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Abstract
Nested covariance models, defined as linear combinations of basic covariance functions, are very popular in many branches

of applied statistics, and in particular in geostatistics. A notorious limit of nested models is that the constants in the linear

combination are bound to be nonnegative in order to preserve positive definiteness (admissibility). This paper studies

nested models on d-dimensional spheres and spheres cross time. We show the exact interval of admissibility for the

constants involved in the linear combinations. In particular, we show that at least one constant can be negative. One of the

implications is that one can obtain a nested model attaining negative correlations. We provide characterization theorems for

arbitrary linear combinations as well as for nonconvex combinations involving two covariance functions. We illustrate our

findings through several examples involving nonconvex combinations of well-known parametric families of covariance

functions.
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1 Introduction

Nested covariance models are linear combinations

(weighted sums) of basic covariance functions. They have

an old history that can be traced back to geostatistics, and

the reader is referred to Serra (1968), Journel and Hui-

jbregts (1978), Wackernagel (2003), Porcu et al. (2006),

Gregori et al. (2008), Chilès and Delfiner (2012), Porcu

et al. (2013), Daley et al. (2015), Kleiber and Porcu (2015)

and De Iaco and Posa (2018) for earlier as well as more

recent examples.

The notorious limit in the construction of nested models

is that the weights are bound to be nonnegative, in order to

preserve positive definiteness. Such a drawback has been

noted, for instance, by Gregori et al. (2008), who found

conditions such that at least one weight in the linear

combination of isotropic covariance functions in d-di-

mensional Euclidean spaces can be negative.

Admissible nested models with negative weights have

important consequences to several branches of applied

sciences. On the one hand, negative weights can allow for

covariances oscillating between positive and negative

values (see Yakhot et al. 1989). On the other hand, nested

models with negative weights have recently become pop-

ular thanks to the notable approach by Bonat and Jørgensen

(2016), who consider nontrivial extension for the Gener-

alized Linear Model (GLM) to the case of multiple

covariates. The method is called multivariate covariance

generalized linear model (MCGLM). In particular, the

authors suggest to replace the identity matrix in the clas-

sical GLM setting with a matrix X that is implicitly spec-

ified through the relation
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hðXÞ ¼
XN

k¼0

skCk;

where sk are real constants and Ck are known matrices

reflecting the covariance structure. Since the set of positive

definite functions is convex and closed under linear com-

binations involving nonnegative constants, there is an

apparent issue in specifying this model, in particular in

knowing explicit restrictions for the parametric space of the

weights sk. The idea of modeling a function of the

covariance matrix by a linear structure goes back to

Pourahmadi (1999, 2011) and Pan and Mackenzie (2003)

among others (see Bonat and Jørgensen 2016, for a thor-

ough review). In particular, Bonat and Jørgensen (2016)

emphasize the need to model the covariance structure

explicitly, rather than treating it as a nuisance parameter.

Taking verbatim from Bonat and Jørgensen (2016): many

researchers claim that a suitable covariance link function

must provide an unrestricted and interpretable parameter-

ization. Although laudable, such a goal is probably

overoptimistic and does not seem to have been achieved

yet, at least not for the general case. The authors propose a

numerical approach to this problem in order to get realistic

values for s0; . . .; sN . This paper offers an analytic approach
that allows determining the exact range for the parameters

involved in an arbitrary linear combination.

A third consequence of nested models with only non-

negative weights is that it has important implications in

terms of statistical inference and testing, since, for

instance, the value sk ¼ 0, for k ¼ 0; . . .;N, lies on the

boundary of the parameter space. Some criticism about this

fact is expressed in Bevilacqua et al. (2012).

The problem of linear combinations of covariance

functions in Euclidean spaces has been considered in

Gregori et al. (2008), who propose the special case of the

product sum model (and similar extensions). Motivated by

the increasing need of statistical techniques for global data,

typically defined over the sphere representing planet Earth,

this paper considers linear combinations of covariance

functions defined over spheres or over spheres cross time.

The fact that such covariances are defined over spheres

implies that the natural metric to be used is the geodesic

distance, and this fact has a nontrivial implication in terms

of mathematical framework needed to implement valid

covariance functions.

There has been a fervent activity in the last years around

positive definite functions on spheres, as well as on positive

definite functions on spheres cross time. The seminal paper

by Gneiting (2013) provides a thorough overview of

spherically isotropic positive definite kernels on sphere,

with applications to probability theory, spatial statistics,

numerical analysis and approximation theory, among oth-

ers. Berg and Porcu (2017) provided the extension of the

classical characterization theorem for positive definite

functions on spheres to the case of the spheres cross time.

Porcu et al. (2016) focused on the geostatistical implica-

tions of using the geodesic distance for global data and the

discrepancies in estimation and prediction when using the

incorrect metric. The nonstationary case has been consid-

ered in Estrade et al. (2017). Regularity properties of

Gaussian fields on spheres and spheres cross time have

been studied by Lang and Schwab (2015) and Clarke et al.

(2018), respectively.

This paper determines the exact range for the weights

involving arbitrary linear combinations of space or space–

time covariance functions. The plan of the paper is the

following: Sect. 2 contains the background material needed

for understanding the problem. Section 3 provides results

involving linear combinations of spatial covariance func-

tions. Section 4 is devoted to the space–time case. We then

offer, in Sect. 5, a list of examples that are useful for

practitioners. The paper ends with a short discussion.

2 Mathematical background

Let d be a positive integer. We define the d-dimensional

unit sphere by Sd ¼ fx 2 Rdþ1; kxk ¼ 1g, where d 2 N,

and k � k is the Euclidean distance. The geodesic distance

between any pair of points x; y on Sd is defined as

hðx; yÞ ¼ arccosðhx; yiÞ, where h�; �i is the standard inner

product on Rdþ1. Throughout the text, we use the abuse of

notation h for hðx; yÞ whenever no confusion can arise. Let

L2ðSd;xdÞ be the space of squared-integrable real-valued

functions on the sphere Sd with respect to the uniquely

determined Haar measure on the sphere, denoted xd. The

surface measure of the sphere has a total mass given by

kxdk ¼ 2pðdþ1Þ=2

Cððd þ 1Þ=2Þ :

Let X be a nonempty set. A function K : X � X ! R is

called positive definite on X if for any system of constants

fckgNk¼1 � R and any finite dimensional collection of

points fxkgNk¼1 � X, one has

XN

k¼1

XN

h¼1

ckKðxk; xhÞch � 0:

If the inequality above is strict when at least one ck is

nonzero, then K is called strictly positive definite (Mene-

gatto 1995).
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2.1 The class PðSdÞ

We define PðSdÞ as the class of continuous functions w :
½0; p� ! R with wð0Þ ¼ 1 such thatKðx; yÞ :¼ wðhðx; yÞÞ is
positive definite on Sd. We also define PðS1Þ :¼
\d� 1PðSdÞ, with the inclusion relation PðS1Þ � � � � �
PðSdÞ � PðSd�1Þ � � � � � PðS1Þ:

Let us define the Gegenbauer polynomials C
ðkÞ
n through

the intrinsic relation (see Dai and Xu 2013; Atkinson and

Han 2012)

ð1� 2xr þ r2Þ�k ¼
X1

n¼0

CðkÞ
n ðxÞrn; jrj\1; x 2 ½�1; 1�;

ð2:1Þ

where k[ 0. For k ¼ 0, (2.1) has to be replaced by

1� xr

1� 2xr þ r2
¼
X1

n¼0

Cð0Þ
n ðxÞrn; jrj\1; x 2 ½�1; 1�;

where it is known that C
ð0Þ
n ðxÞ ¼ cosðn arccos xÞ. For

k[ 0, it is true that

Z 1

�1

ð1� x2Þk�1=2
CðkÞ
n ðxÞCðkÞ

m ðxÞ dx ¼ pCðnþ 2kÞ21�2k

C2ðkÞðnþ kÞn!
dm;n;

ð2:2Þ

with dm;n denoting the Kronecker delta. When k ¼ 0,

Eq. (2.2) simplifies to

Z 1

�1

ð1� x2Þ�1=2
Cð0Þ
n ðxÞCð0Þ

m ðxÞ dx ¼
ðp=2Þdm;n if n[ 0

pdm;n if n ¼ 0;

�

which is equivalent to the classical orthogonality relations

of the family cosðnxÞ; n ¼ 0; 1; . . . (Berg and Porcu 2017).

It is important to note that C
ðkÞ
n ð1Þ ¼ ð2kÞn=n!, with ðaÞn

denoting the Pochammer symbol. Another important fact is

that jCðkÞ
n ðxÞj �C

ðkÞ
n ð1Þ, for x 2 ½�1; 1�.

We now follow Berg and Porcu (2017) to illustrate the

relation between Gegenbauer polynomials and spherical

harmonics. A spherical harmonic of degree n for Sd is the

restriction to Sd of a real-valued harmonic homogeneous

polynomial in Rdþ1 of degree n. Together with the zero

function, the spherical harmonics of degree n form a finite

dimensional vector space denoted HnðdÞ. It is a subspace

of the space CðSdÞ of continuous functions on Sd. One has

NnðdÞ :¼ dimHnðdÞ ¼
ðdÞn�1

n!
ð2nþ d � 1Þ; n� 1; N0ðdÞ ¼ 1;

(see Atkinson and Han 2012).

Due to the fact that the spaces HnðdÞ are mutually

orthogonal subspaces of the Hilbert space L2ðSd;xdÞ,

which is in turn generated by them, we have that any F 2
L2ðSd;xdÞ has an orthogonal expansion of the type

F ¼
X1

n¼0

Sn; Sn 2 HnðdÞ; kFk22 ¼
X1

n¼0

kSnk22; ð2:3Þ

where the first series converges in L2ðSd;xdÞ, and the

second series is Parseval’s equation. The orthogonal pro-

jection Sn of F onto HnðdÞ is given by

SnðnÞ ¼
NnðdÞ
kxdk

Z

Sd

Gnðd; n � gÞFðgÞdxdðgÞ:

Here we are consistent with Berg and Porcu (2017) when

using Gnðd; xÞ for the normalized Gegenbauer polynomial,

being identically equal to 1 for x ¼ 1 when k ¼ ðd � 1Þ=2,
i.e., by

Gnðd; xÞ ¼ Cððd�1Þ=2Þ
n ðxÞ=Cððd�1Þ=2Þ

n ð1Þ ¼ n!

ðd � 1Þn
Cððd�1Þ=2Þ
n ðxÞ;

x 2 ½�1; 1�:

All these ingredients sum up to Schoenberg’s theorem

(Schoenberg 1942).

Theorem 2.1 (Schoenberg 1942) A continuous function

w : ½0; p� ! R belongs to the class PðSdÞ, d ¼ 1; 2; . . ., if

and only if

wðhÞ ¼
X1

n¼0

bn;dGnðd; cos hÞ; bn;d � 0; h 2 ½0; p�; ð2:4Þ

for a uniquely determined probability mass sequence

ðbn;dÞ1n¼0 given by

bn;d ¼
kxd�1kNnðdÞ

kxdk

Z p

0

wðxÞGnðd; cos xÞðsin xÞd�1
dx:

Some comments are in order. By analogy with what was

done in Daley and Porcu (2014), the coefficients bn;d are

called d-Schoenberg coefficients and the sequence ðbn;dÞ1n¼0

a d-Schoenberg sequence in Gneiting (2013). This stresses

the fact that such a sequence is also related to the dimen-

sion of the sphere Sd , where positive definiteness is

attained.

When d ¼ 1, the representation in Eq. (2.4) reduces to

wðhÞ ¼
X1

n¼0

bn;1 cosðnhÞ; bn;1 � 0; h 2 ½0; p�;

while for d ¼ 2 the Gegenbauer polynomials simplify to

Legendre polynomials.

The class PðS1Þ consists of those continuous mappings

w : ½0; p� ! R having expansion (see Schoenberg 1942)

wðhÞ ¼
X1

n¼0

bnðcos hÞn; bn � 0; h 2 ½0; p�; ð2:5Þ
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where
P1

n¼1 bn ¼ 1. By defining Gnð1; xÞ :¼ xn, we can

see how the representation (2.5) is of the same form as

(2.4). A relation between the coefficients of Eqs. (2.4) and

(2.5) can be found in a more general context in Berg et al.

(2018).

A wealth of examples and interesting results are pro-

vided in Gneiting (2013). Observe that Gneiting makes

explicit distinction between positive definite and strictly

positive definite functions on spheres, the latter being

attained when, in Eq. (2.4), the d-Schoenberg coefficients

are strictly positive for infinitely many even and odd

n when d� 2 (Chen et al. 2003) and when d ¼ 1, given

integers 0� j\n, there exist k� 0 such that the d-

Schoenberg coefficient bnkþj;d are strictly positive (Mene-

gatto et al. 2006). Such a distinction is beyond the scope of

this paper.

There is an explicit connection between Gaussian ran-

dom fields and the class PðSdÞ. Let Z ¼ fZðxÞ j x 2 Sdg
be a real-valued zero-mean Gaussian random field. By

Theorem 5.13 of Marinucci and Peccati (2011), Z admits a

stochastic expansion being the analogue of (2.3). Such a

representation is also called stochastic Peter-Weyl theorem

on the sphere.

By well known facts, any positive definite function is

the covariance function of a Gaussian random field. For the

remainder of the paper, we use equivalently both termi-

nologies, whenever no confusion can arise.

2.2 The class PðSd,RÞ

We start by considering stationary covariance functions on

the real line. We call PðRÞ the class of continuous func-

tions u : R ! R with uð0Þ ¼ 1 such that Kðx; yÞ :¼ uðx�
yÞ is positive definite on R. By Bochner’s theorem, such

functions are represented as the Fourier transforms of

probability measures l:

uðuÞ ¼
Z þ1

�1
eiuslðdsÞ; u 2 R:

The hypothesis that u 2 L1ðRÞ ensures that there exists a

nonnegative mapping bu 2 L1ðRÞ, such that

uðuÞ ¼ 1

2p

Z þ1

�1
eiusbuðsÞds; u 2 R: ð2:6Þ

We finally call PðSd;RÞ the class of continuous mappings

w : ½0; p� � R with wð0; 0Þ ¼ 1 such that the function K :

Sd � Sd � R ! R defined through Kðx; y; uÞ :¼
wðhðx; yÞ; uÞ is positive definite on Sd � R.

We also define PðS1;RÞ :¼ \d� 1PðSd;RÞ, with the

inclusion relation PðS1;RÞ � � � � � PðSd;RÞ � PðSd�1;

RÞ � � � � � PðS1;RÞ:

A characterization of this class has become recently

available (see Berg and Porcu 2017): a continuous mapping

/ : ½0; p� � R ! R belongs to the class PðSd;RÞ if and

only if

/ðh; uÞ ¼
X1

n¼0

kn;dðuÞGnðd; cos hÞ; ðh; uÞ 2 ½0; p� � R;

ð2:7Þ

with fkn;dð�Þg1n¼0 � PðRÞ such that
P1

n¼1 kn;dð0Þ ¼ 1.

Also, we have

kn;dðuÞ ¼
NnðdÞkxd�1k

kxdk

Z p

0

/ðx; uÞGnðd; cos xÞ sinðxÞd�1
dx:

Berg and Porcu (2017) use the term Schoenberg function

sequence for ðkn;dð�ÞÞ1n¼0.

The class PðSd;RÞ has many applications to

applied problems (see, for example Porcu et al.

2016, 2017).

3 Nested models within the class PðSdÞ

We start by considering a simple strategy that allows

obtaining covariances on spheres Sd as weighted sums of

basic covariances with potentially negative weights.

Specifically, let N be a positive integer and wk, for

k ¼ 1; 2; . . .;N, a collection of elements of the class PðSdÞ.
Thus, for every k there exists an associated d-Schoenberg

sequence ðbðkÞn;dÞ
1
n¼0, such that

wkðhÞ ¼
X1

n¼0

b
ðkÞ
n;dGnðd; cos hÞ; h 2 ½0; p�; b

ðkÞ
n;d � 0;

X1

n¼0

b
ðkÞ
n;d ¼ 1: ð3:1Þ

For a given system fck : k ¼ 1; 2; . . .;Ng of real constants,

we now consider the function C : ½0; p� ! R defined

through

CðhÞ :¼ 1

j

XN

k¼1

ckwkðhÞ; h 2 ½0; p�; ð3:2Þ

where j :¼
PN

k¼1 ck 6¼ 0 is a normalizing constant so that

Cð0Þ ¼ 1. We now seek the conditions on the constants ck

such that C is still an element of PðSdÞ. The answer is

trivial if the constants ck are restricted to be nonnegative.

But the fact that at least one of them might be extended to a

negative interval is what gives a motivation for a deep

study of the problem.

A direct inspection shows that C has Schoenberg coef-

ficients bn;d given by
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bn;d ¼
1

j

XN

k¼1

ckb
ðkÞ
n;d;

and
P1

n¼0 bn;d ¼ 1. Thus, the application of Theorem 2.1

shows that C is an element of the class PðSdÞ if and only if

the sequence ðbn;dÞ1n¼0 is nonnegative and summable.

Throughout the paper we assume j[ 0. We show

below that at least one of the coefficients ck can be negative

while preserving the fact that C 2 PðSdÞ. A technical

hypothesis is needed and we explicitly state it here for the

convenience of the reader:

Hypothesis H1 Let b
ðkÞ
n;d be the coefficients defined

through Eq. (3.1). We suppose throughout that b
ðNÞ
n;d [ 0 for

all n 2 Zþ.
Hypothesis H1 is indeed necessary to develop the rest of

our findings. In fact, we can now write

bn;d ¼
1

j
b
ðNÞ
n;d

XN�1

k¼1

ck
b
ðkÞ
n;d

b
ðNÞ
n;d

þ cN

" #
; n 2 Zþ:

By assuming j[ 0 (for j\0, see Remark 3.4 hereafter)

we obtain that bn;d � 0, n 2 Zþ, if, and only if,

XN�1

k¼1

ck
b
ðkÞ
n;d

b
ðNÞ
n;d

þ cN � 0; n 2 Zþ: ð3:3Þ

Next, inspired by Gregori et al. (2008), we define

Mk :¼ sup
b
ðkÞ
n;d

b
ðNÞ
n;d

: n 2 Zþ

( )
; mk :¼ inf

b
ðkÞ
n;d

b
ðNÞ
n;d

: n 2 Zþ

( )
;

k ¼ 1; 2; . . .;N � 1: ð3:4Þ

Note that mk � 0 and Mk [ 0, for k ¼ 1; 2; . . .;N � 1. The

following lemma will simplify the exposition of the results

following subsequently.

Lemma 3.1 Let wk 2 PðSdÞ, k ¼ 1; . . .;N, with associ-

ated d-Schoenberg coefficients b
ðkÞ
n;d and assume the

Hypothesis H1. Let C : ½0; p� ! R be the function defined

through Eq. (3.2) such that j[ 0. Then, the following

assertions hold true.

(i) If C 2 PðSdÞ, then

cN � �
XN�1

k¼1

ck Mk1fck � 0g þ mk1fck\0g
� �

: ð3:5Þ

(ii) If

cN � �
XN�1

k¼1

ck Mk1fck\0g þ mk1fck � 0g
� �

; ð3:6Þ

then C 2 PðSdÞ.

Proof We give a constructive proof. Suppose C 2 PðSdÞ,
then bn;d � 0 for all n. From Eq. (3.3) we get

0�
XN�1

k¼1

ck
b
ðkÞ
n;d

b
ðNÞ
n;d

þ cN �
XN�1

ck � 0
k¼1

ckMk þ
XN�1

ck\0
k¼1

ckmk þ cN :

This is exactly (3.5).

Now we assume that (3.6) is true. We need to prove that

bn;d � 0 for all n. By Eq. (3.6),

XN�1

k¼1

ck
b
ðkÞ
n;d

b
ðNÞ
n;d

þ cN �
XN�1

ck � 0
k¼1

ck
b
ðkÞ
n;d

b
ðNÞ
n;d

þ
XN�1

ck\0
k¼1

ck
b
ðkÞ
n;d

b
ðNÞ
n;d

�
XN�1

ck\0
k¼1

ckMk �
XN�1

ck � 0
k¼1

ckmk

¼
XN�1

ck � 0
k¼1

ck
b
ðkÞ
n;d

b
ðNÞ
n;d

� mk

 !

þ
XN�1

ck\0
k¼1

ck
b
ðkÞ
n;d

b
ðNÞ
n;d

�Mk

 !
� 0; n 2 Zþ:

Therefore, by (3.3), bn;d � 0 for all n. h

The special case N ¼ 2 allows for a complete charac-

terization of the problem.

Proposition 3.2 Let wk 2 PðSdÞ with associated

d-Schoenberg coefficients b
ðkÞ
n;d, k ¼ 1; 2. Suppose that

Hypothesis H1 holds. Let c1; c2 2 R such that c1 þ c2 [ 0.

Then,

CðhÞ ¼ 1

c1 þ c2
c1w1ðhÞ þ c2w2ðhÞ½ �; h 2 ½0; p�;

belongs to PðSdÞ if, and only if,

c2 � � c1 M11fc1\0g þ m11fc1 � 0g
� �

: ð3:7Þ

Proof Suppose that w 2 PðSdÞ. By Eq. (3.3),

c2 � � c1
b
ð1Þ
n;d

b
ð2Þ
n;d

; n 2 Zþ:

We now note that all numbers b
ð1Þ
n;d=b

ð2Þ
n;d, n 2 Zþ are non-

negative, which in turn implies that M1 and m1 are non-

negative. Previous inequality implies that

c2 � � c1M1; c1\0

c2 � � c1m1; c1 � 0

�

Stochastic Environmental Research and Risk Assessment (2018) 32:3053–3066 3057

123



This is exactly Eq. (3.7). The converse is shown through

straight application of Lemma 3.1. h

An important case follows.

Corollary 3.3 Let wk 2 PðSdÞ with associated d-Schoen-

berg coefficients b
ðkÞ
n;d, k ¼ 1; 2. Suppose that Hypothesis H1

holds. Let q 2 R. Then,

C ¼ qw1 þ ð1� qÞw2 ð3:8Þ

belongs to PðSdÞ if, and only if,

1

1�maxf1;M1g
� q� 1

1�minf1;m1g
; ð3:9Þ

where the left side is �1 if the maximum is 1 and 0 if the

maximum is þ1. The right side is þ1 if the minimum is 1.

Proof We consider Proposition 3.2 with c1 ¼ q and

c2 ¼ 1� q. Then

qð1�M1Þ� 1; q\0

qð1� m1Þ� 1; q� 0:

�

This is equivalent to (3.9). h

Remark 3.4 If j\0, we can proceed in the same way as

before and then Eqs. (3.5)–(3.7) become, respectively,

cN � �
XN�1

k¼1

ck Mk1fck � 0g þ mk1fck [ 0g
� �

;

cN � �
XN�1

k¼1

ck Mk1fck [ 0g þ mk1fck � 0g
� �

;

c2 � � c1 M11fc1 [ 0g þ m11fc1 � 0g
� �

:

Note that under the hypotheses of Corollary 3.3,

c1 þ c2 ¼ 1[ 0, for all q 2 R.

4 Product–sum models with potentially
negative weights within the class PðSd;RÞ

4.1 A product–sum model

Product–sum models have been first proposed by De Iaco

and coauthors (see De Iaco et al. 2001).We start this section

by recalling that the class PðSd;RÞ is a convex cone, being

closed under the topology of pointwise convergence. This

implies that, for given w 2 PðSdÞ and u 2 PðRÞ, the func-
tion ðh; uÞ7!/ðh; uÞ ¼ wðhÞuðuÞ, ðh; uÞ 2 ½0; p� � R,

belongs to the class PðSd;RÞ. In virtue of Theorem 3.3 in

Berg and Porcu (2017), this in turn implies that the model

/ðh; uÞ ¼
X1

n¼1

kn;dðuÞGnðd; cos hÞ;

X1

n¼1

kn;dð0Þ\1; kn;d 2 PðRÞ;

has d-Schoenberg functions kn;d given by

kn;dðuÞ ¼ bn;duðuÞ; u 2 R;

with bn;d being the d-Schoenberg coefficients of w as in

(2.4).

This remark opens for a simple modeling strategy that

we will illustrate now. Consider a finite dimensional col-

lection of functions uk 2 PðRÞ, k ¼ 1; 2; . . .;N such that,

for all k, uk 2 L1ðRÞ. This implies that each uk can be

uniquely written as in (2.6), with buk being the Fourier pair

of uk. In particular, we have bukðwÞ� 0, for w 2 R and

buk 2 L1ðRÞ because of Parseval’s identity.

Now, let ck 2 R and wk 2 PðSdÞ, k ¼ 1; 2. . .;N. Con-

sider the function C : ½0; p� � R ! R defined by

Cðh; uÞ :¼ 1

j

XN

k¼1

ckwkðhÞukðuÞ; ðh; uÞ 2 ½0; p� � R:

ð4:1Þ

Apparently, C has d-Schoenberg functions given by

kn;dðuÞ ¼
1

j

XN

k¼1

ckb
ðkÞ
n;dukðuÞ; n 2 Zþ; u 2 R;

and of course we have that
P1

n¼1 kn;dð0Þ\1 and

kn;d 2 L1ðRÞ. Now, note that

kn;dðuÞ ¼
1

j

XN

k¼1

ckb
ðkÞ
n;dukðuÞ ¼

1

j

XN

k¼1

ckb
ðkÞ
n;d

Z 1

�1
eiwubukðwÞdw

¼
Z 1

�1
eiwu

1

j

XN

k¼1

ckb
ðkÞ
n;d bukðwÞ

 !
dw; n 2 Zþ; u 2 R;

that is,

bkn;dðwÞ ¼
1

j

XN

k¼1

ckb
ðkÞ
n;d bukðwÞ; w 2 R:

Since b
ðkÞ
n;d bukðwÞ� 0, for all n, k, w, we have to find con-

ditions on the scalars ck so that

bkn;dðwÞ� 0; w 2 R;

in order to guarantee that C belongs to the class PðSd;RÞ.
A technical hypothesis is again needed to ensure that we

can go further with our findings.

Hypothesis H2 Let buk be the Fourier pair of uk as in

Eq. (2.6). We suppose throughout that buNðwÞ[ 0, for all

w 2 R.
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If Hypotheses H1 and H2 hold, then we can write

bkn;dðwÞ ¼
1

j
b
ðNÞ
n;d buNðwÞ

XN�1

k¼1

ck
b
ðkÞ
n;d bukðwÞ

b
ðNÞ
n;d buNðwÞ

þ cN

" #
; n 2 Zþ; w 2 R:

Since j[ 0 (see Remark 4.4 hereafter for j\0), then

bkn;dðwÞ� 0, n 2 Zþ, w 2 R, if, and only if,

XN�1

k¼1

ck
b
ðkÞ
n;d bukðwÞ

b
ðNÞ
n;d buNðwÞ

þ cN � 0; n 2 Zþ; w 2 R: ð4:2Þ

Now, defining

eMk :¼ sup
bukðwÞ
buNðwÞ

: w 2 R

� �
; emk :¼ inf

bukðwÞ
buNðwÞ

: w 2 R

� �
;

k ¼ 1; 2; . . .;N � 1;

we obtain the following.

Lemma 4.1 Let C as defined at (4.1) with j[ 0 and

assume the Hypotheses H1 and H2. Then the following

assertions hold true.

(i) If C 2 PðSd;RÞ, then

cN � �
XN�1

k¼1

ck Mk
fMk1fck � 0g þ mkfmk1fck\0g

h i
:

ð4:3Þ

(ii) If

cN � �
XN�1

k¼1

ck Mk
fMk1fck\0g þ mkfmk1fck � 0g

h i
;

ð4:4Þ

then C 2 PðSd;RÞ.

Proof If C 2 PðSd;RÞ, then bkn;dðwÞ� 0 for all n and

w. By (4.2),

0�
XN�1

k¼1

ck
b
ðkÞ
n;d

b
ðNÞ
n;d

bukðwÞ
buNðwÞ

þ cN �
XN�1

ck � 0
k¼1

ckMk
fMk

þ
XN�1

ck\0
k¼1

ckmkfmk þ cN :

This is exactly (4.3).

If (4.4) holds, we need prove that bkn;dðwÞ� 0 for all

n and w 2 R. By (4.4),

XN�1

k¼1

ck
b
ðkÞ
n;d bukðwÞ

b
ðNÞ
n;d buNðwÞ

þ cN �
XN�1

ck � 0
k¼1

ck
b
ðkÞ
n;d bukðwÞ

b
ðNÞ
n;d buNðwÞ

þ
XN�1

ck\0
k¼1

ck
b
ðkÞ
n;d bukðwÞ

b
ðNÞ
n;d buNðwÞ

�
XN�1

ck\0
k¼1

ckMk
fMk �

XN�1

ck � 0
k¼1

ckmkfmk

¼
XN�1

ck � 0
k¼1

ck
b
ðkÞ
n;d bukðwÞ

b
ðNÞ
n;d buNðwÞ

� mkfmk

 !
þ
XN�1

ck\0
k¼1

ck
b
ðkÞ
n;d bukðwÞ

b
ðNÞ
n;d buNðwÞ

�Mk
fMk

 !
� 0;

for all n 2 Zþ and w 2 R. By Eq. (4.2), bkn;dðwÞ� 0,

n 2 Zþ, w 2 R. h

For the special case N ¼ 2 we attain the following

characterization.

Proposition 4.2 Let wk 2 PðSdÞ with associated

d-Schoenberg coefficients b
ðkÞ
n;d and uk 2 PðRÞ, k ¼ 1; 2.

Let c1; c2 2 R such that c1 þ c2 [ 0. Suppose that

Hypothesis H1 and H2 hold. Then,

C ¼ 1

c1 þ c2
c1w1u1 þ c2w2u2½ �

belongs to PðSd;RÞ if and only if

c2 � � c1 M1
eM11fc1\0g þ m1 em11fc1 � 0g

� �
: ð4:5Þ

Proof Suppose that C 2 PðSd;RÞ. By Eq. (4.2),

c2 � � c1
b
ð1Þ
n;d bu1ðwÞ

b
ð2Þ
n;d bu2ðwÞ

; n 2 Zþ; w 2 R:

Since all numbers b
ð1Þ
n;d=b

ð2Þ
n;d, n 2 Zþ, bu1ðwÞ=bu2ðwÞ, w 2 R,

and M1; eM1;m1; em1 are nonnegative, in particular, the

previous inequality implies

c2 � � c1M1
eM1; c1\0

c2 � � c1m1 em1; c1 � 0:

(

This is Eq. (4.5). The converse is obtained from

Lemma 4.1. h

An immediate consequence is:

Corollary 4.3 Let wk 2 PðSdÞ with associated d-Schoen-

berg coefficients b
ðkÞ
n;d and uk 2 PðRÞ, k ¼ 1; 2. Suppose

that Hypothesis H1 and H2 hold. Let q 2 R. Then,

C ¼ qw1u1 þ ð1� qÞw2u2 ð4:6Þ

belongs to PðSd;RÞ if and only if

1

1�maxf1;M1
eM1g

� q� 1

1�minf1;m1 em1g
; ð4:7Þ

where the left side is �1 if the maximum is 1 and 0 if the

maximum is þ1. The right side is þ1 if the minimum is 1.
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Remark 4.4 If j\0, we can proceed in the same way as

before and then Eqs. (4.3)–(4.5) become, respectively,

cN � �
XN�1

k¼1

ck Mk
fMk1fck � 0g þ mkfmk1fck [ 0g

h i
;

cN � �
XN�1

k¼1

ck Mk
fMk1fck [ 0g þ mkfmk1fck � 0g

h i
;

c2 � � c1 M1
eM11fc1 [ 0g þ m1 em11fc1 � 0g

� �
:

4.2 A general formulation within the class
PðSd;RÞ

This section faces the most general and tricky case within the

class PðSd;RÞ. Examples of functions in this class can be

found in Porcu et al. (2017). We consider a collection

fwk : k ¼ 1; . . .;Ng � PðSd;RÞ, and constants ck 2 R, for

k ¼ 1; 2; . . .;N. Consider the function C : ½0; p� � R ! C

defined by

Cðh; uÞ :¼ 1

j

XN

k¼1

ckwkðh; uÞ; ðh; uÞ 2 ½0; p� � R: ð4:8Þ

Using (2.7) we get that C has d-Schoenberg functions given by

kn;dðuÞ ¼
1

j

XN

k¼1

ckk
ðkÞ
n;dðuÞ; n 2 Zþ; u 2 R;

where
P1

n¼1 kn;dð0Þ\1 and kn;d 2 L1ðRÞ. For this, note

that, since

kn;dðuÞ ¼
1

j

XN

k¼1

ck

Z 1

�1
eiuwbk

ðkÞ
n;dðwÞdw

¼
Z 1

�1
eiuw

1

j

XN

k¼1

ckbk
ðkÞ
n;dðwÞ

 !
dw; n 2 Zþ; u 2 R;

we have

bkn;dðwÞ ¼
1

j

XN

k¼1

ckbk
ðkÞ
n;dðwÞ; n 2 Zþ; w 2 R:

Thus, we have to find conditions on the scalars ck so that

bkn;dðwÞ� 0; w 2 R; n 2 Zþ:

The following additional hypothesis is needed subsequently.

Hypothesis H3. Let C as in (4.8), where wk 2 PðSd;RÞ,
for all k ¼ 1; 2; . . .;N. Let bk

ðkÞ
n;d be the Fourier pair of the

coefficients kðkÞn;d associated with C. We suppose throughout

that bk
ðNÞ
n;d ðwÞ[ 0, for all w 2 R and n 2 Zþ.

If Hypothesis H3 holds, then we have

bkn;dðwÞ ¼ bk
ðNÞ
n;d ðwÞ

XN�1

k¼1

ck

bk
ðkÞ
n;dðwÞ
bk
ðNÞ
n;d ðwÞ

þ cN

2
4

3
5; w 2 R; n 2 Zþ:

Since j[ 0 (see Remark 4.8 hereafter for j\0), we have

that bkn;dð�Þ is nonnegative if, and only if,

XN�1

k¼1

ck

bk
ðkÞ
n;dðwÞ
bk
ðNÞ
n;d ðwÞ

þ cN � 0; w 2 R; n 2 Zþ:

Let n 2 Zþ fixed and define

Mn;k :¼ sup
bk
ðkÞ
n;dðwÞ
bk
ðNÞ
n;d ðwÞ

: w 2 R

8
<

:

9
=

;;

mn;k :¼ inf
bk
ðkÞ
n;dðwÞ
bk
ðNÞ
n;d ðwÞ

: w 2 R

8
<

:

9
=

;; k ¼ 1; 2; . . .;N � 1:

Note that mn;k � 0 and Mn;k [ 0, for k ¼ 1; 2; . . .;N � 1.

Defining

�Mk :¼ sup Mn;k : n 2 Zþ
� �

; �mk :¼ inf mn;k : n 2 Zþ
� �

;

k ¼ 1; 2; . . .;N � 1;

similarly to the previous cases we have the following lemma.

Lemma 4.5 Let C as defined at (4.8) with j[ 0 and

assume Hypothesis H3. Then the following assertions hold

true.

(i) If C 2 PðSd;RÞ, then

cN � �
XN�1

k¼1

ck �Mk1fck � 0g þ �mk1fck\0g
� �

:

Table 1 Bounds m1 and M1 associated with q in Eq. (3.9)

Parameters m1 M1

Here, both w1 and w2 belong to the Multiquadric family as in (5.1).

sk 2 Zþ, pk 2 ð0; 1Þ and rk [ 0, k ¼ 1; 2

s1 � s2
p1 [ p2

r1
r2

� 	2ð1� p1Þs1Cðs2Þ
ð1� p2Þs2Cðs1Þ

þ1

s1 � s2
p1\p2

0 r1
r2

� 	2ð1� p1Þs1Cðs2Þ
ð1� p2Þs2Cðs1Þ

Same setting but considering Eq. (5.2) for both w1 and w2. Here,

dk 2 ð0; 1Þ and rk [ 0, k ¼ 1; 2

d1 [ d2 r1
r2

� 	2
1� d1
1� d2

� 	d�1 þ1

d1\d2 0 r1
r2

� 	2
1� d1
1� d2

� 	d�1
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(ii) If

cN � �
XN�1

k¼1

ck �Mk1fck\0g þ �mk1fck � 0g
� �

;

then C 2 PðSd;RÞ.

For the particular case N ¼ 2 we have the following

characterization.

Proposition 4.6 Let wk 2 PðSd;RÞ such that Hypothesis

H3 is satisfied, for k ¼ 1; 2. Let c1; c2 2 R with

c1 þ c2 [ 0. Then,

C ¼ 1

c1 þ c2
c1w1 þ c2w2½ �

belongs to PðSd;RÞ if, and only if,

c2 � � c1 �M11fc1\0g þ �m11fc1 � 0g
� �

:

Corollary 4.7 Let wk 2 PðSd;RÞ such that Hypothesis H3

is satisfied, for k ¼ 1; 2. Let q 2 R. Then,

C ¼ qw1 þ ð1� qÞw2

belongs to PðSd;RÞ if, and only if,

1

1�maxf1; �M1g
� q� 1

1�minf1; �m1g
;

where the left side is �1 if the maximum is 1 and 0 if the

maximum is þ1. The right side is þ1 if the minimum is 1.

Fig. 1 Nested Multiquadric

covariance functions with the

above specified parameters (a,
b) and q calculated with the

minimum allowed value in

Eq. (3.9), and realizations of

Gaussian random fields with

such covariance functions (c, d)

Table 2 Bounds m1 and M1 associated with q in Eq. (3.9). Here

ak 2 ð0; 2Þ, rk [ 0, k ¼ 1; 2. Both w1 and w2 in (3.8) belong to the

Sine Power family as in (5.3)

Parameters m1 M1

a1 [ a2 0 a1
a2

r1
r2

� 	2

a1\a2 a1
a2

r1
r2

� 	2 þ1

Table 3 Bounds m1 and M1 associated with q in Eq. (3.9). Here

rk [ 0, k ¼ 1; 2, w1 is the Multiquadric as in (5.1) and w2 is the Sine

Power as in (5.3)

Parameters m1 M1

p1 2 0; 1
2


 �
, a2 2 ð0; 2Þ

s1 2 Zþ n f0g

n0 � max s1;
4p1�2
1�2p1

n oa

0
max �

ffiffiffi
2

p r1
r2

� 	2ð1� p1Þs1
Cðs1Þ

(

� Cðs1 þ nÞQn
m¼0ð2m� a2Þ

ðnþ 1Þ

� 2p1ð Þn: n ¼ 0; 1; . . .; n0
�

a2 ¼ p1 2 0; 2
5


 �

s1 ¼ 1

0
2
ffiffiffi
2

p r1
r2

� 	2
1� p1

p1

a2 ¼ p1 2 2
5
; 1
2


 �

s1 ¼ 1

0
8
ffiffiffi
2

p r1
r2

� 	2
1� p1

2� p1

aIf p1 2 0; 1
4


 �
, then max s1;

4p1�2
1�2p1

n o
¼ s1
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Remark 4.8 If j\0, then the equations in Lemma 4.5 and

Proposition 4.6 become, respectively,

cN � �
XN�1

k¼1

ck �Mk1fck � 0g þ �mk1fck [ 0g
� �

;

cN � �
XN�1

k¼1

ck �Mk1fck [ 0g þ �mk1fck � 0g
� �

;

c2 � � c1 �M11fc1 [ 0g þ �m11fc1 � 0g
� �

:

5 Examples

In this section we give classes of the functions that belong

to PðSdÞ, PðS1Þ or PðRÞ so that the functions in (3.8) and
(4.6) are respectively spatial and space–time covariance

functions. We consider some of the most widely used

models on spheres for which an explicit expression of the

Schoenberg coefficients is available. We also provide the

supremum and infimum necessary so that the range of the

parameter q in (3.9) and (4.7) becomes well determined.

Table 4 Bounds m1 em1 and

M1
eM1 associated with q in

Eq. (4.7)

Parameters mMq1 ;Mq2mG1 ;G2
MMq1 ;Mq2MG1 ;G2

Both w1 and w2 are Multiquadric functions as in (5.1) and both u1;u2 are Gauss functions as in (5.4). Here

sMqk 2 Zþ, pMqk 2 ð0; 1Þ, aGk
2 Rþ and rMqk ;rGk

[ 0, k ¼ 1; 2

sMq1 � sMq2 0 þ1
pMq1 [ pMq2

aG1
\aG2

sMq1 � sMq2

pMq1 [ pMq2

aG1
� aG2

rMq1

rMq2

� 	2ð1� pMq1 Þ
sMq1CðsMq2 Þ

ð1� pMq2 Þ
sMq2CðsMq1 Þ

�

� rG1

rG2

� 	2 aG2

aG1

� 	1=2

þ1

sMq1 � sMq2

pMq1\pMq2

aG1
\aG2

0 rMq1

rMq2

� 	2ð1� pMq1 Þ
sMq1CðsMq2 Þ

ð1� pMq2 Þ
sMq2CðsMq1 Þ

�

� rG1

rG2

� 	2 aG2

aG1

� 	1=2

sMq1 � sMq2

pMq1\pMq2

aG1
� aG2

0 þ1

Both w1 and w2 are Multiquadric functions as in (5.2) and both u1;u2 are Gauss functions as in (5.4). Here

dMqk 2 ð0; 1Þ, and rMqk ; rGk
[ 0, k ¼ 1; 2

dMq1 [ dMq2

aG1
\aG2

0 þ1

dMq1 [ dMq2 rMq1

rMq2

� 	2
1� dMq1

1� dMq2

� 	d�1 þ1

aG1
� aG2 � rG1

rG2

� 	2 aG2

aG1

� 	1=2

dMq1\dMq2

aG1
\aG2

0 rMq1

rMq2

� 	2
1� dMq1

1� dMq2

� 	d�1

� rG1

rG2

� 	2 aG2

aG1

� 	1=2

dMq1\dMq2

aG1
� aG2

0 þ1
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5.1 Examples from PðSdÞ and PðS¥ )

This section illustrates some examples from Corollary 3.3,

that is, CðhÞ ¼ qw1ðhÞ þ ð1� qÞw2ðhÞ. Thus, necessary

ingredients are:

1. Parametric classes within the classes PðSdÞ and

PðS1Þ for w1 and w2.

2. Computation of M1 and m1 as in Corollary 3.3.

In particular, we consider the following parametric

classes (Tables 1–3):

• Multiquadric functions:

Let p1; p2 2 ð0; 1Þ, s1; s2 be positive integers and

r1; r2 positive real numbers. The functions

wkðhÞ ¼ r2k
1� pk

1� pk cos h

� 	sk

; 0� h� p; k ¼ 1; 2;

ð5:1Þ

belong to the class PðS1Þ and their coefficients in the

expansion are given by (Arafat et al. 2018)

bðkÞn ¼ bðkÞn ðpk; skÞ ¼ r2k
sk þ n� 1

n

� 	
pnkð1� pkÞsk ;

n ¼ 0; 1; . . .; k ¼ 1; 2:

• Multiquadric functions and PðSdÞ:
Let d� 2. A reparameterization of (5.1) with

pk ¼ 2dk=ð1þ d2kÞ, with dk 2 ð0; 1Þ, for k ¼ 1; 2, pro-

vides us the functions

wkðhÞ ¼ r2k
ð1� dkÞ2sk

ð1þ d2k � 2dk cos hÞsk
; 0� h� p;

k ¼ 1; 2: ð5:2Þ

If sk ¼ ðd � 1Þ=2, then wk belongs to the class PðSdÞ,
and its d-Schoenberg coefficients are given by (see

Equation (4.31) of Møller et al. 2018)

Table 5 Bounds m1 em1 andM1
eM1 associated with q in Eq. (4.7). Here

aSPk
2 ð0; 2Þ, aGk

2 Rþ and rSPk
; rGk

[ 0, k ¼ 1; 2. Both w1 and w2

are Sine Power functions as in (5.3) and both u1;u2 are Gauss

functions as in (5.4)

Parameters mSP1 ;SP2
mG1 ;G2

MSP1 ;SP2
MG1 ;G2

aSP1
[ aSP2

aG1
\aG2

0 aSP1

aSP2

rSP1

rSP2

� 	2

�

� rG1

rG2

� 	2 aG2

aG1

� 	1=2

aSP1
[ aSP2

aG1
� aG2

0 þ1

aSP1
\aSP2

aG1
\aG2

0 þ1

aSP1
\aSP2

aG1
� aG2

aSP1

aSP2

rSP1

rSP2

� 	2

�

� rG1

rG2

� 	2 aG2

aG1

� 	1=2

þ1

Table 6 Bounds m1 em1 andM1
eM1 associated with q in Eq. (4.7). Here

rMq;rSP;rGk
[ 0 and aGk

2 Rþ, k ¼ 1; 2, w1 is Multiquadric function

as in (5.1), w2 is a Sine Power function as (5.3) and u1;u2 are Gauss

functions as in (5.4)

Parameters mMq;SPmG1 ;G2
MMq;SPMG1 ;G2

pMq 2 0;
1

2

� 	
,

aSP 2 ð0; 2Þ
sMq 2 Zþ n f0g

n0 � max sMq;
4pMq�2

1�2pMq

n o

aG1
\aG2

0
CMq;SP

rG1

rG2

� 	2 aG2

aG1

� 	1=2
a

pMq 2 0;
1

2

� 	
,

aSP 2 ð0; 2Þ
sMq 2 Zþ n f0g

n0 � max sMq;
4pMq�2

1�2pMq

n o

aG1
� aG2

0 þ1

aSP ¼ pMq 2 0;
2

5

� 	

sMq ¼ 1

aG1
\aG2

0
2
ffiffiffi
2

p rMq

rSP

� 	2
1� pMq

pMq

� rG1

rG2

� 	2 aG2

aG1

� 	1=2

aSP ¼ pMq 2 0;
2

5

� 	

sMq ¼ 1

aG1
� aG2

0 þ1

aSP ¼ pMq 2
2

5
;
1

2

� 	

sMq ¼ 1

aG1
\aG2

0
8
ffiffiffi
2

p rMq

rSP

� 	2
1� pMq

2� pMq

� rG1

rG2

� 	2 aG2

aG1

� 	1=2

aSP ¼ pMq 2
2

5
;
1

2

� 	

sMq ¼ 1

aG1
� aG2

0 þ1

a
CMq;SP :¼ maxn2f0;1;...;n0g �

ffiffiffi
2

p rMq

rSP

� 	2ð1� pMqÞsMq

CðsMqÞ
CðsMq þ n1ÞQn
m¼0ð2m� aSPÞ

ðnþ 1Þ 2pMq


 �n
( )
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b
ðkÞ
n;d ¼ r2kð1� dkÞd�1 d þ n� 2

n

� 	
dnk :

• Sine Power functions:

Let a1; a2 2 ð0; 2Þ and r1; r2 be positive real num-

bers. Then the functions

wkðhÞ ¼ r2k 1� sin
h
2

� 	ak
 �
; 0� h� 2p; k ¼ 1; 2;

ð5:3Þ

belong to the class PðS1Þ, and their Schoenberg

coefficients are given by (Soubeyrand et al. 2008;

Gneiting 2013)

bðkÞn ¼ � r2kffiffiffi
2

p 1

ðnþ 1Þ!
Yn

m¼0

m� ak
2

� �
;

n ¼ 0; 1; . . .; k ¼ 1; 2:

In the above cases, the supremum M1 and the infimum m1

required in Corollary 3.3 can be found by simple

techniques.

As an illustration, Fig. 1 displays two nested Multi-

quadratic covariance functions corresponding to Table 1 and

realizations of Gaussian random fields with such covariance

functions. The covariance reaches a minimum less than

�0:141 in the first case and �0:222 in the second case.

5.2 Examples from the classes PðSd;RÞ
and PðS¥ ,RÞ

Let aGk
2 Rþ and rGk

[ 0, k ¼ 1; 2. It is known that Gauss

functions given by

uGk
ðuÞ ¼ r2Gk

expð�aGk
juj2Þ; k ¼ 1; 2; ð5:4Þ

belong to the class PðRÞ. The supremum and infimum,

eM1; em1, needed in Proposition 4.2 and Corollary 4.3 are

available in Table 1 in Gregori et al. (2008).

Using Table 1 in Gregori et al. (2008) and the tables of

the previous subsection, we obtain Tables 4, 5 and 6.

Here all parameters are subscripted in each case with the

initial of the used function (Mq for Multiquadric, SP for

Sine Power, G for Gauss).

Fig. 2 Nested multiquadric

coupled with Gauss covariance

function with the above

specified parameters (a) and q
calculated with the minimum

allowed value in Eq. (4.7), and

realization of a Gaussian

random field with such a

covariance function at two time

instants: b t ¼ 0 and c t ¼ 0:3
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As an illustration, Fig. 2 displays a nested Multiquadric

coupled with Gauss covariance function corresponding to

Table 4 and a realization of a Gaussian random field with

such a covariance function. The covariance reaches a

minimum less than �0:079.

6 Discussion

We have provided simple strategies that allow obtaining

admissible nested covariance models with (some) negative

coefficients. Our findings enrich the classes of covariance

functions on spheres as well as spheres cross time. In par-

ticular, ourmodel allow for potential negative correlations at

large distances over the sphere representing planet Earth.

A subsequent step in our research will be to consider a

more general class of processes over spheres, called axially

symmetric in Jones (1963). Such a class is more suit-

able for modeling climate processes, that are notoriously

stationary with respect to longitude, but nonstationary with

respect to latitude.

Another important research for the future will be to

consider the regularity properties of Gaussian fields with

admissible nested covariance functions. This would imply

to emulate the tours de force in Lang and Schwab (2015)

and in Clarke et al. (2018).
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