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a b s t r a c t 

Endogeneity is often present in discrete choice models, precluding the consistent estima- 

tion of the model parameters. To correct for this problem, the researcher needs to gather 

exogenous instrumental variables, which should be independent of the error term of the 

model. This critical assumption can be tested using overidentification tests that rely on 

having more instruments than endogenous variables. For discrete choice models, instru- 

ments’ exogeneity can be assessed using the Amemiya-Lee-Newey test, which relies in the 

estimation of an auxiliary GMM model build from reduced-form estimates. This paper pro- 

poses two alternative tests that are constructed as adaptations of the Refutability test and 

the Hausman test, into the discrete choice framework. The Refutability test consists in in- 

cluding instruments as additional variables in an auxiliary model that was corrected for 

endogeneity using all instruments available. The Hausman test is built from the compari- 

son of the estimates attained using different subsets of instruments. Using a binary choice 

Monte Carlo experiment, the three tests are assessed in terms of size, power, and robust- 

ness to De Blander’s condition for which all overidentification tests of this kind are blind. 

Results show that what is termed the modified Refutability test, which includes all in- 

struments simultaneously, has smaller size distortion, larger power, and more robustness, 

compared to the state of the art Amemiya-Lee-Newey test and to the proposed Hausman 

test. Besides, the Amemiya-Lee-Newey and both versions of the Refutability test allow be- 

ing agnostic about which instrument might be exogenous. The paper finishes highlighting 

the methodological and practical implications and limitations of these findings and sug- 

gesting future lines of research in this area. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

When the error term of a discrete choice model is not independent of the observed variables, conventional estimators

of the model parameters are inconsistent, making the model misleading for behavioral assessment and policy design (see

e.g. Guevara and Thomas, 2007 ). This problem is known as endogeneity and may be caused by three main reasons: er-

rors in variables, simultaneous determination and the omission of attributes of alternatives ( Guevara, 2015 ). Endogeneity is

common to several types of discrete choice models used in transportation analysis, including, but not limited to the fol-

lowing: airline itinerary choice ( Lurkin et al., 2017 ), mode choice ( Fernandez-Antolin et al, 2016 ), passenger booking timing

( Wen and Chen, 2017 ), learning models of route choice ( Guevara et al., 2017 ), mobility data collection ( Zegras et al., 2018 ),
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demand for electric vehicles ( Helveston, 2016 ), vehicles’ purchases ( Petrin and Train, 2010 ), valuation of public transport

attributes ( Guevara et al., 2018 ) and residential choice ( Guevara 2005, 2010; Guevara and Ben-Akiva 2006, 2012; Ferreira,

2010; Guevara and Polanco, 2016 ). 

The canonical methods to correct for endogeneity in discrete choice models rely on the availability of suitable instru-

mental variables that must comply with two seemingly opposing properties: relevance and exogeneity. On the one hand

instruments must be correlated with the endogenous variable (relevant) and on the other they must be independent of

the error term of the model (exogenous). Therefore, finding suitable instruments in practice can be challenging and even

polemic (see e.g. Hausman, 1997; Bresnahan, 1997 ). 

Mumbower et al. (2014) reviewed different types of possible sources for instrumental variables that have been proposed

in the literature, classifying them into four categories. The first category (cost-shifting) corresponds to instruments that are

based on variables that share marginal costs with the endogenous variable, but that differ in demand shocks that explain

the error term. The second category (Stern-type) uses instruments that are built from measurable differences in market

power positions among markets. The third category (Hausman-type) takes advantage of differences in geographical contexts

to achieve the cost-shifting goal. The final category (BLP-type) corresponds to instruments that are based on measures of

non-price characteristics of other products supplied by the same firm. 

For example, Guevara and Ben-Akiva (2006, 2012 ) use what can be classified as Hausman type instruments to address a

price endogeneity problem in a residential location choice model. The source of endogeneity in this case was that dwelling

price was likely correlated with omitted attributes. The problem was addressed by the authors using the prices of other

dwellings located not too far but neither too close to the incumbent dwelling. By this, relevance would be achieved because

close dwellings may share marginal cost, and exogeneity would hold because dwellings are located beyond some limit that

permits assuming that they differ in the demand shocks that may partially explain the error term of the model. 

In practice, instrumental variables must be gathered based on the researcher’s judgment on the validity of the proposed

source for cost-shifting, Stern, Hausman or BLP instruments. However, without formal tests, the suitability of the proposed

instruments is always arguable. Testing if the instruments are relevant could be achieved by analyzing the correlation be-

tween the instrument and the endogenous variable, which are both observable. The challenge in such a case is to determine

a statistic that can guarantee, with certain confidence, that the instruments are sufficiently correlated with the endogenous

variable to attain certain goal in bias or empirical coverage ( Guevara and Navarro, 2015 ). Testing instruments exogeneity is

somehow more difficult because the error term of the model is latent (not observed), hindering the construction of a statis-

tic to judge their independence from the instrumental variables. This article will tackle the latter challenge in the context

of discrete choice models. 

The challenge of judging the independence between the instrumental variable and the latent error for assessing exogene-

ity, is achieved by relying on overidentification. To correct for endogeneity, only one instrument per endogenous variable is

needed. If more than the minimum needed instruments are used, the corrected model is said to be overidentified. If all

instruments are exogenous, estimators will be consistent, and then, e.g., any difference attained with alternative sets of in-

struments used could only be attributed to sampling error, which allows testing instruments’ validity. For linear models,

Sargan (1958) noted that when the problem is overidentified the residuals of the instrumental-variables regression can be

used to test for the exogeneity of the instruments. For nonlinear models, including discrete choice models such as the logit

or the probit, Lee (1992) noted that an estimator developed by Amemiya (1978) , and studied by Newey (1987) , can play the

role of the Sargan test. This test is usually termed as the Amemiya-Lee-Newey (ALN) test, it relies on the estimation of an

auxiliary GMM model build from reduced-form estimates, and it is the state of the art in the subject. 

Overidentification tests for the exogeneity of the instruments have a key limitation. Newey (1985) showed that these tests

are inconsistent, which means that they are blind to certain alternative hypothesis even if the sample size goes to infinity.

One way to recover consistency is to consider that the overidentification tests work under the assumption that a subset

of the instruments, for which the model becomes just identified, is exogenous ( Stock, 2001 ). This additional assumption

cannot be proven, what seems to discourage the use of methods to correct for endogeneity that are based on instrumental

variables. 

However, De Blander (2008) proposes an alternative way to attain consistency of overidentification tests, which seems

to increase their practical appealing. He notes that the alternative hypothesis for which overidentification tests are blind

is very peculiar, so he recommends instead to assume that the conditions that produce this alternative hypothesis do not

hold. This change puts “the burden of proof … on the critic, who has to make the case why the instruments” would fulfill

this rare condition. De Blander (2008) shows that consistency would fail if the way in which the instruments appear in the

structural equation and the reduced form equation, are linearly dependent. Pleus (2015) provides a more general expression

for this result, building on Newey (1985) , and presents a graphical representation to illustrate the nature of the problem.

Parente and Silva (2012) identify one plausible case in which this peculiar condition may occur in practice, which is when

both instruments are of the same nature, if they come from the same source. The problem is that, in such a case, the

correlation of the instruments with both the endogenous variable and the error term will likely be very similar. An analogous

warning was previously recommended by Nichols (2007) , although justified on a different ground. Beyond Parente and

Silva’s (2012) warning, which is fully addressable in practice, it seems then easier to defend than to attack the plausibility

of the consistency of the overidentification tests for the validity of instruments. 

This article focuses on the development and the assessment of tests for the exogeneity of instruments into the discrete

choice modeling framework. First, the state of the art Amemiya-Lee-Newey test is reviewed and compared with two novel
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tests that are constructed as adaptations of the Refutability and the Hausman test into the discrete choice framework. In

the Refutability test, instruments are included as additional variables in an auxiliary model that was corrected for endo-

geneity. An early version of this test, in which not all instruments are included in the auxiliary model, was suggested by

Guevara (2010) , who termed it the Direct test. Here is presented also a modified version of the Refutability test that allows

evaluating all instruments simultaneously. The Hausman test is built from the comparison of the estimates attained using all

and a subset of instruments in the correction of endogeneity, taking advantage of the differences on efficiency that would

be attained for each case. 

The three types of tests are assessed, using a binary choice Monte Carlo experiment, in terms of size, power and their

robustness to De Blander’s condition to which all overidentification tests of this kind are blind. Results suggests that the

modified version of the Refutability test has larger power, smaller size distortion, and is more robust, compared to the state

of the art Amemiya-Lee-Newey test. Besides, the Amemiya-Lee-Newey and both versions of the Refutability test allow being

agnostic about which instrument might be exogenous. 

The paper is structured as follows. Section 2 deploys a reference choice model that suffers from endogeneity. This refer-

ence model is used in the next sections as the testbed on which the proposed tests and the Monte Carlo experiments are

developed. Sections 3 , 4 and 5 convey the formulation of the three overidentification tests for the exogeneity of instruments

in discrete choice models, beginning with the state of the art Amemiya-Lee-Newey, followed by the proposed Refutability

and then the Hausman tests. Section 6 reports the Monte Carlo experiment. The paper finishes highlighting the practical

implications and limitations of these findings, and suggesting future lines of research in this area. 

2. Reference discrete choice model 

For illustrative purposes, consider the reference model depicted in Eqs. (1) –(3) where endogeneity is present and can be

addressed using instrumental variables. The model is simple enough for clarity of exposition, and is motivated as a discrete

choice model. However, it can be easily extended or re-interpreted to represent a vast variety of problems that involve

limited dependent variables ( Wooldridge, 2010 ) that are relevant for transportation science. 

U 

∗
in = βi + βp p in + βx x in + ε ∗in (1)

p in = α0 + αz 1 z 1 in + αz 2 z 2 in + αx x in + δ∗
in (2)

y in = 1 

[
U 

∗
in = max j∈ C n 

{
U 

∗
jn 

}]
(3)

This setting can be used to represent, for example, the data generation process behind a problem where an agent n

chooses an alternative i among those in the choice-set C n , following the Random Utility Maximization (RUM) model. Vari-

ables that are latent to the researcher are depicted with an asterisk and Greek letters β and α are used for the model

parameters. The utility U 

∗
in 

and the error terms ε ∗
in 

and δ∗
in 

are latent. The latter two are generated iid Normal (0, σ 2 
ε ∗ ) and

Normal (0, σ 2 
δ∗ ), respectively. The researcher can only observe p in , x in , z 1 in , z 2 in and the choice y in . Variables x in , z 1 in and z 2 in

are exogenous, drawn from a Normal (0, σ 2 
k 

), and therefore independent of the error terms of the model. Agents choose

the alternative with the largest latent utility U 

∗
in 

, as shown in Eq. (3) , where y in takes value 1, if agent n chooses alternative

i, and zero otherwise. Also, as shown in Eq. (1) , utility U 

∗
in 

depends on p in , x in and the error term ε ∗
in 

. Finally, as shown in

Eq. (2) , p in depends on x in , z 1 in , z 2 in , and an error term δ∗
in 

. 

The structural equation, or model of interest, corresponds to Eq. (1) . Endogeneity problems will arise in this equation

when δ∗
in 

is correlated with ε ∗
in 

, because then p in will be correlated with ε ∗
in 

, making it an endogenous variable. This problem

may occur, for example, if ε ∗
in 

contains attributes that are correlated with p in , but cannot be measured by the researcher,

or if there is some source of self-selection or simultaneous determination that makes the choice to be part of δ∗
in 

also.

In that case, if the model shown in Eqs. (1) –(3) is estimated directly, neglecting the correlation between δ∗
in 

and ε ∗
in 

, the

coefficients β of the structural equation would not be retrieved consistently. Intuitively, the problem would be that, since

p in is correlated with ε ∗
in 

through δ∗
in 

, shifts in ε ∗
in 

will be erroneously endorsed to p in , misinterpreting its impact in U 

∗
in 

,

which corresponds to coefficient βp . The inconsistency will propagate to other model coefficients, depending on the level of

correlation of x in with p in . 

Various methods may be used to correct for endogeneity in the problem depicted in Eqs. (1) –(3) . The reader is referred to

Guevara (2015) for an assessment of different approaches to achieve such a goal. Almost all methods rely on the availability

of proper instruments, which are variables that must be relevant and exogenous. Relevance means, for the reference model

depicted in Eqs. (1) –(3) , that the instruments have to be correlated with the endogenous p in , and exogeneity means that

they have to be independent of the error term ε ∗
in 

of the structural equation. It is easy to note that, for the reference model,

z 1 in and z 2 in could play the role of instrumental variable for p in . 

Note also that the model described by Eqs. (1) –(3) is over-identified because it has more instruments (two) than endoge-

nous variables (one). As it will be discussed later in Sections 3 , 4 and 5 , this is crucial for building the tests for the validity

of instruments using overidentification. 

Finally, overidentification tests will be unable to detect the endogeneity of the instruments if, as stated by De Blan-

der (2008) , the way in which they appear in Eqs. (1) and (2) , are linearly dependent. For the reference model shown in
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Eqs. (1) –(3) this would occur if ε ∗
in 

can be written as ( αz 1 z 1 in + αz 2 z 2 in ) γ + υin , with γ being any real number and υin an

exogenous error term. 

The next three sections describe overidentification tests that can be used to judge instruments’ exogeneity in discrete

choice models. The first corresponds to the state of the art in the subject and the latter two are new tests proposed in this

research. The three tests are then be assessed in Section 6 in terms of size, power, and robustness to De Blander’s condition

using Monte Carlo experimentation. 

3. Amemiya-Lee-Newey (ALN) test 

The current state of the art for the assessment of the exogeneity of instrumental variables in discrete choice models is the

Amemiya-Lee-Newey (ALN) test of overidentifying restrictions. The first step in the calculation of the ALN test corresponds

to the application of a two-stage estimator proposed by Amemiya (1978) , which follows from replacing Eq. (2) , into Eq. (1) in

the reference model to obtain: 

U in = βi + βp ( α0 + αz 1 z 1 in + αz 2 z 2 in + αx x in + δin ) + βx x in + ε ∗in 

U in = βi + βp α0 ︸ ︷︷ ︸ 
π0 

+ βp αz 1 ︸ ︷︷ ︸ 
π1 

z 1 in + βp αz2 ︸ ︷︷ ︸ 
π2 

z 2 in + ( βx + βp αx ) ︸ ︷︷ ︸ 
π3 

x in + ε ∗in + βp δ
∗
in ︸ ︷︷ ︸ 

˜ ε ∗
in 

(4) 

This equation is termed a reduced-form equation, where the right-hand side consists only of exogenous variables: in-

struments ( z 1 in and z 2 in ) and controls ( x in ). Note that Eq. (2) was therefore already a reduced form equation for p in in the

reference model setting. By means of the transformation shown in Eq. (4) , the structural model does no longer suffer from

endogeneity since neither z 1 in , z 2 in nor x in are correlated with ε ∗
in 

or δ∗
in 

. Then, the estimation of this model would produce

consistent estimators ˆ π of π0 , π1 , π2 and π3 , up to a scale. For equivalent reasons, the estimators ˆ α of α0 , αx , αz 1 and αz 2 

can be consistently estimated by directly by regressing p on x, z 1 and z 2 in Eq. (2) . 

It worth noting that, since ε ∗
in 

and δ∗
in 

are iid Normal, ˜ ε ∗
in 

in Eq. (4) will also be distributed iid Normal, meaning that

Eq. (4) could be estimated as a probit. However, as shown by Lee (1982) and Ruud (1983) , consistent estimators, up to a

scale, would be obtained as well when the model is estimated instead as a logit. To facilitate analysis and computation, the

latter approach will be used in Section 6 for the Monte Carlo experiments developed to assess the proposed tests. 

The researcher is however interested in the structural coefficients β i , βp and βx , up to a scale. These can be obtained by

noting that, using the estimators ˆ π and ˆ α, the following set of equations can be constructed: 

ˆ π0 = βi + βp ̂  α0 

ˆ π1 = βp ̂  αz 1 

ˆ π2 = βp ̂  αz 2 

ˆ π3 = βx + βp ̂  αx (5) 

Then, the second and third expressions in Eq. (5) can be seen as observations from the following auxiliary linear model

ˆ π = βp ̂  α + w, (6) 

where w is an error term, and βp is the only coefficient to be estimated. Therefore, given βp , β i , and βx can be uniquely

retrieved from the first and fourth expressions in Eq. (5) . 

Note that the auxiliary model in Eq. (6) makes sense only under overidentification. Otherwise, βp would be uniquely

obtainable from one of these equations. For this example, one coefficient βp is estimable and only two observations are

available because there is only one endogenous variable and two instruments. Each additional endogenous variable would

result in an additional coefficient to be estimated, and each additional instrument would result in an additional observation.

To estimate this auxiliary model, Amemiya (1978) proposed a procedure, which Lee (1992) probed to the equivalent to

the following minimum chi-squared or GMM estimator 

min 

βp 

(
ˆ π − βp ̂  α

) ′ ˆ W 

−1 
(

ˆ π − βp ̂  α
)
. (7) 

It can be shown ( Newey, 1987 ) that this estimator is consistent and relatively efficient, compared to other two-stage

estimators if ˆ W is a consistent estimator of the variance-covariance matrix of ( ̂  π − βp ̂  α) , which could be obtained as 

ˆ W = 

̂ 
�z − ˆ βp ̂
 
αz . (8) 

ˆ 
�z and 

ˆ 
αz in Eq. (8) are, respectively, the variance-covariance matrices of the instruments estimated from the reduced

form shown in Eq. (4) and from Eq. (2) . ˆ βp to calculate Eq. (8) can be obtained from an Ordinary Least Squares (OLS)

regression of Eq. (6) . Then, the inverse of ˆ W needed to calculate Eq. (7) can be obtained using a generalized inverse method

( Rao and Mitra, 1971 ) to avoid numerical problems. 

Lee (1992) noted that Amemiya’s method cannot only be used to correct for endogeneity, but also to construct a test of

over-identifying restrictions. The intuition behind the test is that, if the instruments are valid, the model will be consistent,

and the objective function in Eq. (7) will differ from zero depending solely on the degree of overidentification of the model,
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solely on the number of extra instruments available per endogenous variable. In turn, if the instruments are endogenous,

the estimators will be inconsistent, and the value of the objective function will be affected by the inconsistency caused by

using invalid instruments. 

Following Wooldridge (2010 , Eq. 14.9) this GMM estimator is called a minimum chi-squared estimator because 

S ALN = 

1 

k Z 
( ̂  π − ˆ βp ̂  α) ′ ˆ W 

−1 ( ̂  π − ˆ βp ̂  α) ∼ χ2 
df (9)

follows a chi-squared distribution with degrees of freedom ( df ) equal to the degrees of overidentification of the model, which

is equal to 1 in the reference model described in Eqs. (1) –(3) . Therefore, the value of the objective function of Eq. (7) can

be used as a test of over-identifying restrictions, appropriately standardized by sample size, which in this example is equal

to the number of instrumental variables k Z = 2 1 . 

The null hypothesis of the ALN test is that both z 1 and z 2 are exogenous instruments and the alternative hypothesis is

that either z 1 , z 2 or both are endogenous. This overidentification test will be consistent if De Blander’s condition does not

hold. 

4. Refutability (REF) and modified refutability (mREF) tests 

This section describes a Refutability (REF) test, which is proposed as an extension of the test for the exogeneity of instru-

ments in linear models suggested by Card (1995) , into the discrete choice framework. The REF test was originally proposed

by Guevara (2010) , who termed it the Direct test. Besides, it is proposed a modified version of the Refutability test (mREF)

that considers all instruments simultaneously, which, as it will be shown later in Section 6 , seems to show better power,

size and robustness properties than its canonical counterpart. 

The tests for the validity of instruments are built over a model that corrects for the endogeneity problem using overi-

dentification. While the ALN test is built over a reduced form estimation of the model to achieve this goal, the proposed

REF test is built over a control-function method correction. 

The control-function method to correct for endogeneity was originally proposed by Heckman (1978) . Its first applications

to discrete choice modeling were developed by Rivers and Vuong (1988) and Petrin and Train (2010) . For the model depicted

in Eqs. (1) –(3) , the control-function method can be seen as a two stage process, case in which it is termed the 2SCF. First,

Eq. (2) is estimated by OLS, 2 and then the residuals of this regression are added as an auxiliary variable in the structural

model of Eq. (1) , which is then estimated with canonical methods. The intuition behind the 2SCF method is that, if instru-

ments and controls are truly exogenous, the residual ˆ δin will control for the part of the endogenous variable p in that was not

independent of the error term ε ∗
in 

of the model. This method can also be applied by estimating both stages simultaneously

in what Train (2009) termed as the Maximum Likelihood (ML) version of the control-function method. 

The ML version of the control-function has the advantage of (often) increasing efficiency and facilitating the calculation

of the standard errors, but at the cost of losing robustness to the underlying distributional assumption. In the Monte Carlo

analysis depicted in Section 6 , the ML version of the control-function method will be used. For more details about the

control-function method, the reader is referred to Train (2009 , Ch. 9) and Guevara (2015) . 

For the reference model shown in Eqs. (1) –(3) , the proposed Refutability test can be described as follows. Since under the

null hypothesis both instrumental variables z 1 and z 2 are truly exogenous, the model estimated using the control-function

method will be consistent. Then, the inclusion of any instrument as an additional variable into the corrected choice model

should produce a non-significant increase in the log-likelihood. In turn, under the alternative hypothesis that any of the

instruments is endogenous, they will be correlated with the error term of the corrected model. Consequently, the inclusion

of any endogenous instrument as additional variables into the model that was spuriously corrected for endogeneity with

the control-function, should result in a significant increase in the log-likelihood. 

Thus, the proposed REF test for the exogeneity of instruments in discrete choice models can be applied in the following

three stages: 

Stage 1: Estimate the reduced form equation for p in ( Eq. (2) ) by OLS to obtain the residuals ˆ δ, as shown in Eq. (10) . 

p in = α0 + αz 1 z 1 in + αz 2 z 2 in + αx x in + δ∗
in ⇒ 

ˆ δin (10)

It can be shown (see e.g. Guevara, 2015 ) that if the instrumental variables z 1 in and z 2 in are exogenous, the error term

of the model could be rewritten as ε ∗
in 

= β ˆ δ
δ∗

in 
+ ν∗

in 
, where ν in will be an exogenous error. Therefore, if the estimator ˆ δin is

included in the utility, the endogeneity problem would be solved, as shown in Stage 2. 

Stage 2: Estimate the structural equation ( Eq. (1) ) including the residuals of Eq. (10) as auxiliary variables to control for

the endogeneity, and retrieve the log-likelihood of the CF estimator L CF , as shown in Eq. (11) . 

U in = βi + βp p in + βx x in + βδ
ˆ δin + ̃

 v ∗ ⇒ L CF (11)
in 

1 The extension of the test for k Z > 2 follows directly from modifying Eqs. (1)–(9) to include additional z s . 
2 Note that not only all instruments z , but also all exogenous x must be included as controls in this OLS regression explaining the endogenous variables, 

even if there is no a-priori reason to do it ( Guevara, 2015 ). Only then a reduced from estimate would allow the consistent estimation of this equation. 
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Stages 1 and 2 can be estimated simultaneously using the ML version of the CF method, which likelihood is shown later,

on Eq. (14) . This will be the approach used in Section 6 for the Monte Carlo analysis. 

Stage 3: Estimate the structural model again, including now not only ˆ δ, but also one of the instruments (for example z 1 )

as an additional variable, and retrieve the log-likelihood L CF _ Z , as shown in Eq. (12) . 

U in = βi + βp p in + βx x in + βδ
ˆ δin + βz 1 z 1 in + ̃

 ˜ v ∗in ⇒ L CF _ Z (12) 

It should be noted that in this case is one instrument because k Z = 2 in the example, but in general one could consider

up to k Z − 1 additional instruments in Stage 3. Also, note that stages 1 and 3 can be estimated simultaneously by the ML

method using the likelihood shown in Eq. (15) , which will be the approach used in Section 6 for the Monte Carlo analysis. 

Finally, the statistic of the Refutability test is calculated as a likelihood ratio test in which the model estimated in Stage

2 is the restricted version of the model estimated in Stage 3, with degrees of freedom equal to degree of overidentification

of the model, which in the example is equal to one. 

S REF = −2( L CF _ Z − L CF ) ∼ χ2 
df . (13) 

For writing the likelihood of the problem needed to apply the REF test using the ML approach one needs to make specific

distributional assumptions in Eqs. (10) –(11) . For the reference model shown in Eqs. (1) –(3) , δ∗ is distributed iid Normal with

variance σ 2 
δ∗ and, following Guevara (2015) , v ∗ is distributed Normal with variance σ 2 

ν∗. To achieve a likelihood with closed

form, it can be assumed instead that v ∗ is distributed iid Extreme Value (0, μv ∗ = 1), claiming the results of Lee (1982) and

Ruud (1983) . Thus, assuming also independence between observations, the likelihood of observation n can be written as

shown in Eq. (14) . 

L CF 
n = 

e μv + e ( βi + βp p in + βx x in + βδ( p in −α0 −αx x in −αz 1 
z 1 in −αz 2 

z 2 in ) ) ∑ 

j∈ C n e 
μv + e ( β j + βp p jn + βx x jn + βδ( p jn −α0 −αx x jn −αz 1 

z 1 jn −αz 2 
z 2 jn ) ) 

∏ 

j∈ C n 

1 √ 

2 πσ 2 
δ∗

× exp 

[ 

−
(

p jn − α0 − αx x jn − αz 1 z 1 jn − αz 2 z 2 jn 
)2 

2 σ 2 
δ∗

] 

(14) 

Eq. (14) corresponds to the ML version of the Control-Function method (see, Train, 2009 , Ch 9), under a given distribu-

tional assumption, and can be used to obtain estimators of the model parameters and their standard errors. Equivalently,

the ML version of the model for Stage 3 shown in Eq. (12) would have the form shown in Eq. (15) . 

L CF _ Z 
n = 

e μv + e ( βi + βp p in + βx x in + βδ( p in −α0 −αx x in −αz 1 
z 1 in −αz 2 

z 2 in ) + βz 1 
z 1 in ) ∑ 

j∈ C n e 
μv + e ( β j + βp p jn + βx x jn + βδ( p jn −α0 −αx x jn −αz 1 

z 1 jn −αz 2 
z 2 jn ) + βz 1 

z 1 jn ) 

∏ 

j∈ C n 

1 √ 

2 πσ 2 
δ∗

× exp 

[
− ( p jn − α0 − αx x jn − αz 1 z 1 jn − αz 2 z 2 jn ) 

2 

2 σ 2 
δ∗

]
(15) 

Just like the ALN test, the null hypothesis of the REF test is that both z 1 and z 2 are exogenous instruments and the

alternative hypothesis is that either z 1 , z 2 or both are endogenous. Also, this test will be consistent if De Blander’s condition

does not hold. 

It worth noting that the null and alternative hypotheses of this REF test (and of the Direct test proposed by

Guevara, 2010 ) differ in one key aspect from what Card (1995) considered for linear models. Card’s states that one needs to

assume that one instrument is exogenous, which can be used to build a corrected model over which to tests the exogeneity

of other instruments. Card’s approach has the limitation of not being agnostic about which instrument is exogenous or not,

what can be cumbersome in practice. In this sense, the REF test seems inferior to the ALN test. However, this assumption

is not really necessary. In Card’s approach to the problem, the instrument that is being tested is also exogenous under the

null so, for a proper correction of endogeneity, it must be included as a control in the first stage regression (see Table

5 in Card, 1995 ). Therefore, Card’s test uses the same type of statistic considered here for the REF test, which with this

re-interpretation has the advantage of considering a null that is agnostic about which instrument might be exogenous or

not. 

Nevertheless, despite it is true that the REF test is agnostic about which instrument is exogenous, its performance is

not necessarily independent of which instrument is used to perform Stage 3, shown in Eq. (12) , placing a different type of

limitation on this test. In general, for the REF test only K Z -1 out of all K Z instruments can be included as additional variables

into the third stage. This occurs because the control-function is constructed as a linear function of the endogenous variable

( p ) the control ( x ) and all instruments. Then, a model including p, x , the control-function and all instruments will be almost 3 

collinear, complicating considerably the estimation of the model. This limitation is important, because it implies that one

would have to explore all possible combinations of instruments to include in Stage 3, and also because it implies a loss of

information, potentially reducing the power of the test. 
3 Not perfectly collinear, as stated by Guevara (2010) and apparently assumed by Card (1995) . 
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To avoid this problem, it can be proposed a modified version of the Refutability test (mREF) that uses all the information

available to reach a conclusion. As it will be shown later in Section 6 , this version of the test shows, in general, larger power,

smaller size distortion, and more robustness to De Blander’s condition. 

The mREF test begins using the same two first stages of the Refutability test, Eqs. 10 and (11) , to gather the estimators
ˆ β of Stage 2. Given this ˆ β , the following Stage 3 ′ can implemented to apply the proposed mREF test. 

Stage 3 ′ : Estimate the structural model again, including ˆ δ, and considering ˆ β fixed. Then add all the instruments as

additional variables, and retrieve the log-likelihood L CF _ Zall , as shown in Eq. (16) . 

U in = 

ˆ βi + 

ˆ βp p in + 

ˆ βx x in + 

ˆ βδ
ˆ δin + βz 1 z 1 in + βz 2 z 2 in + ̃

 ˜ ˜ v ∗in ⇒ L CF _ Zall (16)

Note that, as before, stages 1 and 3 ′ can be estimated simultaneously using the ML method, which will be the approach

used in Section 6 for the Monte Carlo analysis. 

The statistic of the mREF test is then calculated as a likelihood ratio test in which the model estimated in Stage 2 is a

restricted version of the model estimated in Stage 3 ′ as shown in Eq. (17) . 

S mREF = −2 

(
L CF _ Zall − L CF 

)
∼ χ2 

df . (17)

Equally than the REF test, the null hypothesis of the mREF test is that both z 1 and z 2 are exogenous instruments and the

alternative hypothesis is that either z 1 , z 2 or both are endogenous. Also, this test will be consistent if De Blander’s condition

does not hold and will have degrees of freedom equal to the degree of overidentification. 

5. Hausman (HAU) test 

An alternative method to test the validity of the instrumental variables in discrete choice model is the Hausman (HAU)

test. In this case, the idea is to compare two estimators that should be consistent under the null, but one of which is more

efficient than the other. The intuition behind the test is that under the null hypothesis both estimators should be similar, and

under the alternative they should differ. For the linear case, Hausman (1978) derives a statistic that is Chi-square distributed

and is built from the OL S and FGL S estimators and variance-covariance matrices. Hausman and McFadden (1984) does an

equivalent thing, comparing a logit model estimated with a full and with a reduced choice-set, to test the validity of the

Independence of Irrelevant Alternatives property. This paper builds upon Hausman and McFadden (1984) approach to test

for the validity of instruments. 

The proposed test consists in estimating two models that are consistent under the null hypothesis that the instruments

are exogenous, but one is more efficient than the other because it uses more instruments. Just as the other tests studied, this

Hausman test relies on overidentification. The first model considered is the control-function correction shown in Eq. (14) ,

which is built using both instruments, from which the estimators ˆ βCF _ 2 are obtained. The second model corresponds to the

control-function estimation shown before in Eq. (18) , estimated using only one instrument, from which the estimators ˆ βCF _ 1

are obtained. 

L CF _ 1 
n = 

e μv + e ( βi + βp p in + βx x in + βδ( p in −α0 −αx x in −αz 1 
z 1 in ) ) ∑ 

j∈ C n e 
μv + e ( β j + βp p jn + βx x jn + βδ( p jn −α0 −αx x jn −αz 1 

z 1 jn ) ) 

∏ 

j∈ C n 

1 √ 

2 πσ 2 
δ

exp 

[ 

−
(

p jn − α0 − αx x jn − αz 1 z 1 jn 
)2 

2 σ 2 
δ

] 

(18)

If, under the null hypothesis, both instruments z 1 and z 2 are exogenous, both estimators ˆ βCF _ 2 and 

ˆ βCF _ 1 will be consis-

tent, and therefore similar, but ˆ βCF _ 2 will be more efficient because it would make use of more information. On the other

hand, if under the alternative hypothesis, z 2 is endogenous, ˆ βCF _ 1 and 

ˆ βCF _ 2 will differ. In this analysis, only the estimators

of the structural model coefficients must be used in the analysis, not those of the auxiliary variables used to correct the

endogeneity. Note also that, differently from ALN, REF and mREF, the HAU test is not agnostic about which instrument is

valid, since one must assume that z 1 is valid to be able to estimate Eq. (18) for a proper comparison. 

Following, Hausman and McFadden (1984 , Eq. 1.21), the statistic of the HAU test is written as shown in Eq. (19) 

S HAU = ( ̂  βCF _ 1 − ˆ βCF _ 2 ) 
′ ( � ˆ βCF _ 1 

− � ˆ βCF _ 2 
) −1 ( ̂  βCF _ 1 − ˆ βC ̄F 2 ) ∼ χ2 

df , (19)

where � ˆ βCF _ 2 
is the variance-covariance matrix of the estimators of the efficient model, the one estimated using all instru-

ments shown in Eq. (14) , and � ˆ βCF _ 1 
is the one obtained using Eq. (18) . This statistic is distributed Chi-square with degrees

of freedom equal to the degree of overidentification, which for the reference model shown in Eqs. (1) –(3) is equal to 1. 

If worth noting that if for the estimation of the test the CF method was applied in two stages, the estimators

� ˆ βCF _ 2 
and 

ˆ � ˆ βCF _ 2 
to be used to calculate the statistic shown in Eq. (19) should not be obtained from the inverse of

the Fisher Information matrix. Instead, to avoid the “estimated regressor” problem, they must either be gathered from

a bootstrap estimator (see e.g. Cameron and Trivedi, 2005 , Section 11) or calculated instead using the Delta method

( Karaca-Mandic and Train, 2003 ). To avoid this problem, the Monte Carlo analysis deployed in Section 6 will be based on

ML estimators of the control-function method, as shown in Eqs. (14) and (18) . 

Besides, since the correction for endogeneity in discrete choice models conveys in general a change of scale ( Guevara and

Ben-Akiva, 2012 ), a proper application of the proposed HAU test would only be possible if the ratios of coefficients are

considered in the analysis. The easiest way to account for this, without compromising the value of the statistic, is to use a
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normalization in which one of the coefficients is fixed, so that the other estimators will effectively be the respective ratio.

To achieve this goal, in the Monte Carlo Analysis reported in Section 6 to assess the properties of the tests under study, the

price coefficient in Eq. (1) will be fixed to a value obtained for it from a preliminary estimation of the corrected model. 

6. Monte Carlo experiment to assess the tests under study 

6.1. Data generation process 

This section reports the Monte Carlo experiment used to assess the overidentification tests for the exogeneity of instru-

ments in discrete choice models under study. The tests are evaluated in terms of their size distortion, their power and their

robustness to De Blander’s condition for which all these tests are blind. The size distortion corresponds to the difference

between the nominal significance of the tests, and the empirical size for the Type I error under the null. The power of

the tests corresponds to the empirical probability of being able to detect cases in which the instruments are endogenous

under various circumstances. These first two measures are the usual tools for the assessment of statistical test (see, e.g.

Cohen; 1988 ). The last measure is specific for the type of overidentification tests considered in this study. It corresponds

to the analysis of potential differences in the degree of the inability of the proposed tests to detect endogeneity under De

Blander’s condition, and on its vicinity. 

For expositional purposes the experiments are built as a special case of the reference model described in Eqs. (1) –(3) .

The qualitative conclusions attained are then validated with a sensitivity analysis regarding sample size, degrees of freedom,

degree of endogeneity of the instruments and the distributional assumption for the error terms. 

The data generation process consists of a binary probit choice model in which the utility of each alternative depends

linearly on its price p, a control x , and an error term ε∗, which is divided into two components, ξ ∗ and e ∗. ξ ∗ represents

an omitted attribute that is correlated with p , and e ∗ is an iid error distributed Normal (0,1). As a first sensitivity analysis,

not reported here for the sake of space, the experiments were fully regenerated considering that e ∗ was instead iid Extreme

Value (0,1), reaching the same qualitative results, with only negligible numerical differences. 

The model coefficients used for the data generation process are shown in Eq. (20) . The sample size is N = 20 0 0 observa-

tions for all the cases analyzed, except when studying size, where N was varied to analyze its impact. 

U in = −1 p in + 1 x in + 2 ξ ∗
in + e ∗in ︸ ︷︷ ︸ 
ε ∗

in 

(20) 

The price p was constructed as a function of ξ ∗, the control x , and two exogenous variables z 1 and z 2 , as shown in

Eq. (21) 

p in = 2 ξ ∗
in + 0 . 5 z 1 in + 0 . 5 z 2 in + 0 . 5 x in + δ∗

in , (21)

where δ∗, ξ ∗, x, z 1 and z 2 are generated iid Normal (0,1). Under this setting, if ξ ∗ is omitted in the specification of the utility

in Eq. (20) , p will be correlated with the error term ε∗ causing endogeneity. In addition, z 1 and z 2 will be valid instruments

because they are correlated with p and independent of ε∗. 

To analyze the size, power and robustness properties of the tests, the data generation process considers also the following

two variables 

b 1 in = λ1 ξ
∗
in + ( 1 − λ1 ) z 1 in + ψ 

∗
1 in 

b 2 in = λ2 ξ
∗
in + ( 1 − λ2 ) z 2 in + ψ 

∗
2 in , (22) 

where λ1 , λ2 ∈ [0, 1] and ψ 

∗
1 in 

and ψ 

∗
2 in 

were generated iid Normal (0,1). 

Variables b 1 and b 2 will be used as candidate instrumental variables, to assess the ability of the tests under study to

detect their eventual endogeneity, which will be defined by the value of a given combination of 〈 λ1 , λ2 〉 . b 1 will be an

exogenous instrument when λ1 = 0 and it will be endogenous for any value λ1 > 0, with a degree that would grow with λ1 

up to λ1 = 1. The same will occur for b 2 with λ2 . 

To analyze the impact of the degrees of freedom, the data generation process was extended to include in some cases a

third instrumental variable z 3 in Eq. (21) , which was generated also iid Normal (0,1) and with αz 3 = 0 . 5 . Likewise, to achieve

this goal, a candidate instrumental variable b 3 was generated as shown in Eq. (22) , considering a respective λ 3 . 

The study was performed by implementing 20 0 0 repetitions for each setting of the data generation process, and reporting

the percentage of times each test under study rejects the null hypothesis with a nominal value of 5% for the Type I error.

Despite the data was generated using normal errors, to avoid the prohibitive computational cost that would have been

involved in the estimation of tens of thousands of probit models, the estimation was performed using logit models, which

have a closed form that preclude the need for integration and, following the results of Lee (1982) and Ruud (1983) , is a

suitable approximation for the problem under study. 

The precision attained in the simulation experiments was calculated as the standard error of the count of the rejections

among 20 sets of 100 realizations of the data generation process considered in each case. The 20 0 0 repetitions allowed

achieving a 1% precision, or more, in the estimation of the rate of rejection for all cases. The significant digits are reported

accordingly. 
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Table 1 

Assessment of size distortion. Empirical % of Type I error at nominal 5%. 

Test ALN REF mREF HAU 

N k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 

150 4 1 9 4 2 3 10 6 

300 9 2 12 5 4 4 11 6 

500 10 4 11 5 3 2 13 4 

10 0 0 15 7 11 4 3 3 19 4 

20 0 0 19 10 11 5 3 3 19 8 

50 0 0 20 11 11 4 3 3 19 7 

λ1 = λ2 = λ3 = 0; 20 0 0 repetitions. % rate of rejections with 1% precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2. Assessment of size distortion 

To analyze the size distortion of the tests, the analysis is performed by a simulation that considers a case in which

λ1 = λ2 = λ3 = 0, so that all b s are valid instrumental variables. A size distortion will exist when, under this setting, the

simulated rate of rejection of the null hypothesis that the instruments are valid differs from the nominal 5% imposed.

Empirical rejections below the nominal 5% are said to be “conservative” and values above are said to be “liberal”. The former

is interpreted as something desirable since it means that the test results in fewer wrong rejections of the null hypothesis

than expected. The latter is an undesirable property of the test for the contrary reason. 

The size is analyzed as a function of sample size N for the Amemiya-Lee-Newey (ALN), the Refutability (REF), the modi-

fied Refutability (mREF) and the Hausman (HAU) tests. Results are also assessed in terms of the degrees of freedom, consid-

ering a case when k z = 2 and k z = 3 instrumental variables. Results are reported in Table 1 . 

The first column of Table 1 contains the results attained for the ALN test, which is the current state of the art for judging

the exogeneity of instrumental variables in nonlinear models. Results show that ALN has a size that grows with the sample

size and only seems to stabilize for very large samples. Besides, for N = 50 0 0 the test shows a large liberal size distortion

when the test is estimated with only one degree of freedom ( k z = 2), and the problem is reduced, but does not vanish, for

k z = 3. 

The REF test shows better results in the second column of Table 1 . First of all, the size seems to stabilize for samples as

small as 500. Besides, the REF test exhibits a large liberal size distortion for k z = 2, but the problem seems to be solved for

k z = 3, when the nominal and empirical size are numerically the same, up to the precision attained. 

The mREF, in the third column of Table 1 , shows even better results. First of all, just as the REF test, the size of the mREF

test seems to stabilize for samples as small as 500. However, the mREF test also shows a small conservative size distortion

(something that is desirable) for almost all sample sizes and degrees of freedom analyzed. It can be hypothesized that the

improvement, compared to the REF test, may be the result of using all the information available with the same sample size.

Finally, the HAU test shows inferior results, in the last column of Table 1 . The size seems to stabilize for N = 10 0 0 and

there is a larger liberal size distortion which, despite it decreases with the degrees of freedom, does not seem to vanish.

Besides, the estimation of the HAU test proved to be more unstable, since for 3% of the simulations for N = 150 and k z = 2,

the estimation failed, possibly because of the need for re-scaling and for estimating the inverse of a matrix. 

6.3. Assessment of power 

To assess the power of the tests, the analysis is performed via a simulation that considers a case in which λ1 = λ3 = 0,

so that b 1 and b 3 are valid instrument, and λ2 varies from 0 to 1 in 0.1 steps. The study is performed reporting the rate of

rejection attained with each test as the degree of endogeneity grows with λ2 . The tests with larger rejection rate for a given

degree of endogeneity are said to have more power and should be preferred. Results are reported in Table 2 . 

The first column of Table 2 summarizes the results obtained for the Amemiya-Lee-Newey (ALN) test. When λ2 = 0 the

null hypothesis that the instruments are exogenous is true, and the rate of rejection corresponds to the size of the test. The

results are concordant with what was reported in Table 1 for N = 20 0 0, considering the 1% precision attained. Regarding the

power of the ALN test, as expected, as λ2 grows from 0.1 to 1, increasing the degree of endogeneity of b 2 , it becomes easier

for the ALN test to detect the problem, already reaching a 100% rejection of the null hypothesis when λ2 = 0.4. Comparing

the case with one and two degrees of freedom, for k z = 2 there is a large liberal size distortion, which is reduced with k z = 3,

and the shape of the power curve is adjusted accordingly. 

The second, third and fourth column of Table 2 summarize the results attained for three versions of the Refutability (REF)

test. REF ( b 1 ), reported in column 2, corresponds to the test described in Eq. (13) calculated using b 1 as the instrument that

is being tested (included in Eq. 12 ), which is always exogenous because λ1 = 0 . REF ( b 2 ), reported in column 3 of Table 2 , is

build using instead b 2 as the instrument being tested, which endogeneity grows with λ2 . The third one, mREF, reported in

column 4 of Table 2 , corresponds to the test described in Eq. (17) calculated using all available instruments simultaneously.

First, it can be remarked that the results for REF ( b 1 ) and REF ( b 2 ) are numerically the same, up to the precision level

attained, when k z = 2. This means that, with one degree of freedom, the REF test is not only agnostic about the exogeneity



250 C.A. Guevara / Transportation Research Part B 114 (2018) 241–253 

Table 2 

Analysis of power. Empirical % of rejection at nominal 5%. 

Method ALN REF ( b 1 ) REF ( b 2 ) mREF HAU ( b 1 ) HAU ( b 2 ) 

λ2 k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 

0 18 10 11 4 11 4 2 3 19 7 20 7 

0.1 46 30 64 24 64 63 52 53 83 71 0 1 

0.2 87 77 98 71 98 99 97 99 94 91 0 0 

0.3 98 98 100 96 100 100 100 100 98 99 0 0 

0.4 100 100 100 100 100 100 100 100 100 100 16 2 

0.5 100 100 100 100 100 100 100 100 100 100 79 40 

0.6 100 100 100 100 100 100 100 100 100 100 98 93 

0.7 100 100 100 100 100 100 100 100 100 100 100 97 

0.8 100 100 100 100 100 100 100 100 99 100 93 70 

0.9 100 100 100 100 100 100 100 100 99 99 61 26 

1 100 100 100 100 100 100 100 100 100 99 32 6 

λ1 = λ3 = 0, N = 20 0 0, 20 0 0 repetitions, % rate of rejections with 1% precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the instruments, but also independent of the sequence in which the instruments are used to build the test. However,

with more degrees of freedom the results for REF (b 1 ) and REF (b 2 ) do differ. When k z = 3 REF (b 2 ) shows larger power

than REF (b 1 ) , possibly because b 2 is the endogenous instrument in this experiment, what facilitates the detection of the

endogeneity problem. Regarding the mREF test, as also shown in Table 2 , it shows larger power as the worst case of the

REF test, which occurs when using the exogenous instrument b 1 . Summarizing, mREF test shows results that are superior

to those of the REF test, not only because it is indifferent to the quality of the instruments that are being tested, but also

because it achieves larger power when it is properly compared. Furthermore, both the REF and the mREF tests studied show

larger power than the state of the art ALN test to assess the exogeneity of instruments. 

The last two columns of Table 2 summarize the results attained for the Hausman (HAU) test proposed in this article. Two

versions of the test are reported. HAU ( b 1 ), reported in column 5, corresponds to the HAU test in which b 1 is used to build

the estimator that is obtained with a single instrument, as shown in Eq. (18) . This is the proper application of the HAU test

in the sense that, in this experiment, b 1 is always an exogenous instrument, something that, however, the researcher will

never now in practice. HAU ( b 2 ) corresponds to the HAU test applied using instead the endogenous instrument b 2 to build

the estimator that is obtained with a single instrument. Results show that only HAU ( b 1 ) has the expected behavior of a

power that grows with λ2 . In turn, HAU ( b 2 ) does not only shows a low power, but also an erratic behavior with a power

that sometimes goes up and sometimes goes down. This occurs because, under this setting, b 2 is endogenous, precluding

the proper application of the HAU test. This is problematic for the application of the HAU test in practice, because the

researcher never knows which instrument might be exogenous, making it then difficult to reach a strong conclusion from the

test. Regarding the comparison of the HAU test with other tests, HAU ( b 2 ) is clearly inferior and, although HAU ( b 1 ) shows

slightly larger power for some particular cases (e.g. λ2 = 0.1 compared with mREF) the difference seems barely circumstantial

and seemingly be the result of an undesirable liberal size distortion. 

6.4. Assessment of the robustness to De Blander’s condition 

The third property studied is the robustness of the tests to the very peculiar condition for which De Blander shows that

overidentification tests are inconsistent. As it was explained in Section 2 , De Blander’s condition under this experimental

setting, for k z = 2, corresponds to a case in which b 1 in and b 2 in appear in Eq. (21) as αb1 b 1 in + αb2 b 2 in and also in ε ∗
in 

, in the

structural equation of the utility in Eq. 20 , in the form (αb 1 
b 1 in + αb 2 

b 2 in ) γ , with γ being any real number. An equivalent

condition can be built for the case of k z = 3. 

To study the robustness of the tests for the exogeneity of instruments to De Blander’s condition, the instrumental vari-

ables under study will again be generated as shown in Eq. (22) , but now considering that λ1 = λ3 = 0.5. Under this set-

ting, for all values of λ2 at least one instrument will always be endogenous, something that should be detected by the

tests under study. However, the tests will be unable achieve their purpose when De Blander’s condition hold, something

that, under this setting, will occur when λ2 = 0.5, since then cov ( b 1 , ξ∗) = cov ( b 2 , ξ∗) = cov ( b 3 , ξ∗) and, at the same time,

cov ( b 1 , p ) = cov ( b 2 , p ) = cov ( b 3 , p ) , fulfilling the required condition. 

Although all three overidentification tests under study are blind to De Blander’s condition, it is relevant to identify poten-

tial differences in size, when this condition holds exactly, and the difference in power when the data generation processes

is on its vicinity. To analyze this, the value of λ2 will be varied from 0 to 1 in 0.1 steps and in Table 3 it will be reported

the percentual rate, among the 20 0 0 repetitions, that each test rejects the null hypothesis with a nominal value of 5% for

the Type I error. 

The first column of Table 3 reports the results attained for the ALN test. It can be noted that when λ2 = 0.5, when De

Blander’s condition holds exactly, ALN test shows empirical power equal to zero. The test was not able to detect that the

instruments were endogenous on almost any of the 20 0 0 simulation repetitions. For values of λ 	 = 0.5 ALN shows power
2 
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Table 3 

Analysis De Blander’s Hypothesis. Empirical % of rejection at nominal 5%. 

Method ALN REF ( b 1 ) REF ( b 2 ) mREF HAU ( b 1 ) HAU ( b 2 ) 

λ2 k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 k z = 2 k z = 3 

0 100 96 100 49 100 100 100 100 79 97 100 26 

0.1 99 77 100 47 100 100 100 100 82 96 100 23 

0.2 83 37 100 42 100 98 100 99 86 94 98 19 

0.3 38 6 88 27 88 81 88 87 87 82 82 13 

0.4 5 0 46 15 46 34 46 48 71 55 43 10 

0.5 0 0 17 9 17 8 17 21 34 16 34 16 

0.6 4 0 39 16 39 33 39 46 5 2 53 26 

0.7 22 4 76 36 76 78 75 83 0 0 67 37 

0.8 55 24 95 63 95 97 94 98 0 0 79 48 

0.9 82 62 99 84 99 100 99 100 0 0 86 58 

1 95 88 100 95 100 100 100 100 0 0 91 63 

λ1 = λ3 = 0.5, N = 20 0 0, 20 0 0 repetitions, % rate of rejections with 1% precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that grows slightly asymmetrically as getting further away from De Blander’s condition. Besides, results in Table 3 show that

the rate of growth of the power of the ALN is smaller with more degrees of freedom. 

Second, third and fourth column of Table 3 report the results attained for three versions of the REF test. For one degree

of freedom, REF ( b 1 ), REF ( b 2 ) and mREF show numerically the same results, up to the reported 1% significance, which is

coherent with what was reported in Table 2 with large amounts of endogeneity. The power under De Blander’s condition for

λ2 = 0.5 is far from zero (17%) and it grows symmetrically up to 100% for λ2 	 = 0.5. The situation changes with two degrees

of freedom, k z = 3. The size of both REF ( b 1 ) and REF ( b 2 ) goes down at λ2 = 0.5, and the behavior of REF ( b 1 ) outside De

Blander’s condition becomes clearly worse, never reaching a 100% power, not even for λ2 = 0. The reason behind this finding

may be that, under this experimental setting, the instrument that is being tested in that case ( b 1 ) always remains close to

De Blander’s condition, independent of the value of λ2 . On the contrary, the robustness of mREF test improves with more

degrees of freedom, showing a larger power for all values of λ2 . 

Finally, consider the HAU test. Although the size for HAU ( b 1 ) and HAU ( b 2 ) for λ2 = 0 and k z = 2 is larger than that of

the mREF test, the behavior of the HAU test seems rather erratic and sometimes inferior for other values of λ2 , precluding

it from being the recommendable tool for practice. Noticeably, HAU ( b 1 ) shows zero power for large values of λ2 . This may

be attributable to the fact that, contradicting the assumption used to build the statistic, the model with more instruments

(e.g b 1 and b 2 ) results in larger variance than the model estimated only with b 1 , because the endogeneity of b 2 becomes

too large. 

Summarizing, under this specific experimental setting, the state of the art Amemiya-Lee-Newey (ALN) test is clearly

surpassed in terms of robustness to De Blander’s condition by Refutability (REF) test and particularly by its modified version

(mREF). Besides, the Hausman (HAU) test showed a rather erratic behavior, discouraging its use. Given these results on

robustness, and previous ones on power and size shown in Sections 6.2 and 6.3 , a general recommendation for practice

could be to use the mREF test. 

7. Conclusion 

Endogeneity is a pervasive problem in all econometric models, including discrete choice models, and has been habitually

neglected in transportation science and practice. Methods to correct for endogeneity rely on the availability of instrumental

variables that must comply with the competing properties of being correlated with the endogenous variable but, at the

same time, exogenous to the problem. Verifying the second condition is especially difficult because the error term of the

model is not observed. This article extends the tool-box of statistical test to achieve this goal in discrete choice models in

general. Besides, the proposed tests are compared to the state of art in terms of size, power and their robustness to the

condition for which all overidentification tests are blind. 

The state of the art for testing the exogeneity of instruments in discrete choice models is the Amemiya-Lee-Newey (ALN)

test, which relies in the estimation of an auxiliary GMM model build from reduced-form estimates. The two alternative

tests proposed in this paper are constructed as adaptations of the Refutability (REF) test and the Hausman (HAU) test, into

the discrete choice framework. The REF test consists in including instruments as additional variables in an auxiliary model

that was corrected for endogeneity using the control-function method, considering all instruments available. The HAU test

is built from the comparison of the estimates attained using different subsets of instruments. 

Variations of the three tests were assessed using a binary choice Monte Carlo experiment. Results suggests that the

modified Refutability (mREF) test, which includes all instruments simultaneously, should be recommended, as it has larger

power, smaller size distortion, and more robustness, compared other test analyzed. The HAU test has the limitation of not

being agnostic about which instrument might be exogenous, and the REF has the limitation of potentially needing to ex-

plore all possible combinations of instruments to conclude. These results were validated by means of a sensitivity analysis

regarding sample size, degrees of freedom, degree of endogeneity of the instruments and the distributional assumption of
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the error term. Despite there are no obvious alternative hypotheses for which these findings may be qualitatively different,

it should be reminded however that these conclusions are circumscribed to the case studies analyzed, and any extension to

other experimental settings should be carefully assessed. 

Finally, regarding future lines of research on this topic, it would be interesting to explore the power and size of the tests

for the exogeneity of instruments under other circumstances. Some alternatives for this could be to use diverse choice model

settings, to consider different nominal values for the Type I error, to use probit for estimation, more degrees of freedom,

and to use real data gathered from different sources. 
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