should be
satisfied indirectly, for example, by looking for appropriate expressions
for ¢, (r), k =0,3,5,9 so that Ty, (ry) =0 would be satisfied.

There are other ways to solve the problem of determining the
constants c;(r), where we assume we have information concerning the
annulus when it is cut in the radial direction. For example, we could
assume as in Section 5.1 that Ty, is known and given by (54), and
from (79) we could find, for example, ¢,(r). We choose not to study this
problem further, under the understanding that the study of the opening
of the annulus (see Section 4) has provided already useful information
about the structure of the function.

5.3. The residually stressed annulus under inflation, torsion and axial
extension when the residual stresses depend on the radial position

With knowledge of Ty and the expressions for ¢; = c¢;(r) from
the previous Sections 5.2, 5.1, we are now in a position to solve
some boundary value problems. It is important to note that from the
practical point of view, it is by carrying out such a study that we can
actually assess the appropriateness of all the previous assumptions and
simplifications regarding the specific expression for IT presented in (53).
We should solve different boundary value problems and compare the
results with the corresponding experimental results obtained, as a way
to check if the many assumptions we have made are meaningful and
physically faithful.

In this section for simplicity we study the case of the residually
stressed annulus described in Section 5.1, using the expressions for c;
presented in (60)-(62), now being subjected to external loads on the
surfaces z = L and r = r;, in particular we consider an axial load applied
on z = L, a shear load along the circumferential direction on the same
surface, and a radial load on the surface r = r;. Under the influence of
such external loads we assume that the stress tensor in the tube is of the
form

T=T,.(re. @e.+Ty(re, e, +T,.(re, e,

+Tp.(r)(eg e, +e, Qe). (80)
This stress tensor must satisfy the equilibrium equation
drT, 1
d—r” + ;(T,, —Tye) =0. (81)

Following the procedure described, for example, in [48], we assume
now that the above stress field (80) produces a displacement field
u =u.e, +uge, + ue_ of the form
u, = o(r), (82)

ug =kzr, u,=(A-1z,

where k and 4 are positive constants. It follows from (80), (82) and (26)
that

dd_j = b, (T) = ¢o(r) + 26,V + &2 (NT,, + e5(NT2, (83)
= = by(T) = co(r) + 26, (D] +x(NTgy + 3N Ty +T7.)
+2¢4(re? + des(r)e?Typ + 2¢5((1 — 25%)c?
+eg(r)(1 = 251 Ty, 84
A=1=1b33(T) = ¢o(r) + 2¢; (NI + (T, + c3( (T, + TZ)
+2¢4(r)s? = 2cg(r)(1 = 252)s% — 4eg(r)(1 = 251)c2T,,, (85)
% = 0y5(T) = y(NT,, + c3(N(Tyy + To )Ty, + 2¢5Tp,
+2¢9(r(1 = 25%)2T,,, (86)
where
I =T, +Tyy+T,,. 87)

Egs. (83)-(86) are solved using the finite element method in a
manner similar to that carried out in [48]. From (81) we have

d
Tyy = a(rTrr), (88)
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Table 1
Constants for (53).

€

1074

&)

1074

<

10-°

s

1074

1074

therefore T is determined by knowing T7,,, %, T,, and Ty,. From (84)
we have v = rh,,(T) so substituting in (83) we obtain that

L [r (D] = by (D). (89)
;

In (85) we have A — 1 = h3;3(T), taking the derivative of that equation
with respect to r we obtain that

d
0= 5[533('1‘)]- (90)

Finally from (86) we have % = h3(T) and taking the derivative of this
equation with respect to r we have

Kk _d
5= E[hzz(T)l (C2Y)

Let us introduce the auxiliary functions ¢, = ¢,(r) and ¢;, = ¢, (r)
through

dg.

dg,

z _ 0z
dr’ To- = dr
Egs. (89)-(91) are solved using the finite element method (Comsol
3.4 [49]) for the functions T,,.(r), ¢,(r) and ¢y, (r), subject to the boundary

conditions

T,

zz —

(92)

T,(r)=-PB, T,r)=0, by(Tr))=21-1, (93)

D25 (T) = 357 G(r) =0,

6:(ry) =0,
(94

and using the notation 7 = r/r;, where we have chosen the values
r, = 0.01 and r, = 0.011. In Table 1 we have the set of values for some
of the constants that appear in the model (53). Such values for the
constants ¢;, j = 1,2,3,5,9 have been chosen so that for the magnitude
of the stresses obtained for the different problems studied in this paper,
the magnitude of the strains from (26) are small.

In Fig. 3 we portray the results for the circumferential component
of the stress T for different values of d,,, which from (54) indicates the
‘intensity’ of the residual stress, and for different cases, in the case of a
traction applied on the inner surface of the tube (case (a)), torsion (case
(b)), and axial extension (case (c)). In Fig. 4 we present results for all
the non-zero components of the stress T, for different values for d, when
k =0, A= 1and P, = 10. In all the cases studied Tj,(r) = 0. In Fig. 5
results are shown for the different components of the stress tensor, for
different values of d,, for the case x =2, A = 1.01 and P, = 10. Finally,
in Fig. 6 results are presented for the components of the strain tensor
for different values for d, (see (54)), for the case x = 2, 4 = 1.01 and
P, =10.

From Fig. 3 we see that as d,, increases in value, the value of T, at
r = r; decreases. For the problem of inflation of a cylindrical annulus in
linearized elasticity, it is known that as P, increases so does Ty, (r;), and
that this stress can be very high and is usually responsible of the failure
of the annulus. We see that with the residual stresses the value of Ty, (r;)
would be lesser than in the case when there are no residual stresses,
for a given value of P. The same effect is expected for the problem
presented here where we have considered a nonlinear expression for
h(T). Interestingly the same effect is observed with respect to Ty, (r;) for
the cases (b) and (c) of Fig. 3, i.e., for the nonlinear constitutive equation
used here there is coupling between the torsion x and the axial extension
A with the component T, of the stress tensor. From Figs. 4 and 5 we
can see again that the component of the stress T, is also affected by the
residual stresses following a tendency similar to Tp,.
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6. Deformation of a residually stressed slab

In this section we study residual stresses in a slab defined through

-L,<x<L, 0<y<H, -L ,<z<L, 93

where we have used the notation x, y, z for x;, x, and x;, respectively.
Let us assume that L, > L, and L, > H and that the distribution of
residual stresses only depend on the coordinates x, y, i.e.

Ty, = Tr,, (%3, i,j=12,3. (96)
In this case the equations of equilibrium, under the assumption that
there is no body force, reduce to

Ty, . Ty, Ty, . Ty, Ty, 0Tk,
0x oy ox ay ox dy
Regarding the boundary condition (12); we demand that such condi-

tions be satisfied on the surfaces y = 0, y = H and x = +L,. Recalling
that in the z-direction the slab is assumed to be very long, we enforce

=0. 97)

>

Tp,(x,0)=0, Ty (x.H)=0, Ty (x.00=0, Ty (x.H)=0, (98)
Ty, (x,00=0, Ty, (x,H)=0, (99)
Ty, Ly =0, Tg (-L.y)=0, Ty (L.»=0, Ty (-L,.y) =0, (100)
Ty, (L y) =0, T, (=L..y)=0. (101)

The assumptions L, > L, and L, > H are used in order to
simplify the distribution of stresses so that we can assume the simplified
form given in (96). Under such assumptions the condition Tzn = 0 is
not required on the surface z = +L, since they are considered to be
essentially located at infinity; however, because the condition (9) is not
satisfied trivially, we need to impose such a restriction explicitly on the
surface (obtained from an imaginary cut) z = constant, -L, < x < L,
0 < y < H. In this case Eq. (9) becomes fOH /, LLXX Tgn dxdy = 0, which
implies that

H (L, H L,
/ / TR33 dxdy =0, / / TR]3 dxdy =0,
0 Ly 0 Ly
H Ly,
/ / Tg,, dxdy = 0.
o Ji,

Regarding the specific expressions for a and b, we assume that
a= Z?=1a,-(x, ye; and b = Z?=1b,-(x, ye;.
It follows from (12),, (96) and (26) that

(102)

+T2

2 2 2
I + I T | + IT5(Ty Ry, T TR, + Maay + 2115(Ty,, @

11
+Ty,, a5 + Ty, a3)a; + Ight + 201,(Ty by + Ty, by + Ty, b3)by
+20Tg(a - b)ay by + 2M1g(a - b)a; (b Ty, + by Tx,, + b3Tx,;)

+bi(a T, + axT,, + a3Tg,,)]1 =0, (103)

T2

2
I + I Ty, + H3(TR12 + Ry

2 2
+ TR23) + ya; +2115(Tg , a,
+Ty, @5 + Try, 03)a + Ighs + 2117 (Ty , by + Ty, by
+T,, b3)by + 21T - b)ayh, + 2MTg(a - b)[ay (b Ty, + by Ty,, + b3Tx,,)

+by(a Ty, + axTy,, + a3Tg,,)]1 =0, (104)

+ T2

2
+T, Rss

)+ MyTy, + (T3 + T2 ) + Iya; + 2105(Ty

13
+TR,,2 + Ty, a3)ay + Mghs + 2015 (Ty by + Ty, . by

+Tg,, b3)bs + 2MTg(a - blazby + 201g(a - b)[as(b; Ty, + byTy,, + bsTi,,)

+by(a Ty, + ay Ty, + a3Tx,,)1 =0, (105)

)Ty, + (TR, Ty, + TR, TRy, + TR3 TRyy) + 114414y
+H5[(TR“ a + TRlzaZ + TR]3a3)a2 + (TRlzal + TR22”2 + TR23a3)a|]
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Fig. 3. Results for the circumferential component of the stress T,, for different values of d, (see (54)). Case (a) k =0, A =1 and P, = 10. Case (b) k =2, A =1 and
P =0.Case (c)kx=0,A=1.01and P, =0.
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Fig. 4. Results for the different components of the stress tensor T for different values for 4, (see (54)), when k =0, A =1 and P, = 10.
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Fig. 5. Results for the different components of the stress tensor T for different values for d,, (see (54)), for the case x =2, A=1.01 and P, = 10.
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Fig. 6. Results for the components ¢,, and ¢4, of the strain tensor, for different values for d, (see (54)), for the case k =2, A = 1.0l and P, = 10.

+1b by + 211 [(Ty, by + Ty, by + T, 53)by

+(Tr, by + Ty, by + Tr,, b3)b11 + Hg(a - b)(a by + byay)
+1g(a - b)[a, (b Ty, + byTx,, + b3Tx,,)

+c12(blTR]1 + b2TR12 + b3TR]3) + bl(alTR12 +a)Tg,, + a3TRB)

+by(a Ty, + ax T, + a3Tg ;)1 =0, (106)

H2TR|3 + H3(TR11TR13 + TRIZTR23 + TR|3TR33)

+H4a a3 + II5[(Tg a) + Ty, a0 + TR, a3)a3

+(Tr a1 + Tryyap + Try, az)ay] + Igh by

+201;[(Tg, by + Ty, bs + Ty b3)bs + (T by + Ty by + Ty, b3)by ]
+g(a - b)(aybs + byas) + Mo(a-b)[ay (b, Ty, +byTy,

+b3Ty,) + as(by Ty, + by Ty, +bsTi ) + by(@ Ty, + axTi,, +a3Tx,,)

+by(ai Ty, + @y Ty, + a3Tr, )1 =0, (107)

ILTR,, + I3(Tg , T, + TR, TR,y + TRy, TRy,) + Hyasa;
+I5[(Tg a1 + Tr,, 0y + Tr,ya3)a3 + (T a1 + T, a5 + Ty, a3)a5]
+1bybs + 211 [(Ty,, by + Ti,, by + Ty, b3)b3 + (T, b

+TRy, 02 + Ty, b3)b] + IIg(a - b)(aybs + byas)

+y(a-b)lay(b Ty, + boTx,, + b3Tx,,)

+a3(b Ty, + byTx,, + b3Tx,,) + by(a Ty, + ayTg,, + a3Ty,,)

+b3(a T, + ayTy,, + a3Tg,,)] = 0. (108)

To find the distribution of the residual stresses in the slab, we need
to solve (97) and (103)—(108). We have a total 9 equations for the
6 components of the residual stress tensor Ty, therefore, in general
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apart from considering the components of the residual stress tensor as
unknowns, we assume that some of the parameters of the constitutive
equation IT are also unknowns.

In order to make some progress with this boundary value problem,
we consider the same special expression for IT as in (53): II(T,a,b,r) =
ol + oI + > ci1;, from which we obtain

Iy =cy+2c 1y, Iy =c, k=23,..,9 (109)
where in the present case we suppose that ¢, = ¢, (x,y), k =0,1,2,...,9
and where

Iy =T + Ty + Tx3. (110)

Let us now explore a method for solving the problem, similar in
spirit to one of the procedures used to determine the residual stresses in
a cylindrical annulus (see Section 5.1). We only consider (97), (103)-
(108) and we assume that we do not have information as a consequence
of the slab being cut. Additionally, for simplicity we consider expres-
sions for some of the components of Ty as given a priori and from (103)-
(108) we obtain some information associated with the functions ¢;(x, y)
that characterize the model (109).

Let us now solve (97), ,, under the assumption that T , and Ty,, are
expressed in terms of Ty ,. We have

x dTg,,
T (x,y)=—/
Ry . 0

'; & y) dé + F(y),
y" (111
Ty, (x,y) = —/0

Ty
5 2 (x, 1) dyp + G(x),
X
which in virtue of the boundary conditions (100),,, (98);,4 leads to
F(y) = 0 and G(x) = 0. In view of the boundary conditions (98), ,,
(100)4 4 we impose the restrictions

Ly 0Tg H 9T,
/ e de =0, /
—-L 0

R
2 (x,n)dp=0
. X

Following a similar procedure we obtain TRl3 from (111), (112) and
(97)5 in terms of Tx,, as

x0T
Ty, (x, ) = —/ —
Ry3 . 0

52 (£, y) de,
. y

Ly 0Ty
where / —
. 0

2 (&,y) dE = 0.
. y

We notice that the boundary conditions (101) are satisfied.
Let us assume an approximate expression for Ty , of the form

Ty, (5, 9) % m}_)lz_){ L
+ Q,,, sin (ﬂzx)}sin<%),

where P, and O,,, are constants. It is easy to show that the boundary
conditions (100)34 TRl z(iLx,y) = 0 are satisfied for all y such that
0 < y < H. Similarly, for the boundary conditions (98), , T, (x,0) =0,
TR]z(x’ H)=0.From (111), and (114) we have

(112)

(113)

[Jr(Zm— l)x]
cos | M — )X

(114)

L 2m—1
TR”(X y) = Z z Hn { (2m . l)pmn <sin [”(;n—Lx)x] +(_l)m+1>
+% <cos <z£nx> + (—1)m+1> } cos (Z2). (115)

The condition (100), (see (112),) that TRll (L, ») =
example

_ % Pun(=D"
Pl"_glz em-1) "

0 is satisfied if, for

(116)

Regarding TRzz’ from (111), and (114) we have

ZZ { (2m—1)P Sin[ﬂ(Zm—l)x]

2L
m=1 n=

Tr,(x.9) = I

123
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)} (5)-1)

The boundary conditions (98); 4 are satisfied automatically.
With regard to T; Rys let us assume an approximate expression of the
form )

M N
Tr,, (x,y) = Z R, sin ( ) Z Z { i © [
Tmx

() 7).

where R, and S,,, are constants. It possible to show that the conditions
(99) are satisfied automatically. From (113); and (118) we obtain that

mx

+mQ,,, cos ( T

117)

X

z(2m — 1)x
2L,

+S,,, sin (118)

T
Tr;y(x.9) = =+ Lo

2

(119)

ny
) peos (57):
The condition (101); (see (113),) TRB(Lst) = 0 is satisfied if, for
example

Ru=1 3 B

Finally, regarding Tg,,, as there is no boundary condition that the
component of the stress has to satisfy (as the plate is infinitely long in
the direction z), we assume the following approximate expression for
that component of the residual stress

Tr,, (%, y) = l/'00+2{ ocos< znx >+Vosm(
() +7msin (7))

7emn( n"

om 1) (120)

Tmx

=)}

M N
Tmx ny
+m§l;{l/'mncos< L. >cos(?)
+Vm,,51n<”Lnix>cos<%>+7’mncos<”z€x>sin<%ny)
. (zmx\ . (#mhy
+W,.. sm< L. )sm(F)}, (121)

where V,,,,, V., 7,,, and W, are constants.
In view of the above representations with regard to Tg,,, the condi-
tion (102), is satisfied if, for example
< 1

Uy = —[(=D" =117y,

=2, 7,0 =117,
Regarding TRB, from (118) we conclude that (102); is satisfied if the
following relation holds

(122)

MY R 1y
Z%—[( b-n=3 3 o o - 1, (123)

In the case of Ty, from (119) we note that (102), is satisfied automati-
cally.
Finally, (120) and (123) are satisfied if, for example

R
{ - )’"+‘+Zz(2 5 [(-1)" -1 ]}

(124)
It follows from (114), (115), (117), (118), (119), (121) and (103)-
(108) that we can obtain, ¢, ¢4, ¢s, ¢4, ¢; and cg. The system of equations

M

Ru—z

( 1)m+l

2m—1)
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(103)-(108) can be rewritten as the following system of linear equations
[M][C] = [D], (125)

where the 6 x 6 matrix [M] and the 6 x 1 vectors [C] and [D] are defined
as

1 a2, B 2w, 2(a- b)a; b,
1 a 2, b 2w 2(a- b)ayb,
M) =|1 & 205 B 2wy 2(a - byayb,
0 aa Iy bbb, w, (a-b)ab,+bay)
0 aa; Is bybs ws (a-b)(a b; + bjay)
0 ayas lg bybs wg (a-b)aybs + byas) (126)
€0 o
Cy ry
C r
=17 m=|>|
€6 e
¢7 r7
e rg

where [, w, and ry, k = 1,2,3,4,5,6 are variables defined in terms
of the components of Ty, a, b, and ¢, ¢,, ¢; and ¢y, and are given in
Appendix A. The above system of linear equations can be solve uniquely
if® det[M] # 0. Eq. (125) can be solved symbolically or numerically, in
this last case we need to completely know an expression for Ty.

7. On the use of incremental equations to study the properties of
residually stressed bodies

In the previous sections we assumed that information about the
properties of residually stressed bodies can be obtained by assuming
that such bodies on being cut attain a configuration that is free of stress.
From the practical point of view it may not be possible or convenient to
cut a body in order to obtain information about the material properties
and the distributions of residual stresses and moreover a ‘cut’ is not a
diffeomorphism. In the present section we explore a different method
to obtain information concerning the residually stressed body, working
with the incremental formulation presented in [50] (see also [30] for a
similar analysis, but for a subclass of &(B, Ty)). Recall the definitions
presented in Section 3.2, the residual stresses Tp must satisfy the
equations (see (12))

divTg =0, 0=H(Tg) onk,.(B), Trn=0 on dk,.(B).

Let us consider the application of a small external load At, which is
applied on some parts of the boundary of the body, such that the stresses
change according to T = Ty + AT and such that |AT| < |Tg|. Of course
this last assumption in most cases can be only verified a posteriori,
as in general the residual stresses Ty are unknown. The total stress
T = T + AT must satisfy the equation of motion® p(:)%l = divT and
(12) and we obtain

P

= div 4T, (127)

where Au is the displacement field that appears when the incremental
external load At is applied on the boundary of the body. Let Ae denote
the strain tensor associated with such a displacement field, we have (in
index notation and Cartesian co-ordinates)

1 aAu,. aAu/‘
AEU = E 5

ox; 0x;
and from & = h(T) since |AT| <« |Tg| and since (12); must be satisfied,
we have the approximate expression
oh,;
Ag; R #
1 T

(128)

ATy, (129)

8 det[M] # 0 is a condition that may not be always satisfied. Even if det[M] = 0
we can still find ¢, ¢, ¢, ¢, ¢; and ¢, but some of them would not be
independent.

9 For simplicity we do not consider body forces.
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which in the case of (19) becomes

iadi}

N —_—

Ae;; ~
“u oT;; 0T},

ATy,
Tr

(130)

From (127) and (130) we see that these linearized equations contain
information concerning the residual stresses.

As a summary, for a given distribution of residual stresses Ty we need
to find AT and 4u solving in parallel the partial differential equations'®

0%Au;,  O0AT}; 0Au; O0Au; 2

e (—"’ ’) = 20|, (131)
ot ox; 2\ ox; 0x; dT;;0T), Ty

subject to the boundary conditions

ATyn; = Al, on ok,(B), Au;=Ad; on dk,(B), (132)

where At is the prescribed boundary displacement on dx,(5),, and
dx,(B) = 9k, (), U 0x,(B), and dx,(B), N ok, (B), = D.

In principle, we could apply a variety of small external loads At on
the residually stressed body on the surface ox,(B),, and we should be
able to measure the displacement field Au that such loads generate on
the same surface ox,.(B),. This experimental information could be used to
help us characterize the residual stresses Ty or the constitutive function
11 = I1(T, a,b) as shown in the example presented below.

In order to see how the incremental formulation presented above
can help us to understand the response of residually stressed bodies,
it is necessary to consider some boundary value problems, and as first
step we need the expression for ()T‘)z GI;M' From (26) (see (19)) we have
in index notation (Cartesian co-ord&nates)

oIl
Ty

= I, 6y + I, Ty, + II,T},,, T, + ,a,q
+115(T a0, + a;T),a,)+ b, b,
+ 11,(T,,,b,,b, + b, T},,b,,,) + IIg(a - b)(ay b, + a;b;)
+Ily(a - b)(a, T},,b,, + Ty, bua; + b, T),a, +Ty,a,,b), (133)

2

where we recall that n, = TH, p = 1,2,...,9. The second derivatives
P

9

oT;; 0T,

ijOTki
with respect to 7;; taking into consideration the expression
orl,

oT,;

can be found by taking the derivative of the above expression

= 1,6, + I, T, + 3T, T, + I1,40,a;

+11,5(T;,a,a; + a;T;,a,) + 1 ,6b;b;

itjn
+ I,5(T;,b,b; + b,T),b,) + Myg(a - b)a;b; + ba))
by +Tiub,a; + b,T;

itjn
+ I 9(a - b)(a;T;, iTinay + Tipa,b)), (134)
11
()lp()lq

where we have used the notation I7,, = . The procedure to

211
9T;;0Tyy
we provide it in Appendix B. In the case of the model (53) where we
have IT\; = 2¢;, II,, = 0 (when u # 1 and v # 1), IT| = ¢y + 2¢,1,,

m,=c,, w=273,...,9, from (220) (see Appendix B) we obtain that

obtain

is straightforward but since the expression is very long

211 1 1
—6T-~6Tk, = 2¢16;;6y + 552(5%5]1 + 6 6) + 5‘33(5iij/ + T 61 + 64Ty
ij
1
+Tkj5,,-) + §c5(5,-kaja, + akﬁl,-aj + 5kjal-a, + aké,ja,-)
1
+ §c7(5,-kbjb, + bi6y;b; + 8y;biby + b 6y;b;). (135)

To summarize, in the case of (53) we need to find Ty, AT and 4u by
solving the Egs. (12);, and (131) (see (135))

(o +2¢/ Ty, )6;; + CzTR,-j + C3TR;kTRk,- 