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Abstract The analysis of the disturbances on a spiraling base flow is relevant for the design, operation, and
control of technological devices such as parallel-disk turbines and swirl flow channel heat sinks. Spiraling
inflow inside an annular cavity closed at the top and bottom is analyzed in the framework of modal and
nonmodal stability theories. Local and parallel flow approximations are applied, and the inhomogeneous
direction is discretized using the Chebyshev collocation method. The optimal growth of initial disturbances
and the optimal response to external harmonic forcing are characterized by the exponential and the resolvent of
the dynamics matrix. As opposed to plane Poiseuille flow, transient growth is small, and consequently, it does
not play a role in the transition mechanism. The transition is attributed to a crossflow instability that occurs
because of the change in the shape of the velocity profile due to rotational effects. Agreement is found between
the critical Reynolds number predicted in this work and the deviation of laminar behavior observed in the
experiments conducted by Ruiz and Carey (J Heat Transfer 137(7):071702, 2015). For the harmonically driven
problem, an energy amplification of O(100) is observed for spiral crossflow waves. Transition to turbulence
should be avoided to ensure the safe operation of a parallel-disk turbine, whereas large forcing amplification
may be sought to promote mixing in a swirl flow channel heat sink. The analysis presented predicts and
provides insight into the transition mechanisms. Due to its easy implementation and low computational cost,
it is particularly useful for the early stages of engineering design.

1 Introduction

The spiraling inflow inside an annular cavity closed at the top and bottom has recently regained interest for
its relevance to applications in turbomachinery and high heat flux dissipation systems. Scaling of parallel-disk
turbines for uses in the microscale has been investigated by Krishnan et al., Pfenniger et al., and Sengupta and
Guha among others [7,12,19]. Ruiz and Carey proposed a novel swirl flow microchannel heat sink for high
heat flux applications such as cooling electronics and concentrated solar photovoltaics [14]. In subsequent
work, a dye injection experiment revealed a considerable increase in dye diffusion when the flow rate going
through the channel exceeded 190ml/min. In the same work, the authors also observed that, for flow rates over
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190ml/min, laminar theory significantly underpredicted their experimental measurements for pressure drop
and total heat flux, and they attributed these results to hydrodynamic instabilities [15].

Steady-state flow was studied numerically using integral methods by Herrmann-Priesnitz et al. [4], and
different boundary layer structures were observed depending on the governing parameters. Parabolic velocity
profiles are found for low Reynolds numbers, while large inflection of the radial velocity component occurs for
higher values. Whether these highly inflected profiles can occur in a real world device is a matter of stability.
Stability and receptivity analyses are also motivated by its relevance to design, operation, and control of the
parallel-disk turbine and the swirl flow channel heat sink.

Velocity profiles found in this type of channel are similar to those observed in other rotating boundary layer
flows, such as von Kármán and Bödewadt flows. The first experimental observation of stationary crossflow
vortices and the first theoretical stability analysis for the rotating disk flow were presented by Gregory et
al. [2]. Work on the modal and spatial stability continued with Malik, who computed the neutral curves for
stationary disturbances using the parallel flow approximation [10]. Lingwood followed by studying the absolute
or convective nature of the instabilities [8]. More recently, Serre et al. and Lopez et al. used DNS and found
that the Bödewadt layer is unstable to axisymmetric circular radial waves and three-dimensional multi-armed
spiral waves [9,20]. In a follow-up study, Do et al. [1] showed that in the absence of any external forcing, the
circular waves are transitory, but low amplitude forcing can sustain them indefinitely.

Over the past two decades, nonmodal stability theory has emerged to provide a more complete picture
of the linear perturbation dynamics for fluid flows using an initial-value problem formulation [16–18]. The
modal approach characterizes a flow as stable if all the eigenvalues of the dynamics operator are located on the
left half of the complex plane. Nevertheless, for eigenvalues with negative real part, the flow may experience
a large amplification due to linear transient growth before decaying asymptotically [21]. The formulation as
an initial-value problem allows the incorporation of an external harmonic forcing term that may represent
free-stream turbulence, wall roughness, acoustic perturbations, or body forces among others. The response of
the system to these external disturbances, i.e., receptivity of the flow, is determined by the particular solution
to the harmonically driven problem. Neither modal nor nonmodal stability and receptivity analyses for the
swirl flow channel have been reported elsewhere.

In this study, the formulation of a linear initial-value problem for the perturbation dynamics in a swirl
flow channel is detailed. The methodology to apply the local and parallel flow approximations based on order
of magnitude arguments is presented. We calculate the optimal energy growth of initial disturbances, and we
examine the dependence of the maximum growth on the wavenumbers. We also calculate the optimal response
to external harmonic forcing and examine its dependence on the wavenumbers. Unlike in plane Poiseuille
flow, rather than transient energy growth of disturbances, the transition to turbulence is attributed to the change
from parabolic to inflected base flow velocity profiles due to rotational effects when increasing the Reynolds
number.

2 Governing equations

2.1 The base flow

The swirl flow channel consists of an annular cavity, which is open at the outer and inner radii, ro and ri,
the top and bottom boundaries are solid walls with a separation of 2h, and it has a very small aspect ratio
h/ro � 1. Incompressible fluid enters the channel at ro at an inlet angle θo with respect to the tangent, spirals
radially inward, and exits through ri. A schematic of the swirl flow channel as well as the cylindrical system of
coordinates used is shown in Fig. 1a. Steady-state flow is axisymmetric and presents a boundary layer nature,
and it is therefore governed by
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(a) (b) (c)

Fig. 1 a Schematic of the swirl flow channel and cylindrical system of coordinates. b Base flow schematic and local system of
coordinates. c Classification of the steady-state boundary layer structures on the Reo–θo space in log scale, based on the radial
velocity profiles [5]

U = 0 at z = ±h, U = Uo (1, cot(θo), 0)
T at r = ro, P = 0 at r = ri, (1e)

where U = (U, V,W )T is the steady-state velocity field in cylindrical coordinates (r̂, θ̂ , ẑ), P is the steady-
state pressure, and ρ and ν are the density and kinematic viscosity. Boundary conditions are shown in Eq. (1e):
no-slip at the channel walls, velocityUo (1, cot(θo), 0)T at the inlet, and a reference pressure is set at the outlet.
The parameters governing the steady-state flow are the inlet angle θo and a flow rate Reynolds number defined
as Reo = Uoh2/(νro). The solution to Eqs. (1) is approximated using the method developed in Ref. [4], which
considers the formulation of a flow model for the mass and momentum transfer coupled between viscous
boundary layers and an inviscid core region. The resulting equations are solved using an integral method and
a space-marching technique, and the main advantage of this method is the low computational cost that allows
fast exploration of the parameter space [4,5]. Rotation of the fluid induces a crossflow and entrainment of fluid
toward the channel walls; therefore, three different boundary layer structures may develop depending on the
flow rate Reynolds number and the flow inlet angle: merged, entraining, or nonentraining. These structures are
classified based on the shape of the radial velocity profile, as shown in Fig. 1c.

2.2 Linearized perturbation equations

In this section, we cover in detail the formulation of the stability and receptivity problems for the swirl flow
channel. The approximations presented allow these problems to be solved using standard nonmodal techniques
taken from, e.g., Schmid and Henningson [18].

Linearizing the incompressible Navier–Stokes equations in cylindrical coordinates about an axisymmetric
base flow yields the following system of equations:
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where u = (u, v, w)T is the perturbation velocity and p is the perturbation pressure.We have added an external
forcing term ( fu, fv, fw)T to the momentum equations, which will later be used for the receptivity analysis.
The terms inside the parentheses ( )c and ( )np correspond to curvature and nonparallel flow effects, respectively.
Equations (2) have been nondimensionalized using the half-height of the channel, h, as the characteristic length
scale, and the velocity magnitude

√
U 2 + V 2 at the midplane of the channel as the characteristic velocity scale.

In this study, we are concerned with the local behavior of flow structures of length scale h, around a certain
radial station r . If the radius is sufficiently large compared to the length scales of interest, i.e., ε = h/r � 1,
the flow can be regarded as locally Cartesian in the coordinates (r̂, r θ̂ , ẑ); therefore, the curvature terms ( )c
can be neglected. Due to the boundary layer nature of the flow, the normal velocity component is much smaller
than those parallel to the walls, i.e.,W � U, V , and the velocity gradient in the radial direction is much smaller
than the gradient normal to wall, i.e., ∂U/∂r, ∂V/∂r � ∂U/∂z, ∂V/∂z. In fact, these are smaller by a factor
of order O(ε), and by neglecting them, we get U ≈ (U (z), V (z), 0)T. This results in the elimination of the
nonparallel flow effects denoted by ( )np, which is known in the literature as the parallel flow approximation.
Both, the local system of coordinates and a schematic of the parallel base flow are shown in Fig. 1b.

Using the local base flow (U (z), V (z), 0)T and the parallel flow approximation yields the following system
of equations:
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where ′ denotes differentiation of the base flow with respect to z. The local temporal evolution problem for
the perturbations is completed with appropriate initial conditions and no-slip boundary conditions on the
channel walls, i.e., u = v = w = 0 at z = ± 1. Equations (3) have coefficients that do not depend on r
and θ , and this allows for the perturbation variables to be expanded as Fourier modes in these directions as
u(r, θ, z, t) = û(z, t) ei(αr+mθ),where α is the radial wavenumber andm is the integer azimuthal wavenumber.
Identical expansions are carried out for the perturbation pressure and external forcing terms. The governing
equations are simplified to

iαû + iβv̂ + Dŵ = 0, (4a)
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where β = m/r , the total wavenumber is k = (α2 + β2)
1
2 , and D denotes differentiation with respect to z of

the perturbation variables. We want to rewrite the system in terms of the normal vorticity η̂ and the normal
velocity ŵ instead of the primitive variables. To do this, we first derive the transport equation for η̂ by taking
the z component of the curl of the momentum equations (4b)–(4d). Secondly, we obtain an expression for the
pressure by taking the divergence of the momentum equations (4b)–(4d) and using the continuity equation
(4a). Substituting the resulting expression into Eq. (4d), we eliminate p̂ from the system and get
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whereM = (
k2 − D2

)
. The no-slip boundary conditions for the normal vorticity and normal velocity become

Dŵ(±1) = ŵ(±1) = η̂(±1) = 0. Equations (5) are discretized using the Chebyshev collocation method, and
the operator D is replaced with the Chebyshev differentiation matrix D. We obtain a linear dynamical system
where the state variables are the normal velocity and normal vorticity evaluated at the collocation points. The
matrix representation of the system is

d

dt
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where LOS, LSQ, and LC are the familiar Orr-Sommerfeld, Squire, and coupling operators for a base flow that
has velocity components along both, the spanwise and streamwise, directions. The rate of change of the state
vector q̂ = (ŵ, η̂)T is related to its current state by operator L, and to the input forcing f̂ = ( f̂u, f̂v, f̂w)T by
operator B. The system can be written in compact notation as follows:

dq̂
dt

= Lq̂ + Bf̂ . (7)

Equation (7) governs the dynamics of the perturbation variables, and we are interested in two particular
cases: the temporal evolution of initial disturbances and the long-time response to external harmonic forcing.

2.2.1 Response to initial conditions

For a prescribed initial condition q̂(0) = q̂0, the solution of Eq. (7) without any external forcing is given by

q̂ = exp(tL)q̂0. (8)

In order to study the stability of the system, we calculate themaximum energy amplification over a specified
time interval and optimized over all initial conditions,

G(t) = max
q̂0 �=0

||q̂(t)||2E
||q̂0||2E

= max
q̂0 �=0

|| exp(tL)q̂0||2E
||q̂0||2E

= || exp(tL)||2E , (9)

where || · ||E is a norm that measures the kinetic energy of the perturbations [16]. The flow is asymptotically
unstable when G(t) → ∞ as t → ∞, which will occur when at least one eigenvalue of L has a positive real
part. On the counterpart, the flow is called asymptotically stable when G(t) → 0 as t → ∞.

2.2.2 Response to external harmonic forcing

For an external harmonic forcing f̂(t) = f̃ exp(−iωt), the particular solution to Eq. (7) is given by

q̂ = (iωI − L)−1Bf̂ . (10)

This solution provides insight into the receptivity process, and for an asymptotically stable flow, it represents
the long-time response of the system [6]. In order to study the receptivity of the system, we calculate the
maximum energy amplification of the output optimized over all shapes of input forcing:

R(ω) = max
f̂ �=0

||q̂||E
||f̂ ||E

= max
f̂ �=0

|| (iωI − L)−1Bf̂ ||2E
||f̂ ||E

= || (iωI − L)−1B||E . (11)

Therefore, the optimal response R(ω) is the resolvent norm [18].
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2.3 Energy norm

A physically relevant quantity to measure growth is the kinetic energy of the perturbations. For a vector written
in the normal velocity and normal vorticity formulation, the kinetic energy is calculated as follows [3]:

||q̂||2E = 1

2k2

∫ 1

−1

(|Dŵ|2 + k2|ŵ|2 + |η̂|2) dz = q̂HQq̂, (12)

where Q is the energy weight matrix that contains the appropriate weighting of the variables (ŵ, η̂)T at the
collocation points, as well as the integration weights between the channel walls. A Cholesky decomposition
of Q = FHF allows us to relate this norm to an equivalent standard (Euclidean) L2-norm ||q̂||E = ||Fq̂||2.
The energy norm of a matrix A is easily derived using the definition of a vector-induced norm

||A||E = max
q̂

||Aq̂|E
||q̂||E = max

q̂

||FAF−1Fq̂||2
||Fq̂||2 = ||FAF−1||2. (13)

Going back to Eqs. (9) and (11), we can rewrite the optimal growth rate G(t) and the optimal response
R(ω) as L2-norms:

G(t) = ||F exp(tL)F−1||22, (14a)

R(ω) = ||F (iωI − L)−1BF−1||2. (14b)

Beforewecan computeG(t) and R(ω) from the above expressions,wehave toperforma spectral decomposition
of the operator L = V�V−1. Here, V is the matrix whose columns are the eigenvectors of L, and � =
diag (λ1, . . . , λ2N ) is a diagonal matrix containing its eigenvalues, where 2N is the length of q̂. This way, the
exponential and the resolvent of L can be easily calculated:

exp(tL) = V diag (exp(tλ1), . . . , exp(tλ2N ))V−1, (15a)

(iωI − L)−1 = V diag

(
1

iω − λ1
, . . . ,

1

iω − λ2N

)
V−1. (15b)

Using Eqs. (15), we can compute the matrices in Eqs. (14) and their Euclidean norm which is given by their
largest singular value. Additionally, the principal right singular vector and principal left singular vector of
each of these matrices correspond to the maximum amplification input and output disturbances, respectively,
that is the optimal initial condition and the disturbance at time t for the exponential, and the optimal forcing
and the response at a frequency ω for the resolvent. Computing the eigenvalues and eigenfunctions requires
O((2N )3) arithmetic operations. To reduce the amount of computational work, we restrict our attention to the
K least stable modes instead of all 2N , thus requiring only O(K 3) operations [13,18]. In this study, N = 80
and K = 50 are found to be enough for convergence of the computed results.

3 Results and discussion

3.1 Base flow

Our base flow considers the steady state in a swirl flow channel with an inlet angle θo = 8◦ and an aspect
ratio h/ro = 0.02, evaluated at a local radius r . Equations (1) allow us to calculate the local boundary layer
thickness δ, the local flow angle θc at z = 0 (midplane), and the local Reynolds number Re, for different values
of r , as shown in Fig. 2 [5].

Boundary layers in the swirl flow channel aremerged (δ = 1) for low Reo, they separate over a certain value
Reo, and increments over that value result in thinning of the boundary layers, as shown in Fig. 2a. Figure 2b
shows how the direction of the local flow at the midplane of the channel changes as Reo increases. Starting
from radial flow (θc = 90◦), the angle increases until we get tangential flow (θc = 0◦) when the boundary
layers separate. Figure 2c shows the values of the local Reynolds number Re increasing as a function of the
flow rate Reynolds number Reo. When the boundary layers are merged, the local flow resembles a plane
Poiseuille flow in the direction of θc and with a Reynolds number Re which is much lower than the critical
value 5772 required for the flow to be asymptotically unstable [11]. As shown in Fig. 2, the overall behavior



Stability and receptivity of boundary layers 4011

of the base flow does not depend strongly on the local radius; therefore, we arbitrarily select r = 0.6ro as a
representative local radius for the fluid dynamics in a swirl flow channel. Although our conclusions in this
study are not affected by this particular value, we consider that a global stability analysis is a logical next step
for future work.

3.2 Stability and receptivity

Optimal growth G(t) and optimal response R(ω) are calculated for flow rate Reynolds numbers Reo between
0.1 and 2. In order to study the influence of thewavevector, instead of using its radial and azimuthal components
α and β, we use its magnitude k = √

α2 + β2 and the waveangle defined as θk = arctan(α/β) − θc. In this
notation, an angle θk = 0◦ represents a wave propagating in the direction of flow in the midplane of the
channel (aligned with θc), which we refer to as the streamwise direction. Therefore, we refer to θk = 90◦ as
the crossflow direction, and it represents a wave direction normal to the flow at z = 0. This formulation allows
for an easier physical interpretation of the results, because the streamwise and crossflow directions of the base
flow change with Reo, as shown in Fig. 2b.

Figure 3 shows the different behaviors of G(t) and R(ω) that can be observed for different k, θk , and
Reo. Flow may be asymptotically unstable and therefore have unbounded energy growth, it may be stable but
present some transient growth, or it can present monotonic energy decay, as shown in Fig. 3a. The flow is found
to be highly receptive to stationary crossflow waves, as shown in Fig. 3b, and mildly receptive to streamwise
traveling waves with two different frequencies, as shown by the two peaks in Fig. 3c.

For asymptotically stable flows, we calculate themaximum values ofG(t) and R(ω) and denote themGmax
and Rmax, respectively. The dependence of Gmax and Rmax on the total wavenumber k and the waveangle θk
for Reo = 0.8 is shown in Fig. 4. Maximum growth is observed for k = 2.12, and the maximum response is

(a) (b) (c)

Fig. 2 Base flow variables as a function of the flow rate Reynolds number Reo at different local radii r/ro = 0.4, 0.5, and 0.6.
a Boundary layer thickness δ. b Flow angle at the midplane of the channel θc, measured starting from the tangential direction. c
Local Reynolds number Re, based on the half-height of the channel and the streamwise velocity component at z = 0 (midplane)

(a) (b) (c)

Fig. 3 a Optimal growth G(t) in the crossflow direction. Curves labeled unstable for Reo = 1.07 and k = 0.75, stable for
Reo = 0.62 and k = 2.25, and no energy growth for Reo = 0.30 and k = 2.25. b, c Optimal response R(ω) for Reo = 0.8 and
k = 1.25. b Crossflow direction θk = 90◦. c Streamwise direction θk = 0◦
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(a) (b)

Fig. 4 Contours of a maximum transient amplification Gmax and b maximum frequency response Rmax as a function of the total
wavenumber k and the waveangle θk for Reo = 0.8

obtained for k = 1.63, both along the crossflow direction θk = 90◦, where the base flow velocity profiles are
most inflectional.

Figure 5 shows vector fields of relevant disturbances in the y–z plane, where y is the coordinate along
the wave direction. The disturbance that achieves the largest transient amplification, i.e., the optimal initial
condition, corresponds to streamwise vortices, as shown in Fig. 5a for Reo = 0.8. Similarly to plane Poiseuille
flow, Fig. 5b shows that these vortices change little as time evolves; however, high energy streamwise streaks
will form due to the lift-up effect. The most responsive forcing and the most receptive disturbance, i.e., the
optimal forcing and the optimal response, are shown in Fig. 5c, d for Reo = 0.8, and the leading eigenmode
for unstable flow at Reo = 1.07 is shown in Fig. 5e.

The Reo dependence of Gmax in the crossflow direction and the neutral curve for asymptotic stability
are shown in Fig. 6. Two important values for the flow rate Reynolds numbers are calculated: ReEo = 0.36,
below which there is no energy growth of disturbances, and Reco = 0.91 that delimits the onset of asymptotic
instability where there is unbounded energy growth. Between these values, perturbations experience transient
growth followed by asymptotic decay, where the kinetic energy is amplified up to O(10), as shown in Fig. 6.
For plane Poiseuille flow, transient growth plays an important role in the transition process, whereas for the
swirl flow channel, we find very small transient growth. This suggests that the mechanism for transition is the
change in the shape of the velocity profile due to rotational effects (crossflow instability). It is worth noting that
Ruiz and Carey in Ref. [15] observed that their experimental results deviated from laminar behavior for flow
rates over 190ml/min, which corresponds to Reo = 0.86 according to our definition of the flow rate Reynolds
number. Therefore, we find reasonable agreement between experimental observations and predictions from
our simplified analysis. The critical value for the Reynolds number, Reco, is also useful to determine bounds
for the validity of assumptions and models of the flow inside this type of channel.

The maximum response of the system Rmax increases with the flow rate Reynolds number, and when
approaching Reco, the forcing energy amplification is ofO(100). The forcing frequency and the waveangle that
give Rmax are ω = 0 and θk = 90◦, and do not change with Reo. Nevertheless, the direction of the base flow
at the midplane of the channel is affected. Consequently, when increasing Reo, crossflow waves manifest as
spirals of decreasing number of arms. The onset of asymptotic instability coincides with the separation of the
boundary layers and the appearance of velocity profiles that are most inflectional in the radial direction. The
fastest growing mode corresponds to axisymmetric circular waves that travel radially inward, and its structure
is shown in Fig. 5e. The characteristics of the forcing or disturbances that are largely amplified by the flow are
important for the design and operation of technological devices. A large response should be avoided to ensure
the safe operation of a parallel-disk turbine, but it may be sought to promote mixing in a swirl flow channel
heat sink.
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(a)

(b)

(c)

(d)

(e)

Fig. 5 Disturbance vector fields for θk = 90◦ in the y–z plane, where y is the coordinate along the wave direction. a, b Optimal
initial condition and its structure after maximum transient amplification for Reo = 0.8 and k = 2.12. c, d Optimal forcing and
response for Reo = 0.8 and k = 1.63. e Most unstable eigenmode for Reo = 1.07 and k = 2.52
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Fig. 6 Contours of Gmax(k, 90◦, Reo). Three regions can be distinguished: asymptotic instability (dark gray), asymptotic decay
with transient growth (light gray), and asymptotic decay without energy growth (white). Dashed contour levels, from left to right,
Gmax = 2, 5, 10, 15

4 Conclusions

This study provides numerical solutions for the energy growth of initial disturbances and the response to
external harmonic forcing in a swirl flow channel. The methodology is emphasized with a clear presentation
of the simplifications that are used. Linearized perturbation equations are obtained using the local and parallel
flow approximations based on order of magnitude arguments. The result is equivalent to the Orr-Sommerfeld
and Squire system for a three-dimensional boundary layer.

The effect of the flow rate Reynolds number on the base flow is presented. When Reo increases, the flow
direction on the channel midplane changes gradually from radial to azimuthal and eventually boundary layers
separate. Results for the stability analysis show that there is no energy growth if the Reynolds number is less
than ReEo = 0.36, and the flow becomes asymptotically unstable over Reco = 0.91 which coincides with the
separation of the boundary layers. As opposed to plane Poiseuille flow, there is very little transient growth
between ReEo and Reco, with an energy amplification only up to O(10). This suggests that the mechanism for
transition to turbulence is the crossflow instability that occurs due to the change in the shape of the base flow
velocity profiles over Reco. Our results are able to predict transition, as they present reasonable agreement with
experimental observations made by other authors in Ref. [15].

The particular solution to the harmonically driven problem, i.e., the receptivity analysis, shows a large
response of the fluid system to external disturbances for subcritical Reynolds numbers, with energy amplifi-
cation up to O(100). As Reo increases, the flow becomes increasingly receptive to stationary spiral crossflow
waves of decreasing number of arms. For asymptotically unstable flow, the fastest growing mode corresponds
to axisymmetric circular waves that travel radially inward, which is the direction of the most inflectional
velocity profile. Future work considers including the heat equation and studying the componentwise frequency
response to determine heat transfer enhancement strategies in a swirl flow channel heat sink.

Stability and receptivity of the flow are not only of fundamental interest, but are also relevant to modeling,
design, operation, and control of parallel-disk turbines and swirl flow channel heat sinks. The methodology
presented is particularly useful for early design stages due to its ease of implementation and low computational
cost, which allows an exploration of geometric parameters and operating conditions.
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