
Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

Research Paper

Multi-objective optimization of a solar-assisted heat pump for swimming
pool heating using genetic algorithm

Allan R. Starkea,⁎, José M. Cardemilb, Sergio Collea

a LEPTEN – Laboratory of Energy Conversion Engineering and Energy Technology, Department of Mechanical Engineering, Federal University of Santa Catarina (UFSC),
Florianópolis, Brazil
bMechanical Engineering Department, Universidad de Chile, Beauchef 851, Santiago, Chile

H I G H L I G H T S

• Design of four different i-SAHP for pool heating with multi-objective optimization.

• Solar-assisted configurations present significant improvements in performance.

• Same levels of comfort at lower ALCCs than the ASHP configuration.

• Trade-off curves helps define a solution based on the willingness to pay for a specific comfort level.

• Practically all solar-assisted configurations presented positive values of ALCS.
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A B S T R A C T

A proper assessment of heating systems for swimming pools should evaluate the compromise between comfort
level and the willingness to pay for it. The present work presents a multi-objective optimization of indirect solar
assisted heat pump systems for outdoor swimming pool heating. Four different configurations are reported; (air-
to-water heat pump and three solar assisted heat pumps, air-to-water, water-to-water and a dual-source); and
evaluated in six different locations (three location in Chile: Antofagasta, Santiago, and Concepción; and three
locations in Brazil: Brazilia, São Paulo, and Florianópolis). The methodology approach configures two objectives
optimization, the minimization of the Annualized Life Cycle Cost (ALCC) and the maximization of the comfort
level offered by the swimming pool. The optimization scheme consists of using a combination of tools: the
energy-savings potential of i-SAHP are evaluated using the TRNSYS software in combination with GenOpt; and
the economic modeling and optimization are performed in the MATLAB environment, using an approximation
model and variant of NSGA-II genetic algorithm for building the Pareto frontiers. The optimization results de-
monstrate that solar-assisted configurations present significant improvements in performance for almost all
locations, reaching the same levels of comfort at lower ALCCs when compared with the ASHP configuration.

1. Introduction

The use of heating systems for swimming pools has grown sig-
nificantly recent years and currently it represents a significant share of
energy consumption in domestic applications [1]. However, the proper
assessment of these systems is commonly hindered by difficulties for
evaluating the comfort level that offer and its compromise with the cost
that represent. To aid the decision by the consumer, several authors
have developed simulation models for assessing the performance of
swimming pool heating systems [2–4]. Recently, Starke et al. [5],
presented an extensive review of the methodologies for assessing the
performance of swimming pool heating systems, as well as different

applications and modeling solar-assisted heat pump simulations. The
authors presented a case study considering three configurations of
solar-assisted heat pumps for swimming pool heating in Southern
Brazil. The simulations were performed using TRNSYS [6] software and
the results were compared against a conventional heat pump. The an-
nual simulations indicated that a solar-assisted heat pump can achieve
significantly better performance than a conventional heat pump system.
The proposed schemes reduced energy consumption up to 48%, and the
systems can achieve a seasonal performance factor (annual coefficient
of performance) between 6.7 and 8.2. The proper design of the solar
field and heat pump was determined through a detailed economic as-
sessment, combining cost and energy performance of all system

https://doi.org/10.1016/j.applthermaleng.2018.06.067
Received 22 September 2017; Received in revised form 15 February 2018; Accepted 21 June 2018

⁎ Corresponding author.
E-mail address: allan.starke@lepten.ufsc.br (A.R. Starke).

Applied Thermal Engineering 142 (2018) 118–126

Available online 27 June 2018
1359-4311/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13594311
https://www.elsevier.com/locate/apthermeng
https://doi.org/10.1016/j.applthermaleng.2018.06.067
https://doi.org/10.1016/j.applthermaleng.2018.06.067
mailto:allan.starke@lepten.ufsc.br
https://doi.org/10.1016/j.applthermaleng.2018.06.067
http://crossmark.crossref.org/dialog/?doi=10.1016/j.applthermaleng.2018.06.067&domain=pdf


components. This assessment indicated that only the solar assisted-air
source heat pump and solar assisted-dual source heat pump were eco-
nomically feasible.

Although the feasibility of solar-assisted heat pumps for swimming
pool heating was already addressed in previous publications, it is
mainly focused on a specific case study or on just meeting a specific
heat load (temperature set-point). Variations in pool temperature yield
changes on the comfort level offered, leading to a change on the energy
costs for meeting those requirements. Hence, a higher comfort level
requires a different design of the system, which can result in larger
capital costs. Based on that, it is interesting that the consumer can as-
sess his/her compromise between the expected comfort level and the
willing to pay for it. This scenario results in a clear trade-off between
comfort level and cost, which can be addressed by a multi-objective
optimization.

In this context, the present study presents the further development
of the work reported in [5], which aims to demonstrate the usefulness
of multi-objective optimization for analyzing different configurations of
indirect solar assisted heat pumps (i-SAHP) for outdoor swimming pool
heating, operating in different locations. The objectives to be optimized
are the Annualized Life Cycle Cost (ALCC), which should be minimized,
and the comfort level offered by the swimming pool, which should be
maximized. Since selecting an optimum solution depends on the pre-
ferences and criteria of the decision maker, an example of the decision-
making process to select a final optimal solution from the Pareto
frontier is presented. The final results are obtained using the linear
programming technique for multidimensional analysis of preference
(LINMAP) decision making approach [7,8].

Multi-objective optimization has been extensively used for the de-
sign and optimization of thermal systems [9–14]. Lazzaretto and Tof-
folo [9] demonstrated the use of an evolutionary algorithm to optimize
and design a thermal system using energy, economy, and environment
as objective functions. Magnier and Haghighat [10] presented a
methodology to optimize the thermal comfort and energy consumption
in a residential house. Because optimizing a building is a time-con-
suming process, the authors used an artificial neural network (ANN) to
characterize building behavior, and a multi-objective genetic algorithm
to perform the optimization procedure. The results showed a significant
reduction in energy consumption and an improvement in thermal
comfort, revealing several potential designs and a wide degree of
compromise between thermal comfort and energy consumption. Ah-
madi et al. [11] performed a multi-objective optimization to design a
combined cycle power plant considering exergetic, economic, and en-
vironmental factors. They showed that the optimization procedure for a
combined cycle power plant requires the utilization of multi-objective
optimization to be practical and comprehensive. Asadi et al. [12] de-
scribed a multi-objective optimization scheme for retrofitting a
building. The methodology consisted of optimizing the retrofit cost,
energy savings, and thermal comfort of a residential building. The re-
sults demonstrated the practicability of providing decision support in
an actual setting, allowing simultaneous consideration of all available
combinations of retrofit actions. Khorasaninejad and Hajabdollahi [14]
performed a design optimization of a solar-assisted heat pump using a
multi-objective Particle Swarm Optimization algorithm. The total an-
nual cost and coefficient of performance were considered as objective
functions. The heat pump was optimized separately for five working
fluids and considered five independent parameters: the solar collector
surface area, evaporator pressure, condenser pressure, capacity of the
heat storage tank, and the level of superheating/subcooling in the
evaporator/condenser. Karathanassis et al. [13] presented a metho-
dology to optimize and design a micro-channel plate-fin heat sink to
cool a linear parabolic trough Concentrating Photovoltaic/Thermal
(CPVT) system. The authors construct a surrogate function for the
thermal resistance and the pressure drop of the heat sink, which are
considered as the objective functions for the multi-objective optimiza-
tion through a genetic algorithm.

Based on the aforementioned advantages that multi-objective opti-
mization offers for analyzing thermal systems and the aiming to facil-
itate convergence, the proposed methodological approach consists of
using a combination of tools for the optimization scheme. The energy-
savings potential of four i-SAHPs for outdoor swimming pool heating
are evaluated using the TRNSYS [6] energy simulation software in
combination with GenOpt [15] to automatically run different scenarios.
Economic modeling and optimization procedures are performed in the
MATLAB environment [16], which allows for a fast and efficient
method of multi-objective optimization when using a sort of approx-
imation of the fitness function (performance calculations) [17].

A swimming pool of 36m3 and 24m2 of water surface is adopted for
the case study, in which the solar field area and heat pump capacity are
designed by the optimization process for three locations in Chile
(Antofagasta, Santiago, and Concepcion) and three locations in Brazil
(Brazilia, São Paulo, and Florianópolis). These locations have different
climatic conditions, allowing us to show the usefulness of the metho-
dology proposed.

2. System description

The present study assess the same four heating schemes proposed in
[5]: an air source heat pump system (ASHP, Fig. 1a), considered as the
reference case; a solar-assisted air source heat pump (SA-ASHP,
Fig. 1b), configuring the solar collectors connected in parallel to an air
source heat pump; a solar-assisted water source heat pump (SA-WSHP,
Fig. 1c) where the collectors are coupled in series to a water-to-water
heat pump; and a dual-source heat pump (SA-DSHP, Fig. 1d) which
considers two evaporators (one in series to the solar collectors and an

Fig. 1. Schematic diagram of (a) ASHP, (b) SA-ASHP, (c) SA-WSHP, and (d) SA-
DSHP systems.
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air source evaporator). The details of each configuration, circulation
schemes, control strategies and mathematical models of system’s com-
ponents are fully described in [5].

3. Methodology

The methodology employed in the current study consists of using a
combination of tools, where TRNSYS and GenOpt are used to design the
numerical experiments and build a performance database for each
configuration. Then, the MATLAB environment is employed to read
these databases, perform a post-processing procedure, build a surrogate
model, and perform the optimization routine using a genetic algorithm.

TRNSYS is used to assess the thermal performance of each config-
uration by means of an annual simulation, considering a transient
model using a 6-min time step an hourly meteorological data. In ad-
dition, standard TRNSYS relative tolerance of 0.001 for convergence of
input and outputs variables and for the numerical integration process
were adopted. TRNSYS consists of a transient solver with a modular
structure that allows for solve and analyze different configurations of
complex energy systems with high flexibility.

Although GenOpt is an optimization program, it is not capable of
directly handling a multi-objective optimization. Therefore, GenOpt is
used to automate the TRNSYS runs and generate a performance data-
base. Combined with TRNSYS, GenOpt can be easily configured to
automatically vary the independent variables, generate the input files,
run TRNSYS, and save the results.

Finally, the performance database for each configuration is loaded
in MATLAB, where the two objective functions are assessed
(Annualized Life Cycle Cost (ALCC) and the comfort level). Then, a
surrogate model (e.g., response surface approximation model) is built
for each of these objective functions, and a genetic algorithm (GA) is
applied to solve the optimization model. This approach is a very effi-
cient method to reduce the intrinsic computational time of GA and
complex thermal system simulations [10].

There are several methods to create surrogate models (i.e., poly-
nomial, kriging, neural networks, and support vector machines).
However, there is no common opinion as to which method performs
better than the others, since the performance of the approximation
depends on the nature of the problem addressed and more than one
performance measurement can be considered [17]. In the present study,
the authors chose a linear interpolation method (without extrapolation)
to build the surrogate models, developing a surface in the form

=v F x y( , ) for each objective function. As mentioned before, the design
variables are the solar field area and the heat pump capacity. A linear
interpolation was chosen to avoid local minimums in the approximate
model, as suggested in [17]. To ensure a good approximation within the
interpolation method, 189 numerical cases were evaluated in TRNSYS
(a mesh composed by 27 points for the collector area and 7 heat pump
capacities), which are equally spaced in the analyzed domain. The solar
field size ranges from 1.1m2 to 144m2, with a step of 6 modules of
1.1 m2, in this way it is possible to asses small and significantly large
solar fields (six times the pool area), larger that a usual available space
in dwellings. While, the heat pumps are scaled, with a step of 2.3 kW,
from a small equipment (2 kW) to the largest equipment that can be
installed without the need of three-phase electric installation.

3.1. Thermal modeling

The mathematical models used to perform the simulations are fully
described in [5]. Yet, it’s worth mentioning the main TRNSYS compo-
nents used to build the simulations. The TRNSYS standard library
contains types suitable to model most of the components of the systems
studied herein (e.g., solar collector, pumps, valves, and controllers). An
exception is the swimming pool, for which an additional type was im-
plemented based on the model of an external pool developed by Hahne
and Kubler [2]. Regarding the heat pump, the simulation was

conducted using a performance matrix, as most of the types employed
for modeling conditioning equipment in TRNSYS. This performance
matrix was estimated through a thermodynamic model developed using
Engineering Equation Solver [18].

Each component was individually validated: the solar field was si-
mulated using an experimental efficiency curve [19]; the performance
matrix of the heat pump was compared against catalog data [20]; and
the swimming pool model was validated by Hahne and Kubler [2] and
recently by Ruiz and Martínez [3].

3.2. Objective functions

3.2.1. Comfort level
As a metric to measure the comfort level offered by the pool over a

year, the probability that the pool’s water temperature is at specified
range is adopted, such as 26 °C to 30 °C. Then, this measurement can be
maximized to ensure that the temperature of the pool presents a high
probability of being within the specified temperature range. Therefore,
this metric can be used for designing a heating system that guarantees a
specific comfort level. The probability of the water pool temperature is
calculated using a cumulative distribution function of the year-long
simulated water pool temperature. Hence, the comfort level can be
expressed as

= ° ⩽ ⩽ ° = ° − °P T F FComfort (26 C 30 C) ( (30 C) (26 C))p T Tp p (1)

where P is the probability, Tp is the pool temperature, and FTp is the
cumulative distribution function of the simulated pool temperature.
The comfort level should be maximized; however, to facilitate the op-
timization process, the objective function is rewritten in a way that it
could be minimized, i.e., −(1 Comfort), which could be interpreted as
the probability discomfort range.

3.2.2. Annualized life cycle cost
The Annualized Life Cycle Cost (ALCC) is an economic measure for

an energy system that considers all costs over its lifetime (i.e., initial
investment, operations and maintenance, cost of fuel, and cost of ca-
pital), which represents an average yearly expenditure cash flow. To
estimate this economic figure the P1 and P2 method is chosen, as re-
commended in [21] and expressed as follows:

=
+ + + + +

ALCC
F C P Q C C A C C C P

PWF N d
[ ] [(1 ) (1 ) ]

( , 0, )
hp F ele L inst A A c inst hp hp E

e

, 1 , , 2

(2)

where CF ele, is the electricity tariff, Fhp is the energy ratio between the
heat pump electricity consumption and the pool thermal load Q( )L .
Cinst A, and Cinst hp, are the installation costs of the solar field and the heat
pump as a percentage of the acquisition cost of each equipment, re-
spectively. CA is the area-dependent cost, Ac is the solar field area, Chp is
the heat pump cost, and CE represents local additional costs. P1 is the
term associated with the life-cycle fuel cost, P2 is the term associated
with the life-cycle cost of the initial investment and its expenditures,
and PWF N d( , 0, )e is the present worth factor for “annualizing” the cash
flow. Additionally, the following considerations were adopted for the P1
and P2 methods: no income is produced by the operation of the system,
no loan or financing schemes are considered, and no net property tax is
applied to the installation.

3.3. Optimization framework

As mentioned before, the optimization framework of this study
consists of several steps. First, a database of cases is developed using the
simulated data from TRNSYS and GenOpt, which consists of perfor-
mance maps for each configuration and location, generated as a func-
tion of the independent variables. Then, a surrogate model is created for
each of these cases in MATLAB. Finally, a Pareto frontier is determined
using a multi-objective genetic algorithm.
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3.3.1. Surrogate model and validation
The first step to create the surrogate model is to generate a per-

formance map through a parametric analysis. An equally spaced mesh is
used to create a decision variable space in terms of the solar field area
A( c) and the scale factor of the heat pump SF( )HP .

The performance map consists of 189 TRNSYS evaluations, with 27
numeric values for the solar collector area (ranging from 1.1 m2 to
144m2, with a step of 6 modules of 1.1 m2) and 7 heat-pump scale
factors (ranging from 0.2 to 1.4). The heat pumps are scaled from a
small equipment (2 kW) to the largest equipment that can be installed
without the need of three-phase electric installation. The scale factor is
used to assess the effect of the capacity of the heat pump on the system.
Therefore, a commercial heat pump is considered as the reference case.
The rating parameters of this heat pump were linearly scaled, i.e., the
volumetric displacement rate of the compressor and the valve flow
coefficient. Using this approach, it is possible to scale equipment in a
physically consistent method and range the nominal heat pump capa-
city from 3 kW to 17 kW.

A performance map was created for each of the four configurations
and six locations. These data were used to build a performance data-
base, and the economic assessment and comfort level calculations were
later incorporated into the database. Therefore, the user can select the
location and configuration, and create a surrogate model for each ob-
jective function. Since the performance map was created with a con-
siderably large amount of data – 189 data points for only two in-
dependent variables – it is possible to use an interpolation tool rather
than the polynomial function usually used in surface methods.

The MATLAB griddedInterpolant class [22] is used to create an in-
terpolant surface =v F x y( ( , )), which is used in the optimization al-
gorithm to calculate the fitness evaluation at any query point x y( , )q q .
The interpolated value at a query point is based on a linear interpola-
tion of the values at neighboring grid points in each respective di-
mension, and no extrapolation is allowed.

In order to validate the surrogate model, a sample of 15 cases,
different from the original and randomly selected from the 2D decision
space, is used. The distributions of the validation points are depicted in
Fig. 2.

The Mean Absolute Percentage Error (MAPE) for the approximation
models was considered acceptable, since it shows 0.5% for ALCC and
1.38% for the comfort level. Furthermore, both models present coeffi-
cients of determination R2 close to 0.998. The differences between the
simulated results and the values predicted by the interpolation models
are illustrated in Fig. 3, which shows predicted values between±3%,
characterizing a good agreement between the simulation and approx-
imation model.

3.3.2. Optimization method
Energy, economic, and environmental modeling usually leads to

nonlinear optimization problems or to mixed integer nonlinear (MINLP)
optimization problems [8]. Objective functions that involve solving a

system of partial and ordinary differential equations, coupled with al-
gebraic equations, in general are an approximating function since the
equation system cannot obtain an exact solution. Because of the pre-
cision of the numerical solvers, a perturbation in the independent
variables causes a change in the sequence of solver iterations, which
causes the objective function to be discontinuous and therefore not
continuously differentiable. This is typically the case when the objec-
tive function is calculated by a thermal simulation program such as
TRNSYS.

Based on this, it is necessary to consider an optimization algorithm
that is suited to problems where traditional optimization techniques
break down, for example, owing to the irregular structure of the search
domain (the absence of gradient information). As also an algorithm that
avoid local optima, which ensure the determination of global optimum.
For the case of multi-objective optimization, an algorithm that yields
Pareto optimal points that do not depend on the function continuity or
domain convexity is also necessary. In that context, Multi-Objective
Evolutionary Algorithms (MOEA), which include the GA, have been
extensively used by researchers [9,23,10,11,24,8,13]. The genetic al-
gorithm applies an iterative stochastic search strategy to find an op-
timal solution, which imitates in a simplified manner the principles of
biological evolution. This is a robust and flexible approach that can be
applied to a wide range of learning and optimization problems
[25,11,26,27].

In this study, the MATLAB solver gamultiobj [16] was adopted. It
uses a controlled elitist genetic algorithm (a variant of NSGA-II [28]).
Furthermore, a hybrid scheme is used, so gamultiobj runs with a small
number of generations to get near an optimum front. Then, this solution
is used as an initial point for a second optimization procedure, which
uses fgoalattain (solves the goal attainment problem). Using the hybrid
function improves the certainty of finding an optimal Pareto front, but
it may lose the diversity of the solution. This can be overcome by
running gamultiobj again with the final population returned during the
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last run, without any hybridization. The optimization algorithm runs
using default parameters, and the exceptions are summarized in
Table 1.

The optimization problem was formulated so that both objective
functions should be minimized. Therefore, it is expressed as follows:

⎧
⎨⎩

→ = →
→ = − →

< = < = =

F x ALCC x
F x x

x x x i

Minimize:
( ) ( ),
( ) (1 Comfort( )),

Subject to:
, 1, 2.i

L
i i

U

1

2

(3)

where F1 and F2 are the two objective functions, and →x is a vector of n
independent variables: → =x A SF( , )c HP

T . It is observed that the opti-
mization problem is only subject to variable constraints, which delimits
the decision space →x( ) by its lower x( )i

L and upper x( )i
U values. A first

optimization was set up using the methodology described above, and
the results are depicted in Fig. 4 for Florianópolis and SA-ASHP. These
results show the Pareto front and the feasible performance space, in-
dicating that the optimization algorithm results in an accurate predic-
tion of the Pareto frontier.

4. Simulation parameters

4.1. Weather data

Six different locations in South America were considered: three in
Chile (Antofagasta, Santiago, and Concepción), and three in Brazil
(Brasilia, São Paulo, and Florianópolis). The main characteristics of
these locations are summarized in Table 2.

4.2. Solar field

The collector array consisted of uncovered-polymeric solar collec-
tors (1.1 m2) connected in series and oriented facing the equator with a
slope angle equal to the latitude plus 10 degrees. The efficiency para-
meters are = =F τα F U( ) 0.7327, 19.3R n R L W/(m2 K), and =F U 0R LT

[19]. The mass flow rate under the test conditions is =ṁ 0.0182test kg/
(m2 s).

4.3. Heat pump

A commercial water source heat pump was considered as a re-
ference case and was scaled to assess the effect of the capacity on the

system. The heat pump has a nominal heating capacity of 12.9 kW. The
rating parameters of this heat pump were linearly scaled, whereas the
capacities and power consumption as a function of SF are presented in
Table 3.

For the SA-ASHP, the water mass flow rate through the collectors
was calculated as a function of the total area of the solar field and the
test mass flow rate. Meanwhile, for the SA-WSHP, the mass flow rate
through the collectors was assumed to be equivalent to the minimal
flow rate admissible at the heat pump evaporator (0.6 kg/s).

4.4. Pool

A standard domestic pool of 36m3 and 24m2 of water surface is
considered. Regarding the pool cover, a floating low-density poly-
ethylene blanket is considered, whose top surface is highly smooth and
whose lower surface has air pockets to improve buoyancy. This cover
has 3.26mm of thickness and thermal conductivity of 0.02856W/
(m K). An absorptivity and emissivity of 0.9 was assumed.

4.5. Economic

The equipment costs and economic considerations for the analysis
are summarized in Table 4.

It is worth mentioning that the air source and the water source heat
pumps have the same initial cost, which can be expressed in US$ as
function of the scale factor:

= +C SF897.4 1038.5hp (4)

Table 1
Genetic algorithm parameters.

Population size Pareto fraction Hybrid function Tolerance Max Generation
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Fig. 4. Feasible performance space and the Pareto front obtained from GA.

Table 2
Main characteristics of selected locations.

Location Latitude Longitude Altitude,
(m.a.s.l.)

Yearly total
GHI, (kWh/m2)

Source

Antofagasta 23.43°S 70.43°W 40 1821 Meteonorm
Santiago 33.38°S 70.78°W 521 1383 Meteonorm
Concepcion 36.77°S 73.05°W 12 1526 Meteonorm
Brasilia 15.87°S 47.92°W 1172 2092 SWERA
São Paulo 23.65°S 46.65°W 760 1870 SWERA
Florianópolis 27.53°S 48.52°W 3 1590 SWERA

Table 3
Scaled heat pump capacity and electrical power at rated conditions

Scale factor (SF)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Water Source Capacity (kW) 2.3 4.7 7.1 9.5 11.9 14.3 16.6
Power (kW) 0.3 0.8 1.2 1.6 1.9 2.4 2.8

Air Source Capacity (kW) 2.4 3.9 5.8 7.8 9.7 11.6 13.6
Power (kW) 0.3 0.9 1.3 1.7 2.2 2.6 3.1

Table 4
Economic considerations adopted.

Parameter Value

Period of economic analysis, Ne 20 years
Insurance and maintenance costs, Ms 2%
Discount rate, d 7.25%
Inflation rate of fuels, IF 4%
Resale value, Rv 10%
Electricity tariff, CF ele, 0.16 US$/kWh
Area-dependent cost, CA 52 US$ m2

Pool cover cost, CE 320 US$
Solar field installation cost, Cinst A, 10%
Heat pump installation cost, Cinst hp, 30%
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For the dual-source heat pump, the cost was specified at 20% higher
than that considered for the air and water source heat pumps.

5. Results

Pareto optimal frontiers for each configuration and location are il-
lustrated in Figs. 5 and 6, clearly revealing the conflict between the two
objective functions analyzed. For all studied cases, the Pareto fronts are
composed of 500 optimal points and present a homogeneous spread
between the extreme solutions.

For Chilean locations, the optimal solutions range from an ALCC of
500 US$ to 3000 US$. On the other hand, the discomfort −(1 Comfort)
ranges between 0.2 and 0.9 for Antofagasta, from 0.45 to 1 for
Santiago, and between 0.35 and 0.8 for Concepción, since these last two
locations present lower yearly average ambient temperatures.

For Brazilian locations, the optimal solutions range from an ALCC of

500 US$ to 1500 US$ and discomfort of 0.2–0.7 for Florianópolis and
São Paulo. Brasilia has a significantly higher yearly average ambient
temperature; therefore, it presents a significantly different range of
optimal solutions ranging from an ALCC of 250 US$ to 750 US$ and
discomfort between 0.2 and 0.4. Based on these ranges for the optimal
solutions and the high trade-offs between the objective functions, the
usefulness of multi-objective techniques to properly design these sys-
tems seems clear. Furthermore, this allows consumers to decide on a
final solution based on their willingness to pay for a specific level of
comfort.

It is observed that the solar-assisted configurations present sig-
nificant improvements in performance for almost all locations, reaching
similar levels of comfort at lower ALCCs when compared against the
ASHP configuration. The exception is Brasilia, in which all configura-
tions present almost identical Pareto fronts as a consequence of the
higher yearly average ambient temperatures. In addition, the fronts are
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Fig. 5. Pareto optimal frontiers for Chilean locations. Optimal design selected
by LINMAP decision maker is highlighted.
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Fig. 6. Pareto optimal frontiers for Brazilian locations. Optimal design selected
by LINMAP decision maker is highlighted.
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located at the lower left corner of the chart, indicating that a heating
system is practically unnecessary for a pool located in that city.

The fronts for Antofagasta (Fig. 5a) show optimal fronts crossing
each other, which indicates that the best configuration depends on the
desired comfort level. For instance, considering discomfort −comfort(1 ),
at a value lower than 0.47 the SA-WSHP performs a lower ALCC, and
for a discomfort between 0.47 and 0.6 the SA-ASHP performs better.
Finally, for discomfort higher than 0.6, the SA-WSHP again performs
better. Similar behavior is observed for all locations where the crossing
points vary for each location.

From an observation of the figures, it is possible to corroborate that
the weather conditions have a major effect on the Pareto optimal
frontiers. Therefore, the configurations should be properly designed in
terms of comfort and installation costs for each location.

5.1. Final optimal solutions through decision-making

To fully demonstrate the usefulness of the optimization process, a
decision-making method is used to select a final optimal solution from
the Pareto frontiers. Finally, the optimal solutions, including the re-
ference configuration (ASHP), are compared with each other.

A method for final decision-making is required since the dimensions
of the two objective functions are different. The dimensions and scales
of the objective functions should be unified. In this study, the Linear
Programming Technique for Multidimensional Analysis of Preference
(LINMAP) developed by Srinivasan and Shocker [7] was adopted. In
this approach, each objective function is subjected to a Euclidian non-
dimensionalization [8], which is defined as follows:

=
∑ =

F
F

F( )
ij
n ij

j
m

ij1
22 (5)

where Fij
n is the “i” nondimensionalized objective, and Fij denotes the “j”

points of the “i” objective on the Pareto frontier.
After nondimensionalization of the objective functions, the LINMAP

method is applied. This consists of calculating the spatial distance be-
tween each point on the Pareto frontier and an ideal point, as follows:

∑= −
=

d F F( )j i

n
ij i

Ideal
1

22
(6)

where dj denotes the distance between the “j” point and the ideal point,
while “i” stands for each objective and n denotes the number of ob-
jectives. Fi

Ideal is the ideal value of the ith objective, obtained from a
single-objective optimization. Finally, through the LINMAP method, the
final optimal solution is selected as the solution presenting the
minimum distance from the ideal point. Therefore,

≡ ∈j j dmin( )final j (7)

For each location and configuration, the two objectives were in-
dependently optimized and then used as ideal point to calculate the
distances. Fig. 7 illustrates the LINMAP method, as well the ideal point
and the final desired optimal solution.

The final optimal solution for each configuration and location are
depicted in Figs. 5 and 6, highlighted by a circular marker. Table 5
shows the final optimal solution, listing the values of the two objective
functions and the two design variables. Furthermore, the Annualized
Life Cycle Savings (ALCS) is also presented, which is calculated as the
difference between the ALCCs as follows:

= −ALCS ALCC ALCCk ASHP (8)

where ALCCk is the annualized life cycle cost of the kth configuration,
and ALCCASHP is the annualized life cycle cost of the ASHP configura-
tion, considered as a reference case. It is worth mentioning that only the
final optimal solutions were considered when calculating the ALCS
values.

As shown in Table 5, most solar-assisted configurations present
positive values of ALCS, indicating savings during the life cycle. The

exception is the SA-DSHP for Brasilia, which has a negative value. In
addition, all ALCS values for this location are considerably lower than
the values observed for the other locations. Furthermore, the LINMAP
approach designed final solutions that show the minimal values of the
heat pump scale factors (0.2), indicating that the heat pump makes a
minor contribution in Brasilia. This conclusion proves that the pool
cover and a solar system are enough to keep a swimming pool warm in
a location with high to moderate ambient temperatures, such as Bra-
silia. Regarding the other locations analyzed, the SA-WSHP configura-
tions present the largest savings, with ALCS varying from 395 to 887 US
$.

It is also observed that the decision-making process led to solar-
assisted configurations combined with a small heat pump, with a scale
factor ranging from 0.2 to 0.54. However, if higher values of comfort
level are selected, larger heat pumps and solar field collector areas are
required. It should be mentioned that one decision-making method has
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Fig. 7. Pareto optimal frontier of SA-ASHP configuration, for Florianópolis.

Table 5
Final optimal solutions specified by LINMAP decision maker.

Heat pump
scale factor

solar
field
area

ALCC (1-Comfort) ALCS

Brasilia ASHP 0.60 0.00 430.90 0.25 0.00
SA-ASHP 0.20 17.97 386.96 0.27 43.94
SA-WSHP 0.20 17.36 385.17 0.28 45.73
SA-DSHP 0.20 22.00 449.17 0.26 −18.27

Florianópolis ASHP 0.94 0.00 1096.71 0.36 0.00
SA-ASHP 0.21 57.45 795.52 0.38 301.19
SA-WSHP 0.27 43.36 701.34 0.41 395.36
SA-DSHP 0.54 44.12 904.53 0.37 192.18

São Paulo ASHP 1.00 0.00 1455.23 0.31 0.00
SA-ASHP 0.26 73.93 924.42 0.29 528.47
SA-WSHP 0.20 53.64 750.36 0.34 702.54
SA-DSHP 0.22 66.21 882.92 0.31 569.98

Antofagasta ASHP 1.01 0.00 1964.23 0.43 0.00
SA-ASHP 0.28 109.77 1218.09 0.30 746.14
SA-WSHP 0.24 92.17 1076.29 0.37 887.94
SA-DSHP 0.36 101.24 1257.72 0.33 706.51

Concepcion ASHP 0.35 0.00 1578.42 0.90 0.00
SA-ASHP 0.20 102.47 1360.75 0.55 217.67
SA-WSHP 0.21 56.73 898.17 0.69 680.25
SA-DSHP 0.21 122.79 1484.42 0.59 94.00

Santiato ASHP 0.45 0.00 1571.54 0.71 0.00
SA-ASHP 0.20 104.50 1367.90 0.51 203.64
SA-WSHP 0.25 43.54 794.48 0.63 777.05
SA-DSHP 0.20 104.26 1349.84 0.55 221.70
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no superiority over the other methods. Indeed, these methods are used
to aid decision makers in selecting a final solution. This final decision is
based on their professional experience, which should consider the re-
sults of the decision-making methods and the willingness of the con-
sumer to pay for a specific comfort level.

Finally, to further assess the final optimal solution, a bivariate
probability histogram of pool temperature as a function of the hours of
the day is shown in Fig. 8 for Florianópolis. The probability histogram
uses a normalization where the height of each bar is the relative
number of observations (number of observations in bin per total
number of observations). In addition, the sum of all bar heights is equal
to a unit. As observed, during the day there is a high probability that the
pool temperature is within the comfort range 26–30 °C, including
during the night. On the other hand, the histogram also depicts a peak
of high probability for temperatures out of the comfortable range,
which are concentrated in the early morning and the end of the day.
However, this peak is located between 25 °C and 26 °C, which are
considerably close to the comfort range and occur during periods of low
usage. For temperatures lower than 24 °C, the probability is almost null
for ASHP and SA-DSHP configurations, and near 0.1% for early
morning and late night for the SA-ASHP and SA-WSHP configurations.

6. Conclusions

This study demonstrates the usefulness of multi-objective optimi-
zation for the design process of four different configurations of an i-
SAHP for outdoor swimming pool heating, where the solar field area
and heat pump capacity were defined during the optimization process.
The case study used a swimming pool of 36m3 and 24m2 of water
surface, considering three locations in Chile (Antofagasta, Santiago, and
Concepción) and three locations in Brazil (Brazilia, São Paulo, and
Florianópolis). The adopted approach is a very efficient method to re-
duce the intrinsic computational time of the GA and complex thermal
system simulations. The objective functions to be optimized are the
minimization of the Annualized Life Cycle Cost (ALCC) and the max-
imization of the comfort level offered by the swimming pool. Therefore,
based on these results, a consumer can assess a compromise between a
specific comfort level and his or her willingness to pay for it.

Regarding the optimization results, the solar-assisted configurations

present significant improvements in performance for almost all loca-
tions, reaching the same levels of comfort at lower ALCCs when com-
pared with the ASHP configuration. For Chilean locations, the optimal
solutions range from an ALCC of 500 US$ to 3000 US$, and a dis-
comfort level of −(1 Comfort) ranging between 0.2 and 0.9 for
Antofagasta, from 0.45 to 1 for Santiago, and between 0.35 and 0.8 for
Concepción. For Brazilian locations, the optimal solutions range from
an ALCC of 500 US$ to 1500 US$ with a discomfort level of about 0.2
and 0.7 for Florianópolis and São Paulo, respectively. Based on the
ranges of the optimal solutions and high trade-offs between the objec-
tives, the usefulness of multi-objective techniques to properly design
these systems seems clear. Furthermore, it allows the consumer to de-
cide on a final solution based on his or her willingness to pay for a
specific level of comfort.

Finally, the Linear Programming Technique for Multidimensional
Analysis of Preference is adopted for the final decision-making. Based
on this, the values of the two objectives and the two design variables
were presented for the final optimal solutions. Practically all solar-as-
sisted configurations presented positive values of ALCS, indicating
savings during the life cycle. The final solutions show that the SA-WSHP
configurations present the largest savings, with ALCS varying from 395
to 887 US$.
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