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This paper presents the induced heavy ordered weighted moving average (IHOWMA) operator.
It is an aggregation operator that uses the main characteristics of three well-known techniques:
the moving average, induced operator, and heavy aggregation operator. This operator provides
a parameterized family of aggregation operators that include the minimum, the maximum, and
total operator as special cases. It can be used in a selection process, considering that not all
decision makers have the same knowledge and expectations of the future. The main properties of
this operator are studied including a wide range of families of IHOWMA operators, such as the
heavy ordered weighted moving average operator and uncertain induced heavy ordered weighted
moving average operator. The IHOWMA operator is also extended using generalized and quasi-
arithmetic means. An example in an investment selection process is also presented. C© 2017 Wiley
Periodicals, Inc.

1. INTRODUCTION

In problems related to the economy, which has high uncertainty and volatility,
inclusion of knowledge and expectations of the decision maker about future scenar-
ios is an important way to reduce risk related to the decision. A common aggregation
method is the ordered weighted averaging (OWA) operator introduced by Yager.1

The OWA operator has been used in many applications2–4 and extended under a
wide range of frameworks.5,6

This paper focuses on the induced OWA (IOWA), heavy OWA (HOWA), and
moving average (MA). The IOWA operator was introduced by Yager and Filev.7

In this operator, the reordering step is not developed with values of the arguments.
Instead it is induced by another mechanism such that the ordered position of ar-
guments depends upon values of their associated order-inducing variables.22 This
operator was extended by using fuzzy numbers,8 intuitionistic fuzzy information,9

and generalized and quasi-arithmetic means.10
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The HOWA operator11 is an operator that allows the weighting vector to range
from 1 to ∞ or even from −∞ to ∞. With this characteristic, it is possible to add
expectations and knowledge of the decision maker to the aggregation information
process. This operator has been studied using fuzzy measures12 and fuzzy numbers.13

Extensions have been developed by Merigó et al.14

Moving average is an average of some part of the whole sample. With this
technique, it is possible to consider historical data to forecast a future value. Making
comparisons when modifying the sample is also possible. This method is usually
used to solve time series smoothing problems and is very common in economics
and statistics.15

This paper analyzes the use of moving averages with induced heavy aggregation
operators in a selection process. The main advantage of this operator is that it unifies
historical data with expectations of the future and knowledge of the decision maker,
leading to improvement of the decision process. This operator is called induced
heavy ordered weighted moving average (IHOWMA).

The main concepts of this new extension have been developed, along with
a range of particular cases including the heavy ordered weighted moving av-
erage (HOWMA) operator and the uncertain induced heavy ordered weighted
moving average (UIHOWMA) operator, which is used in problems with interval
numbers.

A generalization of the IHOWMA operator is presented using generalized
and quasi arithmetic means.10,16,17 The main advantage of this operator is that the
same formulation includes arithmetic, geometric, or quadratic aggregations. Several
extensions using different types of interval and fuzzy numbers were suggested by
Merigó and Casanovas.16,17

An application of the new approach in an investment selection process is
developed. We use percent of profit information from three types of investment
from February 2016 to April 2016. In the problem, we identify interval numbers,
which is why the UIHOWMA operator is used to select the most profitable option
considering characteristics of the decision maker.

The remainder of the paper is organized as follows. In Section 2, we re-
view moving averages and some aggregation operators. Section 3 introduces the
IHOWMA operator, and Section 4 develops the generalized IHOWMA operator.
Section 5 explains the steps to use induced heavy aggregation operators in a se-
lection process, and Section 6 presents the use of the IHOWMA operator in an
investment selection process. Section 7 summarizes the main conclusions of the
paper.

2. PRELIMINARIES

In this section, we briefly review some basic concepts that will be used through-
out the paper. We analyze the interval numbers, OWA operator, UOWA operator,
heavy aggregation operators, induced aggregation operators, moving averages, and
generalized aggregation operators.
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2.1. Interval Numbers

Interval numbers, introduced by Moore,18 is a technique that represents un-
certainty in a simple way. They can be expressed in different forms. For example,
assume a triplet (a1, a2, a3), where a1 and a3 are considered the minimum and the
maximum of the interval and a2 is the value with the highest probability or possi-
bility. In the following sections, we define uncertain aggregation operators as those
operators that use interval numbers in the analysis.

To rank alternatives using interval numbers, we establish criteria as
follows:17,19

(a) For doublet, calculate the arithmetic mean of the interval: (c1 + c2)/2.
(b) For triples and more, calculate a weighted average that gives more importance to central

values, that is, (c1 + 2c2 + c3)/4.
(c) For 4-tuples we could calculate: (c1 + 2c2 + 2c3 + c4)/6.
(d) And so on.

2.2. OWA Operator

The OWA operator was introduced by Yager,1 and it is an aggregation operator
that has many applications.2,16,19 It is defined as follows:

DEFINITION 1. An OWA operator of dimension n is a mapping OWA : Rn → R
with an associated weight vector W of dimension n such that

∑n
j = 1 wj = 1 and

wj ∈ [0, 1], according to the following formula:

OWA (a1, a2, . . . , an) =
n∑

j=1

wjbj , (1)

where bj is the jth largest element of the collection ai .

It is possible to distinguish descending OWA (DOWA) and ascending (AOWA)
operators. The difference lies in weights that are related by wj = w∗

n−j+1 , where
wj is the jth weight of the DOWA operator and w∗

n−j+1 the jth weight of the AOWA
operator.

2.3. Uncertain OWA Operator

The uncertain OWA (UOWA) operator was introduced by Xu and Da.20 The
main characteristic of this operator is uncertainty; this can be included in the operator
by using interval numbers. It can be defined as follows:

DEFINITION 2. Let � be the set of interval numbers. An UOWA operator of dimension
n is a mapping UOWA : �n → � that has an associated weighting vector W of
dimension n such that wj ∈ [0, 1] and

∑n
j = 1 wj = 1, according to the following
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formula:

UOWA (ã1, ã2, .., ã3) =
n∑

j=1

wj b̃j , (2)

where b̃j is the jth largest of the ãi and the ãi are interval numbers.

As in usual interval numbers, we can distinguish the uncertain maximum,
minimum, and average. Additionally, as in the case of the OWA operator, we have
descending UOWA and ascending UOWA operators.

2.4. Heavy Aggregation Operators (HOWA, UHOWA, and HWA)

The HOWA operator11 is an extension of the traditional OWA, where the main
characteristic of this new operator is in the weight vector, which is not bounded by the
sum of 1, but instead bounded according to available information and expectations
and knowledge of the decision maker. It can vary from 1 to n or even from −∞ to
∞. This operator can be defined as follows:

DEFINITION 3. A HOWA operator is a mapping HOWA : Rn → R which is associated
with a weight vector w, where wj ∈ [0, 1] and 1 ≤ ∑n

j = 1 wj ≤ n, such that

HOWA (a1, a2, . . . , an) =
n∑

j=1

wjbj , (3)

where bj is the jth largest element of the collection ai .

The characteristics of the HOWA operator are: monotonic and commutative,
but it is not bounded by the minimum and the maximum operators. Additionally,
similar to OWA, we can distinguish between descending HOWA and ascending
HOWA operators.

With the possibility to expand the weighting vector from −∞ to ∞, we can
drastically under- or overestimate the results of the HOWA operator, considering
new scenarios according to information of the decision maker and some expectations
of the future of the case in study.

Yager11 introduced a characteristic for the HOWA operator, that is related to
the weighting vector and noted that this vector does not depend on reordering of
the argument and introduced the beta value of the vector W. This beta value can
be defined as β (W ) = (|W | − 1)/(n − 1). Note that if β = 1 we obtain the total
operator and if β = 0 we obtain the usual OWA operator.

It is possible to use interval numbers in arguments of the HOWA operator,
resulting in the uncertain heavy OWA (UHOWA) operator. Merigó and Casanovas21

define it as follows:

DEFINITION 4. Let � be the set of interval numbers. An UHOWA operator of dimen-
sion n is a mapping UHOWA : �n → � that has an associated weighting vector W

International Journal of Intelligent Systems DOI 10.1002/int



INDUCED HEAVY MOVING AVERAGES 1827

of dimension n such that wj ∈ [0, 1] and 1 ≤ ∑n
j = 1 wj ≤ n, then

UHOWA (ã1, ã2, . . . , ãn) =
n∑

j=1

wj b̃j . (4)

Note that the HOWA operator can convert to a heavy moving average (HWA)
if wj = 1/n. Merigó and Casanovas17 define it as follows:

DEFINITION 5. A HWA operator of dimension n is a mapping HWA : Rn → R
that has an associated weighting vector W of dimension n with wj ∈ [0, 1] and
1 ≤ ∑n

i = 1 wi ≤ n, such that

HWA (a1, a2, . . . , an) =
n∑

i=1

wiai , (5)

where ai is the ith argument of the aggregation. Also note that it is possible to expand
the weighting vector from −∞ to ∞.

2.5. Induced Aggregation Operators

The IOWA operator was introduced by Yager and Filev7 as an extension of the
OWA operator. Its main difference is that the reordering step is not developed with
values of the arguments ai . In this case, the reordering step is developed with order
inducing variables. The IOWA operator can be defined as follows.

DEFINITION 6. An IOWA operator of dimension n is an application IOWA : Rn ×
Rn → R that has a weighting vector associated, W of dimension n where the sum
of the weights is 1 and wj ∈ [0, 1], where an induced set of ordering variables is
included (ui) such that the formula is

IOWA (〈u1, a1〉, 〈u2, a2〉, . . . , 〈un, an〉) =
n∑

j=1

wjbj , (6)

where bj is the ai value of the OWA pair 〈ui, ai〉 having the jth largest ui . ui is the
order inducing variable, and ai is the argument variable.

From a generalized perspective of the reordering step, we can distinguish be-
tween the descending IOWA (DIOWA) operator and the ascending IOWA (AIOWA)
operator. The weight of these operators is related to wj = w∗

n−j+1, where wj is the
jth weight of the DIOWA and w∗

n−j+1 the jth weight of the AIOWA operator.
The IOWA operator is an averaging operator. This is reflected by the fact that

the operator is monotonic, commutative, bounded, and idempotent, both for the
DIOWA and the AIOWA operator. Note that the OWA operator is obtained when
ui = ai , for all i.7,22
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2.6. Moving Averages

A moving average is a usual average that moves toward some part of the
sample. This method has been used in economics and statistics to solve time series
smoothing problems.15 The moving average, according to Kenney and Keeping,23

can be defined as follows:

DEFINITION 7. Moving averages are defined as a sequence given {ai}Ni = 1, where a
moving average n is a new sequence {si}N−n+1

i = 1 defined from ai taking the arithmetic
mean of the sequence of n terms, such that

si = 1

n

i+n−1∑
j = i

aj , (7)

The usual moving average can be extended by using weighted averages, ob-
taining the weighted moving average (WMA). Merigó and Yager24 defined it as
follows:

DEFINITION 8. A WMA of dimension m is a mapping WMA : Rm → R that has
an associated weighting vector W of dimension m with W = ∑m+t

i=1+t wi = 1 and
wi ∈ [0, 1], such that

WMA (a1+t , a2+t , . . . , am+t ) =
m+t∑

i=1+t

wiai , (8)

where ai is the ith argument, m is the total number of arguments considered from
the whole sample, and t indicates the movement performed in the average from
the initial analysis. Note that if wi = 1/m for all i, the WMA becomes the MA
aggregation.

The moving average can also be combined with the OWA operator generating
the ordered weighted moving average (OWMA). Merigó and Yager24 defined it as
follows:

DEFINITION 9. An OWMA of dimension m is a mapping OWMA : Rm → R that has
an associated weighting vector W of dimension m with W = ∑m+t

j=1+t wj = 1 and
wj ∈ [0, 1], such that

OWMA (a1+t , a2+t , . . . , am+t ) =
m+t∑

j=1+t

wjbj , (9)

where bj is the jth largest argument of the ai , m is the total number of arguments
considered from the whole sample, and t indicates the movement in the average from
the initial analysis.
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The OWMA can also be extended using the IOWA operator and its characteristic
of an induced weighted vector resulting in the IOWMA operator. Merigó and Yager24

defined it as follows:

DEFINITION 10. An IOWMA of dimension m is a mapping IOWMA : RM × RM → R
that has an associated weighting vector W of dimension m with W = ∑m+t

j=1+t wj =
1 and wj ∈ [0, 1], such that

IOWMA (〈u1+t , a1+t〉, 〈u2+t , a2+t〉, . . . , 〈um+t , am+t 〉) =
m+t∑

j=1+t

wjbj , (10)

where bj is the ai value of the IOWMA pair ui, ai having the jth largest ui , ui

is the order inducing variable, ai is the argument variable, m is the total number
of arguments considered from the whole sample, and t indicates movement in the
average from the initial analysis.

2.7. Generalized Aggregation Operators

Generalized aggregation operators are those that provide a general formulation,
including a wide range of particular cases, such as the generalized and quasi-
arithmetic mean. Note that we focus on the quasi-arithmetic mean because it includes
the generalized as a particular case.10,25,26 The weighted quasi-arithmetic mean
(Quasi-WA) is defined by Merigó and Yager24 as follows.

DEFINITION 11. A Quasi-WA operator of dimension n is a mapping Quasi − WA :
Rn → R that has an associated weighting vector W of dimension n with

∑n
i = 1 wi =

1 and wi ∈ [0, 1], such that

Quasi − WA (a1, a2, . . . , an) = g−1

(
n∑

i = 1

wig (ai)

)
, (11)

where g(b) is a strictly continuous monotone function. Note that if wi = 1/n for
all i, the QWA becomes the simple quasi-arithmetic mean. Moreover, if g (a) = aλ ,
the QWA becomes the weighted generalized mean.

The QWA operator can be combined with the OWA operator to obtain the
ordered weighted quasi-arithmetic mean (Quasi-OWA). This operator is defined by
Fodor et al.27 as follows:.

DEFINITION 12. A Quasi-OWA operator of dimension n is a mapping Quasi −
OWA : Rn → R that has an associated weighting vector W of dimension n with∑n

j = 1 g(bj ) = 1 and wj ∈ [0, 1], and such that

Quasi − OWA (a1, a2, . . . , a3) = g−1

⎛
⎝ n∑

j = 1

wjg
(
bj

)⎞⎠ , (12)
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where bj is the jth largest of the ai and g(b) is a strictly continuous monotone
function.

Note that if we induce the reordering step of the weighting vector we obtain
the Quasi-IOWA operator. Merigó and Gil-Lafuente10 defined it as follows:

DEFINITION 13. A Quasi-IOWA operator of dimension n is a mapping Quasi −
IOWA : Rnx Rn → R that has an associated weighting vector W of dimension n
with wj ∈ [0, 1] and W = ∑n

j=1 wj = 1, such that

Quasi − IOWA (〈u1, a1〉, . . . , 〈un, an〉) = g−1

⎛
⎝ n∑

j = 1

wjg
(
bj

)⎞⎠ , (13)

where bj is the ai value of the Quasi-IOWA pair ui, ai having the jth largest ui , ui

is the order inducing variable, ai is the argument, and g(b) is a strictly continuous
monotonic function.

Also the IOWMA operator can be generalized, and similar to the other operators
the Quasi-IOWMA is presented because it includes the generalized IOWMA as a
particular case.

DEFINITION 14. An induced order weighted quasi-arithmetic moving average (Quasi-
IOWMA) of dimension m is a mapping Quasi − IOWMA : Rn × Rn → R that has
an associated weighting vector W of dimension m with W = ∑m+t

j=1+t wj = 1 and
wj ∈ [0, 1], such that

Quasi − IOWMA (〈u1+t , a1+t〉, . . . , 〈un+t , an+t 〉) = g−1

⎛
⎝ m+t∑

j = 1+t

wjg
(
bj

)⎞⎠ ,

(14)

where bj is the ai value of the IOWMA pair ui, ai having the jth largest ui , ui

is the order inducing variable, ai is the argument variable, m is the total number
of arguments considered from the whole sample, t indicates the movement in the
average from the initial analysis, and g(b) is a strictly continuous monotone function.

It is important to note that if wi = 1/m for all i, the Quasi-IOWMA operator
becomes the Quasi-MA operator. Furthermore, if g (a) = aλ, the Quasi-IOWMA
becomes the generalized weighted moving average.

3. INDUCED HEAVY MOVING AVERAGES

3.1. Theoretical Foundations

The IHOWMA operator is an extension of the OWA operator and combines
characteristics of the IOWA operator and the HOWA operator with the moving
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average. This operator uses a moving average with an associated weighting vector
that ranges from −∞ to ∞; it also uses order-inducing variables in the reordering
of information. It can be defined as follows.

DEFINITION 15. A IHOWMA operator is defined as a given sequence {ai}Ni = 1, where
a new sequence {si}N−m+1

i = 1 is multiplied by a heavy weighting vector, such that

IHOWMA (〈u1+t , a1+t〉, 〈u2+t , a2+t〉, . . . , 〈un+t , am+t〉) =
m+t∑

j=1+t

wjbj , (15)

where bj is jth element that has the largest value of ui , ui is the order inducing
variable, and W is an associated weighting vector of dimension m with W : 1 ≤∑m+t

i = 1+t wi ≤ n and wi ∈ [0, 1]. Observe that we can also expand the weighting
vector from −∞ to ∞. Thus, the weighting vector w becomes −∞ ≤ ∑n

j = 1 wj ≤
∞.

Note that by allowing the weighting vector to range from −∞ to ∞ it is
possible to under- or overestimate the result based on the information available and
knowledge of the decision maker. Because of the reordering step, similar to the OWA
operator, it is possible to distinguish between descending and ascending IHOWMA
operators.

The characteristics of the IHOWMA operator are as follows:

(a) It is monotonic because if ai ≥ di , for all i, then IHOWMA (a1, . . . , an) ≥
IHOWMA(d1, . . . , dn).

(b) It is commutative because any permutation of the argument has the same evaluation.
(c) It can be bounded if the weight vector ranges from 1 to ∞, and it can consider that if

the weight vector ranges from −∞ to ∞, the IHOWMA operator is not bounded.
(d) The characteristic of the beta value explained in Definition 3 (HOWA operator) also

applies to the IHOWMA operator.

When a problem is based on interval numbers, the uncertain IHOWMA (UI-
HOWMA) operator is obtained. This operator can be defined as follows:

DEFINITION 16. Let � be the set of interval numbers. An UIHOWMA operator of
dimension n is a mapping UIHOWMA : �n × �n → � that acts on the sequence
{si}N−n+1

i = 1 , which is multiplied by a heavy weighting vector, according to

UIHOWA (〈(u1+t , ã1+t〉, 〈u2+t , ã2+t〉, . . . , 〈un+t , ãm+t〉) =
m+t∑

j=1+t

wj b̃j , (16)

where b̃j is the jth element that has the largest value ui , ui is the order inducing
variable, ãi are interval numbers, and W is an associated weighting vector of
dimension m with W : 1 ≤ ∑m+t

i = 1+t wi ≤ n and wi ∈ [0, 1].

Note that if the weighting vector is not induced, then the IHOWMA operator
becomes the HOWMA operator, such that
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DEFINITION 17. A HOWMA operator is defined as a given sequence {ai}Ni = 1, where
a new sequence {si}N−n+1

i = 1 is multiplied by a heavy weighting vector, such that

HOWMA (si) =
m+t∑

j=1+t

wjbj , (17)

where bj is the jth largest element of the collection a1, a2, . . . , an and W is an
associated weighting vector of dimension m with W : 1 ≤ ∑m+t

i = 1+t wi ≤ n and
wi ∈ [0, 1]. Observe that we can also expand the weighting vector from −∞ to ∞.
Thus, the weighting vector w becomes −∞ ≤ ∑n

j = 1 wj ≤ ∞.

3.2. Families of the IHOWMA Operator

In this section, different families of the IHOWMA operator are presented. We
demonstrate a wide range of particular cases that can be used in the IHOWMA
operator, leading to different results. These particular cases are found by analyzing
the coefficient β, so a wide range of particular cases are presented by giving different
values and interpretations of the β value. By choosing different values for the weight
vector, we obtain different types of aggregation operators. Some of the families of
the IHOWMA operator are as follows:

(a) If β = 0 the IHOWMA operator becomes the IOWMA operator.
(b) When wn = 1, wj = 0, for all j �= n and β = 0, we obtain the minimum IOWMA.

If w1 = 1, wj = 0, for all j �= n and β = 0, we obtain the maximum IOWMA.
Finally, the total operator is obtained when β = 1.

(c) The IOWMA operator becomes the MA aggregation when wi = 1/m for all i.
(d) The arithmetic mean IHOWMA: If wj = 1/n for all j and pi = 1/n for all i.
(e) The median IHOWMA: if n is odd we assign w(n+1)/2 = 1 and wj∗ = 0 for all others.

If n is even we assign, wn/2 = w(n/2)+1 = 0.5 and wj∗ = 0 for all others.
(f) The weighted median IHOWMA: Select the argument bk that has the kth largest argument

such that the sum of the weights from 1 to k is equal to or higher than 0.5 and the sum
of the weights from 1 to k – 1 is less than 0.5.

(g) The general olympic-IHOWMA operator: if wj = 0 for j = 1, 2, . . . , k, n, n − 1, . . . , n
− k + 1; and for all others wj* = 1/(n − 2k), where k < n/2.

(h) The centered-IHOWMA: if it is symmetric, it strongly decays from the center to the
maximum and the minimum, and it is inclusive.

To understand this approach, we present a simple numerical example of the
UIHOWMA operator.

Example 1. Assume the following income for three different companies shown in
Table I in an aggregation process:

Assume an ordered inducing variable U = (C1 = (10, 15, 5) , C2 =
(5, 10, 15), C3 = (15, 10, 5)), and the following weighting vector W =
(0.3, 0.3, 0.4) . If we want to forecast the income for April based on the information
below using the IHOWMA operator, the results will be

C1 = (0.3 ∗ 70,000) + (0.3 ∗ 80,000) + (0.4 ∗ 83,000) = 78,200
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Table I. Available data

January February March

C1 80,000 90,000 87,000
C2 70,000 85,000 91,000
C2 83,000 92,000 86,000

C2 = (0.3 ∗ 92,000) + (0.3 ∗ 85,000) + (0.4 ∗ 90,000) = 89,100

C3 = (0.3 ∗ 87,000) + (0.3 ∗ 91,000) + (0.4 ∗ 86,000) = 87,800

We see from this information that the company with better forecast income
will be C2 > C3 > C1.

4. GENERALIZED IHOWA OPERATOR

The IHOWMA operator provides a wide range of cases using generalized
and quasi-arithmetic means.24,28,29 In this section, we present the Quasi-HOWMA
operator and the Quasi-IHOWMA operator because they include the generalized
mean as a particular case.

DEFINITION 18. A Quasi-HOWMA operator of dimension n is a mapping HOWMA :
Rn → R that has an associated weighting vector W of dimension n that is defined
by a given sequence {ai}Ni = 1, where you obtain a new sequence {si}N−n+1

i = 1 , which is
multiplied by a heavy weighting vector, such that

Quasi − HOWMA (si) = g−1
m+t∑

j = 1+t

wjg
(
bj

)
, (18)

where g(ai) is a strictly continuous monotonic function and bj is the jth largest
element of the collection a1, a2, . . . , an, W is an associated weighting vector of
dimension m with W : 1 ≤ ∑m+t

i = 1+t wi ≤ n and wi ∈ [0, 1], and g(bj ) is a strictly
continuous monotone function.

DEFINITION 19. A Quasi-IHOWMA operator is defined as a given sequence {ai}Ni = 1,
where you obtain a new sequence {si}N−m+1

i = 1 that is multiplied by a heavy weighting
vector, such that

Quasi − IHOWMA (〈u1, a1+t〉, 〈u2, a2+t〉, . . . , 〈un, am+t 〉)

= g−1
m+t∑

j = 1+t

wjg
(
bj

)
, (19)

where g(bj ) is a continuous monotonic function and bj is jth element that has
the largest value of ui , ui is the order inducing variable, and W is an associated
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Table II. Families of generalized IHOWMA operators

Particular case Quasi-IHOWMA Quasi-HOWMA

ui = 1
n

, for all i Quasi-arithmetic heavy moving
average (Quasi-HOWMA)

Quasi-arithmetic heavy moving
average (Quasi-HMA)

g (b) = bλ Generalized IHOWMA Generalized HOWMA
g (b) = b IHOWMA HOWMA
g (b) = b2 Heavy ordered weighted moving

quadratic average (IHOWMQA)
Heavy ordered weighted moving

quadratic average (HOWMQA)
g(b) → bλ, f or λ → 0 Heavy ordered weighted moving

geometric average (IHOWMGA)
Heavy ordered weighted moving

geometric average (HOWMGA)
g (b) = b−1 Heavy ordered weighted moving

harmonic average (IHOWMHA)
Heavy ordered weighted moving

harmonic average (HOWMHA)
g (b) = b3 Heavy ordered weighted moving

cubic average (IHOWMCA)
Heavy ordered weighted moving

cubic average (HOWMCA)
g(b) → bλ, for λ → ∞ Heavy maximum Heavy maximum
g(b) → bλ, for λ → ∞ Heavy minimum Heavy minimum

weighting vector of dimension m with W : 1 ≤ ∑m+t
i = 1+t wi ≤ n and wi ∈ [0, 1].

Observe that we can also expand the weighting vector from −∞ to ∞. Thus, the
weighting vector w becomes −∞ ≤ ∑n

j = 1 wj ≤ ∞.

Note that if interval numbers are used, the Quasi-UIHOWMA operator is
obtained. It can be defined as follows:

DEFINITION 20. Let � be the set of interval numbers. A Quasi-UIHOWMA operator
of dimension n is a mapping Quasi − UIHOWMA : �n × �n → � that acts on
the sequence {si}N−n+1

i = 1 , which is multiplied by a heavy weighting vector, according
to

Quasi − IHOWA(〈(u1+t , ã1+t〉, 〈u2+t , ã2+t〉, . . . , 〈un+t , ãm+t〉)

=
m+t∑

j=1+t

wjg
(
b̃j

)
, (20)

where b̃j is the jth element that has the largest value ui , ui is the order inducing
variable, ãi are interval numbers, W is an associated weighting vector of dimension
m with W : 1 ≤ ∑m+t

i = 1+t wi ≤ n and wi ∈ [0, 1], and g(b̃j ) is a strict, continuous
monotonic function.

In Table II, we briefly present some of the main particular cases of the Quasi-
IHOWMA operator and Quasi-HOWMA operator.

The same families of the generalized IHOWMA operator apply to the UI-
HOWMA operator. The difference is that now these aggregation operators address
interval numbers.
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5. INVESTMENT SELECTION WITH INDUCED HEAVY MOVING
AVERAGES

In an investment selection process, aversion to loss and the risk of each choice
play an important role for the investor, so including these characteristic in the
selection process will generate the best investment according to their needs, skills,
and knowledge of the financial market.30–32

The use of information aggregation operators can integrate all of these char-
acteristics in the selection process, such that use of UIHOWMA operators helps
decision makers to select an appropriate choice taking in account personal charac-
teristics and expectations for the future of the financial market.

To use UIHOWMA operators in the selection process, there are a number of
steps to obtain the best results. These steps are as follows:

Step 1. Identify alternatives available, in this case, different types of investment
(A1, A2, A3).

Step 2. Choose the number of historical months to consider, for this case three
months.

Step 3. Analyze the data using the opinion of several experts and form collective
results that summarize information given by the experts.

Step 4. Calculate the weighting vector W = (w1+t , .., wm+t )
Step 5. Calculate the order-inducing variable U = (u1+t , . . . , um+t )
Step 6. Use the IHOWMA (or UIHOWMA) operator for each of the criteria

(c1, c2, c3) for alternatives identified in Step 1.
Step 7. Adopt a decision based on results found using different aggregation

operators. In the case of uncertain aggregation operators, use the ranking methods
presented in Section 2.1.

6. SELECTION PROCESS FOR THREE INVESTMENT OPTIONS

In this section, we investigate a simple numerical example to understand the
approach suggested in this article. The example shows a multiperson decision-
making problem in the selection of investments.

Step 1. We consider the following alternatives for investment

a1 TbillsMEX

a2 Sight Savings

a3 Investment fund

Step 2. The historical profit information for each alternative is presented as a
3-tuplet because each investment option has a minimum, median, and maximum
percent of profit according to the quantity of the investment.

Step 3. Since the historical data are imprecise, three experts evaluate the data
and provide their own opinion (see Tables III–V). Assume that opinions of the three
experts are equally important.
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Table III. Historical profit of the investments: Expert 1

Month TbillsMEX Sight saving Investment fund

April 2016 (0.39,0.41,0.46) (0.41,0.43,0.48) (0.30,0.47,0.64)
March 2016 (0.34,0.38,0.42) (0.24,0.26,0.28) (0.21,0.34,0.50)
February 2016 (0.30,0.34,0.38) (0.15,0.19,0.24) (0.13,0.33,0.42)

Table IV. Historical profit of the investments: Expert 2

Month TbillsMEX Sight saving Investment fund

April 2016 (0.37,0.42,0.45) (0.42,0.47,0.49) (0.26,0.51,0.59)
March 2016 (0.35,0.36,0.40) (0.23,0.24,0.29) (0.20,0.36,0.51)
February 2016 (0.29,0.32,0.37) (0.16,0.20,0.25) (0.14,0.30,0.40)

Table V. Historical profit of the investments: Expert 3

Month TbillsMEX Sight saving Investment fund

April 2016 (0.35,0.40,0.44) (0.40,0.45,0.46) (0.25,0.52,0.60)
March 2016 (0.36,0.37,0.41) (0.22,0.25,0.27) (0.19,0.35,0.52)
February 2016 (0.31,0.33,0.36) (0.17,0.21,0.26) (0.18,0.30,0.38)

Table VI. Historical profit of the investments: Collective results

Month TbillsMEX Sight saving Investment fund

April 2016 (0.37,0.41,0.45) (0.42,0.45,0.48) (0.27,0.50,0.61)
March 2016 (0.35,0.37,0.41) (0.23,0.25,0.28) (0.20,0.35,0.51)
February 2016 (0.30,0.33,0.37) (0.16,0.20,0.25) (0.15,0.31,0.40)

Information from the experts is aggregated using the arithmetic mean (W =
1/3, 1/3, 1/3) forming the collective results shown in Table VI.

Steps 4 and 5. Note that n = 3 because the decision maker believes that these
are the months that still hold important information, the ordered inducing variables
U = (A1 = (5, 10, 20), A2 = (10, 5, 20), A3 = (5, 20, 10)) and the weighted vector
is W = (0.30, 0.35, 0.40) = 1.05 because the future scenario of the investment is
optimistic.

Step 6. Using the above information, the uncertain moving average (UMA), un-
certain heavy moving average (UHMA) operator, uncertain heavy ordered weighted
moving average (UHOWMA) operator, and UIHOWMA operator are applied to
generate various selection scenarios (see Table VII).

Step 7. Unify the results of interval numbers according to the procedure ex-
plained in Section 2.1. (see Table VIII). Rank alternatives according to the results
(see Table IX).

Note that by using the UIHOWMA operator, the order of the alternatives
changes because of inclusion of the induced weighted vector instead of the regular
one. In this sense, the ranking of alternatives includes more information about the
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Table VII. Results using aggregation operators

Operator TbillsMEX Sight saving Investment fund

UMA (0.34,0.37,0.41) (0.27,0.30,0.34) (0.21,0.39,0.51)
UHMA (0.36,0.39,0.43) (0.28,0.32,0.35) (0.22,0.41,0.53)
UHOWMA (0.35,0.38,0.43) (0.27,0.30,0.34) (0.21,0.40,0.52)
UIHOWMA (0.36,0.39,0.43) (0.29,0.32,0.36) (0.22,0.41,0.54)

Abbreviations: UMA, the uncertain moving average operator: UHMA, uncertain heavy moving average
operator; UHOWMA, uncertain heavy ordered weighted moving average operator; UIHOWMA, uncertain
induced heavy ordered weighted moving average operator.

Table VIII. Unification of the interval numbers

Operator TbillsMEX Sight saving Investment fund

UMA 0.3725 0.3016 0.3716
UHMA 0.3911 0.3167 0.39025
UHOWMA 0.3872 0.3043 0.3813
UIHOWMA 0.3950 0.3192 0.3961

Abbreviations: UMA, the uncertain moving average operator: UHMA, uncertain heavy moving average
operator; UHOWMA, uncertain heavy ordered weighted moving average operator; UIHOWMA, uncertain
induced heavy ordered weighted moving average operator.

Table IX. Ranking of the alternatives

Operator Ranking

UMA TbillsMEX > Investment fund > Sight saving
UHMA TbillsMEX > Investment fund > Sight saving
UHOWMA TbillsMEX > Investment fund > Sight saving
UIHOWMA Investment fund >TbillsMEX > Sight saving

Abbreviations: UMA, the uncertain moving average operator: UHMA, uncertain heavy moving average
operator; UHOWMA, uncertain heavy ordered weighted moving average operator; UIHOWMA, uncertain
induced heavy ordered weighted moving average operator.

decision maker instead of only historical data. With the use of the UIHOWMA
operator, knowledge, expectations, and characteristics of the decision maker can be
added making results more complex and specialized.

7. CONCLUSIONS

This paper has introduced a new extension of the OWA operator called the
IHOWMA operator. This operator uses the main characteristics of three techniques:
the moving average, IOWA operator, and heavy OWA (HOWMA) operator. This op-
erator uses historical information and combines it with a weighted vector, reflecting
the expectations of the decision maker. Note that the reordering step in the process
is induced.
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We analyze this new operator by providing its definition and studying some
of its main properties. We developed a wide range of families of the IHOWMA
operator, such as the arithmetic mean, median, weighted median, olympic mean,
and generalized IHOWMA. Other interesting cases were described including the
HOWMA and UIHOWMA, where interval numbers are used.

An application of the new approach to the selection process has also been
developed. We observe that using the UIHOWMA operator instead of other operators
leads to different results about the expectation of the future of alternatives. Using
the UIHOWMA operator, the decision maker will have a more complete vision of
situations.

In future research, we expect to develop new extensions of the OWA operator33

by considering a probabilistic heavy ordered weighted moving average operator
including characteristics such as fuzzy sets,34,35 distance measure,36–38 or the use of
expertons in a group decision-making problem.39
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5. Merigó JM. Fuzzy decision making with immediate probabilities. Comput Ind Eng
2010;58(4):651–657.

6. Xu ZS, Da QL. An overview of operators for aggregating information. Int J Intell Syst
2003;18(9):953–969.

7. Yager R, Filev D. Induced ordered weighted averaging operators. IEEE Trans Syst Man
Cybern 1999;29(2):141–150.

8. Chen SJ, Chen SM. A new method for handling multicriteria fuzzy decision-making prob-
lems using FN-IOWA operators. Cybern Syst 2003;34(2):109–137.

9. Wei G. Some induced geometric aggregation operators with intuitionistic fuzzy information
and their application to group decision making. Appl Soft Comput 2010;10(2):423–431.
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