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Abstract. Productive processes are the largest consumers in power sys-
tems. The energy required by these processes is usually supplied by the
power grid with its associated high operative costs. In this work, we
propose a methodology to design energy management systems for self-
consumption in productive processes with non-conventional local energy
resources. Our goal is to maximize the use of the local energy resources
to reduce the amount of energy contracted with the service supplier, and
consequently to reduce production costs of the process. This methodol-
ogy includes a robust-optimization-based energy management strategy
to include power variability through the generation of a finite number
of possible future scenarios of uncertain variables such as power demand
and power from non-conventional energy sources. It allows improving the
performance of the power supplies as our simulation results show.
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1 Introduction

According to the International Energy Agency, the world industrial sector con-
sumes 42% of the total demanded energy around the world [5]. Furthermore,
industry is the most pollutant end-user sector [4]. Then, in the near future the
industry sector will face the dual challenge of implementing low energy and
low pollution technologies while simultaneously maintaining its competitiveness
[4]. Non-Conventional Energy Sources (NCES) are a suitable opportunity for
industries to reduce their environmental impacts and to increase profitability.
However, when NCES are integrated in productive processes, technical issues
might arise due to their variability. Thus, the grid support and the dispatchable
local energy sources must be coordinated through an energy management sys-
tem (EMS) in such a way that a reliable supply of electric energy is achieved,
despite of the unexpected power variations of the NCES and demand.
c© Springer Nature Switzerland AG 2018
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Several EMS-based approaches have been presented in the literature to deal
with the uncertainty associated with these power variations. Some examples of
prediction-based EMS are reported in [7,9]. The main idea of these predictive
strategies is to anticipate the performance of both NCES and power demand
to maintain a suitable performance of the power system during power fluctu-
ation. However, these strategies do not include the uncertainty directly in the
EMS problem formulation, and single predictions are not enough to improve the
robustness of the system. For this reason, some strategies such as those in [8,11]
focus on this problem. In these works, authors represent uncertainty through pre-
diction scenarios, but selecting them is still a research challenge. Furthermore,
these methodologies have not clear strategies to determine a suitable number
of scenarios to represent uncertainty, and they do not improve the uncertainty
representation in real-time. In addition, all above applications are oriented to
energy management in microgrids to supply energy on communities.

Particularly for productive processes, some EMS approaches with NCES inte-
gration have been proposed. In [2], the authors proposed a NCES integration
based on a phenomenological process model. But they did not implement control
actions over the local energy sources to correct any low performance in real-time.
[10] presented a solar and wind source integration in a water desalination pro-
cess through a model predictive control strategy. In this approach, the controller
managed both sources and process. Nevertheless, it required a specific process
model making it problem specific. In [3], a fuzzy controller was presented to
manage a generation system with multiple types of sources and an experimental
variable load. They did not implement an optimal control strategy in order to
reduce the computational cost of the controllers.

In this work, we propose to tackle above mentioned drawbacks with an EMS
design methodology based on the robust optimization strategy presented in [1].
Our goal is to include uncertainties as part of the energy management problem
formulation in productive processes with NCES penetration. With this new app-
roach, we expect to improve robustness of the energy supplied to the industrial
process by reducing the possibility of collapse caused by unexpected variations
associated with the NCES and power demanded by the process, which is basi-
cally the definition of robustness in this frame.

The proposed methodology consists of the following stages: Characteriza-
tion of power demand and generation of available NCES; stochastic modeling
of the power demand and power from the non-conventional resources (with the
stochastic model, multiple possible future scenarios or realizations of the uncer-
tain variables are computed in order to represent the future power variations);
and design of a robust EMS to maximize the use of the available NCES. Real-
izations are included to improve the power system performance along the day.
In this formulation, an additional constraint is included to avoid the energy sur-
pluses injection into the main grid, and then to promote the self-consumption
in countries where energy injection into the grid is not regulated.

The main advantages of the proposed methodology are: (i) it does not require
an specific process model, i.e., it can be applied in any productive process; (ii)
uncertainties are explicitly included in the proposed EMS through multiple sce-
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narios in order to improve the robustness of the local power system under unex-
pected power flows variations; (iii) it is simple to implement because it only
requires historical time series of the power demand and power from NCES to be
designed; and finally, (iv) the parameters of the stochastic models are updated
every sample time with the new measurements from the system; it allows improv-
ing the dynamic performance and the adaptive capabilities of the EMS.

This work is organized as follows: in Sect. 2 we present a methodology to
manage energy in productive process where NCES are integrated. In Sect. 3, the
proposed methodology is applied to design an EMS in a typical cooper extraction
process, which is partially supplied with wind energy. In Sect. 4, simulations
results are presented and discussed. Finally, conclusions are presented in Sect. 5.

2 Proposed EMS Design Methodology

The optimization problem with multiple scenarios presented in [1] can be written
as an expected value minimization problem:

min
X

E(F (X, ā + u)) (1)

subject to: G(X, ā + u) ≤ b

Where X is the set of decision variables, which are calculated such that F (X, ā+
u) is minimum. F (X, ā + u) is an objective function and G(X, ā + u) represents
a group of physical and operative constraints of the process. b is commonly
expressed as a fixed parameter and a is an uncertain parameter. To consider
uncertainties explicitly in the problem, a is expressed such as a = ā + u, where
ā and u are the mean and uncertainty components of a, respectively. However,
this problem could not be mathematically tractable since the expected value of
F (X, ā + u) might not be differentiable. Nevertheless, it can be solved when a
takes a finite number of values that represent the original population. Then, the
problem can be reformulated as:

min
X

p1 ∗ F (X, a1) + . . . + pK ∗ F (X, aK) (2)

subject to: G(X, ai) ≤ b; i = 1, . . . , K

Where K is a finite number of chosen scenarios for a and pi, . . . , pK are the
occurrence probabilities of each scenario. The goal with this formulation is to
find a value of X such that F (X, a) can be minimized, whereas all constraints
imposed by the ai scenarios are simultaneously satisfied.

2.1 Generating and Selecting Scenarios

Power from NCES and power demand scenarios can be obtained from forecasting.
An EMS with power forecasting models can achieve better planning of the power
sources and improve the dynamic response of the system. We use a set of possible
future scenarios obtained from a set of probability density functions (PDF),
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which are fitted via previous analysis of the historical time series of the uncertain
variables, and their parameters are updated in every sample time to include the
new measurements into the uncertainty representation process. The advantage
of this method is that a suitable uncertainty representation can be achieved
without the need of a complex model. In addition, this method allows updating
historical information with every new measurement to update the parameters
of the PDFs. The drawback of this method is that it is not possible to include
exogenous variables in the process of the generation of the future scenarios, in
other words, it is not possible to include the influence of exogenous variables on
the uncertain variables. However, according to our simulations, it is a suitable
strategy for average renewable NCES and demand conditions.

First, we combine historical time series from all uncertain variables to obtain
only one time series. For example, the general form of the power balance with a
renewable NCES is PG + PR = PD, where PG, PR, and PD are the power from
grid, from the renewable NCES and demanded power respectively. Uncertain
variables in this case are PR and PD, if we combine them in only one uncertain
variable PC we obtain, PC = PD−PR, and then, power balance can be rewritten
such as PG = PC , where now, there is only one uncertain variable, which is the
combination of the two original ones. This process allows finding easily a PDF to
represent the variability of the problem, and to reduce the computational effort
of the final problem.

Then, possible future scenarios are generated using a method for uncertainty
representation which is proposed based on [1,7,9]. Thereafter, we need to select
those scenarios that represent the uncertainty of the historical data. Our goal is
to represent uncertainties in the historical information through a finite number
of possible future variations of the variable in order to improve the robustness
of our EMS as follows:

1. Classifying historical information: Combined initial time series is disaggre-
gated according to their resolution; then, we obtain a time series for every
sample time along a day. For example, a time series of 365 days with 1 h
resolution provides 24 disaggregated time series, each with 365 points.

2. Fitting time series: Disaggregated time series are fitted through a PDF; then,
parameters of every time series are calculated. From the example of step 1,
we obtain parameters of 24 PDFs for the 24 time series.

3. Generating scenarios: With the parameters of all PDFs, a finite number of
realizations or future scenarios are generated for every sampling time. On our
example, K scenarios are generated for each hour according to the respective
PDFs.

4. Estimating the minimum number of scenarios: The goal with the generated
scenarios is to represent uncertainties in the historical information, which
will allow to the EMS having into account the K possible variations that
the uncertain variables could have in the future, in other words, the con-
trol actions of the EMS will satisfy all the operational conditions that could
impose each of those K possible future variations; achieving in this way to
improve the robustness of the EMS. In this regard, K scenarios must be
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selected such that the PDF parameters calculated from the generated scenar-
ios and from the original disaggregated time series are as close as possible. In
this work, the maximum allowed difference was 5%. Finally, minimum num-
ber of scenarios can be determined through a plot of K vs. PDF parameters
difference as we show in the next section. This step is only performed once
in the EMS design stage. When the EMS is in operation mode, only steps
1 to 3 are executed every sample time to update PDF parameters with new
measurements.

2.2 Robust EMS Formulation

Based on the selected realizations, a robust EMS is proposed to maximize the
use of NCES and to improve robustness of the power system when unexpected
variations occur. The objective of the multiple scenarios explained in Subsect. 2.1
is to anticipate the future behavior of the NCES and demand and to improve the
robustness of the whole power system in the long term, even under unexpected
power flow variations.

Since we promote the self-consumption in productive processes, our EMS
approach is formulated as an uni-nodal problem, i.e., we assume that all loads
and sources are connected to the same connection point. In other words, the
transmission constrain is not included. In (3) the formulation of the problem in
an uni-nodal form and including single prediction is presented according to [7,9]:

min
P

(r)
gi ,P

(r)
ns ,P

(r)
lo

Np∑

r=1

(
M∑

i=1

(CgiP
(r)
gi ) + (CnsP

(r)
ns ) + (CloP

(r)
lo )

)
(3)

subject to r = 1, . . . , Np constraints:

M∑

i=1

P
(r)
gi + P (r)

ns − P
(r)
lo −

N∑

j=1

P
(r)
dj +

O∑

m=1

P
(r)
Rm = 0

Pmin
gi , Pmin

ns , Pmin
lo ≤ P

(r)
gi , P (r)

ns , P
(r)
lo ≤ Pmax

gi , Pmax
ns , Pmax

lo

with i = 1, . . . ,M . Pgi is the power from the i-th controllable energy source.
Cgi is the cost associated with the i-th energy source. Pns and Cns are the non-
supplied power and their associated cost, respectively. Plo and Clo are the lost
power and their associated cost, respectively. PRm is the power from the m-th
renewable energy source. Pdj is the demanded power of the j-th load. Pmin

gi ,
Pmin
ns , Pmin

lo , Pmax
gi , Pmax

ns and Pmax
lo are the minimum and maximum physical

constraints of the decision variables. M , N and O are the number of dispatchable
energy sources, loads, and renewable sources respectively. Superscript •(r) refers
to the number of the step along to the prediction horizon of the variable •. And
NP is the prediction horizon.

The optimization problem formulation (3) includes the single prediction of
the available energy from the NCES and the demand to improve the perfor-
mance of the system in the long term via anticipation of the possible variations.
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However, predictions are not enough to improve the robustness of the system
under unexpected future power variations. For this reason, we directly include
uncertainties in the optimization problem formulation [1]. This inclusion is per-
formed through the generation of a finite number of possible future scenarios
with their respective occurrence probability. But first, we define uncertain sets
for every renewable energy source PRm and power demand Pdj :

[P (1)
Rm, . . . , P

(NP )
Rm ] ∈:= {(P (1)

Rm(1), . . . , P
(NP )
Rm(1)), . . . , (P

(1)
Rm(K), . . . , P

(NP )
Rm(K))}

[P (1)
dj , . . . , P

(NP )
dj ] ∈:= {(P (1)

dj(1), . . . , P
(NP )
dj(1) ), . . . , (P (1)

dj(K), . . . , P
(NP )
dj(K))}

Here, m = 1, . . . , O and j = 1, . . . , N , where O and N are the amount of NCESs
and power demands respectively. Now, every scenario can be defined as follows
considering all NCES and demands (contraction Scen means Scenario):

Scen#s = {(P (1)
Rm(s), . . . , P

(NP )
Rm(s)), (P

(1)
dj(s), . . . , P

(NP )
dj(s) )}

for s = 1, . . . ,K generated scenarios. Finally, we formulate an optimization prob-
lem for the robust EMS where uncertainties are included through the inclusion of
above scenarios in form of K sets of constraints, one set per considered scenario.
Every step time of every realization or scenario has an occurrence probability.
However, the numerical tractability of the problem can be affected when the
number of constraints increases. Therefore, following the procedure presented in
[1], the expected value optimization problem is reformulated in its equivalent
epigraph form:

min
P

(r)
gi ,P

(r)
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(r)
lo ,t

(r)
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⎧
⎪⎪⎨

⎪⎪⎩
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i=1 P

(1)
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dj(s) ≤ t
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(s)

...
∑M

i=1 P
(NP )
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(NP )
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(NP )
(s)

P (r)
ns , P

(r)
lo ≥ 0; Pmin

gi ≤ P
(r)
gi ≤ Pmax

gi ; t
(r)
(s) >= 0

with s = 1, . . . , K, i = 1, . . . , M , and r = 1, . . . , Np. Here, subscript •(s) is
the counter of the selected scenarios. p is the probability of each step in every
scenario, and t is the additional decision variable that appears because of the
epigraph form transformation. The selection of the number of scenarios is carried
out according to the procedure proposed on Subsect. 2.1.

3 Simulation Set-Up

We tested our proposed methodology via simulation with a robust EMS for a
typical copper extraction process supplied from the bulk grid, a local conven-
tional generator, and a NCES (a wind generator in this case). In general, mining
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process is considered as an intensive energy process because it consumes around
700 kWh/tone mined [6]. Simulations were performed with power curves of a real
process and real historical information of wind speed in the same location. The
EMS controls the amount of power imported from the main grid and the local
generator, so that they can compensate power fluctuations from the NCES and
the demanded power.

IEEE benchmark of nine nodes and three generators was used to represent
the electric grid of the selected productive process. Mathematical nomenclature
is defined as: g2 is the energy source in node 2 and it represents power from main
grid; g3 is the energy source in node 3 and it represents the local generator; w
is the energy source in node 1 and it represents a NCES, a wind energy source
for this case; L5, L6, L8 are the system loads connected in nodes 5, 6 and 8
respectively, and they represent the total power demand of the copper extraction
process.

3.1 Robust Energy Management System Formulation

The efficiency of generators and loads of the power system when exchanging
power among them mainly depends on the management of those power flows
through the EMS. Then, in (4), the proposed robust EMS for the power system of
the copper process is presented. In this robust problem formulation, uncertainties
are included through the inclusion of K possible future scenarios of the uncertain
variables, which are expressed as K constraints:

min
t
(r)
(s),P

(r)
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where Pg2 and Pg3 are the two power flows from the two controllable energy
sources, grid and local generator respectively for this case. Cg2 and Cg3 are
the costs associated with the controllable energy sources mentioned above. Pns

and Cns are the non-supplied power and its associated cost. Plo and Clo are
the lost power and its associated cost. Pw is the power from wind energy source.
Pd5, Pd6, Pd8 are the demanded power of the three loads of the test system. Pmin

g2 ,
Pmin
g3 , Pmin

ns , Pmin
lo , Pmax

g2 , Pmax
g3 Pmax

ns and Pmax
lo are the minimum and maximum

physical constraints of the decision variables. Finally, {set#1, · · · , set#K} are
the power balance constraints that need to be satisfied for each s = 1, . . . , K
scenario.

The robust solution obtained with this formulation reduces the possibility
of the power system to collapse when an unexpected power variation occurs.
Thereby, our robust energy management strategy helps to improve the dynamical
performance of the system during unexpected power flow variations.

4 Simulation Results

The minimum number of scenarios was selected through the procedure presented
in Sect. 2.1. Figure 1 shows the relation between the number of considered scenar-
ios and the error of the statistical parameters. In this case, a normal distribution
was used to represent the uncertainty of the historical time series (it is only one
time series because of the combination of all uncertain variables that we pre-
sented in Sect. 2.1). We found that 1500 is a suitable number of scenarios to
reduce the error of the mean (μ) and standard deviation (σ) to around 5%. It
means that the uncertainty on the historical data is represented by this amount
of scenarios with 95% representation percentage.
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Fig. 1. Error of the statistical parameters vs. Number of considered scenarios. For this
example, the error goes below 5% (red lines) with 1500 scenarios. (Color figure online)

We carried out simulation experiments with different EMS strategies during
one day. All experiments were executed with conditions presented in Fig. 2. The
figure shows a situation where the total power demand is always greater than the
wind power, except in some intervals where the wind power is greater than the
power demand. These mismatches have some consequences, which were analyzed.
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Historical time series used for simulation was measured from the power consumed
by a real copper mining process, and from a wind power plant (close to the
place where power demand data were obtained). The sampling time of all tested
controllers was 15 min.
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Fig. 2. Power delivered by the wind turbine and the total power demand of the system.
The simulations were performed under these conditions.

The power system was tested on a typical situation to analyze its dynamic
behavior with the proposed robust EMS and a non-robust EMS. In minute 1000
and along the 30 following minutes, wind speed decreased unexpectedly to zero.
Although this is a totally unpredictable event, the controller had to react and
try to compensate it. Figure 3 shows the dynamic performance of the power on
the dispatchable sources, it means, grid and conventional local generator.
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Fig. 3. Power from grid (top panel) and from local generator (bottom panel) under an
unexpected absence of wind power. Proposed robust EMS (solid blue line). Non-robust
EMS (dash red line) (Color figure online)
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Table 1. Maximum variation of the delivered power from the dispatchable sources
with the proposed robust EMS and a non-robust EMS caused by a wind event.

Max. power change

Source EMS Max ΔP [MW]

Grid Non-robust 10.7

Robust 1.3

Local generator Non-robust 9.6

Robust 1.4

Fig. 4. Voltages in the main nodes of the power system under unexpected reduction
of the wind power. Proposed robust EMS (solid blue line). Non-robust EMS (dash red
line). (Color figure online)

When the wind turbine stopped producing energy, the grid and the local gen-
erator increased their delivered power to compensate this event. However, accord-
ing to the used EMS, the dynamical performance was different. Figure 3 shows
that the changes in the delivered power from the controllable energy sources
with the proposed robust EMS are smaller than in the non-robust EMS during
the unexpected outage of the wind generator. In the case of the local generator,
it means that the energy consumption efficiency was improved, suggesting that
the useful life of the machine was extended. The magnitudes of these changes
are presented in Table 1.

Regarding the voltage performance, Fig. 4 and Table 2 show a faster response
when the proposed EMS was used. In addition, the overshoot voltage magnitude
was also reduced. In general, the stability of the power system was improved with
the proposed EMS. Furthermore, the figure shows that voltages are always lower
when the robust EMS was used, i.e., there is a wider range to regulate reactive
power through the voltage manipulation in the case of considering voltage as a
control variable.
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Table 2. Numerical differences between a non-robust EMS and the proposed robust
EMS under an unexpected wind power reduction*.

Voltages in unexpected wind event

Node EMS IST [s] FST [s] Iovsh [%] Fovsh [%]

1 Non-robust 90 90 −2.2 2.5

Robust 60 45 −1.7 2.3

2 Non-robust 90 75 3.6 2.1

Robust 60 45 4.9 1.8

3 Non-robust 90 90 3.5 2.7

Robust 60 45 4.6 2.5

5 Non-robust 90 90 −2.1 2.4

Robust 60 45 −1.6 2.2

6 Non-robust 90 90 −2.4 2.6

Robust 60 45 −1.9 2.4

8 Non-robust 90 90 3.5 2.4

Robust 60 45 4.8 2.2

*Here, IST and FST are the initial (min 1000) and final (min
1030) stabilization times respectively, Iovsh and Fovsh are ini-
tial (min 1000) and final (min 1030) overshoot respectively. The
wind turbine is connected to Node 1. Nodes 2 and 3 are the con-
nections of the bulk grid and the local generator, respectively.
Nodes 5, 6, and 8 are the loads L5, L6 and L8 connections,
respectively.

5 Conclusions

In this work, we proposed a methodology to manage energy in productive pro-
cesses with NCES penetration via a robust EMS. Unlike other works in the litera-
ture [7–9,11,12], our methodology is manly oriented to promote self-consumption
in productive processes in countries where it is not possible to sell energy sur-
pluses to the main grid. The EMS includes a method to consider uncertainties in
the NCES and power demand using historical information updated on real-time,
with the objective of minimizing the operative costs. Our methodology allows
avoiding large power variations in the local generator. A desirable characteristic
in systems with NCES, because in productive processes it is a common prac-
tice to use thermal generation units to supply part of the power consumption of
the process and they show a slow power response by nature. Furthermore, the
proposed robust EMS ensures a suitable dynamical performance of the power
system, which is not the case with a non-robust EMS.

A typical industrial process includes sensitive voltage devices, i.e., the
dynamic behavior of the voltage is a critical aspect in power systems. Thereby,
the proposed EMS has several advantages because it reduces the time response
and voltage overshoot during abrupt unexpected power variations. In addition,
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our approach reduces the voltage level in all nodes of the power system (inside
the permissible limits), which allows increasing the span to control the reactive
power of the system.

Although a non-robust EMS allows having lower operative costs of the sys-
tem, the proposed approach improves several dynamic aspects of an industrial
power system such as the energy efficiency, the useful life of its components, and
economic savings in the long term.
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