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Summary

Recurring expenses associated with preventative maintenance and inspection
produce operational inefficiencies and unnecessary spending. Human inspec-
tors may submit inaccurate damage assessments and physically inaccessible
locations, like underground mining structures, and pose additional logistical
challenges. Automated systems and computer vision can significantly reduce
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these challenges and streamline preventative maintenance and inspection.
The authors propose a convolutional neural network (CNN)-based approach
to identify the presence and type of structural damage. CNN is a deep feed-for-
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scale, location, and noise, which makes it robust to classify damage of different
sizes or shapes. The proposed approach is validated with synthetic data of a
composite sandwich panel with debonding damage, and crack damage recogni-
tion is demonstrated on real concrete bridge crack images. CNN outperforms
several other machine learning algorithms in completing the same task. The
authors conclude that CNN is an effective tool for the detection and type
identification of damage.
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1 | INTRODUCTION
Structural health monitoring and effective preventative maintenance programs are critical to ensuring cost-effective and
safe operational efficiency. Larger systems like bridges or mining equipment can have unidentified damage that reduces
the reliability of a system dramatically. In these cases, inspections are incredibly important to ensure that a dangerous
and costly failure does not occur.

In many cases, individuals with domain knowledge and a detailed checklist conduct regularly scheduled inspections.
In scheduling these inspections, a preventative maintenance program must balance system's safety and the cost and
availability of a qualified individual. In some cases, these inspections can become dangerous or difficult. For example,
mining equipment can be in hard to reach, dark, and wet places. The equipment can also be operationally complex or
improperly designed. As a result, human inspections can leave an organization liable if an injury is sustained.

In response to these shortcomings, organizations have adopted automated visual inspection systems to reduce costs,
increase accessibility, and improve safety. One such visual inspection system is unmanned aerial vehicles that
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autonomously produce photographs of areas susceptible to damage.' The process can be further automated with the use
of computer vision-based approaches to identify damage in real time. This paper proposes a particular deep learning-
based computer vision approach for automated inspection.

Several computer vision-based approaches have been developed in the maintainability and reliability community to
detect damage from images. Many of the presented methodologies act upon a particular type of image, like thermal imag-
ery” or three-dimensional scene reconstruction® in order to simplify the detection task. Other approaches require signifi-
cant filtering, feature extraction, and transformations to address varying field conditions like lighting or varying scale.*”

In the past, data selectivity and significant preprocessing were required for traditional classification algorithms, like
support vector machines® or artificial neural networks (ANNSs), to identify the presence of damage from images with
unique surfaces, scales, and lightings. However, advances in computational power over the past decade have made
unique and complex neural network architectures practically feasible. This area of research, known as deep learning,
has revolutionized many domains including image recognition, speech recognition, image segmentation,”” and fault
diagnosis of rolling element bearings.'’

One of these architectures, the convolutional neural network (CNN), has wide application in the field of image
processing and can handle distorted or shifted patterns.'' Thus, CNN does not require preprocessing and can accurately
detect damage and distinguish between different types of damage.

In this paper, the authors propose a CNN-based approach for detecting and classifying damage. With CNN, precise
and accurate damage inspections can be conducted simply from images. Applications and variations of CNN to various
other specific damage detection contexts (e.g., corrosion and crack detection) have been explored recently.'*'?
Moreover, organizations and analysts do not require complicated preprocessing procedures that could introduce
additional methodological errors.

The paper proceeds as follows. In Section 2, the authors motivate and explain CNN. In Section 3, the authors
validate and test CNN on a damage-based synthetic data set encompassing the identification of two damage types,
whereas in Section 4, the CNN model is tested in a real-world concrete bridge cracks. Section 5 concludes by qualifying
the intellectual contribution and recommending future works.

2 | CONVOLUTIONAL NEURAL NETWORKS

2.1 | Artificial neural networks

Artificial neural networks are a traditional learning algorithm and the basis of all deep learning methods. In order to
grasp deep learning algorithms like CNNS, it is necessary to explore the simple feed-forward network.

Linear learning algorithms involve a combination of features with learned weights that predict a target. Artificial
neural networks add an additional level of hierarchy to linear learning algorithms by developing a weighted combina-
tion of activation functions.* Essentially, a finite number of traditional learners are weighted to predict the target. This
process is demonstrated in Equations 1-3 where a weighted () linear combination of hidden units or nodes (z) is
constructed from weighted (w) features (x) to predict a target (y).

Zj = h(ZiD — Wi + bk); ®
M
ar =2 — 1B + by, )
1
Y =o0(ak) = 1o (3)

The o in Equation 3 is an example of a sigmoid activation function. An activation function, which is also present as
the h function in Equation 1, can introduce additional nonlinearity. A combination of linear models (linear regression)
is produced if the activation function is simply the identity. However, if the sigmoid function is invoked, the problem is
transformed into a combination of probabilistic classifications.

There are several alternatives to the sigmoid activation function. They include the softmax function (Equation 4) for
K-class classification and the rectified linear unit (ReLU; Equation 5) for nonzero values. The authors leverage both of
these activation functions in their analysis.
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ReLU(z) = max(0, ax). (3)

A reliability/maintainability analyst can control the number of hidden layers or the number of units within each
hidden layer for his or her purposes. The generalizability of the algorithm may decline at very large degrees of freedom
(learnable parameters). Thus, it is particularly important to address challenges associated with overfitting when training
larger networks.

2.2 | Training

Machine learning classifiers typically maximize a cross-entropy loss function (Equation 6), which minimizes the
difference between the probabilistic prediction (f) and ground truth (y) from data (x). This is equivalent to maximizing
the likelihood of seeing the target data given the predicted data and weights.

maxL(x) = —
i

I ™M=

K
; E lyik logf, (x:)- (6)

1

This maximization for ANN is not analytically tractable. To train a scalable neural network, leveraging the batch or
stochastic gradient descent (SGD) algorithm is necessary (Equation 7). Deriving this procedure for ANN's intercon-
nected graph structure is often referred to as backpropagation, but the two terms are used interchangeably in this
section. The canonical form of the SGD algorithm is displayed below:

o + 1 — e<f>—yVL(e<f>). )

The full set of learnable weights (0) is updated at iteration (7) with the gradient of the loss function (VL) scaled by a
preset learning rate hyperparameter (y).'* The weights associated with hidden nodes and input data are updated
according to the respective error (Equations 8-9).

oL
T+ 1) @y 2
w =w y(wm), (8)
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In order to create a linearly scalable learning procedure, the weights can be updated on a minibatch or subsample of
the data. This also allows an analyst to update their model periodically as more data become available.

In practice, a minibatch of data is propagated through an initialized feed-forward network to produce a prediction
(forward pass). The value of the gradient error, or loss, is calculated, and the weights associated with the network are
updated (backward pass). Now, in the second iteration, the process starts over with a new minibatch of data. The pro-
cess continues until it reaches an iteration limit or the analyst manually stops the learning process. Backpropagation
and algorithms that are rooted in this paradigm are particularly powerful because they can learn as additional training
observations become available. Thus, the model can adapt to possibly changing circumstances in predictive contexts.

Other research has introduced variations to the SGD algorithm for more efficient neural network training. One of
these optimization procedures is adaptive moment estimation (ADAM). Rather than using the gradient of the loss
function directly, ADAM updates moments of the gradient to update the parameter vector. ADAM has been shown
to improve training performance on high-parameter vectors and large data sets."

ADAM calculates bias corrected moments of the gradient (VL) to update the parameter vectors. Equations (10)-(12)
show the process of updating the first (m) and second (v) moments. A § parameter is introduced as an exponential decay
for these moving averages.
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g = VL (e<f>), (10)
m® =8.-m =Y 4 (1-8,)-g", (11)
v =g, =V 4 (1-5,)-g27. (12)

Calculating g™ in Equation 10 requires the evaluation of parameters associated with different layers of the neural
network. However, the analytical derivative of computational graphs is difficult to calculate. In the deep learning
context, automatic differentiation is often leveraged to approximate the g(’) values.'® Using the chain rule, derivatives
are broken down into smaller and easily solvable subexpressions that are calculated iteratively. In practice, an analyst
sets either the independent or dependent variable constant and recursively solves for different nodes. This paper does
not go into detail on how to implement an automatic gradient because this functionality is built into most deep learning
libraries, but resources are available in the References.'®!®

Because the first and second moments are often initialized at zero, Equations 13-14 correct for the possibility of a

bias towards zero.

(7)
~ (1) m
" - (1-8) (13)
(7)
P = 14
' (1-82) (14)

Equation 15 updates the parameter vector scaled by a step-size parameter (y). A near-zero smoothing parameter ¢ is
introduced to prevent division by 0.

~(0)
60 —gr ~ v, ™

In practice, the decay parameter for the first moment is often set as a default to §; =0.9, the second moment set to
8, = 0.999, and the step size set to y = 0.001.

1s)

2.3 | Deep learning and convolutional neural networks

Deep learning is a subfield of machine learning research focused on modeling hierarchical representations or abstrac-
tions to define higher level concepts.'® The field has gathered inspiration from human information processing systems.
For example, human speech and visual perception systems are hierarchical in nature.?**

For more complicated classification or regression problems, a single layer of hidden nodes is often ill suited to model
hierarchical representations. Deep learning aims to address this problem by adding multiple hidden layers. Higher
degrees of freedom associated with additional hidden layers may cause algorithms to overfit and capture noise rather
than signal. Thus, deep learning architectures often have a unique structure that prevents overfitting and are tailored
to the task.

Various deep learning architectures have been shown to outperform simpler techniques in speech recognition,
natural language processing, and image processing.>** In this paper, the authors invoke an architecture particularly
well suited for image processing: CNNs (see Figure 1).

In order to counter high dimensionality and potential overfitting, local connectivity is assumed. Local connectivity
assumes correlation between neighbor points. With this assumption, each hidden unit is connected to only a subset of
the input provided from the previous layer. In practice, a filter transforms a square receptive local field of features
(pixels for images). This approach reduces the quantity of learnable parameters and computational cost.

As visualized in Figure 1, CNNs use these locally connected receptive fields or learnable convolutional filters to cre-
ate feature maps (convolutional layer). This collection of activation maps run through a pooling layer, which reduces
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FIGURE 1 Convolutional neural network architecture

the size of each feature map for computational efficiency. The reduced feature maps are treated as an input to additional
layers, and ultimately, the model predicts a target. This architecture allows a network to identify patterns regardless of
scale or location.

The convolutional layer involves a set of learnable filters (W; ;) convolving local regions (x; ;) for features relevant to
the output prediction. The convolutional layer produces a set number (k) of feature maps (h). The analyst can set the
amount and size of the filters. Equation 16 displays the discrete convolution for an identity activation function:

hi; = (W x),; + bi. (16)

Each set of weights W* that transform the image into a feature map is replicated across the entire data set. Thus,
each receptive field is the product of the same set of learnable filters. This also reduces the number of free parameters.

In the pooling and subsampling step, nonoverlapping hidden units within a feature map h* are aggregated to reduce
the overall size in the subsequent layer (y). Equation 17 displays max pooling, which identifies the max of a particular
region.

ko k
Vij = maxpg hj v op o+ g 17)

Pooling and subsampling operations reduce the operational efficiency especially if additional convolutional layers
are added. However, max pooling increases translation invariance, that is, the pooled value would identify the same
max feature regardless of its location within the neighborhood.

Typical CNN architectures often include fully connected hidden layers before generating a prediction. These layers
mimic the ANN structure discussed in Section 2.1.

2.4 | Regularization

CNN's high degrees of freedom could produce models that perform well on the training data but generalize poorly to
nontraining data. However, regularization procedures can be adopted to prevent this overfitting. One such procedure
is known as dropout.*®

In dropout, samples from a Bernoulli distribution (r) determine whether node’s output (z;) drops from a hidden
layer. The outcome is fewer learnable parameters, and a trained network that does not rely too heavily on any single
output. Equation 18 presents the Bernoulli distribution from which r is drawn. Equation 19 displays the thinning of
the hidden layer outputs by dropping nodes with an element-wise product of the Bernoulli distributed random variables
and the hidden layer output. A graphical representation of dropout is presented in Figure 2.

r;'~ Bernoulli(p), o

A0 (19)

This sampling procedure prevents nodes from identifying noise and using this to segment and differentiate different
types of damage. Alternative approaches include early stopping, which is a black art heuristic of ending convergence
once training and validation errors begin to diverge, and data augmentation, which involves the process of flipping
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FIGURE 2 Graphical representation of dropout regularization

and transforming the images before training. An additional alternative is weight decay, which includes regularizing
terms within the network.

The value of techniques like dropout and early stopping cannot be understated. A model that can be employed in a
production environment must identify significant patterns of differentiation between damage and not confuse noise
with a distinguishing feature.

2.5 | Developing a model architecture in practice

In practice, developing a model architecture can be an arduous task. Most nonindustry settings do not have the neces-
sary infrastructure to conduct a large-scale search algorithm to explore the hyperparameter space of these networks.
Thus, an often time-consuming manual search is required. This is currently an active area of research. Google's AutoML
project seems to provide some promise in using reinforcement learning and evolutionary algorithms to design neural
networks, but timely implementation of these approaches would require significant compute power unavailable to a
typical researcher.?”*®

Nonetheless, various rules of thumb have been developed in the larger deep learning community. First, neural
networks should follow a pyramid structure. A network should have many nodes in the first few layers (wide) and
reduce the amount of nodes progressively before reaching the output layer. In essence, this allows the network to
compress the lower level features in the early layers in order to make easy classification decisions in the later layers.
Pyramid structures have been shown to produce better results.*

Second, neural networks are sensitive to the initial learning rate. The default value is often 0.01, but performance
varies by network architecture. This is likely the most important hyperparameter to optimize.** Third, if the size of your
data set is not relatively vast, your algorithm will be susceptible to overfitting. Thus, the inclusion of regularization
methods like dropout and early stopping becomes increasingly important. Fourth, it is authors’ experience that a larger
minibatch will speed up the training process but will generate noisier updates to the loss function.

Finally, weight initialization can also affect model convergence. The weights are often sampled from a Gaussian
distribution with a mean (u) of 0 and standard deviation (o) of 1.” The sigmoid activation function in conjunction with
Gaussian sampled initialization schemes can produce a vanishing/exploding gradient problem that prevents the
network from updating during backpropagation. Moreover, recent research proposals to neural network architecture,
like batch normalization and ReLU functions, have reduced this risk dramatically.>* New initialization methods have
been proposed in several papers.*>**

Transfer learning is an important aspect of practical deep learning. The idea behind transfer learning is to pretrain a
CNN on a larger task, like classifying many different types of damage on terabyte-scale data. Then, for a particular
damage identification task (e.g., cracks on one type of bridge), previous network's weights are frozen, and additional
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layers are trained on top of the frozen layers. This not only saves an analyst time but also creates the opportunity to
generalize a CNN to the identification of many image-based structural reliability objectives.

Until automatic model selection becomes a prevalent approach to machine learning, developing deep learning
architectures will require significant effort. Therefore, the knowledge discussed in this section only scratches the
surface of model development for a particular task. There are many unique attributes to model development for damage
(e.g., crack) detection than, for example, differentiating between dogs and fish on internet images. Unique attributes of
model building like regularization methods (e.g., dropout and weight decay), weight initialization, activation function
selection, and layer sizes require exploration and experimentation in context. In the following section, a particular
architecture for damage detection and classification is proposed.

3 | CONVOLUTIONAL NEURAL NETWORK-BASED APPROACH FOR
DAMAGE DETECTION AND CLASSIFICATION

In this section, the authors propose a specific CNN architecture for the purpose of damage detection and classification.
In order to complete this task, the authors constructed a network architecture that could be trained to perform the
aforementioned maintenance tasks on different types of damage. The model is detailed in Section 3.1, validated on
honeycomb structure images in Section 3.2, and tested on real concrete bridge cracks in Section 4.

3.1 | Convolutional neural network model architecture

On the basis of the discussion presented in Section 2.5, the proposed CNN model architecture is designed to process
two-dimensional arrays representing pixel intensities in the damaged or undamaged images from honeycomb and con-
crete bridge structures. The architecture includes three stacks of convolutional-pooling layers. The first convolutional
layer applies 4 x 5 filters resulting in 32 feature maps of 66 x 94, which are fed to a first pooling layer that reduces their
dimensionality to 33 X 47. Next, a second convolutional layer applies 64 of 4 X 4 filters that are passed on to the pooling
layer for reduction of the feature maps to 15 X 22. The last convolutional layer then processes these with sixty-four 4 x 3
filters and then pooling resulting in sixty-four 6 X 10 feature maps. All pooling layers perform max pooling as in
Equation 17. Afterwards, there are three fully connected hidden layers of 2,024, 524, and 3 neurons, respectively. The
neurons in each hidden layer (including convolutional/pooling layers) use a ReLU activation function to avoid
exploding gradients, 0.75 dropout rate to prevent overfitting, ADAM optimization for efficient convergence, and a
softmax cost function for entropically maximized probabilistic classification. All weights are initialized by sampling
from a Gaussian distribution with a mean (u) of 0 and standard deviation (o) of 1. The proposed architecture is
displayed in Figure 3.

The proposed architecture is designed to maximize the core advantage of a CNN in the context of structural damage
images: learning hierarchical representation. In the following, we provide a discussion on the main building blocks of a
CNN, namely, convolutional layers and pooling layers, and how they impact its ability to process structural
damage images for damage recognition and type classification. We also compare these features with those of traditional
feed-forward neural networks.

A convolutional layer delivers three properties: sparse weights, parameter sharing, and invariant representations.
Instead of having every input unit interacting with every output unit as in a traditional neural network, a CNN uses
sparse weights to allow for filters that are smaller than the actual image. In processing a small image (e.g., 30 X 30
pixels), a traditional neural network would still need half a million parameters and 900 inputs. However, a CNN can

Input of 32 Feature 32 Feature 64 Feature 64 Feature 64 Feature 64 Feature 2024 524 Outputs
69 x 98 maps of maps of maps of maps of maps of maps of Hidden Hidden
66 x 94 33x47 30x44 15x22 30x44 6x10 units units
L ] L ] L}
r r r r . .
s === = = e .
L ] | ]
[ [ da "3 " = : .
L] NS
conv Pooling Conv Pooling conv Pooling Fully Fully Fully
4 % 5 filter 4 x 4 filter 4 % 3 filter connected connected  connected

FIGURE 3 Convolutional neural network architecture for damage identification



8 of 17 Wl LEY MODARRES ET AL.

detect small local meaningful features that only require a much smaller number of parameters, thus reducing the
required computational resources and computing time.

In a traditional neural network, each element of the weight matrix is only used once when calculating the output of
a given layer. However, parameter sharing allows a CNN to learn and use one set of parameters for multiple operations,
thus making convolutional operations more efficient than dense matrix multiplications. Moreover, parameter sharing
leads a convolutional layer to be invariant to translation. When dealing with images taken from a damaged
structure, the convolutional layer outputs a two-dimensional feature map characterizing where certain damage objects
(e.g., cracks) are in input images. Thus, when we feed a different image to the CNN with the object in a different
location, its representation moves accordingly.

The multiple linear features generated by parallel convolutional operations are passed over to nonlinear activations.
Typically, these outputs are then fed to pooling layers to progressively reduce the spatial size of the input representation.
As a result, pooling also reduces the number of parameters and computations in the network, which also reduces
overfitting. Furthermore, pooling makes the representation approximately invariant to small translations in the input
image. For instance, a small distortion in the input would not change the output of pooling as one is taking the
maximum (in max pooling) or the average value in a local neighborhood.

These properties of CNNs are fundamental for the problem at hand, that is, structural damage detection based on
image processing. This is a task that usually involves careful construction and extraction of features from the data.
For example, some common features include correlation, contrast, energy, homogeneity, and entropy.* These features
are then fed to a traditional learning method with the task to identify, separate, and classify damage.**** Feature
extraction relies on prior engineering knowledge of the data such that choosing which features to include or exclude
within the model is subjected to uncertainty and biases of the domain experts.

It is in this context that the proposed CNN architecture provides its most relevant contribution. By means of the
aforementioned properties, a CNN delivers nonlinear representations of the input damage images to a higher level of
abstraction and complexity isolated from the touch of human engineers directing the learning.** The proposed
CNN model architecture is designed to give suitable outputs for the discovery of complex and high-dimensional
representations without the need for manual feature extraction.

3.2 | Model validation on honeycomb structure images

In order to evaluate the effectiveness of the proposed CNN-based approach, the authors evaluated several algorithms on
a sample case of images synthesized to resemble debonding damage in honeycomb structures. The algorithm was
trained to identify the presence of damage and differentiate between different types of damage.

Honeycomb structures minimize material and weight but have high strength (see Figure 4). They are used in a wide
variety of applications in the aerospace and automobile industries. Nevertheless, due to manufacturing defects or impact
loads, these structures can experience imperfect bonding or debonding between the skin and the honeycomb core.
Instances of debonding reduce the bending stiffness of the composite panel, which causes detectable changes in its
vibration characteristics.**® To investigate the identification of debonding damage in sandwich structures, a database
with different damaged and undamaged scenarios was created.

FIGURE 4 Scheme of a honeycomb sandwich panel
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In the present study, the honeycomb panels are modeled with finite elements using a simplified three-layer shell
model, and the adhesive layer between the skin and core is modeled using linear springs, with reduced rigidity in
debonded sectors, as shown in Figure 5.

The numerical model is built in Matlab’ using the Structural Dynamics Toolbox,>® whereas the skins and
honeycomb panel are modeled with standard isotropic four-node shell elements. The final model shown in Figure 6
has 10,742 shells and 7,242 spring elements. It has been demonstrated that this numerical model represents with
precision a sandwich panel with debonding damage.*’

The modal strain energy has shown to be a sensitive indicator of damage and has been frequently used to locate
damage in one-dimensional structures, such as beams, frames, and truss structures.* The damage indices are computed
using the modal strain energy of a plate in the undamaged and damaged states.*! In the case of a plate-like structure, for
a particular mode shape, ¢,, the strain energy associated with that mode shape is

Deboa (P¢\° (3%’ .\ (3¢ o, \’
U, =— r r 2 r L) +2(1— ") dxdy, 20
Zjoj"(@xz) +<5y2> i v<5x2)(6y2>+ ( v)<5x6y> Y 20
where a and b are the plate dimensions and D = Eh*/12(1 — v?) is the bending stiffness of the plate. By dividing the plate

in subregions, it is possible to locate damage by comparing the normalized strain energy of each subregion in the
undamaged and damaged conditions. The energy associated with subregion joke for the rth mode shape is given by

_Djk bisr (a1 az¢r ’ az¢r ? 62¢r 62¢r 62¢r ’ .
S N <6x2 (57) 250 ) (57) +200) (55 ) (21)

therefore,
. «N
Ur= llf:le:ler,jkv (22)

where N, and N, are the number of divisions in the x and y directions, respectively. The fractional energy at location
jk is
Ur, Jjk

Frje=—7"

U, (23)
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The same procedure can be used to compute the fractional energy at location jk for the rth mode of the damaged
structure, F? jk- To account for all measured modes, the damage index for subregion jk is defined as

5jk = Zi1F£jk/Z£1thka (24)

where m is the number of measured modes. Assuming that the collection of damage indices represents a population of a
normally distributed random variable, a normalized damage index is obtained using

Zy =) [ (25)

ik

where Ejk and oy, represent the mean and standard deviation of the damage indices, respectively.

The panel used to construct the database consists of 0.25 X 0.35-m sandwich panels made from aluminum honey-
comb core bonded to two aluminum skins.?” The database is constructed with the following scenarios: 2,000 undamaged
panels, 2,000 panels with circular-shaped debonded regions, and 2,000 panels with rectangular-shaped debonded
regions. The location and size of the debonded regions are defined randomly with dimensions between 0.02 and 0.12 m.

For each panel in the database, the first six mode shapes are identified, and Equation 25 is used to obtain the
distribution of damage indices through the panels. To simulate experimental measurements, the numerical modes
are contaminated with 5% random noise. Figure 7 illustrates the damages indices obtained for three different scenarios.
The pictures on the left show the damaged regions, whereas the pictures on the right show the distribution of damage
indices through the panel.

(2) Undamaged case

LT T B '
:I - I a L
L o’ C
el oy .

(b) Damage indices for the undamaged case

Fe

(c) Circular damage

(d) bamage indices for the circular damage

f4

l‘|-[

(e) Rectangular damage

(f) Damage indices for the rectangular damage

FIGURE 7 Examples of the damages indices obtained for different scenarios
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A CNN model was trained and validated on the synthesized panel damage in Figure 7b,d,f. The model was trained
on five thousand four hundred 69 x 98 images for a fixed 2,000 epochs. Exactly 10% of the data (600 images) were used
as a test set, and 10% of the remaining training set was used for validation. To ensure the model was insusceptible to the
vanishing or exploding gradient problem, verify that it works properly, can generalize well, and is insensitive to param-
eter initialization, the training procedure was rerun 20 times for 2,000 epochs (see Appendix A for details). Moreover,
training and testing were carried out in a Linux-based computer with 4.2 GHz, 32 GB of RAM, a NVIDIA Tesla K40
GPU, and with Tensor flow 1.0, cuDNN 5.1, and Cuda 8.0.

CNN predicted the presence and type of damage at an accuracy of 98%. The confusion matrix denoting the
performance of the model on each class is displayed in Table 1. The vertical labels on the left-hand side are associated
with predicted values, whereas the horizontal labels at the top correspond to base truth.

Figure 8 presents the receiver operating characteristic for the CNN. The y axis represents the true-positive rate, or
probability of detecting damage, and the x axis represents the false-positive rate. Often the threshold of confidence for a
true positive can be varied in order to assess varying quality of performance. The area under the curve (AUC) represents
the probability that a randomly chosen point was classified correctly as a true positive as opposed to an incorrect classi-
fication. Thus, a higher AUC reflects favorably on the performance of a model in precisely identifying potential damage.
A lower AUC would mean more false positives and the potential for wasting resources on maintenance decisions.

Because the relative cost of an incorrect no damage prediction is much higher than an incorrect damage prediction,
model accuracy is not a sufficient assessment of model quality. The precision and recall metrics are used to further
explore model performance.

In classification problems, the precision metric represents the percentage of accurate predictions within a particular
set of class predictions. In this case, it is important to explore whether the model can precisely predict the absence of
damage, which it does at a rate of 98%. The recall is the percentage of a class that is identified correctly by the model.
In this case, the recall metric for different types of damage provides information on model's ability to identify present
damage and take proper corrective actions. For the circular and square damage types, the recall metrics were 98%
and 95%, respectively.

Overall, the model performance provides support for CNN's ability to complete the tasks the authors have attributed
to it. In the next section, the authors explore the performance of the proposed CNN-based approach and several other
machine learning algorithms on a real-world concrete bridge crack data set.

TABLE 1 Synthetic damage confusion matrix

Image class No damage Circular damage Square damage
No damage 0.980 0.009 0.005
Circular damage 0.015 0.947 0.005
Square damage 0.005 0.044 0.990
ROC curve
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FIGURE 8 Receiver operating characteristic curve for convolutional neural network (CNN) on synthetic damage data. AUC: area under
the curve
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4 | REAL CONCRETE BRIDGE CRACK DATA SET

This section discusses an example of application of the proposed CNN-based approach in the context of concrete bridge
structural health monitoring. Two scenarios are considered. The first one is composed of clean images of well-controlled
concrete surfaces, where some light staining or lighting variations are present, but, overall, the quality of the concrete is
high; this scenario is representative of concrete in a new structure (see Figure 9a). The second scenario encompasses
noisy images of weathered and highly textured concrete surfaces, where staining is much more predominant and there
is a higher variability on crack widths; the objective of this scenario is to represent situations that frequently occur
during field inspections in which the deviations are prevalent from controlled imaging situations (see Figure 9b).

In both scenarios, the proposed CNN architecture was trained and tested with images from the corresponding
dataset, that is, clean images for the first scenario and noisy images for the second one.

For both scenarios, the proposed CNN was trained on two thousand four hundred 96 X 96 real concrete crack
images (see Figure 9) and compared with other machine learning algorithms. The data set was evenly distributed
between images with and without damage (i.e., crack). The model was evaluated on a test set (10%), and performance
was compared with a logistic regression with principal component analysis + logit, support vector machine, random
forest, and multilayer perceptron (MLP). All hyperparameters were grid search optimized. Hardware and software
configurations were the same as in the scenarios discussed in Section 3.

In this case, the only difference of this model to the one in the previous section is the use of square filters, which
were more appropriate for the input. The details of the architecture are presented in Figure 10.

For the first scenario of clean set of images shown in Figure 9a, the proposed CNN achieves a predictive accuracy of
99.6%. From Table 2, note that the CNN also has better accuracy than all other algorithms.

(a) Clean set: typical undamaged (left) and damage (with crack, right) image examples.

(b)Noisy set: typical undamaged (left) and damage (with crack, right) image examples. FIGURE 9

Concrete crack data
Input of 32 Feature 32 Feature 64 Feature 64 Feature 64 Feature 64 Feature 2024 524 QOutputs
96 x 96 maps of maps of maps of maps of maps of maps of Hidden Hidden
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FIGURE 10 Convolutional neural network architecture for concrete crack classification
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TABLE 2 Accuracy results for crack recognition experiment from clean images

Algorithm Overall accuracy (%)
PCA + logit 69.2
SVM with RBF kernel 54.2
Random forest 96.3
MLP 93.7
Proposed CNN 99.6

Note. CNN: convolutional neural network; MLP: multilayer perceptron; PCA: principal component analysis; RBF:
radial basis function; SVM: support vector machine.

The proposed CNN architecture also outperforms all other algorithms with a predictive accuracy of 98.8% on the
noisy concrete crack images displayed in Figure 9b. The full results are presented in Table 3. It seems as though CNN's
ability to predict hierarchical and nonlinear functions and its translation and scale invariance make it the most accurate
model within this subset.

The model also attained desired precision and recall metrics: 98.3% precision on noncrack images and 98% recall on
concrete cracks. The normalized confusion matrix is presented in Table 4.

In real-world settings, the crack images can vary in shape, size, texture, and many other attributes. Thus, evaluating
the performance of a model in a controlled setting may be insufficient to show that CNN can be effective in identifying
more heterogeneous cracks.

Thus, to verify the robustness of the CNN-based classifier for concrete bridge cracks, we now consider two different
training datasets that are composed of varying proportions of the clean and noisy images shown in Figure 9a,b,
respectively: (a) 75% of clean images and 25% of noisy images and (b) equal proportion of clean and noisy images. In
both scenarios, both the CNN and MLP models were tested in a dataset composed of only noisy images.

Indeed, Figure 11a,b shows the receiver operating characteristic for the CNN and MLP models. Table 5 reports the
accuracy, precision, and recall metrics for both scenarios. Note that for both scenarios, the CNN consistently
outperforms the MLP for all metrics. The notably higher precision metrics signal that the implementation of CNN
reduces the risk of false alarms, which can have cost- and time-saving effects on an organization. However, the high
recall score signals that almost all cracks that theoretically exist would be identified by the algorithm. Of course, data
quality and application settings will affect these outcomes in a production system.

On the basis of these results from a dataset with added heterogeneity (noisy plus clean images), the authors can
argue that the CNN model is quite accurate and capable of handling real-world crack data. Thus, CNN is generalizable

TABLE 3 Accuracy results for crack recognition experiment from noisy images

Algorithm Overall accuracy (%)
PCA + logit 83.8

SVM with RBF kernel 50

Random forest 94.2

MLP 97

Proposed CNN 98.8

Note. CNN: convolutional neural network; MLP: multilayer perceptron; PCA: principal component analysis; RBF:
radial basis function; SVM: support vector machine.

TABLE 4 Confusion matrix for concrete crack recognition

Image class No crack Crack

No crack 0.990 0.008
Crack 0.010 0.992
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FIGURE 11 Receiver operating characteristic curves for convolutional neural network (CNN) and multilayer perceptron (MLP). AUC:
area under the curve

TABLE 5 Comparing metrics for CNN and MLP

75% clean 50% clean
Metrics CNN MLP CNN MLP
Accuracy 96.7 81.7 97.9 85.5
Precision 97.5 80.2 95.6 83.5
Recall 95.8 84.2 100 88.3

Note. Precision and recall metrics are reported for Class 1 only (i.e., crack is present). CNN: convolutional neural network; MLP: multilayer perceptron.

for the purpose of the damage identification tasks here considered and is a candidate for automated crack detection in
real-world settings.

5 | CONCLUSIONS

Systems like oil pipelines, mining equipment, or large infrastructure projects can be inaccessible, hazardous, or even
impossible for a human inspector to explore. In these cases, automatic damage detection is favorable. In this paper,
the authors proposed the application of a deep learning-based approach to automate inspections reliably, accurately,
and precisely. In particular, CNNs are employed to identify damage solely from images.

The authors introduced the deep architecture and training process of CNNs. The approach was then validated on an
image data set of synthetic honeycomb structures. The model accurately classified different types of damage in these
structures and attained other desirable performance metrics. Afterwards, the proposed CNN was trained, tested, and
compared with other machine learning algorithms in several real-world concrete bridge crack scenarios. The network
outperformed all other models explored.

The latter scenario involved training the CNN on a dataset composed of a mixture of clean and noisy concrete bridge
images, whereas the testing was carried out solely on noisy images. The objective of this was clear: investigate the CNN
model performance in detecting damage under harsher and somewhat different conditions as the ones seen during
training. Although the CNN model achieved satisfactory performance metrics, its performance might suffer when faced
with damage images with significant deviations from the context represented in the training dataset. Under these
circumstances, the proposed CNN model architecture can be used as a starting point to explore new structural damage
contexts. In many cases, the model would need to be retrained. Alternatively, transfer learning presents itself as a
worthy approach to be explored in order to tackle the need for context changes.

The authors demonstrated how deep learning could be used to detect and identify damage, but the topics covered in
this paper only scratch the tip of the iceberg. CNNs have shown tremendous promise not only in image classification
and segmentation tasks but also in signal processing, topic modeling, cybersecurity, and many other domains. In the con-
text of structural reliability, the authors have begun exploring the application of these methods for image segmentation.
This approach not only can identify damage but also can locate and quantify damage within images of a structure.
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Two major challenges need to be addressed concerning applications of deep learning techniques to engineering
problems in general and to structural reliability in particular. The first involves the integration of deep learning tech-
niques with physics of failure related to relevant structural damage mechanisms (e.g., crack initiation and propagation)
to allow for dynamic damage tracking and therefore obtain prognostic metrics such as remaining useful life. The second
one concerns the need to account for uncertainty in weights and prediction. For the latter, approximate inference in
Bayesian neural networks has been used with various degrees of success on shallow architectures. The main problem
with these methods (e.g., Laplace approximations, Hamiltonian Monte Carlo, and ensemble learning) is that they are
not scalable for modern applications. However, Gal** has proposed a promising technique in 2016 called Monte Carlo
dropout. Gal showed that in a neural network with arbitrary depth and nonlinearities, dropout samples applied before a
weight layer are equivalent to an approximation of a probabilistic deep Gaussian process.

In summary, deep learning could revolutionize automated inspection systems, and this paper begins the process of
exploring a wealth of potential applications.
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APPENDIX A

One potential concern with neural networks in general, and convolutional neural networks in particular, is the sensi-
bility of the weight initialization and resulting stability of the results. To verify that the proposed architecture works
properly and can generalize well and also verify its sensitivity to the parameters initialization, we take the example
of application involving the concrete bridge crack detection discussed in Section 4 and provide the results from training
20 times the CNN-based model with random initialization of the weights and bias. Indeed, each one of the 20 runs was
trained for 2,000 epochs, and the accuracy was calculated for the validation data set, as shown in Figure Al. The thick
line represents the average accuracy, and the lighter line represents the standard deviation, both taken from the 20 runs.
On the basis of Figure Al, one can see that the architecture is stable and has a small sensibility to the parameter initial-
ization. Moreover, the best model in each one of the 20 runs of the validation data is chosen and used to estimate the
accuracy in the test data set. This results in an average accuracy of 98.75% and standard deviation equals to 0.63%, thus
corroborating the stability of the model with respect to the weight initialization.

Accuracy vs epochs
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FIGURE A1l Average accuracy and standard deviation on the validation data set and based on 20 runs for 2,000 epochs each



