
Synergistic Solutions for Merging
and Computing Planar Convex Hulls

Jérémy Barbay(B) and Carlos Ochoa

Departamento de Ciencias de la Computación, Universidad de Chile, Santiago, Chile
jeremy@barbay.cl, cochoa@dcc.uchile.cl

Abstract. We describe and analyze the first adaptive algorithm for
merging k convex hulls in the plane. This merging algorithm in turn
yields a synergistic algorithm to compute the convex hull of a set of pla-
nar points, taking advantage both of the positions of the points and their
order in the input. This synergistic algorithm asymptotically outperforms
all previous solutions for computing the convex hull in the plane.

Keywords: Convex hull · Merging · Multivariate analysis · Synergistic

1 Introduction

One way to close the gap between practical performance and the worst case
complexity over instances of fixed input size is to refine the latter, considering
smaller classes of instances defined via difficulty measures. The computation of
the Convex Hull of a set of n points in the plane is a good example of the vari-
ety of such techniques. The Gift Wrapping algorithm proposed by Chand and
Kapur [6] in 1970 is adaptive to the size h of the Convex Hull output, with a
running time within O(nh) ⊆ O(n2). In 1973, Graham [8] described an algorithm
known as Graham’s scan, running in time within O(n log n). On instances where
the output is small (h ∈ o(log n)), Gift Wrapping asymptotically outperforms
Graham’s scan, while the reverse is true on other instances.

In 1986 (13 years later!), Kirkpatrick and Seidel [9] described an algorithm
computing the Convex Hull of size h in time within O(n log h), which asymp-
totically outperforms both Gift Wrapping and Graham’s scan. This was fur-
ther improved when Afshani et al. [1] observed that a minor variant of Kirk-
patrick and Seidel’s algorithm [9] takes optimal advantage of the positions of
the points, and proved its instance optimality among algorithms ignoring the
order of the input, in a decision tree model where the tests involve only multilin-
ear functions with a constant number of arguments. They showed that the time
complexity of this variant is within O(n(1 + H(n1, . . . , nh))) ⊆ O(n(1 + log h)),
where n1, . . . , nh are the sizes of a partition of the points by enclosing triangles,

C. Ochoa is supported by CONICYT-PCHA/Doctorado Nacional/2013-63130161
(Chile).

c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 156–167, 2018.
https://doi.org/10.1007/978-3-319-94776-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94776-1_14&domain=pdf


Synergistic Solutions for Merging and Computing Planar Convex Hulls 157

such that every triangle is completely below the upper hull of the points, with
the minimum possible value for H(n1, . . . , nh) =

∑h
i=1

ni

n log n
ni

≤ log h.
Levcopoulos et al. [10] described in 2002 an algorithm to compute the convex

hull of a set of planar points that do consider the order of the input, and thus
could break Afshani et al.’s lower bound [1]. The algorithm uses a decomposition
of the points into simple polygonal chains. A polygonal chain is specified by
a sequence of points, and consists of the line segments connecting the pairs
of consecutive points. A polygonal chain is simple if it does not have a self-
intersection. They prove that the time complexity of this algorithm is within
O(n(1+ log κ)), where κ is the minimum number of simple subchains into which
the sequence of n points can be partitioned. Note that κ depends only of the
input order: by reordering the points, one can always reduce it to one, or increase
it to within Θ(n).

A dovetailing combination1 of the algorithms described by Kirkpatrick and
Seidel [9] and Levcopoulos et al. [10] takes advantage of the order in which
the points are given while maintaining (input order oblivious) instance optimal-
ity. But this solution is inefficient: many operations will be repeated, and some
opportunities to quickly solve the instance are lost due to this lack of commu-
nication between the two parallel branches of the algorithm. To address this
problem, we describe an algorithm for computing the Convex Hull of a set of
planar points that takes advantage both of the positions of the points and their
order in the input, synergistically, in the sense that it never performs asymp-
totically worse than the algorithms described by Kirkpatrick and Seidel [9] and
Levcopoulos et al. [10], and on large classes of instances asymptotically outper-
forms both by more than a constant factor (see Example 1 in Sect. 3.2).

In order to yield a synergistic algorithm, we obtain several new results. (1)
We generalize Demaine et al.’s algorithm and corresponding analysis [7] from
the Merging of Multisets to the Merging of Convex Hulls, in Sect. 2
(this is the most technical part of this work). (2) We present an algorithm to
partition a sequence of points into simple subchains, which is faster than the
one described by Levcopoulos et al. [10], and (3) we refine Levcopoulos et al.’s
measure of difficulty and analysis, in Sect. 3.1. (4) We combine those results into
a synergistic algorithm to compute the Convex Hull in the plane, and (5) we
prove that in large classes of instances this algorithm asymptotically outperforms
the best previous solutions [1,10], and never asymptotically performs worse than
them, in Sect. 3.2.

2 Computing the Union of Upper Hulls

The computation of convex hulls in the plane reduces to the computation of
upper hulls [9]. Given ρ upper hulls in the plane, where the points in each
upper hull are given sorted by their x-coordinates, the Union of Upper Hull
problem consists in computing the upper hull of the union of the ρ upper hulls.
1 A dovetailing combination of k algorithms executes the k algorithms in parallel and

stops as soon as one of the algorithms finishes.



158 J. Barbay and C. Ochoa

Algorithm 1. Quick Union Hull
Input: A set U1, . . . , Uρ of ρ upper hulls
Output: The upper hull of the union of U1, . . . , Uρ

1: Compute the median μ of the slopes of the middle edges of the ρ upper hulls;
2: Identify the “pivot” point p in the input that has a supporting line of slope μ;
3: Partition the ρ upper hulls by the vertical line through p;
4: For each upper hull V, compute the (at most) two tangents of V through p: the

ones to the left and right of p, and discard the blocks of consecutive points below
the line segments determined by the points of tangency;

5: Output a block of points in the upper hull U containing p that forms part of the
union, by computing common tangents between U and the other upper hulls;

6: Discard all points that lie below the line segments determined by the points in the
common tangents between U and the other upper hulls;

7: Recurse on the resulting upper hulls to the left and to the right of p.

We describe the algorithm Quick Union Hull, that solves the Union of Upper
Hull problem, in Sect. 2.1, and we analyze its time complexity in Sect. 2.2. This
algorithm is inspired by the algorithms Simplified Ultimate Planar Convex
Hull described by Chan et al. [5], and Quick Synergy Sort described by Barbay
et al. [3]. The Quick Union Hull algorithm is an essential building block towards
the synergistic algorithm for computing the convex hull of a set of planar points,
described and analyzed in Sect. 3.

2.1 Description of the Algorithm Quick Union Hull

In the context of the Union of Upper Hull problem, in each upper hull
the points are given sorted by their x-coordinates, and the slopes of the edges
monotonically decrease from left to right. The algorithm Quick Union Hull
takes advantage of these facts: its pseudocode is described in Algorithm 1. For
each upper hull, the algorithm identifies blocks of consecutive points that form
part of the output and blocks of consecutive points that lie underneath the
upper hull of the union. The algorithm uses a divide-and-conquer approach to
take advantage of the positions of the points.

We next define some key concepts that are used in the description of the
algorithm. Let S be a finite set of planar points. A supporting line of S is a
straight line that contains a point p of S and that leaves all the points of S in
the same half-plane (i.e., p is a vertex of the convex hull of S). Let μ be the
slope of a supporting line passing through a point q in the upper hull U of S.
If there is a pair of points of S to the left of q such that the line through the
pair has slope less than μ, then the rightmost point in the pair cannot be part
of U . A symmetric situation arises if the pair of points is to the right of q and
the slope of the line through the pair is greater than μ: the leftmost point in
the pair cannot be part of U . If the points in S are paired, a good candidate to
discard points that cannot be part of U is the point p that has a supporting line
whose slope is the median of the slopes of the lines passing through the pairs.



Synergistic Solutions for Merging and Computing Planar Convex Hulls 159

�

p

Fig. 1. An instance of the Union of Upper Hulls problem. The middle edges of
the upper hulls are marked by thick dashed segments, and the one whose slope is the
median μ of the slopes of the middle edges has been extended into a line. The straight
line � is the supporting line of slope μ. The line � passes through the “pivot” vertex p.

Once the points have been discarded, the choice of p guarantees that at most a
constant fraction of the points in S remains on each side of p [5].

In the Union of Upper Hulls problem, in each upper hull, the slopes of
the edges monotonically decrease from left to right. So, in each upper hull V,
the edge at the middle position is the one whose slope is the median among
the slopes of the edges of V. We show that the point that has a supporting line
whose slope is the median of the slopes of the middle edges of the upper hulls is
also a good candidate to discard points that cannot be part of the upper hull of
the union. Note that the time complexity of computing the median of the slopes
of the middle edges of the upper hulls is linear in the number ρ of upper hulls,
but that the time complexity of pairing the points and computing the median of
the slopes of the lines through the pairs is linear in the number n of points [5].

The algorithm Quick Union Hull identifies a “pivot” vertex p of the upper
hull of the union, and uses p to discard blocks of consecutive points that cannot
be part of the output. It computes the median μ of the slopes of the middle
edges of the upper hulls, and identifies p as the point that has a supporting line
� of slope μ. Note that p is the extreme point in the direction orthogonal to �.
Taking advantage that in each upper hull V the slopes of the edges are sorted,
the algorithm identifies the extreme point in the direction orthogonal to � by
performing a doubling search2 for the value μ in the list of slopes of the edges
of V. (See Fig. 1 for a graphical representation of these steps.)

To know which points are to the left and which ones are to the right of p, the
algorithm partitions the points in the upper hulls by the vertical line x = px,
where px is the x-coordinate of the point p, by performing doubling searches for
the value px in the x-coordinates of the points in the upper hulls.

For each upper hull V, the algorithm then computes the (at most) two tan-
gents of V through p: the one passing through a point to the left of p in V,
and the one passing through a point to the right of p in V. In V, the algorithm
discards the blocks of consecutive points below the line segments determined by
the points of tangency. It computes all the tangents via doubling searches [2].

Before the recursive step, in the upper hull U containing p, the algorithm
identifies a block B of consecutive points that forms part of the output (p is
2 Doubling search is a technique for searching sorted unbounded arrays in which an

element of rank k is found by performing 2 log k comparisons [4].



160 J. Barbay and C. Ochoa

p
B

q

r
τλU

Fig. 2. The state of the algorithm Quick Union Hull during an execution of the step
that computes the block B that forms part of the upper hull of the union. The upper
hull U contains the point p. λ marks the tangent of maximum slope between p and the
upper hulls to the right of p. τ marks the common tangent between the portion of U
above λ and one of the upper hulls below λ passing through the point nearest to p in
U . The points q and r lie in τ .

included in B). The algorithm certifies that B forms part of the output by com-
puting common tangents between a portion of U and the other upper hulls.
Computing a common tangent between two upper hulls could be costly, but if
there is a line separating them, then the time complexity is logarithmic [2]. The
algorithm takes advantage of this fact by using as separating lines two tangents
through p computed in the previous step (i.e., ignoring the portion of U in the
same half plane as the other upper hulls). The block B is determined by the
common tangents passing through the points nearest to p in U (one point to
the left of p and the other one to the right). To avoid the computation of all
common tangents, the algorithm interweaves the different tangent computations
(similarly to how Demaine et al.’s algorithm [7] interweaves doubling searches
to compute the intersection of sorted sets). We devote the rest of the section to
describe this step in more details.

We describe how to identify the part of B to the right of p (the left counterpart
is symmetric). Let λ be the tangent of maximum slope between p and the upper
hulls to the right of p (i.e., the tangent of maximum slope among those computed
in the previous step of the algorithm). Let U ′ be the portion of the upper hull U
containing p above λ. The tangent λ separates U ′ from the upper hulls below λ.
Among the common tangents between U ′ and the upper hulls below λ, let τ be
the one passing through the nearest point to p in U ′. Let q and r be the points
that lie in τ , such that q belongs to U ′ and r belongs to one of the upper hulls
below of λ. The point q determines the end of the right portion of B (see Fig. 2
for a graphical representation of these definitions).

Given two upper hulls A and B separated by a vertical line, Barbay and
Chen [2] described an algorithm that computes the common tangent τ between
them, in time within O(log a + log b), where a and b are the ranks of the points
that lie in τ in the sequences of points representing A and B, respectively. At
each step this algorithm considers two points: one from A and the other one
from B, and in at least one upper hull, it can certify, in constant time, if the
point that lies in τ is to the right or to the left of the point considered. A minor
variant manages the case where the separating line is not vertical: as the first



Synergistic Solutions for Merging and Computing Planar Convex Hulls 161

�

a) b)

�
U[a]

V[b]
�

W[d]

W[c] W[e]

U[a]

V1[b1]
V2[b2] V3[b3]

�

Fig. 3. Example of arguments: (a) an eliminator argument formed by 3 blocks and (b)
a convex argument formed by 4 blocks.

step, in each upper hull, the algorithm computes the supporting line of slope
equal to the slope of the separating line, by performing doubling searches.

To compute the point q that determines the right portion of B, the algo-
rithm Quick Union Hull executes several instances of the algorithm described
by Barbay and Chen [2] for computing the common tangents between U ′ and the
upper hulls below λ, always considering the same point u in U ′. Once all deci-
sions about the point u are reached, the upper hulls below λ can be divided into
two sets: (i) those whose common tangents pass through a point to the left of u
in U ′, and (ii) those whose common tangents pass through a point to the right
of u in U ′. If the set (i) is not empty, then the algorithm stops the computation
in the set (ii). For each upper hull V in the set (ii), the algorithm discards the
block of points in V to the left of the penultimate point considered. This step
continues until there is just one instance running, and computes the tangent τ
in this instance. The algorithm discards all points to the left of r (i.e., all points
that lie below the arc of the output that leaves U clockwise and follows τ).

After identifying the block B of the output, the algorithm recurses on the
resulting upper hulls to the left and right of p.

2.2 Complexity Analysis of the Quick Union Hull Algorithm

Each algorithm that solves the Union of Upper Hulls problem needs to cer-
tify that some blocks of points in the upper hulls cannot participate in the upper
hull of the union, and that some other blocks are indeed in the upper hull of the
union. In the following, we formalize the notion of partition certificate, which
can be used to check the correctness of the output in less time than to recom-
pute the output itself. A partition certificate of an instance is a partition of the
points of the upper hulls into regions so that, in each region, it is “easy” to cer-
tify whether the points form part of the output or not. This notion of partition
certificate yields a measure of the difficulty of an instance (“short” partition cer-
tificates characterize “easy” instances, while “long” partition certificates suggest
“difficult” instances). We define a language of basic arguments for such parti-
tion certificates: eliminator arguments discard points from the input and convex
arguments justify the presence of points in the output. A partition certificate is
formed by eliminator and convex arguments and will be verified by checking each
of its arguments. See Fig. 3 for a graphical representation of such arguments.



162 J. Barbay and C. Ochoa

Fig. 4. A partition certificate of size 7 of an instance of the Union of Upper Hull
problem. The thick black lines mark the division between the 7 regions.

Definition 1. Consider the upper hulls U , V, and W. Let � be the straight line
through the points U [a] and V[b]. 〈U [a],V[b] ⊃ W[c..d..e]〉 is an Eliminator Argu-
ment if the points of the block W[c..e] are between the vertical lines through U [a]
and V[b], the slope of � is between the slopes of the two edges in W that precede
and follow the point W[d], and the point W[d] lies below �.

If 〈U [a],V[b] ⊃ W[c..d..e]〉 is an eliminator argument, then the points of the
block W[c..e] cannot contribute to the upper hull of the union. Several blocks
that are “eliminated” by the same pair of points can be combined into a single
argument. These eliminator arguments are the ones used in the Steps 4 and 6 of
the algorithm Quick Union Hull.

It is not enough to discard some points that do not contribute to the output.
Certifying still requires additional work: a correct algorithm must justify the
exactness of its output. To this end we define convex arguments.

Definition 2. Consider the upper hulls U ,V1, . . . ,Vt. 〈U [a] � V1[b1], . . . ,Vt[bt]〉
is a Convex Argument if there is a straight line � through U [a] such that the
slope of � is between the slopes of the edges that precede and follow the points
V1[b1], . . . ,Vt[bt], respectively, and the points V1[b1], . . . ,Vt[bt] lie below �.

If 〈U [a] � V1[b1], . . . ,Vt[bt]〉 is a convex argument, then the point U [a] is a
vertex of the upper hull of the union of U ,V1, . . . ,Vt. Blocks of points can also
be “easily” certified as part of the output using similar arguments: when the first
and last points p and q, respectively, in such blocks are vertices of the output,
and all other points in the instance lie below the line through p and q. These
convex arguments are the ones used in Step 5 of Quick Union Hull.

Those arguments are a two-dimensional generalization of the arguments from
Demaine et al. [7] for computing the Union of Sorted Sets, and are inspired
by the ones introduced by Barbay and Chen [2] for the binary Union of Upper
Hulls. Those atomic arguments combine into a general definition of partition
certificate that any correct algorithm for solving the Union of Upper Hulls
problem in the algebraic decision tree model can be modified to output (see
Fig. 4 for an example of such a partition certificate).

Definition 3. Given an instance I of the Union of Upper Hull problem, a
Partition Certificate of I is a partition of the points into regions, so that in each
region, the points of I that belong to the output can be decided using a constant
number of eliminator and convex arguments. The Size of I is the number of
regions which compose it.



Synergistic Solutions for Merging and Computing Planar Convex Hulls 163

The algorithm Quick Union Hull partitions the upper hulls into blocks of
consecutive points, where each block is either discarded or output. A block is
discarded if it is underneath the upper hull of the union, or is output if it forms
part of the upper hull of the union. Each of such blocks forms part of an argument
of the partition certificate computed by the algorithm. We separate the analysis
of the steps that discard or output blocks of points (i.e., Steps 2, 3, 4, 5, and
6)3 from the steps that compute the medians of the slopes of the middle edges
(i.e., Step 1). The following lemma states that the asymptotic time complexity
for discarding a block s is logarithmic in the number of points in s.

Lemma 1. Given an upper hull U , the cumulated time complexity of the steps
that discard blocks of points of the algorithm Quick Union Hull considering
only points of U is within O(

∑β
j=1 log sj), where s1, . . . , sβ are the sizes of the

β blocks into which the whole algorithm partitions U .

We state the following lemmas in function of the partition certificate com-
puted by the algorithm. The blocks that are discarded in each execution of the
Steps 4 and 6 are certified using a single eliminator argument. In the same way,
the block that is output in Step 5 is certified using a single convex argument.

Lemma 2. Given a block B that forms part of the output, the time complexity of
the step that outputs B of the algorithm Quick Union Hull is within O(w log s),
where s is the size of B and w is the number of arguments in the convex argument
used by the algorithm to certify that B forms part of the output.

This is a consequence of the w searches for the common tangent in Step 5.
The amount of arguments in the partition certificate and the number of blocks
in each of the arguments are related to the time complexity of Step 1.

Lemma 3. Given ρ upper hulls, the cumulated time complexity of the steps that
compute the medians of the slopes of the middle edges of the algorithm Quick

Union Hull is within O(
∑δ

i=1 log
(

ρ
mi

)
), where δ is the size of the partition cer-

tificate C computed by the algorithm, and m1, . . . ,mδ is a sequence where mi is
the number of blocks in the i-th argument of C.

We describe an analysis of the algorithm Quick Union Hull in function of
the smallest possible size δ of a partition certificate for a particular instance.

Theorem 1. Given ρ upper hulls of sizes r1, . . . , rρ such that the upper hull
of their union admits a partition certificate of size δ, there is an algorithm that
computes the upper hull of their union in time within O(ρδ log h

δ +δ
∑ρ

i=1 log ri

δ ),
where h is the number of points in the upper hull of their union.

Proof. The size of the partition certificate C computed by the algorithm Quick
Union Hull in an instance I is a constant factor of the size δ of a partition

3 Even though the Steps 2 and 3 do not discard or output blocks of points by them-
selves we include them in the same analysis as the Steps 4 and 6.



164 J. Barbay and C. Ochoa

certificate P of minimal size for I, such that in each region there is just one
block that forms part of the output, and this block can be certified using a
single convex argument. Indeed, if a region R of P contains a block B that
forms part of the upper hull U of the union, then the algorithm Quick Union
Hull can certify that B forms part of U using a constant number of arguments.
This is a consequence of the step that computes the blocks that form part of
the output. This step computes the block of maximum size (p included) that
can be certified that forms part of the output using a single convex argument.
In addition, the algorithm partitions each upper hull in at most a constant
factor of δ blocks. Combining the results from Lemmas 1, 2, and 3 with the
concavity of the logarithm function, we obtain that the time complexity is within
O(

∑ρ
i=1

∑δ
j=1 sij +

∑δ
k=1 wk log nk) ⊆ O(δ

∑ρ
i=1 log ri

δ + ρδ log h
δ ), where sij is

the size of the j-th block of the i-th upper hull, wk is the number of arguments
in the k-th convex argument, and nk is the size of the k-th block of U . 	


In the following section, we combine the union algorithm with an algorithm
that partitions the sequence of points into “easy” instances, to obtain a syner-
gistic algorithm that computes the convex hull of a set of planar points.

3 Synergistic Computation of Convex Hulls

We describe a synergistic algorithm for computing the convex hull of a set of
planar points. It is synergistic in the sense that it takes advantage of both the
order of the points and their positions at once, whereas all previous solutions
take advantage only of one of those. As a consequence, this algorithm outper-
forms the best previous solutions [1,10], as well as any dovetailing combination
of them. This algorithm decomposes first the input sequence of points into sim-
ple subchains (Sect. 3.1), computes their convex hulls [10], and then merges their
convex hulls (Sect. 2). There are two noteworthy advantages to this approach:
(1) the algorithm decomposes the points into “easy” instances (these “easy”
instances are determined by the order in which the points are given), and com-
putes their convex hulls, both steps in time linear in the number of points; and
(2) when merging the resulting convex hulls it takes advantage of the number of
convex hulls, that the points in the convex hulls are given in sorted order, and
the positions of the points (analyzed in Sect. 3.2).

3.1 Linear Time Partitioning Algorithm

A polygonal chain is a curve specified by a sequence of points p1, . . . , pn. The
curve itself consists of the line segments connecting the pairs of consecutive
points. A polygonal chain is simple if it does not have a self-intersection.
Levcopoulos et al. [10] described an algorithm to compute the convex hull of
n points in the plane in time within O(n(1 + log κ)), where κ is the minimum
number of simple subchains into which the input sequence of points can be par-
titioned. The algorithm tests if the polygonal chain P given as input is simple:



Synergistic Solutions for Merging and Computing Planar Convex Hulls 165

Algorithm 2. Doubling Search Partition
Input: A sequence of n planar points p1, . . . , pn

Output: A sequence of simple polygonal chains
1: Initialize i to 1;
2: for t = 1, 2, . . . do
3: if i + 2t − 1 > n or the chain pi, . . . , pi+2t−1 is not simple then
4: Output the chain pi, . . . , pi+2t−1−1

5: Update i ← i + 2t−1 and t ← 1

if P is simple, it computes the convex hull of P in time linear in the size of P.
Otherwise, if P is not simple, it partitions P into two subchains, whose sizes
differ at most by one; recurses on each of them; and merges the resulting convex
hulls. The time complexity of the partitioning and merging steps are both within
Θ(n(1 + log κ)).

We describe an improved partitioning algorithm running in time linear in the
size of the input, which is key to the synergistic result. The Doubling Search
Partition algorithm searches one by one for the largest integer t such that the
subchain formed by the first 2t points is simple. It identifies this subchain as
simple and restarts the computation in the rest of the sequence. Its pseudocode
is described in Algorithm 2. This algorithm identifies a simple subchain of size k
in time within O(k), because the sizes of the tested subchains form a geometric
progression of ratio 2. The time complexity of this partitioning algorithm is
linear in the number n of points in the sequence, but we prove that the entropy
H(r1, . . . , rk) =

∑k
i=1

ri

n log n
ri

of the sizes r1, . . . , rk of the resulting k simple
subchains is a constant factor of the entropy of the sizes of any partition of the
sequence of n points into the minimum possible number κ of simple subchains:

Theorem 2. Given a sequence S of n planar points, the algorithm Doubling

Search Partition computes in linear time a partition of S into k simple sub-
chains of sizes r1, . . . , rk, such that n(1+H(r1, . . . , rk)) ∈ O(n(1+α)), where α
is the minimum value for the entropy function H(s1, . . . , sκ) of any partition of
S into κ simple subchains, of respective sizes s1, . . . , sκ.

Proof. Consider a partition π of S into κ simple subchains of sizes s1, . . . , sκ.
Fix the subchain ci of size si. The subchain ci contributes si

n log n
si

to the value
of H(s1, . . . , sκ). The algorithm Doubling Search Partition partitions ci into
simple subchains. One of such subchains is at least of size si

2 , and in the worst
case, the sizes of the rest of them form a decreasing geometric progression of
ratio 1

2 . Hence, the subchains into which the algorithm partitions ci contribute
O(

∑∞
i=1

si

2i log 2in
si

) = O(si + si

n log n
si

) to the entropy of the partition obtained
by the algorithm. The result follows. 	


Given the convex hulls of the subchains obtained by the algorithm Doubling
Search Partition, an algorithm that merges two by two the shortest ones takes
advantage of the potential disequilibrium in the distribution of their sizes, a
result that improves upon the algorithm described by Levcopoulos et al. [10]:



166 J. Barbay and C. Ochoa

Corollary 1. Given a sequence S of n planar points that can be partitioned
into κ simple subchains of respective sizes r1, . . . , rκ, there is an algorithm
that computes the convex hull of S in time within O(n(1 + H(r1, . . . , rκ))) ⊆
O(n(1+ log κ)).

3.2 Synergistic Algorithm to Compute the Convex Hull

Given a set S of planar points, the algorithm Quick Synergy Hull computes
the upper hull of S. It proceeds in two phases. It first partitions S into sim-
ple subchains using the algorithm Doubling Search Partition (described in
Sect. 3.1), and computes the upper hulls of the simple subchains [10], both steps
in time linear in the number of points in S. Then it merges those upper hulls
using the algorithm Quick Union Hull (described in Sect. 2).

The algorithm Quick Synergy Hull outperforms both the algorithm
described by Levcopoulos et al. [10] and the one described by Kirkpatrick and
Seidel [9] (even when analyzed by Afshani et al. [1]), as well as any dovetailing
combination of them. We prove this more formally in the following theorem:

Theorem 3. Consider a sequence S of n planar points that can be partitioned
into κ simple subchains of sizes r1, . . . , rκ (such that

∑κ
i=1 ri = n); and also

can be partitioned into h sets of sizes n1, . . . , nh (such that
∑h

i=1 ni = n), where
each set can be enclosed by a triangle completely below the upper hull of S.
There is an algorithm that computes the upper hull of S in time within O(n +
∑δ

j=1 wj log sj +
∑δ

i=1 log
(

κ
mi

)
) ⊆ O(n(1 + min(H(r1, . . . , rκ),H(n1, . . . , nh))))

⊆ O(n(1 + min(log κ, log h))) ⊆ O(n log n), where the union of the upper hulls
of the simple subchains admits a partition certificate C of minimum size δ (such
that δ ≤ h), m1, . . . ,mδ is a sequence where mi is the number of blocks in the i-th
argument of C (such that mi ≤ κ for i ∈ [1..δ]), wj is the number of arguments in
the j-th convex argument of C, and sj is the size of the j-th block of the output.

Proof. This result is a consequence of Theorems 1 and 2. For example, if the
simple subchains obtained by the partitioning algorithm are all of constant size
(i.e., the algorithm cannot take advantage of the order of the points), then the
time complexity of the algorithm Quick Synergy Hull and the one described by
Kirkpatrick and Seidel [9] (as analyzed by Afshani et al. [1]) are asymptotically
the same. This algorithm also takes advantage of the positions of the points to
improve upon the algorithm described in Corollary 1. 	


Example 1. Consider for example the family of instances depicted in Fig. 5: on
such instances, the time complexity of the algorithm described by Kirkpatrick
and Seidel [9], as refined by Afshani et al. [1], is within O(n + h log n) (all the
points in the sequences 1, 2 and 3 can be enclosed by a triangle completely below
the upper hull of the points, hence n1 = · · · = nh−1 = 1 and nh = n − h + 1 in
the formula O(n(1+H(n1, . . . , nh))), where h− 1 is the number of points in the
sequence 4). The time complexity on such instances of the algorithm described
by Levcopoulos et al. [10], as refined in Sect. 3.1, is within O(n + κ log n) (the



Synergistic Solutions for Merging and Computing Planar Convex Hulls 167

1
2

3

4

Fig. 5. A sequence of points and its decomposition into κ = 4 simple subchains. The
numbers indicate the order in which the sequence of points are given: each from left to
right internally, and mark the simple subchains.

whole sequence of points can be partitioned into κ simple subchains, suppose
that the sizes of the simple subchains labeled 1 to κ−1 are a constant c and that
the size of the simple subchain labeled κ is n−(κ−1)c, then r1 = · · · = rκ−1 = c
and rκ = n − (κ − 1)c in the formula O(n(1 + H(r1, . . . , rκ)))). On the other
hand, the time complexity on such instances of the algorithm Quick Synergy
Hull is within O(n): once it computes the first vertex of the output, it discards
all the points except the points in the upper hull labeled 4. If h ∈ Θ(n) and
κ ∈ Θ(n), then the algorithm Quick Synergy Hull is faster than the previous
algorithms [1,10] by a factor logarithmic in the size of the input.

References

1. Afshani, P., Barbay, J., Chan, T.M.: Instance-optimal geometric algorithms. J.
ACM 64(1), 3:1–3:38 (2017)

2. Barbay, J., Chen, E.Y.: Convex hull of the union of convex objects in the plane: an
adaptive analysis. In: Proceedings of the Annual Canadian Conference on Compu-
tational Geometry (CCCG) (2008)

3. Barbay, J., Ochoa, C., Satti, S.R.: Synergistic solutions on MultiSets. In: 28th
Annual Symposium on Combinatorial Pattern Matching, CPM 2017, Warsaw,
Poland, 4–6 July 2017, pp. 31:1–31:14 (2017)

4. Bentley, J.L., Yao, A.C.C.: An almost optimal algorithm for unbounded searching.
Inf. Process. Lett. 5(3), 82–87 (1976)

5. Chan, T.M., Snoeyink, J., Yap, C.K.: Primal dividing and dual pruning: output-
sensitive construction of four-dimensional polytopes and three-dimensional voronoi
diagrams. Discrete Comput. Geom. (DCG) 18(4), 433–454 (1997)

6. Chand, D.R., Kapur, S.S.: An algorithm for convex polytopes. J. ACM 17(1),
78–86 (1970)

7. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions,
and differences. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 743–752 (2000)

8. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite
planar set. Inf. Process. Lett. 1, 132–133 (1972)

9. Kirkpatrick, D.G., Seidel, R.: The ultimate planar convex hull algorithm? SIAM
J. Comput. (SICOMP) 15(1), 287–299 (1986)

10. Levcopoulos, C., Lingas, A., Mitchell, J.S.B.: Adaptive algorithms for constructing
convex hulls and triangulations of polygonal chains. In: Penttonen, M., Schmidt,
E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 80–89. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45471-3 9

https://doi.org/10.1007/3-540-45471-3_9

	Synergistic Solutions for Merging and Computing Planar Convex Hulls
	1 Introduction
	2 Computing the Union of Upper Hulls
	2.1 Description of the Algorithm Quick Union Hull
	2.2 Complexity Analysis of the Quick Union Hull Algorithm

	3 Synergistic Computation of Convex Hulls
	3.1 Linear Time Partitioning Algorithm
	3.2 Synergistic Algorithm to Compute the Convex Hull

	References




