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Abstract. Colissionless plasmas are non-extensive systems which, due to the long-range
interaction between their components, are incapable of reaching thermal equilibrium, even
in a steady state. These systems cannot, therefore, be described statistically by a single
canonical distribution with well-defined inverse temperature β = 1/kBT and are commonly
described via two alternative approaches: namely Tsallis statistics and Superstatistics. The use
of Superstatistics in describing steady-state plasmas has been proposed by several authors,
more recently Ourabah et al. In this work we study the consequences of this assumption
of Superstatistics for steady-state plasmas. We explicitly show that only the ensembles
characterized by the condition P (x|ρ) = ρ(H(x)) are consistent with a generalized definition
of temperature introduced recently. We show how this formalism is employed in the case of
plasma, considering interaction with external electromagnetic fields as well as between particles
in the plasma. Our results clearly illustrate why low-energy particles tend to the Maxwellian
distribution of velocities, while high-energy particles contribute to the long tails of the velocity
distribution.

1. Introduction
In the plasma state, the long-range interactions between different ions and electrons are
dominant, and this causes these systems to be found in highly non-equilibrium states. Even
when these systems are able to reach a steady state, they do not follow Boltzmann-Gibbs
statistics [1]. A pressing question then arises: Do these steady-state plasmas have a well-defined
temperature? According to equilibrium Thermodynamics, temperature T is defined through the
relation

1

T
=

dS(E)

dE
, (1)

where S(E) = kB lnΩ(E) is the Boltzmann entropy. For a system in thermal equilibrium at
temperature T , the velocity distribution of its components is given by the Maxwell-Boltzmann
distribution,

P (v|β) = 1

Z(β)
exp

(
−β

mv2

2

)
(2)
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with β = 1/(kBT ) the inverse temperature. The equipartition theorem connects the parameter
β with the average kinetic energy of the system,

3N

2
kBT =

〈
K
〉
β
=
〈1
2

N∑
i=1

miv
2
i

〉
β
. (3)

In general, we can classify systems into three classes:

(a) Systems in thermodynamical equilibrium, where β is well-defined,

(b) Systems with non-constant β where it makes sense to introduce a temperature distribution
function,

(c) Other systems where a temperature cannot even be defined. In this last case, usually
transient states, we can only speak of average kinetic energy.

For systems in classes (a) and (b) we will denote the probability of having an inverse
temperature β as P (β|S), in accordance with the formalism known as Superstatistics, which
we will explain next.

2. Superstatistics
An interesting proposal for the treatment of non-equilibrium, steady-state systems was
introduced in 2003 by Beck and Cohen, called Superstatistics [2, 3]. In this framework, one
goes from the canonical ensemble

P (r,p|β) = exp(−βH(r,p))

Z(β)
, (4)

to a superposition of infinite canonical ensembles at different inverse temperatures β,

P (r,p|S) =
∫ ∞
0

dβP (β|S)
[
exp(−βH(r,p))

Z(β)

]
(5)

each of them weighted by its probability of occurrence, P (β|S). Two cases are of interest. The
trivial case when P (β|S) is a Dirac delta function recovers the canonical ensemble, and the case
when P (β|S)/Z(β) is a Gamma distribution

P (β|k, θ) = exp(−β/θ)βk−1

Γ(k)θk
, (6)

generates the so-called q-canonical ensemble,

P (r,p|β0, q) = 1

η(β0, q)
[1− (1− q)β0H(r,p)]

1
1−q

+ (7)

also known as Tsallis distributions. In space plasmas, the Kappa distribution [4] is an instance
of the q-canonical (Tsallis) distribution and, accordingly, has been derived by the use of
Superstatistics [5].

3. The fundamental inverse temperature
A “thermal” system, in the sense that temperature can be defined, is characterized by the
condition P (r,p|S) = ρ(H(r,p)). In order to completely describe these systems, it is no longer
enough to have a single number β; we need a continuous function. This can be P (β|S) in
the framework of Superstatistics or the ensemble function ρ(E). There is a more convenient
possibility, the fundamental inverse temperature function [6, 7], defined by
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Ensemble ρ(E) βF (E)
Canonical exp(−β0E)/Z(β0) β0

q-canonical 1
η(β0,q)

[1− (1− q)β0E]
1

1−q

+ β0/(1− (1− q)β0E)

Gaussian 1
Z(a,Et)

exp(−a(E − Et)
2) 2a(E − Et)

Table 1. Generalized Boltzmann factor ρ(E) and fundamental inverse temperature function
βF (E) for the canonical, q-canonical and Gaussian [8, 9] ensembles.

βF (E) = − d

dE
ln ρ(E). (8)

In the case of Superstatistics, βF (E) corresponds to 〈β〉E , i.e., the average inverse temperature
at fixed energy E.

By employing the statistical identity presented in Ref. [10] as the conjugate variables theorem
(CVT), 〈

∇ · v
〉
S
= −

〈
v · ∇ ln ρ(H)

〉
S
, (9)

we can obtain the generalization of the equipartition theorem for a steady-state plasma,

〈
βK

〉
S
=
〈
βF (E)K

〉
S
=
3N

2
, (10)

where the role of the parameter β is played by the fundamental inverse temperature function
βF (E).

4. Thermodynamical description of plasma
In a plasma we have N particles, each with a mass mi and a charge qi, with position and
velocity vectors ri and vi respectively. The probability density of microstates of the plasma can
be written as P (r1, . . . , rN ,v1, . . . ,vN |t) = P (R,V |S) such that Vlasov equation holds,

dP

dt
=

∂P

∂t
+
∑
i

vi · ∂P
∂ri

+
∑
i

Fi

mi
· ∂P
∂vi

= 0 (11)

where Fi = qi
(
E(ri) + vi × B(ri)

)
is the Lorentz force. Vlasov equation is equivalent to

Liouville’s theorem of conservation of phase space volume for plasma, and due to the presence
of the Lorentz force, must be solved self-consistently with Maxwell’s equations,

∇ ·E =
ρ

ε0
, (12)

∇×B = μ0

(
J + ε0

∂E

∂t

)
= μ0J , (13)

∇ ·B = 0, (14)

∇×E = −∂B

∂t
= 0. (15)

Here ρ(r, t) and J(r, t) are the charge and current densities, respectively, which in a steady
state can be expressed as expectations over the ensemble as
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ρ = ρ(r) = 〈
∑
i

qiδ(ri − r)〉S

J = J(r) = 〈
∑
i

qiviδ(ri − r)〉S . (16)

We see then that, in a steady state, P (R,V |S) is uniquely determined either by {Φ(r),A(r)}
or {ρ(r),J(r)}. The non-relativistic Hamiltonian of the system is H =

∑
iHi, with

Hi(r,p) =
1

2mi
(p− qiA(r))

2 + qiΦ(r), (17)

and where the momentum pi = mivi+ qiA(ri). We can write the energy for the i-th particle in
terms of its position and velocity as

Ei(r,v) = 1

2
miv

2 + qiΦ(r), (18)

which does not depend on the vector potentialA. In order to define temperature, the probability
density P (R,V |S) must have the form

P (R,V |S) = ρ(E) = ρ
(∑

i

Ei(ri,vi)
)
, (19)

Ei(r,v) = 1

2
miv

2 + qiΦ(r). (20)

We can verify that this Ansatz automatically solves the steady-state Vlasov equation,

∑
i

vi · ∂

∂ri
lnP (R,V |S) + Fi

mi
· ∂

∂vi
lnP (R,V |S) =

ρ′(E)
∑
i

[
vi · qi∇Φ(ri) + qi

mi
(−∇Φ(ri) + vi ×B(ri)) ·mivi

]
= 0. (21)

By imposing consistency with Gauss law we find that any such “thermal” plasma must be
found in an ensemble ρ(H) for which

−ε0∇2Φ(r) =

∫ ∞
0

dK ·K3N/2
∫

dR

[
N∑
i=1

qiδ(ri − r)

]
ρ

(
K +

∑
i

qiΦ(ri)

)
, (22)

holds. There cannot be any net current inside such a plasma, because by requiring consistency
with Ampère’s law,

J(r) =
∑
i=1

qi

∫
dRδ(ri − r)

∫
dV · viρ

(∑
i

1

2
miv

2
i +

∑
i

qiΦ(ri)

)
= 0, (23)

which is zero by symmetry. For a given electrostatic potential Φ(r), the steady-state ensemble
must be a solution of

−ε0∇2Φ(r) =

∫ ∞
0

dK ·K3N/2
∫

dR

[
N∑
i=1

qiδ(ri − r)

]
ρ

(
K +

∑
i

qiΦ(ri)

)
(24)
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and this constrains the form of the fundamental inverse temperature compatible with Φ. By
defining ρ1(ε) such that

∂

∂εi
ln ρ(ε) =

∂

∂εi
ln ρ1(εi), (25)

we can greatly simplify our consistency equation and write it as

−ε0∇2Φ(r) =
N∑
i=1

qiρ1(qiΦ(r)). (26)

We can also write the single-particle distributions of position and velocity in terms of ρ1.
They are given by

Pi(r|S) = ρ1(qiΦ(r)), (27)

Pi(v|S) = ρ1
(miv

2

2

)
. (28)

In the same way, the single-particle fundamental inverse temperature is then

β1F (Ei) = − ∂

∂Ei ln ρ1(Ei). (29)

An interesting consequence of this is that ions or electrons in different ranges of energy will
be seen as different populations described by different velocity distributions. This is commonly
observed in plasmas. Furthermore, different spatial regions can appear as having different
temperatures.

Assuming Ei � E we can approximate the effective single-particle temperature by using the
following Taylor expansion,

β1F (Ei) ≈
〈
β̂F (E + Ei)

〉
S
=
〈
β̂F (E)

〉
S
+ Ei

〈
β̂′F (E)

〉
S
+
1

2
E2
i

〈
β̂′′F (E)

〉
S
+ . . . (30)

This means that, in a first approximation, the single-particle fundamental temperature is a
constant, equal to the average fundamental temperature of the system, therefore the particles
are approximately Maxwellian for low kinetic energies, and can have other, more “exotic”
distributions for higher energies.

5. Conclusions
In this work we have shown that, for any steady-state plasma in which P (R,V |S) = ρ(H), we can
provide a “fundamental temperature” that completely describes the system in Superstatistics.
A thermal plasma in this sense is fully described by either its single-particle ensemble function
ρ1 or its single-particle fundamental inverse temperature β1F . These plasmas can naturally
have a segregation in their energy distributions between slow (approximately Maxwellian) and
fast particles.
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