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ABSTRACT
The interest of this work is to describe a framework that al-

lows the use of the well-known dynamic estimators in piezoelec-
tric harvester (deterministic performance estimators) but tak-
ing into account the random error associated to the mathemati-
cal model and the uncertainties on the model parameters. The
framework presented could be employed to perform Posterior
Robust Stochastic Analysis, which is the case when the harvester
can be tested or it is already installed and the experimental data
is available. In particular, it is introduced a procedure to update
the electromechanical properties of PEHs based on Bayesian up-
dating techniques. The mean of the updated electromechanical
properties are identified adopting a Maximum a Posteriori es-
timate while the probability density function associated is ob-
tained by applying a Laplaces asymptotic approximation (up-
dated properties could be expressed as a mean value together
a band of confidence). The procedure is exemplified using the
experimental characterization of 20 PEHs, all of them with same
nominal characteristics. Results show the capability of the pro-
cedure to update not only the electromechanical properties of
each PEH (mandatory information for the prediction of a par-
ticular PEH) but also the characteristics of the whole sample
of harvesters (mandatory information for design purposes). The
results reveal the importance to include the model parameter un-
certainties in order to generate robust predictive tools in energy
harvesting. In that sense, the present framework constitutes a
powerful tool in the robust design and prediction of piezoelectric
energy harvesters performance.

∗Address all correspondence to this author.

INTRODUCTION
The dynamic description of piezoelectric energy harvesters

(PEHs) has been widely studied in the last decade. Different de-
terministic modelling techniques and simplifications have been
adopted to describe their electro-mechanical coupling effect in
order to increase the accuracy on the output power estimation.
Although it is a common practice to use deterministic models
to predict the input-output behavior of PEHs, perfect predictions
are not expected since these devices are not exempt of uncertain-
ties. The accuracy of the output estimation is affected mainly by
three factors: (1) the mathematical model used, (2) the uncer-
tainties on the mathematical model parameters and (3) the uncer-
tainties related to the excitation. These uncertainties should be
taken into account in order to generate robust and more plausible
predictions. Nevertheless, only a limited attention has been paid
in the uncertainty quantification related to model parameters in
piezoelectric energy harvesters.

In that sense, the adequate modelling of PEH plays a deter-
minant role for their prediction, optimization and design. Sev-
eral models have been developed, but in particular two of them
have been widely accepted and used in the scientific commu-
nity: the analytical distributed parameter solution introduced by
Erturk and Inman [1,2] and the finite element plate model intro-
duced by De Marqui Junior et al. [3]. These models are partic-
ularly interesting since they have been ample tested showing an
important level of accuracy.

Although the models available offer a good description of
the physics involved in PEH, its accuracy relies in the complete
knowledge of the electromechanical properties of the piezoelec-
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tric material together the geometrical characteristics of the har-
vester. In a recent work, Franco and Varoto [4] presented a de-
sign framework for PEHs but taken into account the uncertainties
related to the geometrical parameters and the load resistance of
the harvester. The results revealed that the incorporation of these
uncertainties affects significantly the prediction of the PEH. On
the otherhand, Ruiz and Meruane [5] observed that the manu-
facturers typically report these electromechanical properties with
variation close to ±20% of their nominal values. In that sense,
the authors proposed a procedure to propagate these variations
(all obtained from the literature) in order to identified the ex-
pected Frequency Response Function (FRF) and its correspond-
ing confidence interval. The work conducted by Ruiz and Meru-
ane presents one of the first efforts to describe the dynamic be-
haviour of PEHs assuming the electromechanical characteristic
as uncertain parameters. As a result, the authors conclude that
in order to obtain more robust predictions is mandatory to ac-
count the characteristic of the PEH as uncertain parameters or
improve the manufacturing tolerance to decrease the variability
in the PEH parameters. In other words, the accuracy in the pre-
diction of the well-known deterministic models will be lost if the
lack of information related to the characteristic of the PEH is
omitted. However, the study performed by the authors was con-
ducted only through simulation; no experiments were performed
at the time. The present study deals with the experimental char-
acterization of PEHs and their model parameter updating in order
to improve future predictions.

DETERMINISTIC MODELS FOR THE FRF PREDICTION
Two different approaches have been widely adopted by re-

searchers to predict the dynamic behavior of PEHs (either in
unimorh or bimorph configurations). The first approach corre-
sponds to the Analytical Distributed Parameter Solution (ADPS)
proposed by Erturk and Inman [1,2], which consist on a stan-
dard modal expansion assuming an Euler-Bernoulli beam model.
The approach have been used in several investigation since it was
originally validated through rigorous experiments [1-3]. The ap-
proach allows the computation of the FRF without a significant
computational burden since it relies on an analytical procedure,
however it is limited to PEHs with a beam-like geometry. To
overcome this disadvantage, a procedure based on Finite Ele-
ment Method (FEM) had been introduced by De Marqui et al. [3]
allowing the dynamical prediction of PEHs with different plate-
like geometries. In despite of the procedure adopted (the ADPS
or the FEM-based model), it is possible to identify the FRF as
a function of the electromechanical and geometrical characteris-
tic of the harvester. In that sense, the FRF of PEHs is express
as H(θθθ ,g), here, θθθ corresponds to a vector with the electrome-
chanical properties while g is another vector with the geometrical
characteristics of the harvester, such that:

θθθ = [Ys sE
11 d31 ε

T
33 ζ ρp ρs] (1)

g = [L b hp hs] (2)

The above variables corresponds to the length L, width b,
thickness of the piezoelectric layer hp, thickness of the substruc-
ture hs, the substructures density ρs, the piezoelectric layers den-
sity ρp, the Young Modulus of the substructure Ys, the elastic
compliance at constant electric field sE

11, the piezoelectric strain
constant d31, the permittivity at constant stress εT

33 and the damp-
ing ratio ζ . The FRF of interest for this work corresponds to the
relation of the output voltage with the acceleration at the base of
the PEH, for more detailed information on the full expression of
H could be found on [5].

EXPERIMENTAL CHARACTERIZATION OF PEHs
The experimental identification of the FRF in PEHs requires

the direct measurement of the base acceleration together to the
voltage generated by the piezoelectric layer. As the goal of this
research is to study the uncertainties in PEHs, it is required to
identify the FRFs of various harvesters with the same nominal
characteristics (20 bimorph PEHs are used in this study). The
manufacturer reports that electromechanical characteristics indi-
cated in Table 1 could present variations of ±20% of their nom-
inal values [6].

The length, width and total thickness of all tested harvesters
are verified with a micrometer (precision of 0.001mm). The
mean and standard deviation of those geometric characteristics
are presented in Table 2. Here, it is possible to observe small
coefficients of variation (lower than 2.6%), indicating an impor-
tant level of precision in the manufacturing process associated
to the external dimensioning of the PEH. The variability found
here is in agreement with the values previously reported in the
literature, by example in [5]. However, it is notorious that the
mean value of the thickness obtained from measurements differs
from the nominal value reported in Table 1 (differences close to
10%). This difference is relevant since the thickness belongs to
the set of parameters that affects the most the variability of the
FRF [5], thus it is expected differences between the recorded and
the nominally predicted FRF.

Three analyses are independently conducted in order to
identify and rank the sources of uncertainty. These analyses eval-
uate: (1) the repeatability of the FRF measured, (2) the sensitivity
of the mounting process over the FRF, and (3) the FRF of several
PEHs with identical nominal values.

Test 1 (repeatability of the FRF): The FRF of each PEH is
estimated by performing 100 independent measurements, which
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TABLE 1. Nominal Characteristic of the PEHs Tested.

Property Value

ρs Not Available

Ys Not Available

sE
11 16.4x10−12m2N−1

d31 −320x10−12CN−1

εT
33 4500x(8.854x10−12)Fm−1

ρp 7.4x103kgm−3

L 60mm

b 10mm

Total Thickness 0.8mm

TABLE 2. Geometric Characteristic Measured for all PEHs Studied.

Property Mean Coefficient of Variation

L 60.046mm 0.1%

b 10.064mm 0.1%

Total Thickness 0.713mm 2.6%

are then used to obtain the mean values at difference frequencies
and their respective standard deviations. By example, Figure 1
presents the FRF of a single PEH, the figure shows the 100 mea-
surements (in grey), while the mean value and the standard devi-
ation for a given frequencies are presented in a black solid line
and error bars, respectively. For the sake of brevity, results of
others PEHs tested are not presented since they showed a simi-
lar trend. The interesting result here is related to the dispersion
identified (error bars in Fig.1), where it is observed a small co-
efficient of variation (CV) for all cases indicating an important
level of repeatability. In general, the CV is lower than 2% except
for frequencies close to resonance, where it is possible to observe
CV up to 6% .

Test 2 (Sensitivity of the Mounting Process): In a previous
work [5], it was identified that the FRF (more specifically the
fundamental frequency) is sensitive to small changes in the PEH
length. The effective length of the PEH is defined as the length
of the PEH that is in cantilever, as a result, this length depends
on the mounting process and the quality of the fixing constrain.
The question that arise here is how different is the FRF when a
PEH is installed, uninstalled, and reinstalled again. In particular,
the FRF of each PEHs studied is identified after repeating the in-

FIGURE 1. Example of repeatibility for a single PEH.

FIGURE 2. Effect of the uncertainty in the mounting process.

stallation process. The PEH is installed and uninstalled 5 times,
after each installation the FRF is identified by using 10 indepen-
dent measurements. Results are presented in Fig. 2 keeping the
same format employed in Fig. 1. Here, the CV has the same
trend previously observed, it increases close to resonance and
decreases out of it, but its value is considerably higher, reaching
CVs up to 18% . Note that these CVs are close to be 3 times the
CVs identified as the baseline.

Test 3 (Uncertainties between nominally identical PEHs):
The FRF of each single PEH is identified through 20 independent
measurements and the results are presented in Fig. 3. Following
the previous figures legend, the black solid line represents the
expected value for a given frequency while each grey solid line
represents a single measurement of the FRF. Since 20 PEHs are
tested and each one is tested 20 times, the total number of solid
grey lines is 400. Here, the error bars represent the standard
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FIGURE 3. Measurement of the FRF of 20 PEH, all of them with
identical nominal characteristics.

deviation of the measurement for a given excitation frequency
(as it is used in previous cases). Results are very interesting since
the CVs observed are considerably greater than previous cases (at
least 4 times higher than test 2), reaching in some cases values
up to 60%.

Ultimately, the CVs identified in test 3 corresponds to vari-
ations introduced by the combination of: noise, clapping con-
dition and variations in the geometric parameters together with
variations presented in the electromechanical properties of each
PEH. In that sense, the effect of uncertainties associated to the
geometrical characteristics and the electromechanical properties
of the harvesters could be estimated by subtracting the CV iden-
tified in test 2 to the CV identified in test 3. However, the ge-
ometric parameters of the PEHs tested were fully identified in
Table 2, where it is possible to observe coefficient of variations
lower than 2.6%, suggesting that the uncertainties identified can
be attributed primarily to the electromechanical characteristics of
the PEH.

PROBABILISTIC PREDICTION USING NOMINAL VAL-
UES

The procedure presented by Ruiz and Meruane [5] is em-
ployed here to quantify the expected uncertainties in the FRF.
The authors used the well-known prediction model proposed by
Erturk and Inman in 2008 [1,2] to estimate the variability of the
FRF due to variations in the geometric parameters and in the
electromechanical properties of the harvester. Next, a brief de-
scription of this procedure is offered. First, it is necessary to
establish a deterministic model to identify the FRF of the PEH.
As it was mentioned before, the ADPS is used for this study. The
goal is to estimate the variation of the FRF due to variations on
the vector θθθ . In that sense, the model parameter vector θθθ can

FIGURE 4. Comparison between a prior probabilistic prediction and
measurements

be modelled as a random vector defined by a multivariate PDF
identified as p(θθθ). These uncertainties are propagated such that
the expected value of the FRF can be estimated by solving the
following probabilistic integral:

E[H] =
∫

Θ

H(θθθ)p(θθθ)dθθθ (3)

Additionally, it is possible to identified the probability (Po)
that H exceed a certain value Hthreshold :

P(H > Hthreshold) = Po (4)

There are different procedures to solve Eqs.(3) and (4), be-
ing the stochastic simulation one of the most commonly pro-
cedure adopted, which is the scheme used in the present work,
specifically the Monte Carlo Importance Sampling technique. A
more completed discussion on how to solve these equations can
be found in [5,7].

The probabilistic model for the model parameters p(θθθ) is
defined by using the values reported in [5,6] for the geometry
and variations of ±20% for the electromechanical properties of
the harvester (as it is reported by the manufacturer). All variables
are assumed to be Gaussian.

The comparison between measurements and predictions are
presented in Figure 4. There, it is possible to observe the mea-
surements in grey, the dotted lines correspond to the exceedance
probability equal to 90% (Po = 0.9) and 10% (Po = 0.1), while
the black solid line corresponds to the expected value estimated
by the predictor. Here, it is important to recall Eq.(4) which de-
fines the exceedance probability, in that sense, the area between
the dotted lines represents an interval confidence equal to 80%.

4 Copyright © 2018 ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/VVS/proceedings-pdf/VVS2018/40795/V001T04A002/2792609/v001t04a002-vvs2018-9318.pdf by U

niversidad D
e C

hile user on 30 Septem
ber 2019



The first interesting observation is that the measurements lie in-
side the interval confidence area, which shows the capability of
the numerical procedure to estimate the possible location of the
actual FRF. However, the fundamental frequency estimated by
the predictor is higher than the mean fundamental frequency ob-
served, the prediction estimates 200 Hz while the fundamental
frequency observed has a mean of 195 Hz. This bias identified
between mean values of prediction and measurement indicates
that the nominal values employed in the predictions are not com-
pletely accurate. Additionally, it is observed that the dispersion
used in the predictive model is considerable greater than the ac-
tual dispersion of the set of PEHs.

BAYESIAN APPROACH TO UPDATE MODEL PARAME-
TERS

The following section presents a Bayesian updating method
in order to identify the model parameters of a PEH. The idea
behind the method is to incorporate the information gained in the
experimental test to decrease the level of uncertainty associated
to the main characteristics of the PEH. Based on the experimental
results, it is proposed to incorporate an additive prediction error
such that the estimation of the FRF can be obtained computing
the following equation:

h = H(θθθ)+ e (5)

where e is an error defined by a Gaussian PDF with zero
mean and a specific standard deviation σe. Under this assump-
tion, the real system FRF (h) is defined by the following PDF:

p(y | θθθ) = 1
σe
√

2π
exp
[
− 1

2σ2
e
(h−H(θθθ))2

]
(6)

Note that Eq.6 represents the real PDF of the FRF when the
model parameters θθθ are known. If the information about model
parameters is incomplete (model parameters defined by a PDF
p(θθθ)), then it is possible to propagate the uncertainties to com-
pute the expected value of the real FRF as:

E[h] =
∫

H(θθθ)p(θθθ)dθθθ (7)

Here, p(θθθ) receive the name of prior PDF, since it has the
initial information of the model parameters (information that us-
sually is given by the manufacturer, leading to important varia-
tions in the estimation of the FRF). In that sense, Eq.7 and Eq.3

are essentially the same. The important aspect of the Bayesian
approach is that the prior PDF p(θθθ) could be updated by using
experimental data, then, it is obtained a posterior PDF denoted as
p(θθθ |D). Where the letter D stands to explicitly indicate that the
PDF has been updated by the experimental data D. In this case,
Eq.7 is re-wrote as:

E[h | D] =
∫

H(θθθ)p(θθθ | D)dθθθ (8)

The procedure to identify the posterior PDF p(θθθ | D) is
presented in the following paragraphs. If the concept pre-
sented in Eq.6 is extended for multiple outputs, such that
h = {h1 h2 ... hM}, then the output probability model for M-
measurements is given by:

p(h | θθθ) =
M

∏
m=1

p(hm | θθθ) (9)

Note that Eq.9 exhibits an independence between the errors
of different pairs of outputs. In other words, the prediction error
at certain point does not affect the prediction error at other points.
Since the experimental data D is available, the Bayes Theorem
can be applied here to update the probability model p(θθθ), such
that:

p(θθθ | D) =
p(D | θθθ)p(θθθ)∫

p(D | θθθ)p(θθθ)dθθθ
(10)

Since Eq.9 is based on measurements, the p(h | θθθ) can be
interpreted as p(D | θθθ), which Eq.10 is expressed as:

p(θθθ | D) =
p(h | θθθ)p(θθθ)∫

p(h | θθθ)p(θθθ)dθθθ
(11)

Here, p(h | θθθ) is the likelihood function which gives the
probability to have the data D given the model parameters θθθ .
On the other hand, the denominator of Eq.11 is a normalizing
constant which is also called the evidence of the system.

The most probable values for the model parameters can
be calculated by adopting a Maximum a Posteriori estimator
(MAP), where the goal is to identify the maximum of the nu-
merator in Eq.11 (please refers to [8] for further details):

θθθ MAP = argmax[log(p(h | θθθ)p(θθθ))] (12)
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Different methods to solve Eq.11 can be implemented. By
example, methods based on stochastic simulations require gener-
ating samples from p(θθθ |D), which is computational challenging
since occupies a small and non-trivial-shape region in the model
parameter space [8]. On the other hand, the Laplace method of
asymptotic approximation could be used as long as the log of
likelihood function be twice differentiable and significant peaked
(condition attained for M large) around a global maximum. The
approximation behind this method relies in the assumption that
the numerator of Eq.11 is a Gaussian function centered at θθθ MAP,
then, the covariance of the posterior model parameter is equal to
the inverse of the Hessian matrix of − log(p(h | θθθ)p(θθθ)) evalu-
ated at θθθ MAP.

Method Applied to a PEH
The procedure presented in previous section is applied to

one of the PEH used in the test. It is important to note that the
idea is to present a procedure to identify the actual parameters of
a single PEH by taking advantage of the information gained in
the experimental test. In order to update the probability model
for the model parameter vector, it necessary to define first the
model parameters that will be considered uncertain. In general,
the magnitudes related to geometric characteristics can be eas-
ily obtained with an important degree of certainty. As it was
discussed previously in Tables 1 and 2, the variability of the ge-
ometrical characteristics are small (lower than 2.6%) compared
with the variability associated with the electromechanical proper-
ties of the harvester. In that sense, the geometrical characteristics
of the harvester can be considered known parameters (or free of
uncertainties). Now, the model parameter vector θθθ contains only
the parameters that are considered uncertain.

The prior probability model p(θθθ) is defined then as an un-
correlated Gaussian distribution where the mean corresponds to
the nominal values (presented in Table 1), and coefficient of vari-
ations are equal to 20% for each parameters. It is important to
remark that the information of this variability was directly given
by the manufacturer [6]. The experimental set of data to perform
the updating consist in a set of 20 independent measurement of
the same PEH.

The results are presented in Table 3, where the nominal val-
ues are compared to the prior and posterior mean values. The
coefficient of variation are also shown in parenthesis. Note that
the prior and posterior models are Gaussian distributions with
different means and different coefficient of variations while the
additive prediction error is assumed as a Gaussian distribution
with zero mean and coefficient of variation equal to 4% (which
is chosen based on the information obtained in test 1).

Here, it is shown the differences between the prior (which
is defined having not previous information of the system) and
posterior distribution (established by including the information
coming from measurements). Note that the mean values of both

TABLE 3. Prior and Posterior PDF employed in the Bayesian proce-
dure.

θθθ Prior Posterior

ρs 7.4x103 kgm−3(20%) 8.4x103 kgm−3(15%)

Ys 6.1x1010 Pa(20%) 6.1x1010 Pa(18%)

sE
11 16.4x10−12 m2/N(20%) 14.1x10−12 m2/N(8%)

d31 −320x10−12 C/N(20%) −246x10−12 C/N(5%)

εT
33 4500εo F/m(20%) 3500εo F/m(6%)

ρp 7.4x103 kgm−3(20%) 7.3x103 kgm−3(15%)

ζ 0.017(20%) 0.015(3%)

εo = 8.854x10−12

FIGURE 5. FRF obtained by the implementation of the Bayesian pro-
cedure.

distributions are similar but the variances present important dif-
ferences. The posterior distribution corresponds to a narrower
distribution compared with the prior. This behavior is expected
since the inclusion of additional information (measurements)
tends to decrease the uncertainties.

After the identification of the posterior probability density
function (values presented in Table 3), it is possible to propagate
these uncertainties in order to study the new dispersion obtained
in the estimation of the FRF. The propagation is made by solv-
ing Eq.8 adopting a Monte Carlo Approach, results are presented
in Fig.5, where it is observed the reduction on the confidence
interval (dotted lines) due to the updating of the model uncer-
tainties. Additionally, it is observed a good agreement between
the expected value of the FRF and the measurements obtained
previously, indicating the versatility and the of this procedure to
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improve the prediction of the FRF in PEHs. Although the results
presented here corresponds only to the updating characteristics
of a single PEH, the procedure could be expanded to identify the
characteristics not only of a single harvester but to the whole set
of PEHs.

CONCLUSIONS
A framework to propagate uncertainties in piezoelectric en-

ergy harvesters was presented. The framework presents a se-
ries of significant advantages since: (1) it is compatible with any
well-known energy harvester performance predictor (determinis-
tic models), (2) it is independent of the number of piezoelectric
and substructure layers, (3) it allows to define expected values as
well as confidence intervals for the FRF associated to the output
voltage, and (4) it allows to update the characteristics of the PEH
based on experimental data. An extensive experimental char-
acterization is also presented by testing 20 PEHs with identical
nominal characteristics. The experimental measurements served
as data to exemplified the framework presented. Results reveal
the real necessity (validated from the experimental point of view)
to incorporate the uncertainties in the prediction of the FRF. Ad-
ditionally, the framework proposed was exemplified by updating
the electromechanical characteristics of a single PEH increasing
the accuracy in the estimation of its FRF.
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