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Abstract. Using classical molecular dynamics, we study the time evolution of out-of-plane
standing waves on a square and circular single-layer graphene membrane. We explore the first
six normal modes, obtaining the oscillation frequencies from the atomic motion. The modes
show long-time stability in the harmonic regime, with no decoupling on multiple frequencies.
Using the frequencies of oscillation, we calculated the transverse speed of sound in graphene
and the tension on the membrane.

1. Introduction
The high flexibility, remarkable electronic properties and exceptional mechanical strength of
graphene make it a useful material in technological applications [1–3]. Another fascinating
property of this material is its high Q-factor [4] which makes graphene an interesting material to
study the oscillation of normal modes, as the rate of energy loss is very low relative to the stored
energy. Recent advances in nanotechnology allow for the production of nanoscale mechanical
resonators [3,5], a field where graphene is considered promising for many applications. Therefore,
a further characterization of different vibration modes of graphene for different geometries is
needed, both experimental and theoretical [6].

In this work, we use classical molecular dynamics simulations with interactions modelled by
the an empirical potential to study the flexural normal modes, also called lowest frequency
acoustic branch ZA in phonon analysis, of single-layer graphene membranes of square and
circular shapes. The primary aim is to compare the simulation with the theoretical results,
obtaining a criteria for harmonic oscillation in the membrane. In addition, we estimate the
speed of transverse waves in graphene.

2. Theory
The wave equation with Dirichlet boundary conditions governs the dynamics of a membrane
of any shape, whose borders are fixed. That is, if z(x, y, t) is the out-of-plane deviation of the
membrane at time t in the position (x, y), then its evolution is controlled by the equation

∇2z(x, y, t) =
ρ

T

∂2z(x, y, t)

∂t2
(1)

with the boundary condition
z(x, y, t)|∂Ω = 0 , (2)
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where ∂Ω is the surface boundary, ρ the mass per area unit, and T is the tension per length
unit. The ratio of the last two quantities corresponds to the square of the speed of sound in the
media, given by

c =

√
T

ρ
. (3)

For a rectangular membrane, the solution is given by

znx,ny(x, y; t) = z0 sin

(
nx
xπ

Lx

)
sin

(
ny
yπ

Ly

)
sin

(
φ+ ωnx,ny t

)
, (4)

where Lx and Ly are the dimensions of the rectangle, nx and ny integers numbers, and

ωnx,ny = πc

√
n2x
L2
x

+
n2y
L2
y

(5)

is the oscillation frequency. The phase φ and the height z0 in Eq. 4 are determined by the initial
conditions. If the membrane is square-shaped, then Lx = Ly = L, and

ωnx,ny = π
c

L

√
n2x + n2y . (6)

For a circular membrane of radius a, the solution takes the form

zm,n(r, θ; t) = z0 Jm

(r
a
αm,n

)
sin(mθ + ψ) sin(ωm,nt+ φ) , (7)

with m = 0, 1, 2, . . ., n = 1, 2, 3, . . ., where Jm is m-th Bessel function of the first kind, αm,n

the n-th positive root of Jm, and φ, ψ and z0 are constants to be determined by the initial
conditions. In this case the oscillation frequencies are given by

ωm,n =
αm,nc

a
, (8)

where c is the speed of transverse wave in the media.

3. Methodology
The classical molecular dynamics simulations were performed using the Tersoff potential [7,8] for
the interatomic interactions. The lattice constant a for this potential was found by minimizing
the energy respect to the area. We found the energy is minimized for a = 2.46 Å, in agreement
with the value accepted in the literature [6, 9]. Then, the graphene monolayer is strained
uniformly in every direction and fixed at its edges to generate tension in the membrane, such that
carbon atoms are separated 1.56 Å from each other. We considered a nearly square membrane of
side 224 Å, fixing the position of all the atoms that were 10 Å from the border of the membrane,
so that nearly 14500 atoms are allowed to move. For the circular membrane, we use the same
strained atom lattice, but we only allow the movement of atoms that are at a distance d = 107.47
Å from the center. The atoms outside this region are interacting with the moving atoms, but
they are not allowed to move. In this case, the dynamic region is composed by nearly 11500
atoms. For the initial conditions, we chose an initial height z0 = 0 at time t = 0 for all atoms,
and a velocity profile corresponding to the shape of a given eigenfunction, that is,

vnx,ny(x, y; t = 0) = v0 sin
(
nx
xπ

L

)
sin

(
ny
yπ

L

)
(9)
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Figure 1. Oscillation of the second normal mode in the square-shaped graphene membrane.
Left panel: top view; right panel: lateral view.

for the square-shaped membrane, and

vm,n(r, θ; t = 0) = v0 Jm

(r
a
αm,n

)
sin(mθ) (10)

for the circular membrane. The amplitude of these velocity profiles determines the amplitude
of the oscillation in the out-of-plane direction, and also controls harmonicity of the motion. An
initial velocity that is too high induces large vibration amplitudes that can introduce anharmonic
contributions that decouple the normal mode in a combination of normal modes. To ensure
harmonicity, we tried different values for the amplitude of the velocity profile in Eqs. (9) and (10).
For each value, we took the Fourier transform of the kinetic energy of the membrane, which is
periodic in the harmonic regime, to guarantee that no other modes appear in the simulation.
The simulations were performed in the microcanonical ensemble (NVE), using the LAMMPS [10]
software package, with a timestep of 1 fs, and at least 100 ps were used to monitor stability of
the modes.

4. Results
Following the described protocol, we performed molecular dynamics simulation for several
normal modes. For instance, in Figure 1 it can be seen the form of the actual oscillation
corresponding to the second normal mode for the square-shaped graphene sheet. The frecuency
of each mode is obtained from the atomic motion. The Fourier analysis performed over each
simulation showed that there was only a single frequency in each mode generated. The modes
show long-term stability, and the dependence of the frequency on the oscillation amplitude,
which is controlled by the initial velocity v0, has not been observed on our simulations.

In Figures 2 and 3 we show the measured frequencies in both membranes. From a linear fit
to the data in Figure 2, we can obtain a slope of 0.156± 0.002 ps−1 that, according to Eq. (6),
corresponds to the speed of sound of c = 1.060 ± 0.010 km/s. The linear fit to the frequencies
of the circular membrane in Figure 3 gives a slope 0.102± 0.001 ps−1. Using Eq (8), we deduce
a speed of transverse waves of c = 1.096 ± 0.007 km/s. These two independent measures give
an average value of c = 1.078± 0.006 km/s which, according to Eq. 3, corresponds to a tension
of T = c2ρ = 0.756 N/m.
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Figure 2. Frequencies of the square-shaped graphene membrane as a function of m and n,
the integers that characterize the mode in Eq. (4). A linear fit (solid, red line) gives a slope of
0.156± 0.002 ps−1.
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Figure 3. Frequencies of the circular-shaped graphene membrane as a function of αmn, the
n-th zero of the Bessel function Jm. A linear fit, in red, gives a slope of 0.102± 0.001 ps−1.
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5. Conclusion
We have measured the transverse speed of sound of strained graphene, associated with the lowest
frequency acoustic branch ZA, using the classical molecular dynamics simulations. The normal
modes generated in both shapes, square and circular, show a long-time stability that gives a
speed of the transverse waves of c = 1.078 ± 0.006 km/s for a graphene membrane that has
been strained 10% from the original lattice constant. This velocity is lower than in-plane sound
velocities associated with the TA and LA phonon branches of unstrained graphene [11]. We
conclude that a ten percent of strain in graphene corresponds to a tension of T = 0.756 N/m.
The velocities inferred from both geometries only differs by 3%, which means that this result is
independent of the size or shape of the membrane.

The stability of the modes shows that it is indeed possible to generate single-layer graphene
membranes that can be used as nanoresonators. Although other factors, such as temperature
and impurities, have not been included in this work, they would be valuable in future works, as
well as the study of isospectral membranes.
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