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1. Introduction

In this paper, we study the existence and nonexistence of solutions to the following 
nonlinear differential equations

−M±
λ,Λ(u′′) + V (x)u = f(u) in R, u > 0 in R, lim

|x|→∞
u(x) = 0. (1.1)

Here V and f are given functions, 0 < λ ≤ Λ < ∞ constants and M±
λ,Λ(s) the Pucci 

operators defined by

M+
λ,Λ(s) :=

{
Λs if s ≥ 0,
λs if s < 0,

M−
λ,Λ(s) :=

{
λs if s ≥ 0,
Λs if s < 0.

We remark that when λ = Λ, one has M±
λ,Λ(u′′) = λu′′.

One of motivations to study equations like (1.1) is to see to what extent the properties 
and the results in the semilinear case can be generalized to the fully nonlinear case. When 
λ = Λ, (1.1) is well studied and it is proved that (1.1) has a solution for various V (x)
and f(s) by critical point theory. Here we refer to [11,12] and references therein.

On the other hand, when λ �= Λ, (1.1) is not studied well. In [7], instead of (1.1), the 
authors study the existence of positive radial solutions of

−M±
λ,Λ(D2u) + γu = f(u) in BR(0) ⊂ RN , u = 0 on ∂BR(0) (1.2)

as well as

−M±
λ,Λ(D2u) + u = up in RN .

Here N ≥ 3, 0 ≤ γ and 1 < p < p±∗ where p±∗ are critical exponents for M±
λ,Λ (see also [1,

3,5,6]). Recently, in [9], the authors show the existence of infinitely many radial solutions 
of (1.2) when γ = 0 and f(s) = |s|p−1s. Moreover, in [9], the inhomogeneous case is also 
considered and the existence of infinitely many solutions is shown on a bounded annulus.

In this paper, we aim to treat the inhomogeneous equation on the unbounded do-
main R. We emphasis that in general the existence of solutions to (1.1) is delicate when 
the equation is inhomogeneous and the domain is unbounded. Indeed, we shall prove the 
nonexistence result when V (x) is monotone. See Theorem 1.2 below.

We first deal with the existence result. For V (x), we assume

(V1) V ∈ W 1,∞(R) and 0 < infR V =: V0.
(V2) For a.a. x ∈ (−∞, 0) and a.a. y ∈ (0, ∞), V ′(x) ≤ 0 ≤ V ′(y).
(V3) V (0) ≤ V∞ := lim|x|→∞ V (x) and there exist C0, ξ0 > 0 such that

(for M+
λ,Λ) (0 ≤)V∞ − V (x) ≤ C0 exp

(
−2

√
V∞
Λ + ξ0|x|

)
for all x ∈ R,
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(for M−
λ,Λ) (0 ≤)V∞ − V (x) ≤ C0 exp

(
−2

√
V∞
λ

+ ξ0|x|
)

for all x ∈ R.

Next, for f(s), we suppose the following conditions and an example of f(s) is f(s) =∑k
i=1 ais

pi where 0 < ai and 1 < pi:

(f1) f ∈ C1(R) and f(s) = 0 for all s ≤ 0.
(f2) There exists an η0 > 0 such that lims→0 s

−1−η0f(s) = 0.
(f3) As s → ∞,

f(s)
s

→ ∞ and f(θs)
f(s) → f̄(θ) in Cloc((0, 1]).

(f4) s 	→ s−1f(s) : (0, ∞) → R is strictly increasing.

Remark 1.1. (i) In (f3), it follows that f̄ ∈ C((0, 1]), f̄(1) = 1 and f̄(θ) ≥ 0 for θ ∈ (0, 1]. 
For example, when f(s) = sp and f(s) = s log s, one sees f̄(θ) = θp and f̄(θ) = θ

respectively.
(ii) When λ = Λ, condition (f4) is used to obtain bounded Palais–Smale sequences. 

The classical condition to obtain bounded Palais–Smale sequences is the Ambrosetti–
Rabinowitz condition: 0 < μF (s) ≤ f(s)s for some μ > 2 and all s > 0 where 
F (s) :=

∫ s

0 f(t)dt. We remark that (f1)–(f4) do not imply this condition. In fact, consider 
a function defined by

f(s) = η(s)sp + (1 − η(s))Cs log s

where 1 < p, η ∈ C∞([0, ∞), R), η′(s) ≤ 0 for every s ∈ [0, ∞), η(s) = 1 if 0 ≤ s ≤ 2, 
η(s) = 0 if 3 ≤ s and C > 0 is chosen so that C log s ≥ sp−1 in [2, 3]. It is easily seen 
that f satisfies (f1)–(f4) with f̄(θ) = θ and that F (s) has the growth s2 log(s) as s → ∞, 
providing the required counterexample.

Under these conditions, we have

Theorem 1.1. Under (V1)–(V3) and (f1)–(f4), (1.1) have a solution.

Next, we turn to the nonexistence result. In this case, we assume that V (x) is mono-
tone:

(V2’) V ′(x) ≥ 0 in R and

V = lim
x→−∞

V (x) < lim
x→∞

V (x) = V .

Then we have
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Theorem 1.2. Let 0 < λ ≤ Λ < ∞ and assume (V1), (V2’), (f1), (f4) and

lim
s→0

f(s)
s

= 0. (1.3)

Then (1.1) have no solution.

Remark 1.2. Theorem 1.2 still holds when we replace (V2’) by

V ′(x) ≤ 0 in R, V = lim
x→−∞

> lim
x→∞

V (x) = V .

Here we make some comments on the proofs of Theorems 1.1 and 1.2. First, even 
though equation (1.1) can be transformed into an equation with variational structure 
(pointed by Professor Evans), we prefer to use degree theoretic arguments in view of 
future applications. For Theorem 1.1, we borrow the idea in [4] (cf. [7]). More precisely, 
we will find a suitable function space X which is a Banach space, and rewrite (1.1) into 
the equations (id − L±)(u) = 0 where L±(u) := (−M±

λ,Λ + V (x))−1f(u(x)) for u ∈ X. 
To find a solution u �= 0, we use the Leray–Schauder degree degX in X and prove that

i) There exists an r0 > 0 such that degX(id − L±, Br0(0), 0) = 1.
ii) There exists an r1 > r0 such that degX(id − L±, Br1(0), 0) = 0.

From i) and ii), we have degX(id − L±, Ar0,r1 , 0) �= 0 and find a u0 ∈ Ar0,r1 so that 
(id − L±)(u0) = 0 where Ar0,r1 := {u ∈ X | r0 < ‖u‖X < r1}. One of difficulties here 
is to find a suitable X in order that we can prove the property ii) as well as the map 
L± : X → X is compact. A key for proving ii) is a priori estimates of solutions in X. 
Since we treat the unbounded domain, we need the uniform decay estimates of solutions 
as well as the uniform L∞-bounds. This point is different from the bounded domain case 
and requires delicate arguments. For instance, see Proposition 2.9 below.

We also point out that the argument of Proposition 2.9 is useful to show the nonexis-
tence result namely, Theorem 1.2. Indeed, this case is simpler than Proposition 2.9 and 
we will prove Theorem 1.2 in section 3.

In Appendix A, we consider (1.1) in the special case when V (x) ≡ const. > 0. In this 
case, we can prove the unique existence of solutions up to translations. See Proposition 2.1
and Appendix A.

Finally, we would like to make some comments about the higher dimensional version 
of our problem, that is, the existence and nonexistence of positive solutions to equation

−M±
λ,Λ(D2u) + V (x)u = f(u) in RN , u(x) → 0 as |x| → ∞.

In the general case this problem may be quite challenging because of the non-divergence 
form and non-differentiability of the differential operator. In the radial case, the problem 
may still be hard because of the presence of the singular and non-homogeneous term 
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(N−1)u′(r)/r, which comes from D2u. In one-dimensional case, we exploit the fact that 
any function in S±

t has only one maximum point in R (see Lemma 2.6 for the definition of 
S±
t and Lemma 2.7 for the monotonicity property). From here we determine the number 

of changes of concavity of functions in S±
t , which is needed for the estimation of energy 

En and to complete the arguments. In the radial case, these monotonicity and concavity 
properties may become quite subtle due to the presence of the singular term. In the case 
of V (r) ≡ constant > 0 we refer to [8], where some of these properties are explored in 
the study of uniqueness of positive solutions. It would be interesting to see whether an 
ODE approach as in [8] works well in the higher-dimensional case.

2. Proof of Theorem 1.1

Throughout this section, we always assume (f1)–(f4) and (V1)–(V3). We begin with 
the existence result when V (x) ≡ const. > 0.

Proposition 2.1. Under (f1)–(f4), the equations
⎧⎨
⎩

−M+
λ,Λ(u′′) + V∞u = f(u) in R, u > 0 in R,

u(x) → 0 as |x| → ∞, u(0) = max
x∈R

u(x)
(2.1)

and ⎧⎨
⎩

−M−
λ,Λ(u′′) + V∞u = f(u) in R, u > 0 in R,

u(x) → 0 as |x| → ∞, u(0) = max
x∈R

u(x)
(2.2)

have unique solutions ω+ and ω−. Furthermore, there exist z± > 0, c1 > 0 and c2 > 0
such that

ω′′
±(x) < 0 = ω′′

±(z±) < ω′′
±(y) for every x, y ∈ R with |x| < z± < |y|,

ω±(x) ≤ c1 exp(−c2|x|) for all x ∈ R.

Finally, if u satisfies

−M±
λ,Λ(u′′) + V∞u = f(u) in R, u > 0 in R,

u(0) = max
R

u, u(x) → 0 if x → ∞ or x → −∞,

then u = ω±.

We shall prove Proposition 2.1 in Appendix A.
From now on, we may assume V (0) < V∞ in (V3) and V (x) is not a constant function 

without loss of generality. Under this additional assumption, we fix an η1 > 0 so that
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η1 < c2, Λη2
1

(
1 + η0

2

)2
<

V0

2 , (2.3)

where V0 := infR V > 0, and η0 > 0 and c2 > 0 appear in (f2) and Proposition 2.1. We 
set

Xη1 :=
{
v ∈ C(R)

∣∣∣ ‖v‖η1 = sup
x∈R

eη1|x||v(x)| < ∞
}
.

It is easy to check that (Xη1 , ‖ · ‖η1) is a Banach space.

Lemma 2.2. For every v ∈ Xη1 , the equations

−M±
λ,Λ(u′′) + V (x)u = f(v(x)) in R, u ∈ Xη1 ,

have unique solutions.

Proof. We prove the claim at the same time for M+
λ,Λ and M−

λ,Λ. Let v ∈ Xη1 . For each 
n ∈ N, consider

{
−M±

λ,Λ(u′′) + V (x)u = f(v(x)) in (−n, n),

u(−n) = 0 = u(n).

Then the above equations have a unique solution un ∈ C2([−n, n]) due to (V1). In fact, 
since f(s) ≥ 0 by (f1), (f2) and (f4), u ≡ 0 is a subsolution of the above equation. In 
addition, it is easily seen that the function c(n2 − x2) with sufficiently large c > 0 is a 
supersolution. Thus, a solution un to the above equation exists and it is unique from the 
standard argument.

Now, the maximum principle yields un ≥ 0 in [−n, n]. Moreover, we have

‖un‖L∞(−n,n) ≤ V −1
0 ‖f(v)‖L∞(R).

Indeed, let xn ∈ (−n, n) be a maximum point of un. It follows from the equation and 
u′′
n(xn) ≤ 0 that

‖un‖L∞(−n,n) = un(xn) ≤
‖f(v)‖L∞(R)

V (xn) ≤
‖f(v)‖L∞(R)

V0
. (2.4)

Next we shall show that there exist C3 > 0 and δ0 > η1 such that

un(x) ≤ C3e
−δ0|x| for all x ∈ R and n ≥ 1. (2.5)

To this end, we first notice that (f2) yields

f(s) ≤ C4|s|1+η0 for all |s| ≤ ‖v‖L∞ .
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Hence, by the definition of ‖ · ‖η1 , we obtain

f(v(x)) ≤ C4|v(x)|1+η0 ≤ C4‖v‖1+η0
η1

e−(1+η0)η1|x| ≤ C5e
−(1+η0)η1|x| (2.6)

for all x ∈ R. Recalling (2.3), fix an R0 > 0 so that

−Λη2
1

(
1 + η0

2

)2
+ V0 − C5e

−η0η1R0/2 ≥ V0

4 > 0. (2.7)

We only treat n with n > R0 and set

M := 1 + ‖f(v)‖L∞

V0
, ω0(x) := Me−

(
1+ η0

2
)
η1(|x|−R0).

Noting (2.3), (2.6), (2.7) and

ω′′
0 =

(
1 + η0

2

)2
η2
1ω0 ≥ 0, M ≥ 1,

we get the following: for all R0 ≤ |x| ≤ n,

−M±
λ,Λ(ω′′

0 ) + V ω0 − f(v)

≥ −M±
λ,Λ(ω′′

0 ) + V ω0 −Mf(v)

≥
{
−Λ

(
1 + η0

2

)2
η2
1 + V

}
ω0 −MC5e

−(1+η0)η1|x|

≥
[{

−Λ
(
1 + η0

2

)2
η2
1 + V

}
e
(
1+ η0

2
)
η1R0 − C5e

−η0η1|x|/2
]
Me−(1+ η0

2 )η1|x|

≥
[
−Λ

(
1 + η0

2

)2
η2
1 + V0 − C5e

−η0η1R0/2
]
Me−

(
1+ η0

2
)
η1|x|

≥ 0.

Since

M+
λ,Λ(m1) −M+

λ,Λ(m2) ≥ M−
λ,Λ(m1 −m2),

M−
λ,Λ(m1) −M−

λ,Λ(m2) ≥ M−
λ,Λ(m1 −m2)

(2.8)

for all m1, m2 ∈ R, we have

−M−
λ,Λ(ω′′

0 − u′′
n) + V (x)(ω0 − un) ≥ 0

for each R0 ≤ |x| ≤ n. From (2.4) and the definitions of M and ω0, we have

un(±R0) ≤ M = ω0(±R0), 0 = un(±n) < ω0(±n).
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By the comparison principle, we get

un(x) ≤ ω0(x) for all R0 ≤ |x| ≤ n.

Thus, (2.5) holds with δ0 := (1 + η0/2)η1.
By the elliptic regularity, one sees that (un) is bounded in C2

loc(R), hence there exists 
(unk

) such that unk
→ u0 in C2

loc(R), where u0 satisfies

−M±
λ,Λ(u′′

0) + V (x)u0 = f(v(x)) in R.

Moreover, from (2.5), we obtain

u0(x) ≤ C6e
−δ0|x| in R.

Since δ0 > η1, u0 ∈ Xη1 and the existence of solutions is proved.
For the uniqueness, let u1, u2 ∈ Xη1 be solutions of

−M±
λ,Λ(u′′) + V (x)u = f(v(x)) in R

and set w(x) := u1(x) − u2(x). Then it follows from (2.8) that ±w(x) satisfy

−M−
λ,Λ(u′′) + V (x)u ≥ 0 in R.

Noting that w(x) → 0 as |x| → ∞, combining with the above inequality, ±w(x) do not 
have any negative minimum on R. Hence, w ≡ 0 and u1 ≡ u2. Thus we complete the 
proof. �
Definition 2.3. For v ∈ Xη1 , we denote by L±(v) the unique solutions of

−M±
λ,Λ(u′′) + V (x)u = f(v) in R, u ∈ Xη1 .

Thanks to Lemma 2.2, L± : Xη1 → Xη1 . Furthermore,

Lemma 2.4. The maps L± : Xη1 → Xη1 are compact.

Proof. Let (vn) ⊂ Xη1 be a bounded sequence and put un = L±(vn). We first show that 
(un) has a convergent subsequence in Xη1 . Set

M1 = sup
n≥1

‖vn‖η1 .

Then we have

vn(x) ≤ M1e
−η1|x| for all x ∈ R,
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and there exists an M2 > 0 such that

‖un‖L∞ ≤ ‖f(vn)‖L∞

V0
≤ M2 for all n ≥ 1

(see the beginning of proof of Lemma 2.2). Now as in (2.6) and (2.7), choose an R2 > 0
so large that, for |x| ≥ R2 we have

f(vn(x)) ≤ C7e
−(1+η0)η1|x|

and

−Λη2
1

(
1 + η0

2

)2
+ V0 − C7e

−η0η1|x|/2 ≥ V0

4 > 0.

For R > R2, set

wR(x) := M3

[
e−

(
1+ η0

2
)
η1(|x|−R2) + e

(
1+ η0

2
)
η1(|x|−R)

]

where M3 := 1 +M2. Since w′′
R =

(
1 + η0

2
)2

η2
1wR ≥ 0, as in the proof of Lemma 2.2, for 

all R2 ≤ |x| ≤ R, we get

−M±
λ,Λ(w′′

R) + V (x)wR − f(vn)

≥ −M±
λ,Λ(w′′

R) + V (x)wR −M3f(vn)

≥
{
−Λ

(
1 + η0

2

)2
η2
1 + V

}
M3

[
e−

(
1+ η0

2
)
η1(|x|−R2) + e

(
1+ η0

2
)
η1(|x|−R)

]
−M3C7e

−(1+η0)η1|x|

≥
[
−Λ

(
1 + η0

2

)2
η2
1 + V0 − C7e

−η0η1R2/2
]
M3e

−
(
1+ η0

2
)
η1|x|

+
[
−Λ

(
1 + η0

2

)2
η2
1 + V0

]
e
(
1+ η0

2
)
η1(|x|−R)

≥ 0 = −M±
λ,Λ(u′′

n) + V (x)un − f(vn).

Noting

0 ≤ un(±R2) ≤ M2 ≤ wR(±R2) and 0 ≤ un(±R) ≤ M2 ≤ wR(±R),

the comparison principle gives

un(x) ≤ wR(x) = M3

[
e−

(
1+ η0

2
)
η1(|x|−R2) + e

(
1+ η0

2
)
η1(|x|−R)

]
,

for all R2 ≤ |x| ≤ R and n ≥ 1. Letting R → ∞, we obtain
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un(x) ≤ C8e
−(1+ η0

2 )η1|x| for all x ∈ R and n ≥ 1.

Using this exponential decay and the equation, we observe that there exists C9 > 0 such 
that

‖un‖L∞ + ‖u′
n‖L∞ + ‖u′′

n‖L∞ ≤ C9 for all n ≥ 1.

Thus, there exists (unk
) such that unk

→ u0 in C2
loc(R), where u0 satisfies

u0(x) ≤ C8e
−
(
1+ η0

2
)
η1|x| for all x ∈ R.

This implies that u0 ∈ Xη1 and unk
→ u0 in Xη1 . Hence, (un) is relatively compact 

in Xη1 .
Finally, we prove the continuity of L±. If vn → v0 in Xη1 , then arguing as in the 

above, there exists a subsequence (unk
) such that unk

→ u0 in Xη1 ∩ C2
loc(R) where u0

satisfies

−M±
λ,Λ(u′′

0) + V (x)u0 = f(v0) in R.

By Lemma 2.2, u0 is uniquely determined and does not depend on choices of subse-
quences. Therefore, it is easily seen that the whole sequence (un) converges to u0 in Xη1

and the maps L± are continuous. �
Using L±, the fact f(s) ≥ 0 for every s ∈ R and the strong maximum principle, we 

notice that u ∈ Xη1 is a solution of (1.1) if and only if u = L±(u) with u �= 0.
Next, in order to find a nontrivial fixed point of L± in Xη1 , following the idea in [4]

(cf. [7]), we shall show that

i) There exists an r0 > 0 such that degXη1
(id − L±, Br0(0), 0) = 1.

ii) There exists an r1 > r0 such that degXη1
(id − L±, Br1(0), 0) = 0.

Here degXη1
(id − L±, Ω, 0) stands for the degree of the map id − L± in Xη1 . From i) 

and ii), it follows that

id − L± �= 0 on ∂Ar0,r1 and degXη1
(id − L±, Ar0,r1 , 0) = −1

where Ar0,r1 := {u ∈ Xη1 | r0 < ‖u‖η1 < r1}. Thus, if we can prove i) and ii) we can find 
a solution of (1.1) in Ar0,r1 .

First we show i), namely,

Lemma 2.5. There exists an r0 > 0 such that degXη1
(id − L±, Br0(0), 0) = 1.
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Proof. It suffices to prove that there exists an r0 > 0 such that (id − βL±)(u) �= 0 for 
all u ∈ ∂Br0(0) and all β ∈ [0, 1] since the homotopy invariance gives

degXη1
(id − L±, Br0(0), 0) = degXη1

(id, Br0(0), 0) = 1.

We first notice that for β > 0, the equations u = βL±(u) are equivalent to

−M±
λ,Λ(u′′) + V (x)u = βf(u) in R

for u ∈ Xη1 . If u ∈ Xη1 \{0} satisfies u = βL±(u) with β > 0, then the fact that f(s) ≥ 0
for all s ∈ R yields u > 0 in R. Since u(x) → 0 as |x| → ∞, let x0 ∈ R be a maximum 
point of u. As in the proof of Lemma 2.2, from β ∈ [0, 1] and f(s) > 0 for s > 0 due to 
(f4), we get

0 < V0 ≤ V (x0) ≤
βf(u(x0))
u(x0)

≤ f(u(x0))
u(x0)

.

By (f2), we may find a δ1 > 0, which is independent of β and u, so that

δ1 ≤ u(x0) = ‖u‖L∞ ≤ ‖u‖η1

for all u ∈ Xη1 \{0} and β ∈ (0, 1] with u = βL±(u). Therefore, selecting an r0 ∈ (0, δ1), 
we see that

(id − βL±)(u) �= 0

for all u ∈ ∂Br0(0) and for all β ∈ (0, 1]. Thus the lemma holds. �
To show ii), we need some preparations. From (V3), we may select a κ0 > 0 so that

[−3κ0, 3κ0] ⊂ [V∞ − V > 0] := {x ∈ R | V∞ − V (x) > 0}. (2.9)

Next choose a ϕ0 ∈ C∞
0 (R) satisfying

ϕ0(−x) = ϕ0(x), 0 ≤ ϕ0 ≤ 1 in R, ϕ′
0(x) ≤ 0 in [0,∞),

ϕ0(x) = 1 if 0 ≤ x ≤ κ0, ϕ0(x) = 0 if 2κ0 ≤ x.
(2.10)

Then we first prove

Lemma 2.6. There exists a t̃ = t̃(f, V∞) > 0 such that

κ2
0

4Λ t ≤ ‖u‖L∞([−κ0,κ0]) ≤ ‖u‖Xη1
for each t ≥ t̃ and u ∈ S±

t (2.11)

where
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S±
t := {u ∈ Xη1 | −M±

λ,Λ(u′′) + V (x)u = f(u) + tϕ0}.

Proof. By (f2) and (f3), there exists a c(f, V∞) > 0 such that

inf
0≤s

(
f(s)
s

− V∞

)
s ≥ −c(f, V∞).

Choose a t̃ = t̃(f, V∞) > 0 so that if t ≥ t̃, then −c(f, V∞) + t ≥ t/2. For this t̃, we shall 
prove that (2.11) holds.

Let t ≥ t̃ and u ∈ S±
t . Since t > 0, we have u �≡ 0. Thus u > 0 in R due to f(s) ≥ 0

in R and the strong maximum principle. Hence, (V3) yields

−M±
λ,Λ(u′′) = f(u) + tϕ0 − V (x)u =

(
f(u)
u

− V (x)
)
u + tϕ0

≥
(
f(u)
u

− V∞

)
u + tϕ0 ≥ −c(f, V∞) + tϕ0 in R.

By the definition of ϕ0, we see

−M±
λ,Λ(u′′) ≥ t

2 in [−κ0, κ0],

which implies

u′′ ≤ − t

2Λ in [−κ0, κ0].

Integrating the inequality over [x, y] ⊂ [−κ0, κ0], one has

u′(y) ≤ u′(x) − t

2Λ(y − x) for − κ0 ≤ x ≤ y ≤ κ0. (2.12)

Now we divide our arguments into two cases:

Case 1. There exists an x0 ∈ [−κ0, 0] such that u′(x0) ≤ 0.

Case 2. u′ > 0 in [−κ0, 0].

In Case 1, we put x = x0 and integrate (2.12) in y over [x0, κ0] to obtain

u(κ0) ≤ u(x0) + u′(x0)(κ0 − x0) −
t

4Λ(κ0 − x0)2 ≤ u(x0) −
t

4Λ(κ0 − x0)2.

Hence,

‖u‖L∞([−κ0,κ0]) ≥ u(x0) ≥ u(κ0) + t

4Λ(κ0 − x0)2 ≥ t

4Λ(κ0 − x0)2 ≥ κ2
0

4Λ t.

Thus (2.11) holds.
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In Case 2, putting y = 0 in (2.12), it follows that

− t

2Λx ≤ u′(x) for every x ∈ [−κ0, 0].

Integrating this inequality over [−κ0, 0], we obtain

κ2
0

4Λ t ≤ u(0) − u(−κ0) < u(0) ≤ ‖u‖L∞([−κ0,κ0]).

Thus (2.11) holds and we complete the proof. �
Next, we shall prove some properties of elements in S±

t .

Lemma 2.7. Let t ≥ 0 and u ∈ S±
t \ {0}. Then either

(i) There exists an x0 ∈ R such that u′(y) < 0 < u′(x) for all x < x0 < y

or else
(ii) There are y0 < 0 < z0 such that u′(y0) = 0 = u′(z0) and u′(x) �= 0 if x �= y0, z0.
In particular, every u ∈ S±

t \ {0} has only one maximum point in R.

Proof. For u ∈ S±
t \ {0}, it suffices to prove the following claim:

Claim. If u′(z0) = 0 holds for some z0 ≥ 0, then u′(x) < 0 for every x > z0. Similarly, if 
u′(y0) = 0 holds for y0 ≤ 0, then u′(x) > 0 for all x < y0. In particular, each u ∈ S±

t \{0}
has at most one critical point in [0, ∞] (resp. (−∞, 0]).

We first remark that since u(−x) satisfies the same type of equation by (2.10) and 
(V1)–(V3), it is enough to prove the first assertion. To this end, suppose that z0 ≥ 0
satisfies u′(z0) = 0 and set, for all x ∈ R,

ũ(x) = u(z0 + |x|), Ṽ (x) = V (z0 + |x|) and ϕ̃0(x) = ϕ0(z0 + |x|).

Then, since u′(z0) = 0 and z0 ≥ 0, ũ ∈ C1(R) ∩ C2(R \ {0}), ũ(x) → 0 as |x| → ∞. 
Moreover ũ, Ṽ and ϕ̃0 are even and Ṽ ′(x) ≥ 0, ϕ̃′

0(x) ≤ 0 for a.a. x ≥ 0 and

−M±
λ,Λ(ũ′′) + Ṽ ũ = f(ũ) + tϕ̃0 in R \ {0}.

Furthermore, by the differential equations and u ∈ C2(R), we have ũ ∈ C2(R) and the 
equation above is satisfied in R.

We shall prove Claim by the moving plane method. For λ > 0, define xλ = 2λ − x, 
Σλ = {x ∈ (0, ∞) | λ < x} and

uλ(x) = ũ(xλ) − ũ(x), ϕλ(x) = ϕ̃0(xλ) − ϕ̃0(x).

Since
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−M±
λ,Λ(ũ′′)(xλ) + Ṽ (xλ)ũ(xλ) = f(ũ(xλ)) + tϕ̃0(xλ)

−M±
λ,Λ(ũ′′)(x) + Ṽ (x)ũ(x) = f(ũ(x)) + tϕ̃0(x),

we have

−
(
M±

λ,Λ(ũ′′)(xλ) −M±
λ,Λ(ũ′′)(x)

)
+

(
Ṽ (xλ) − Ṽ (x)

)
ũ(xλ) + Ṽ (x)uλ

= f(ũ(xλ)) − f(ũ(x)) + t(ϕ̃0(xλ) − ϕ̃0(x)).

Noting (2.8), |xλ| ≤ |x|, Ṽ (xλ) ≤ Ṽ (x) and ϕ̃0(x) ≤ ϕ̃0(xλ) for all x ∈ Σλ, we have

−M−
λ,Λ(u′′

λ) + Ṽ (x)uλ ≥ f(ũ(xλ)) − f(ũ(x)) in Σλ.

Moreover, from

f(ũ(xλ)) − f(ũ(x)) =
1∫

0

f ′(ũ(x) + θuλ(x))dθuλ(x)

=: gλ(x)uλ(x),

we have

−M−
λ,Λ(u′′

λ) + (Ṽ (x) − gλ(x))uλ(x) ≥ 0 in Σλ.

Since ũ > 0 in R, f ′(0) = 0 by (f1) and ũ(x) → 0 as x → ∞, it is not difficult to see 
that the strong maximum principle implies that for all λ sufficiently large,

uλ > 0 in Σλ, u′
λ(λ) = −2ũ′(λ) = −2u′(z0 + λ) > 0. (2.13)

Next, set

λ∗ = inf{λ > 0 |uλ̃ > 0 in Σλ̃ for all λ̃ > λ}.

From the above observation, we have 0 ≤ λ∗ < ∞. In addition, notice that if uλ ≥ 0
in Σλ, then

0 ≤ −M−
λ,Λ(u′′

λ) +
(
Ṽ (x) − gλ(x)

)
uλ(x)

≤ −M−
λ,Λ(u′′

λ) +
(
Ṽ (x) − gλ(x)

)
+ uλ(x) in Σλ.

In particular, since uλ∗ ≥ 0 in Σλ∗ , the strong maximum principle yields either
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(i) uλ∗ > 0 in Σλ∗ , u′
λ∗

(λ∗) > 0
or else

(ii) uλ∗ ≡ 0 in Σλ∗ .

Next we prove that if μ > 0 and uμ > 0 in Σμ hold, then there exists an εμ > 0 such 
that uμ̃ > 0 in Σμ̃ provided |μ − μ̃| < εμ. To see this, we remark that

uμ̃ → uμ in C1
loc([μ,∞)).

Since u′
μ(μ) > 0 holds due to uμ > 0 in Σμ and the strong maximum principle, for 

sufficiently small εμ, we observe that |μ − μ̃| < εμ implies uμ̃ > 0 in (μ̃, Rε) where Rε > 0
is chosen so that x ≥ Rε implies gμ̃(x) ≤ V0/2.

From

−M−
λ,Λ(u′′

μ̃) + (V − V0/2)uμ̃ ≥ 0 in [Rε,∞), uμ̃(x) → 0 as x → ∞

and the strong maximum principle, uμ̃ cannot take a non-positive minimum. Hence 
|μ − μ̃| < εμ implies uμ̃ > 0 in Σμ̃ and u′

μ̃(μ̃) > 0.
By this claim we see that if uλ∗ > 0 in Σλ∗ , then λ∗ = 0. Thus, λ∗ = 0 holds provided 

(i) occurs. Moreover, we also see from (2.13) that ũ′(x) < 0 for all x > 0.
On the other hand, let us consider the case λ∗ > 0 and uλ∗ ≡ 0 in Σλ∗ . In this case, 

we notice that −2ũ′(λ) = u′
λ(λ) > 0 for all λ > λ∗ and ũ(2λ∗ − x) = ũ(x) for all x ≥ λ∗. 

Since ũ′(0) = 0, we have ũ′(2λ∗) = 0, which is a contradiction. Hence, (ii) only occurs 
when λ∗ = 0 and it follows from (2.13) that ũ′(x) < 0 for all x > 0.

By the above observations, we obtain λ∗ = 0 and ũ′(x) < 0 for all x > 0, which 
implies u′(x) < 0 for all x > z0. Thus we complete the proof. �
Lemma 2.8. There exists an M0 > 0 such that

‖u‖L∞(R) ≤ M0 for each u ∈ S±
t and t ≥ 0.

Proof. We argue by contradiction and suppose that there are (sn) ⊂ [0, ∞) and un ∈ S±
sn

such that τn := ‖un‖L∞(R) → ∞. Thanks to Lemma 2.7, let (xn) ⊂ R be a unique 
maximum point of (un) and set

vn(x) := 1
τn

un

(
xn +

√
τn

f(τn)x
)
, ϕn(x) := ϕ0

(
xn +

√
τn

f(τn)x
)
,

Vn(x) := V

(
xn +

√
τn

f(τn)x
)
.

Then vn satisfies

vn(x) ≤ vn(0) = 1, −M±
λ,Λ(v′′n) + τn

Vnvn = f(τnvn) + sn
ϕn in R.
f(τn) f(τn) f(τn)
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Recalling Lemma 2.6, we have

κ2
0

4Λsn − κ2
0

4Λ t̃ ≤ ‖un‖L∞(R) = τn for all n.

Hence, by (f3), sn/f(τn) → 0 as n → ∞. Moreover, noting that f(s) is increasing in 
[0, ∞) by (f4), it follows from vn(x) ≤ 1 that

0 ≤ f(τnvn)
f(τn) ≤ 1 in R.

Noting v′n(0) = 0 and τn/f(τn) → 0, we may extract a subsequence (still denoted by (n)) 
such that

vn → v0 ∈ C1
loc(R), 0 ≤ v0 ≤ 1 in R, v0(0) = 1, v′0(0) = 0.

Furthermore, by 0 ≤ vn ≤ 1 and (f3), we have

f(τnvn)
f(τn) → f̄(v0) in Cloc([v0 > 0]).

Since 0 ∈ [v0 > 0], let I be a component of [v0 > 0] satisfying 0 ∈ I. Then we have

vn → v0 in C2
loc(I), −M±

λ,Λ(v′′0 ) = f̄(v0) in I.

When I = (−c2, c1) and c1 < ∞, since v′0(0) = 0, v0(0) = 1, f̄ ≥ 0, f̄(1) = 1 > 0 and 
v0(c1) = 0, we observe that v′0(c1) < 0, however, this contradicts 0 ≤ v0 ≤ 1 in R.

On the other hand, if I = (−c2, ∞), then by v′0(0) = 0, v0(0) = 1 and −M±
λ,Λ(v′′0 ) =

f̄(v0), we observe that v0 must hit a zero at some x0 > 0 with v′0(x0) < 0, however this 
contradicts 0 ≤ v0 ≤ 1 again. Hence, Lemma 2.8 holds and we complete the proof. �

The next proposition is a key in order to prove degXη1
(id − L±, Br1(0), 0) = 0 for 

some r1 > r0.

Proposition 2.9. There exists an M1 > 0 such that

‖u‖Xη1
≤ M1 for each u ∈ S±

t and t ≥ 0.

Assuming Proposition 2.9, we first prove Theorem 1.1. Before the proof, we remark 
that for every t ≥ 0 and v ∈ Xη1 , the equations

−M±
λ,Λ(u′′) + V (x)u = f(v) + tϕ0 in R

have unique solutions in Xη1 . Indeed, we may prove this claim in a similar way to the 
proof of Lemma 2.2 thanks to ϕ0 ∈ C∞

0 (R). Thus, we denote by F±(t, v) these unique 
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solutions. Furthermore, we may show that the maps (t, v) 	→ F±(t, v) : [0, ∞) ×Xη1 →
Xη1 are compact as in Lemma 2.4.

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Choose r1 := M1 + κ2
0

4Λ t̃+r0 where M1, t̃ and r0 appear in Propo-
sition 2.9 and Lemmas 2.6 and 2.5. We first claim that

u− F±(t1, u) �= 0 in Br1 (2.14)

where t1 > t̃ is chosen so that κ2
0

4Λ t1 > r1. Indeed, let u ∈ Br1 satisfy u − F±(t1, u) = 0. 
Noting u ∈ S±

t1 and t1 > t̃, Lemma 2.6 gives a contradiction:

r1 ≥ ‖u‖Xη1
≥ ‖u‖L∞(R) ≥

κ2
0

4Λ t1 > r1.

Hence, (2.14) holds.
Since Proposition 2.9 and the choice of r1 imply

u− F±(t, u) �= 0 on ∂Br1 for every t ≥ 0,

it is easily seen from (2.14) and the homotopy invariance of degree that

degXη1
(id − L±, Br1(0), 0) = 0.

Combining this with Lemma 2.5, we obtain

degXη1
(id − L±, Ar0,r1 , 0) = −1

and solutions of (1.1) in Ar0,r1 . This completes the proof. �
Before proceeding to the proof of Proposition 2.9, we remark the following fact on the 

function g∞(s) := f(s) − V∞s, which will be used below.

Fact. There exists a unique s∞ > 0 such that

g∞(s) < 0 = g∞(s∞) < g∞(t) for all 0 < s < s∞ < t. (2.15)

This fact follows from (f1)–(f4). In fact, for sufficiently small s > 0, by (f2), we get 
g∞(s) < 0. On the other hand, (f3) yields g∞(s) → ∞ as s → ∞, hence, there exists an 
s∞ > 0 so that g∞(s∞) = 0. Moreover, from

g∞(s) = s

(
f(s)
s

− V∞

)

and (f4), we see that (2.15) holds.
Now we prove Proposition 2.9.
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Proof of Proposition 2.9. We argue indirectly and suppose that there exists (sn, un) ∈
[0, ∞) ×Xη1 such that un ∈ S±

sn and ‖un‖Xη1
→ ∞. Remark that un satisfies

−M±
λ,Λ(u′′

n) + V un = f(un) + snϕ0 in R.

By Lemma 2.7, un has only one maximum point and denote it by xn. Our first aim is 
to show

(xn) is bounded. (2.16)

To prove (2.16), suppose that xn → ∞. We may assume 3κ0 < xn. Setting

vn(x) := un(x + xn), Vn(x) := V (x + xn), ϕn(x) := ϕ0(x + xn),

we see ϕn ≡ 0 in [0, ∞) thanks to 3κ0 < xn. Furthermore, by Lemma 2.7, we have

−M±
λ,Λ(v′′n) + Vnvn = f(vn) + snϕn in R, vn(0) = max

R
vn > 0,

v′n(y) ≤ 0 ≤ v′n(x) for x < 0 < y, Vn → V∞, snϕn → 0 in Cloc(R).

In the sequel, we divide our arguments into several steps.

Step 1. One has

vn → ω± strongly in C2
loc(R) (2.17)

where ω± are unique solutions of (2.1) and (2.2) (see Proposition 2.1).

We first notice that (vn) is bounded in L∞(R) due to Lemma 2.8. Combining with 
Vn → V∞ and snϕn → 0 in Cloc(R), we may extract a subsequence (still denoted by 
(n)) so that

vn → v0 in C2
loc(R), −M±

λ,Λ(v′′0 ) + V∞v0 = f(v0) in R,

v0(0) = max
R

v0, 0 ≤ v0 in R, v′0(y) ≤ 0 ≤ v′0(x) for x < 0 < y.

By vn(0) = maxR vn, we have v′′n(0) ≤ 0. Since vn(0) > 0 and ϕn ≡ 0 on [0, ∞), we get

f(vn(0)) = −M±
λ,Λ(v′′n(0)) + Vn(0)vn(0) ≥ Vn(0)vn(0),

which implies

Vn(0) ≤ f(vn(0))
.

vn(0)
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By Vn(0) → V∞ and (f2), we may find a δ0 > 0 so that vn(0) ≥ δ0 for all n. Thus 
v0(0) ≥ δ0 and v0 > 0 in R. Now from v′0(y) ≤ 0 in [0, ∞), one has

v0,∞ := lim
y→∞

v0(y) ≥ 0.

Since −M±
λ,Λ(v′′0 ) = g∞(v0) in R, it follows from (2.15) that

either v0,∞ = 0 or v0,∞ = s∞ > 0.

If v0,∞ = 0, then by Proposition 2.1, we have v0 = ω± and Step 1 holds.
Now we assume v0,∞ = s∞. By v′0 ≤ 0 in [0, ∞) and (2.15), we have v0 ≥ s∞ in [0, ∞)

and

−M±
λ,Λ(v′′0 ) = g∞(v0) ≥ 0 on [0,∞).

Moreover, if v0(0) > s∞, then the strict inequality holds at x = 0. However, this contra-
dicts facts v′0(0) = 0 > v′′0 (0), v′′0 (x) ≤ 0 for x ∈ [0, ∞) and v0(x) → s∞ as x → ∞. Thus 
we get v0 ≡ s∞ in [0, ∞).

Next, we put

En,+(x) := Λ
2 (v′n(x))2 + F (vn(x)) − Vn

2 v2
n for M+

λ,Λ,

En,−(x) := λ

2 (v′n(x))2 + F (vn(x)) − Vn

2 v2
n for M−

λ,Λ.

We also put hn(x) := Vn(x) −f(vn(x))/vn(x). Recalling Vn(x) = V (x +xn) and xn → ∞, 
we may assume that V ′

n(x) ≥ 0 in (0, ∞). Notice also that vn is strictly decreasing in 
(0, ∞) by Lemma 2.7. Hence (f4) yields that hn(x) is strictly increasing in [0, ∞). Since 
v′′n(0) ≤ 0 and M±

λ,Λ(v′′n) = vnhn in [0, ∞), we see hn(0) ≤ 0. Noting hn(x) → V∞ > 0
as x → ∞, there exists a unique z±n ≥ 0 such that hn(z±n ) = 0. Therefore, one has

v′′n(x) < 0 < v′′n(y) for 0 ≤ x < z±n < y.

Moreover, taking a subsequence if necessary, we may assume vn(z±n ) → s̃ ≥ 0 since 
vn(z±n ) is bounded. Noting Vn(z±n ) → V∞ as n → ∞ and letting n → ∞ in hn(z±n ) = 0, 
it follows from (f2) that

s̃ > 0 and V∞ = f(s̃)
s̃

.

Thus by (2.15), we obtain s̃ = s∞ and vn(z±n ) → s∞. Recalling v′′n(x) ≥ 0 for x ≥ z±n , 
V ′
n ≥ 0 in [0, ∞) and ϕn ≡ 0 in [0, ∞), we have
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E′
n,+(x) = v′n(x) (Λv′′n + f(vn) − Vnvn) − V ′

n

2 v2
n = −V ′

n

2 v2
n ≤ 0 in [z+

n ,∞),

E′
n,−(x) = −V ′

n

2 v2
n ≤ 0 in [z−n ,∞).

Thanks to En,±(x) → 0 as x → ∞, one sees En,±(z±n ) ≥ 0. Since it follows from (2.15)
that

Vn(z±n ) → V∞, G∞(s∞) =
s∞∫
0

g∞(s)ds = min
[0,∞)

G(s) < 0,

we obtain

(v′n(z±n ))2 ≥ 2
Λ

{
Vn(z±n )

2 v2
n(z±n ) − F (vn(z±n ))

}
→ − 2

ΛG∞(s∞) > 0

By the fact that (v′′n) is bounded in [−1, ∞), we may find a δ1, δ2 > 0 so that

|v′n(x)| ≥ δ1 > 0 in [z±n − δ2, z
±
n + δ2].

Due to this and the fact v′n(0) = 0, shrinking δ2 > 0 if necessary, we may assume 
z±n ≥ δ2 > 0 for any n. Furthermore, by vn(z±n ) → s∞ and v′n ≤ 0 in [0, ∞), we obtain

vn(0) ≥ vn(z±n − δ2) = vn(z±n ) −
z±
n∫

z±
n −δ2

v′n(x)dx ≥ vn(z±n ) + δ1δ2 → s∞ + δ1δ2.

However, this contradicts v0 ≡ s∞ in [0, ∞). Thus v0,∞ = 0 and Step 1 holds.
To proceed further, we need some preparations. First, combining the monotonicity 

of vn with (2.17), we can prove that

vn → ω± strongly in L∞(R). (2.18)

Moreover, we may also derive the uniform exponential decay in [0, ∞):

vn(x) + |v′n(x)| ≤ c3 exp(−c4x) for all x ≥ 0 and n ≥ 1 (2.19)

where c3, c4 > 0 do not depend on n. Indeed, by (2.18), ϕn ≡ 0 in (0, ∞), (V1) and (f2), 
we may find an R0 > 0, which is independent of n, such that for all n ≥ 1, vn(R0) < 1
and

0 = −M±
λ,Λ(v′′n) +

(
Vn − f(vn)

vn

)
vn ≥ −M±

λ,Λ(v′′n) + V0

2 vn in (R0,∞).

On the other hand, the function
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w0(x) := exp
(
−
√

V0

2Λ(x−R0)
)

satisfies

−M±
λ,Λ(w′′

0 ) + V0

2 w0 ≥ 0 in (0,∞), w0(R0) = 1.

It follows from (2.8) that for every n ≥ 1,

−M−
λ,Λ(w′′

0 − v′′n) + V0

2 (w0 − vn) ≥ 0 in (R0,∞),

(w0 − vn)(R0) > 0, (w0 − vn)(x) → 0 as x → ∞.

Therefore, the comparison theorem yields vn ≤ w0 in [R0, ∞). Using the differential 
equation, we also get the uniform decay for v′′n, v′n, hence, (2.19) holds.

Using the same notation z±n to the above, namely, unique points satisfying v′′n(z±n ) = 0
and z±n ≥ 0, we claim that z±n → z± where z± are unique points satisfying z± > 0
and ω′′

±(z±) = 0. In fact, the unique existence of z± is ensured by Proposition 2.1. 
Furthermore, by (2.18), (V1), (f2), ϕn ≡ 0 in [0, ∞) and ω±(x) → 0 as |x| → ∞, there 
exist n0 and R0 > 0 such that if n ≥ n0 and x ≥ R0, then

M±
λ,Λ(v′′n) = Vn(x)vn(x) − f(vn(x)) > 0,

which yields z±n ≤ R0. Moreover, by ω′′
±(0) < 0, we also observe that z±n never approaches 

to 0. Thus, by the uniqueness of z±, we have z±n → z± and we may assume z±n > 0.
Next, since vn is strictly increasing in (−∞, 0] and strictly decreasing in [0, ∞), let 

y±n (s) and z±n (s) be inverse functions of vn satisfying y±n (s) ≤ 0 ≤ z±n (s) for 0 < s ≤
vn(0). In particular, we have

y±n , z
±
n ∈ C((0, vn(0)],R), vn(y±n (s)) = s = vn(z±n (s)) for 0 < s ≤ vn(0).

Moreover, y±n , z±n are smooth except for at most two points s = vn(0) and s = vn(y)
where v′n(y) = 0 and y �= 0. Set y±n := y±n (vn(z±n )), namely, y±n < 0 and vn(y±n ) = vn(z±n )
hold. Moreover, by ω±(−x) = ω±(x), y±n → −z± as n → ∞. Next, set

En,∞,+(x) := Λ
2 (v′n(x))2 + F (vn(x)) − V∞

2 v2
n(x) for M+

λ,Λ,

En,∞,−(x) := λ

2 (v′n(x))2 + F (vn(x)) − V∞
2 v2

n(x) for M−
λ,Λ.

Remark that En,∞,±(x) → 0 as |x| → ∞. Then we shall prove
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Step 2. We have

0 ≤ −En,∞,+(z+
n ) ≤ c exp

(
−2xn

√
V∞
Λ + ξ0

)
,

0 ≤ −En,∞,−(z−n ) ≤ c exp
(
−2xn

√
V∞
λ

+ ξ0

)

where c > 0 is independent of n and ξ0 > 0 the constant in (V3).

First we notice that

E′
n,∞,+(x) = v′n(x)(Λv′′n + f(vn) − V∞vn)

=
{
v′n [(Vn − V∞)vn − snϕn] if v′′n(x) ≥ 0,
v′n

[Λ
λ (Vnvn − f(vn) − snϕn) + f(vn) − V∞vn

]
if v′′n(x) < 0

(2.20)

and

E′
n,∞,−(x) = v′n(x)(λv′′n + f(vn) − V∞vn)

=
{

v′n [(Vn − V∞)vn − snϕn] if v′′n(x) ≥ 0,
v′n

[
λ
Λ (Vnvn − f(vn) − snϕn) + f(vn) − V∞vn

]
if v′′n(x) < 0.

(2.21)

Since v′′n > 0 in (z±n , ∞), v′n ≤ 0 in [0, ∞) and ϕn ≡ 0 in [0, ∞), we get

(En,∞,±)′(x) = v′n(Vn − V∞)vn ≥ 0 in (z±n ,∞).

Hence, (V3), z±n → z± > 0 and (2.19) give

0 ≤ −En,∞,±(z±n ) =
∞∫

z±
n

(En,∞,±)′(x)dx =
∞∫

z±
n

(−v′n)vn(V∞ − Vn)dx

≤

⎧⎪⎪⎨
⎪⎪⎩

c exp
(
−2

√
V∞
Λ + ξ0(xn + z+

n )
)

(for M+
λ,Λ)

c exp
(
−2

√
V∞
λ + ξ0(xn + z−n )

)
(for M−

λ,Λ)

≤

⎧⎪⎪⎨
⎪⎪⎩

c exp
(
−2xn

√
V∞
Λ + ξ0

)
(for M+

λ,Λ)

c exp
(
−2xn

√
V∞
λ + ξ0

)
(for M−

λ,Λ).

Hence, Step 2 holds.
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Step 3. One has

En,∞,±(z±n ) ≤ En,∞,±(y±n ).

Recalling y±n → −z± and xn → ∞, we notice that for each s ∈ [vn(z±n ), vn(0)], (V2) 
and y±n (s) ≤ z±n (s) imply Vn(y±n (s)) ≤ Vn(z±n (s)). Moreover, we may assume ϕn ≡ 0 in 
[y±n , ∞). Hence, noting

M±
λ,Λ(v′′n) = Vnvn − f(vn) in [y±n , z±n ], v′′n(x) < 0 in [0, z±n ),

vn(y±n (s)) = s = vn(z±n (s)) for s ∈ [vn(z±n ), vn(0)],

we obtain

v′′n(x) < 0 for all x ∈ (y±n , z±n ).

From this it follows that v′n(z) < 0 < v′n(y) for y±n ≤ y < 0 < z ≤ z±n and y±n , z
±
n ∈

C1([vn(z±n ), vn(0))). Thus we see from (2.20), vn(z+
n ) = vn(y+

n ), the monotonicity of Vn

and the change of variables s = vn(x) that

En,∞,+(0) −En,∞,+(y+
n ) =

0∫
y+
n

(En,∞,+)′(x)dx

=
0∫

y+
n

[
Λ
λ
{Vnvn − f(vn)} + f(vn) − V∞vn

]
v′ndx

=
vn(0)∫

vn(y+
n )

[
Λ
λ

{
Vn(y+

n (s))s− f(s)
}

+ f(s) − V∞s

]
ds

≤
vn(0)∫

vn(z+
n )

[
Λ
λ

{
Vn(z+

n (s))s− f(s)
}

+ f(s) − V∞s

]
ds

= −
z+
n∫

0

[
Λ
λ
{Vn(x)vn − f(vn)} + f(vn) − V∞vn

]
v′ndx

= −
z+
n∫

0

(En,∞,+)′(x)dx = En,∞,+(0) − En,∞,+(z+
n )

Hence, En,∞,+(z+
n ) ≤ En,∞,+(y+

n ). In a similar way, we can prove En,∞,−(z−n ) ≤
En,∞,−(y−n ) and Step 3 holds.

In what follows, we derive the estimates for En,∞,±(y±n ). First we prove
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Step 4. E′
n,∞,±(x) ≤ 0 in (−∞, y±n ) for sufficiently large n.

For En,∞,+, by v′n ≥ 0 in (−∞, y+
n ) and (2.20), if x < y+

n and v′′n(x) ≥ 0, then we 
have

(En,∞,+)′(x) = v′n {(Vn − V∞)vn − snϕn} ≤ 0.

On the other hand, if x < y+
n and v′′n(x) < 0, then λ ≤ Λ gives

(En,∞,+)′(x) = v′n(Λv′′n + f(vn) − V∞vn)

= v′n {(Λ − λ)v′′n + (Vn − V∞)vn − snϕn} ≤ 0.

Hence, (En,∞,+)′(x) ≤ 0 in (−∞, y+
n ).

For M−
λ,Λ, if x < y−n and v′′n(x) ≥ 0, then we have

(En,∞,−)′(x) = v′n {(Vn − V∞)vn − snϕn} ≤ 0.

On the other hand, we consider the case v′′n(x) ≤ 0 and x < y−n . We first remark that 
for sufficiently large n, we have (En,∞,−)′(x) ≤ 0 provided x ∈ (−∞, 3κ0 − xn] and 
v′′n(x) ≤ 0. In fact, it follows from (2.18), (f2), ω−(x) → 0 as |x| → ∞ and (V1) that one 
can find n0 and R0 ≥ 0 so that

f(vn) − V∞vn ≤ 0 for each n ≥ n0 and x ≤ −R0.

Since we may assume 3κ0 − xn ≤ −R0 for n ≥ n0 due to xn → ∞, the condition 
v′′n(x) ≤ 0 and x ≤ 3κ0 − xn give

(En,∞,−)′(x) = v′n(x) {λv′′n(x) + f(vn) − V∞vn} ≤ 0.

Therefore, we only consider in [3κ0 − xn, y−n ] and remark that ϕn ≡ 0 on the interval.
Next, we shall show that f(vn(x)) − V∞vn(x) ≤ 0 when v′′n(x) ≤ 0 and x ∈ [3κ0 −

xn, y−n ]. Noting vn(y−n ) = vn(z−n ), vn(x) ≤ vn(y−n ) for x ∈ [3κ0 − xn, y−n ] and

v′′n(z−n ) = 0 = Vn(z−n )vn(z−n ) − f(vn(z−n )),

we infer from (V2), (f4) and v′n(x) ≥ 0 in [3κ0 − xn, y−n ] that

0 = Vn(z−n ) − f(vn(y−n ))
vn(y−n )

≤ V∞ − f(vn(x))
vn(x) for all x ∈ [3κ0 − xn, y

−
n ].

Thus f(vn(x)) − V∞vn(x) ≤ 0 in [3κ0 − xn, y−n ]. Therefore, when x ∈ [3κ0 − xn, y−n ] and 
v′′n(x) ≤ 0, it follows from (2.21) that

(En,∞,−)′(x) ≤ λv′n(x)v′′n(x) ≤ 0.

Hence, Step 4 holds.
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Step 5. One has

En,∞,±(y±n ) ≤
−2κ0−xn∫

−3κ0−xn

v′nvn(Vn − V∞)dx.

By Step 4, we have (En,∞,±)′(x) ≤ 0 in (−∞, y±n ). Since En,∞,±(x) → 0 as x → −∞, 
we obtain

En,∞,±(y±n ) =
y±
n∫

−∞

(En,∞,±)′(x)dx ≤
−2κ0−xn∫

−3κ0−xn

(En,∞,±)′(x)dx (2.22)

Recalling (2.18), (V1), (f2), xn → ∞ and ϕn ≡ 0 in [−3κ0 − xn, −2κ0 − xn], we may 
assume that

M±
λ,Λ(v′′n) = Vnvn − f(vn) ≥ 0 in [−3κ0 − xn,−2κ0 − xn].

Hence, v′′n(x) ≥ 0 in [−3κ0 − xn, −2κ0 − xn] and

(En,∞,±)′(x) = v′n(Vn − V∞)vn in [−3κ0 − xn,−2κ0 − xn].

Thus it is easily seen from (2.22) that Step 5 holds.

Step 6. There exists a c > 0, which is independent of n, such that

min{vn(x), v′n(x)} ≥ c exp
(
−|x|

√
V∞
Λ

)
for M+

λ,Λ,

min{vn(x), v′n(x)} ≥ c exp
(
−|x|

√
V∞
λ

)
for M−

λ,Λ

(2.23)

for all x ≤ −2κ0 − xn and sufficiently large n.

Set

ψ+(x) := c exp
(
−|x|

√
V∞
Λ

)
, ψ−(x) := c exp

(
−|x|

√
V∞
λ

)

where c > 0 is chosen so that

inf
n≥1

vn(0) ≥ c.

Notice that this is possible from (2.18). Then for each n, it follows that vn(0) ≥ ψ±(0)
and in (−∞, 0),
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−M±
λ,Λ(ψ′′

±) + V∞ψ± = 0 ≤ f(vn) + snϕn

= −M±
λ,Λ(v′′n) + Vnvn ≤ −M±

λ,Λ(v′′n) + V∞vn.

By (2.8), one has

0 ≤ −M−
λ,Λ(v′′n − ψ′′

±) + V∞(vn − ψ±) in (−∞, 0),

(vn − ψ±)(0) ≥ 0, (vn − ψ±)(x) → 0 as x → −∞.

Therefore, we get ψ±(x) ≤ vn(x) in (−∞, 0) and (2.23) holds for vn.
For v′n, by ϕn ≡ 0 in (−∞, −2κ0 − xn) and (2.18), there exists a c > 0 such that

M±
λ,Λ(v′′n) = Vnvn − f(vn) ≥ cvn in (−∞,−2κ0 − xn)

for all sufficiently large n. Hence, (2.23) holds for v′′n. Noting

v′n(x) =
x∫

−∞

v′′n(y)dy,

(2.23) holds.

Step 7. Conclusion (Completion of the proof for (2.16)).

We first notice that by the choice of κ0 > 0, one has

min
[−3κ0−xn,−2κ0−xn]

(V∞ − Vn) = min
[−3κ0,−2κ0]

(V∞ − V (x)) > 0. (2.24)

By Step 6, we observe that for x ∈ [−3κ0 − xn, −2κ0 − xn]

v′n(x)vn(x) ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c exp
(
−2(3κ0 + xn)

√
V∞
Λ

)
(for M+

λ,Λ),

c exp
(
−2(3κ0 + xn)

√
V∞
λ

)
(for M−

λ,Λ).
(2.25)

Therefore, using (2.24), (2.25) and Step 5, we obtain

−En,∞,+(y+
n ) ≥ c exp

(
−2xn

√
V∞
Λ

)
(for M+

λ,Λ),

−En,∞,−(y−n ) ≥ c exp
(
−2xn

√
V∞
λ

)
(for M−

λ,Λ)

for some c > 0. However, by Steps 2 and 3, we have a contradiction. Hence, we may find 
an M2 > 0 so that xn ≤ M2.



2188 P. Felmer, N. Ikoma / Journal of Functional Analysis 275 (2018) 2162–2196
For the lower bound of (xn), by introducing ũn(x) := un(−x), we can reduce the case 
into the case xn → ∞. Thus (2.16) holds.

We finally derive a contradiction in order to complete the proof of Proposition 2.9. 
By (2.16), we may assume xn → x0. Next, from Lemmas 2.6 and 2.8, we observe that if 
sn ≥ t̃(f, V∞), then

κ2
0

4Λsn ≤ ‖un‖L∞(R) ≤ M0.

Therefore, (sn) is also bounded and assume that sn → s0. Thus from the equation, we 
also get un → u0 in C2

loc(R),

−M±
λ,Λ(u′′

0) + V u0 = f(u0) + s0ϕ0 in R, u0(x0) = max
R

u0,

u′
0(y) ≤ 0 ≤ u′

0(x) for x ≤ x0 ≤ y, u0 ≥ 0 in R. (2.26)

If u0(x0) = 0, namely u0 ≡ 0, then by the monotonicity of un (u′
n(y) ≤ 0 ≤ u′

n(x) for 
x ≤ xn ≤ y), we choose an R0 > 3κ0 so that

V un − f(un) ≥ V0

2 un

for all |x| ≥ R0 and sufficiently large n. Therefore, we have

M±
λ,Λ(u′′

n) = V un − f(un) ≥ V0

2 un for every |x| ≥ R0.

Hence, we may derive the uniform exponential decay:

un(x) ≤ c exp
(
−|x|

√
V0

2Λ

)

for all x ∈ R and n. By the definition of Xη1 and (2.3), this asserts that (un) is bounded 
in Xη1 , however, this contradicts ‖un‖Xη1

→ ∞.
Next we consider the case u0(x0) > 0 and shall show that lim|x|→∞ u0(x) = 0. If 

this is true, then as in the above, we can derive a uniform exponential decay and get 
a contradiction. Set u∞ := limx→∞ u0(x). Since u0 is a bounded solution of (2.26), we 
have

lim
x→∞

M±
λ,Λ(u′′

0)(x) = lim
x→∞

(V u0 − f(u0) − s0ϕ0) = V∞u∞ − f(u∞).

Thus by (2.15), either u∞ = 0 or else u∞ = s∞. Let us assume u∞ = s∞. From (2.26), 
we get u0 ≥ s∞ in [x0, ∞). Since V∞s − f(s) < 0 for s > s∞, one sees that

M±
λ,Λ(u′′

0) = V u0 − f(u0) − s0ϕ0 ≤ V∞u0 − f(u0) − s0ϕ0 ≤ 0 in (x0,∞).
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Since u′
0(x0) = 0 and u0(x) → s∞ as x → ∞, we conclude that V ≡ V∞, u0 ≡ s∞ and 

s0ϕ0 ≡ 0 in [x0, ∞). Hence, by (2.9) and V ≡ V∞ in [x0, ∞), we see 3κ0 ≤ x0. Thus we 
may assume 2κ0 ≤ xn. Now set

En,+(x) := Λ
2 (u′

n(x))2 + F (un(x)) − V (x)
2 u2

n(x) for M+
λ,Λ,

En,−(x) := λ

2 (u′
n(x))2 + F (un(x)) − V (x)

2 u2
n(x) for M−

λ,Λ.

Since xn ≥ 2κ0, V ′(x) ≥ 0 in [xn, ∞) and un(x) → 0 as |x| → ∞, arguing as in the case 
to vn above, we may find unique z±n ≥ xn such that

u′′
n(x) < 0 = u′′

n(z±n ) < u′′
n(y) for xn ≤ x < z±n < y.

Therefore,

(En,±)′(x) = −V ′

2 u2
n ≤ 0 in [z±n ,∞), lim

x→∞
En,±(x) = 0, En,±(z±n ) ≥ 0.

By u′′
n(z±n ) = 0, one has

V0 ≤ V (z±n ) = f(un(z±n ))
un(z±n )

.

From (f2), we may find a δ0 > 0 so that δ0 ≤ un(z±n ). Recalling x0 ≤ lim infn→∞ z±n , 
V ≡ V∞ in [x0, ∞) and (2.15), we obtain

un(z±n ) → s∞,

F (un(z±n )) − V (z±n )
2 un(z±n )2 → F (s∞) − V∞

2 s2
∞ = G∞(s∞) < 0.

Combining with En,±(z±n ) ≥ 0, we may find a δ1 > 0 so that

(u′
n(z±n ))2 ≥ δ1.

Noting that u′
n(xn) = 0 and (u′′

n) is bounded in L∞(R), we have 0 < δ2 ≤ z±n − xn for 
some δ2 > 0, and

(u′
n(x))2 ≥ δ2

3 > 0 in [z±n − δ4, z
±
n ]

for some δ3, δ4 > 0 with δ4 ≤ δ2. Thus

un(xn) ≥ un(z±n − δ4) ≥ un(z±n ) + δ3δ4 → s∞ + δ3δ4.

This contradicts un(xn) → u0(x0) = s∞. Hence, u∞ = 0.
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For limx→−∞ u0(x) = 0, by introducing vn(x) = un(−x) and v0(x) = u0(−x), we can 
reduce into the former case and get limx→−∞ u0(x) = 0. Now we complete the proof of 
Proposition 2.9. �
3. Non-existence theorem

In this section we prove Theorem 1.2 that asserts that the equation (1.1) does not have 
a solution when V is monotone. The argument below is similar to that of Proposition 2.9.

Proof of Theorem 1.2. Let us suppose for contradiction that u is a positive solution of 
(1.1) and let x0 be a maximum point of u. Noting that V is non-decreasing and that 
the argument in Lemma 2.7 works under (f1) and (1.3), if x̄ satisfies u′(x̄) = 0 then 
u′(x) < 0 for all x ∈ (x̄, ∞). Thus x0 is the unique critical point of u.

To proceed further, we make some preparations. Since u is strictly decreasing in 
(x0, ∞) and V non-decreasing in R, by (f4), we see that the function

h(x) := V (x) − f(u(x))
u(x) : [x0,∞) → R

is strictly increasing. Moreover, since u′′(x0) ≤ 0 and M±
λ,Λ(u′′) = uh(x) in [x0, ∞), we 

have h(x0) ≤ 0. Hence, by h(x) → V > 0 as x → ∞ thanks to (V2’), there is a unique 
z± ≥ x0 such that h(z±) = 0. In particular, since u′′(y) > 0 = u′′(z±) if z± < y, we 
have x0 < z± due to u′(x0) = 0 and u(x) → 0 as x → ∞. Remark also that u′′(x) < 0
for all x0 ≤ x < z±.

Recalling that u is strictly increasing in (−∞, x0) and decreasing in (x0, ∞), u has 
two inverse functions y±(s) and z±(s) satisfying y±(s) < x0 < z±(s) for 0 < s < u(x0). 
Next we define y± = y±(u(z±)) and

H+(x) = Λ
2 (u′(x))2 + F (u(x)) − V (z+)

2 u2(x) for M+
λ,Λ,

H−(x) = λ

2 (u′(x))2 + F (u(x)) − V (z−)
2 u2(x) for M−

λ,Λ.

Notice that y± < z± follow from x0 < z±. To complete the proof of Theorem 1.2, we 
proceed in various steps.

Step 1. H±(z±) ≥ 0 and if V (z±) < V , then H±(z±) > 0.

We start with

H ′
±(x) = u′(x)

(
V (x) − V (z±)

)
u(x) if u′′(x) ≥ 0, (3.1)

H ′
+(x) = u′(x)

(
Λ
h(x)u(x) + f(u(x)) − V (z+)u(x)

)
if u′′(x) ≤ 0, (3.2)
λ
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H ′
−(x) = u′(x)

(
λ

Λ
h(x)u(x) + f(u(x)) − V (z−)u(x)

)
if u′′(x) ≤ 0. (3.3)

Noticing that u′ < 0 ≤ V ′ and 0 ≤ u′′ in (z±, ∞), from (3.1) we have H ′
±(x) ≤ 0 in 

(z±, ∞). In case V (z±) < V we additionally have H ′
±(x) �≡ 0. From H±(x) → 0 as 

|x| → ∞ we conclude that Step 1 holds.

Step 2. H±(z±) ≤ H±(y±) and if V �≡ const. in [y±, z±], then H±(z±) < H±(y±).

We use arguments similar to those of Step 3 of the proof of Proposition 2.9. Noting 
that x0 < z±, u′′(z±(s)) < 0 for every s ∈ (u(z±), u(x0)), u′′(z±) = 0 = h(z±) and V is 
non-decreasing, we observe that for each s ∈ (u(z±), u(x0)),

h(y±(s)) = V (y±(s)) − f(s)
s

≤ V (z±(s)) − f(s)
s

= h(z±(s)) < h(z±) = 0. (3.4)

From M±
λ,Λ(u′′) = u(x)h(x) it follows that u′′(x) < 0 in (y±, z±). Hence, by (3.2), (3.4)

and changing variables s = u(x), we have

H+(x0) −H+(y+) =
x0∫

y+

[
Λ
λ
h(x)u(x) + f(u(x)) − V (z+)u(x)

]
u′(x)dx

=
u(x0)∫

u(y+)

[
Λ
λ
h(y+(s))s + f(s) − V (z+)s

]
ds

≤
u(x0)∫

u(z+)

[
Λ
λ
h(z+(s))s + f(s) − V (z+)s

]
ds

= −
z+∫

x0

[
Λ
λ
h(x)u(x) + f(u(x)) − V (z+)u(x)

]
u′(x)dx

= −
z+∫

x0

H ′
+(x)dx = H+(x0) −H+(z+).

Thus H+(z+) ≤ H+(y+) and if V �≡ const. in [y+, z+], then we have V (y+) < V (z+)
and h(y±(s)) < h(z±(s)) for s close to u(z±). Hence, in this case, H+(z+) < H+(y+)
holds. Using (3.3) instead of (3.2), the case of H− is treated in a similar way.

Step 3. H ′
±(x) ≤ 0 in (−∞, y±) and if V �≡ const. in (−∞, y±), then H ′

± �≡ 0.

First we consider H+. We observe that u′ > 0 and V ′(x) ≥ 0 in (−∞, y+), so that 
when u′′(x) ≥ 0, (3.1) implies
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H ′
+(x) = u′(x)(V (x) − V (z+))u(x) ≤ 0. (3.5)

On the other hand, if u′′(x) < 0, then recalling that λ ≤ Λ, we have

H ′
+(x) = u′(Λu′′ + f(u) − V (z±)u)

= u′ {(Λ − λ)u′′ + (V (x) − V (z+))u
}
≤ 0.

(3.6)

Hence, H ′
+ ≤ 0 in (−∞, y+). If V �≡ const. in (−∞, y+), we may find x1 < y+ such that 

V (x1) < V (y+) ≤ V (z+). Then, from (3.5) or (3.6), we have H ′
+(x1) < 0.

Next we consider H−. We have u′ > 0 for x < y−, hence if u′′(x) ≥ 0, then we have

H ′
−(x) = u′(x)

{
V (x) − V (z−)

}
u(x) ≤ 0. (3.7)

On the other hand, assume that u′′(x) < 0. Since u′ > 0 in (−∞, y−), we get u(x) <
u(y−) = u(z−). Therefore, by the definition of z− and (f4), we find

0 = h(z−) = V (z−) − f(u(z−))
u(z−) < V (z−) − f(u(x))

u(x) ,

which yields f(u(x)) −V (z−)u(x) < 0. Thus, from (3.3) and monotonicity of V , it follows 
that

H ′
−(x) = u′(x)

[
λ

Λh(x)u(x) + f(u(x)) − V (z−)u(x)
]

= u′(x)
[
λ

Λ
{
V (x) − V (z−)

}
u(x)

+
(

1 − λ

Λ

){
f(u(x)) − V (z−)u(x)

}]
≤ 0. (3.8)

By (3.7) and (3.8), we get H ′
−(x) ≤ 0 in (−∞, y−). Moreover, it is easily seen that when 

V �≡ const. in (−∞, y−), H ′
− �≡ 0 holds.

Step 4. Conclusion.

By Steps 1–3, we get

0 ≤ H±(z±) ≤ H±(y±) =
y±∫

−∞

H ′
±(x)dx ≤ 0. (3.9)

However, V < V , so we have V �≡ const. in either (−∞, y±) or (y±, z±) or (z±, ∞). 
Consequently, at least one inequality in (3.9) is strict, providing a contradiction and 
completing the proof. �
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Appendix A. Proof of Proposition 2.1

Here we prove Proposition 2.1.

Proof of Proposition 2.1. We first prove the existence of solutions. For α > 0, we con-
sider

−u′′ = Λ−1g∞(u) in R, (u′(0), u(0)) = (0, α), (A.1)

−u′′ = λ−1g∞(u) in R, (u′(0), u(0)) = (0, α) (A.2)

where g∞(s) := f(s) − V∞s, and we write uΛ,α and uλ,α for unique solutions of (A.1)
and (A.2). By (f1)–(f4), it is well known that there exists an α0 > 0 so that uΛ,α(x) hits 
zero at some point xα > 0 (uΛ,α(xα) = 0) if α > α0, uΛ,α0 is a positive solution of (A.1)
and uΛ,α0(x) → 0 as |x| → ∞, and uΛ,α(x) a positive periodic solution of (A.1) when 
α < α0. The number α0 > 0 is characterized by

G∞(α0) = 0 (A.3)

and (A.3) has a unique positive solution due to (2.15) (or (f1)–(f4)). For instance, see 
[2,10]. Therefore, (A.3) yields α0 > s∞. The same statement holds for uλ,α.

For μ > 0, set

E[u, μ](x) := 1
2(u′(x))2 + μ−1G∞(u(x)).

Then it is easily seen that

d
dxE[uΛ,α,Λ](x) ≡ 0 ≡ d

dxE[uλ,α, λ](x) in R.

In particular, since uΛ,α0(x), u′
Λ,α0

(x), uλ,α0(x), u′
λ,α0

(x) → 0 as x → ∞, we have 
E[uΛ,α0 , Λ] ≡ 0 ≡ E[uλ,α0 , λ] in R.
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Since uΛ,α0(0) = α0 > s∞ and uΛ,α0(x) → 0 as x → ∞, we may choose xΛ > 0 so 
that uΛ,α0(xΛ) = s∞ and uΛ,α0(x) < s∞ for every x > xΛ. Recalling G∞(s∞) < 0 and 
E[uΛ,α0 , Λ](xΛ) = 0, we obtain u′

Λ,α0
(xΛ) < 0 and

λ−1 min
R

G∞ <
1
2(u′

Λ,α0
(xΛ))2 + λ−1G∞(uΛ,α0(xΛ))

= E[uΛ,α0 , λ](xΛ) < E[uΛ,α0 ,Λ](xΛ) = 0.

By (A.3) and (2.15), the equation

λ−1G∞(s) = E[uΛ,α0 , λ](xΛ) ∈
(
λ−1 min

R
G∞, 0

)
(A.4)

has two solutions 0 < s1 < s∞ < s2 < α0.
Now we consider uλ,s2(x). Since uλ,s2 is periodic and E[uλ,s2 , λ](x) = E[uλ,s2 , λ](0) =

λ−1G∞(s2) < 0 in R, we observe that

max
R

uλ,s2 = s2 > s∞ > s1 = min
R

uλ,s2 .

Hence, we may select a y1 > 0 so that uλ,s2(x) > s∞ = uλ,s2(y1) for each x ∈ [0, y1). 
From the choice of y1 and (A.4), it follows that

uλ,s2(y1) = s∞ = uΛ,α0(xΛ), E[uλ,s2 , λ](y1) = λ−1G∞(s2) = E[uΛ,α0 , λ](xΛ),

which implies |u′
λ,s2

(y1)| = |u′
Λ,α0

(xΛ)|. By u′
λ,s2

(y1), u′
Λ,α0

(xΛ) ≤ 0 due to the definition 
of y1 and xΛ, we obtain u′

λ,s2
(y1) = u′

Λ,α0
(xΛ). Thus, set

u(x) :=
{

uλ,s2(x) if 0 ≤ x ≤ y1,

uΛ,α0(x− y1 + xΛ) if y1 < x,

and u(x) := u(−x) for x < 0, it is easily seen that u ∈ C1(R) and u satisfies 
−M+

λ,Λ(u′′) = g∞(u) in R \ {±y1}. In addition, from the definition of u, it follows 
that

lim
h↓0

u′(y1 + h) − u′(y1)
h

= 0 = lim
h↑0

u′(y1 + h) − u′(y1)
h

.

Hence, u ∈ C2(R) and u is a solution of (2.1). Moreover, we observe that u′′(x) < 0 <
u′′(y) for all |x| < y1 and |y| > y1. Further, it is known that uΛ,α0 decays exponentially, 
so does u.

For (2.2), we start with uλ,α0 instead of uΛ,α0 . Then we choose an xλ > 0 so that 
uλ,α0(x) < s∞ = uλ,α0(xλ) for every x ∈ (xλ, ∞). In this case, instead of (A.4), we 
consider the equation
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Λ−1G∞(s) = E[uλ,α0 ,Λ](xλ) > E[uλ,α0 , λ](xλ) = 0

and this equation has only one solution s1 > α0 due to (2.15). Let us consider uΛ,s1 . By 
s1 > α0, we may find a z1 > 0 satisfying uΛ,s1(z1) = 0. Thus, choose a y1 > 0 so that 
uΛ,s1(x) > s∞ = uΛ,s1(y1) for all x ∈ [0, y1) and set

u(x) :=
{

uΛ,s1(x) if 0 ≤ x ≤ y1,

uλ,α0(x− y1 + xλ) if y1 < x.

Then as in the above, we can check that u ∈ C2(R) is a solution of (2.2), decays 
exponentially and u′′(x) < 0 < u′′(y) for each |x| < y1 and |y| > y1.

Next, we prove the uniqueness of solutions of (2.1) and (2.2). Let u1 be a solution of 
(2.1) constructed in the above and u any solution of (2.1). By the sign property of g∞, 
we deduce that u(0) ≥ s∞. Moreover, notice that

−M+
λ,Λ(u′′) = g∞(u) in R ⇔ −u′′ = (M+

λ,Λ)−1(g∞(u)) in R

where (M+
λ,Λ)−1(s) = Λ−1s if s ≥ 0 and (M+

λ,Λ)−1(s) = λ−1s if s < 0. Since (M+
λ,Λ)−1

and f are locally Lipschitz continuous, the initial value problem

−u′′ = (M+
λ,Λ)−1(g∞(u)) in R, (u′(z), u(z)) = (α1, α2) (A.5)

has a unique solution uz,α1,α2 for every z, α1 ∈ R and α2 > 0. Since g∞(s∞) = 0, if 
u(0) = s∞, then we infer that u ≡ u0,0,s∞ ≡ s∞, which contradicts u(x) → 0 as x → ∞. 
Hence, u(0) > s∞.

Now choose zΛ > 0 so that u(zΛ) = s∞ > u(x) for all x > zΛ. Then u satisfies

−u′′ = Λ−1g∞(u) in (zΛ,∞).

Noting E[u, Λ](x) ≡ 0 in [zΛ, ∞) and u(zΛ) = s∞, we have

(u′(zΛ), u(zΛ)) = (u′
Λ,α0

(xΛ), uΛ,α0(xΛ)) = (u′
1(y1), u1(y1)).

Thus it is easily seen from the construction of u1 and the unique solvability of the initial 
value problem for (A.5) with z = zΛ that u(x) = u1(x + y1 − zΛ) in R. Noting that

u1(0) = max
R

u1 > u1(x) for x �= 0, u(0) = max
R

u,

we deduce that y1 = zΛ and u1 ≡ u. Hence, the uniqueness of solutions of (2.1) holds. 
Similarly, we can prove the uniqueness of solutions of (2.2).

Remark that the above argument can be applied to conclude u ≡ u1 if u satisfies 
−M±

λ,Λ(u′′) = g∞(u) in R with u(0) = maxR u, u > 0 in R and u(x) → 0 as either 
x → ∞ or x → −∞. Thus we complete the proof. �
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