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� Static strands response with asymmetric surface damage is studied.
� A nonlinear beam-based model is proposed to assess damaged strand response.
� Test data and 3D FE simulations validate the proposed nonlinear beam-based model.
� The nonlinear-based model is a robust and computationally cheap tool.
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In this study, the effect of the presence of broken wires (damage) asymmetrically distributed on metallic
strands surfaces on their static response is assessed. To this end, a general mechanical model for multi-
layered strands is presented, in which damaged strands are treated as a 1D nonlinear beam under uncou-
pled biaxial bending and axial load (NLBM). The NLBM is validated by comparisons with the results
obtained from an experimental program especially designed for studying the effect of surface damage
distribution on strands response and 3D nonlinear finite element simulations. Analyses are carried out
on two strand constructions: 1 � 7 and 1 � 19, in which the damage levels and strand diameters vary
from 5% to 40% and from 3.5 mm to 22.2 mm, respectively. Results indicate that the NLBM accurate pre-
dicts the static response (residual strength, stiffness, axial strain field, and deformed configuration) of the
asymmetrically damaged strands, achieving good computational efficiency and numerical robustness.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction prediction of the mechanical behavior of strands as well as reduce
A strand can be a critical structural member in many engineer-
ing applications, including cranes, lifts, mine hoisting, bridges,
cableways, electrical conductors, offshore mooring systems and
so on. Different classes of strands, suited for different purposes,
have a different number and arrangement of strand components
within the strand cross-section in which the components can be
made of different materials. Over the years, each field of strand
application has developed a specific body of knowledge, based on
extensive testing and field experience, leading to empirical rules
for each particular application. Unifying these empirical rules
under some general mathematical and mechanical theory would
allow a better understanding, and in the long term, a better
the need for expensive tests under a variety of operating condi-
tions. Thus, due to their extensive use and the need to predict their
behavior, several researchers have presented analytical models
that permit the calculation of rope response based on the strand
component material and geometry [1].

Strands made of filaments drawn from ductile metals are
widely used as structural components. In particular, the extensive
use of steel wire strands for load bearing components is mainly due
to the strength offered by steel coupled with the flexibility of
strand construction, strand geometry and wire size that can be sui-
ted to the required application. On the other hand, aluminium-
based strands are widely used in transmission lines (conductors)
due to their high conductivity to weight ratio leading to reduce
the size of the support structures. In any of the applications previ-
ously mentioned, strands are subjected to various loading condi-
tions. Although a strand is essentially an element for
transmitting a tensile load, its construction is such that the individ-
ual wires in a strand are subjected to bending and torsional
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moments, frictional and bearing loads, as well as tension. The
magnitude and distribution of the stresses resulting from these
loadings determine the overall strand/conductor response, which
can be expressed in terms of the extension and rotation of the
strand/conductor [2]. In the following, the descriptions given are
valid for both steel strands and aluminium conductors unless
otherwise specified; hence, just strand is used hereafter to avoid
repetitive use of the term strand/conductor.

Strands experience damage throughout their loading history
and from continued aggression of the environment (urban, indus-
trial, marine, heat exposure, chemical, etc). The process by which
damage occurs can be represented through a degradation of the
properties of individual strand wires, and it can also include the
complete rupture of one or more wires. The understanding of the
interaction of the factors that induce damage to strand and their
dependence on strand operational conditions are essential to esti-
mate strand service life at the design stage and to establish the
appropriate strand inspection methods and discard criteria. Hence,
the service life of a strand can be greatly extended by following a
planned program of installation, operation, maintenance, and
inspection. In this context, damage-tolerance property (i.e., the
ability of a strand to withstand damage) is an essential parameter
for strand design, strand evaluation during operational service, and
for developing discard criteria according to strand usage based on
the residual strength and deformation capacity that the damaged
strand can sustain [3].

Symptoms of strand degradation, which are related to the most
common discard criteria utilized to remove damaged strands after
inspections, are the number of broken wires, reduction in strand
diameter, excessive corrosion, and strand deformation (waviness,
birdcage, loops, loose wires, nodes, and kinks among others)
[4–6]. Experimental [7–11] and numerical [12–15] studies on
metallic strands, mainly conducted on steel wire ropes, have
intended to determinate the ability of particular types of strand con-
structions to withstand damage (i.e., damage-tolerance property).
More precisely, considering a variety of wire breaks distribution,
strands constructions, and loading conditions, aforementioned
works have mainly focused on the determination of the residual
strength [7,8,12] and axial strain field on strands cross-sections
and along the length of the strands [9,10,13,14]. Others have mon-
itored damage evolution to establish reliable conditions of damaged
strands use [10,11,15]. The results of previous studies have shown
that, in particular, the impact of broken strand components on over-
all strand response (stiffness, residual strength, deformation capac-
ity, and deformed configuration) depends on the length of the
strand, number of broken strand components (degree of damage
or damage level), type of strand construction, and their distributions
throughout the strand cross-section (symmetric and asymmetric)
and along the strand length. For the purpose of this study, damage
is referred to the presence of fully ruptured wires in the strand
cross-section.

In this paper, the effect of a particular damage distribution on
metallic (steel and aluminium) strand static response is assessed
through experimental tests and numerical simulations. The dam-
age is asymmetrically distributed on the outermost strand layer
to simulate surface damage (degradation due to corrosion, abrasive
wear, and fatigue among others). To this end, a general mechanical
model for multilayered strands asymmetrically damaged on their
surfaces is presented, in which damaged strands are treated as a
1D nonlinear beam under uncoupled biaxial bending and axial load
(NLBM). This proposed model is an extension of the model pre-
sented in [16], originally developed for single-layer ropes, to
account for multilayered strand geometry, which is validated by
comparisons with experimental data and 3D nonlinear finite ele-
ment simulations. Experimental data are obtained from tensile
tests conducted on galvanized steel and aluminium strands
asymmetrically damaged on their surfaces. The validation process
of the NLBM accounts for two strand constructions: 1 � 7 and
1 � 19, whose diameter values range from 3.5 mm to 22.2 mm
and the damage levels from 5% to 43% relative to the virgin
cross-section, in which damage is artificially inflicted at strands
midspan by cutting a prescribed number of wires. The analyses
performed validate the extended model which is used to interpret
and extend the experimental data reported in this study. As such, a
robust and computational efficient numerical tool to assess
damage-tolerance property of metallic strand asymmetrically
damaged on their surfaces is presented. This tool may assist in
quantifying the variations in performance of damaged strands that
should be anticipated when predicting service life and in evaluat-
ing the coupling of some of the discard criteria parameters used
in strands that are built into many standards such as the number
of broken wires, waviness, and residual strength.

2. Experimental set up and materials

Steel (ST) and aluminium (AL) strands are tested in this work.
Steel strands cross-sections consist of six wires helically wrapped
around a straight central wire (core)(ie., 1 � 7 = 1 + 6 strand). On
the other hand, two types of cross-sections are considered for the
aluminum strands specimens: (1) 1 � 7 strands and (2) a single
straight wire (core) followed by six and twelve helically wound
wires in two concentric layers (i.e, 1 � 19 = 1 + 6 + 12 conductor).
Geometrical parameters and minimum breaking strength (MBS)
of the test specimens are listed in Table 1, in which the lay angle
is the angle between the local longitudinal axis of the wire relative
to the global longitudinal axis of the strand. The MBS values are
provided by the strands suppliers as well as the lay direction of
the wires at each layer, in which L.H and R.H stand for left and right
hand respectively. The computed fill factor values of the strand
specimens range from 0.75 to 0.78.

For the (1 � 7) and (1 � 19) specimens previously described,
four types of tensile tests are performed: intact (virgin) specimen
and three specimens asymmetrically damaged on their surfaces
(outermost layer) at strands midspan. Damage to cross-section
considers from one to three wires completely cut on specimens
surface for the former case and from two to six wires for the latter
case as depicted in Fig. 1, in which cut wires are colored black.

Damage level (percentage of loss of cross-sectional area) and
degree of asymmetry in damage distribution (measured by the
index of asymmetry explained later in Section 3) values are
selected to have similar values used in a previous work [16]. As
such, damage level and degree of asymmetry values range from
5% to 43% and from 0.167 to 0.5 respectively. In this way, a wide
range of values of these two parameters are used to validate the
proposed model presented in this study. Tensile tests are carried
out using an Instron 600LX universal testing machine with a max-
imum tensile capacity of 300 kN. Strands axial strains are mea-
sured using LVDT and extensometers for the case of the intact
specimens and LVDT for the case of damaged specimens (Fig. 2a).
Based on experimental, analytical, and numerical studies
[9,10,16], it is expected that asymmetric damage distribution
induces a gradient in the axial strain distribution throughout
strand cross-section, in which the axial strain values are maximum
in the wires adjacent to damage and minimum in the opposite
ones. In order to experimentally validate this assumption, strain
gauges are used to measure the axial strain developed by adjacent
and opposite wires to damage as shown in Fig. 2b, in which a
23.5 mm diameter coin is used as an attempt to show the size of
the strain gauge. Resin socketing is used for terminating strand
specimens in which the length between sockets is 600 mm accor-
dance with the provisions in ISO 3108:2017. Tensile capacity tests
are performed under displacement control at a rate of 5 mm/min.



Table 1
Geometrical properties and minimum breaking strength of the test specimens.

Strand Strand Diameter [mm] Material Number of wires Mínimum Breaking Strength (kN) Wire Diameter [mm] Layer Lay angle [�] Lay direction

1 � 7 9.5 ST 7 68.5 3.10 2 7.5 L.H
1 � 7 10.1 AL 7 19.7 3.37 2 8 R.H
1 � 7 12.7 ST 7 119.7 4.19 2 8 L.H
1 � 7 14.3 AL 7 37.8 4.77 2 7 R.H
1 � 19 19.9 AL 19 69.3 3.98 2 8.7 L.H

3 11.7 R.H

(1x7) damaged sections (1x19) damaged sections

Fig. 1. Steel strands and aluminium conductors damaged cross-sections.

(a) (b) 

Extensometers

Specimen
Strain  gauge 

Fig. 2. Sensors to measure strains: (a) extensometers (b) strain gauge.
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3. Numerical approach

In the particular case of ropes (metallic and synthetic fiber)
asymmetrically damaged, some efforts have been made in order
to numerically and analytically assess the impact of damage on
their response [10,12,16–18]. This information could be later uti-
lized to establish if the structural integrity of the damaged strands,
and also the integrity of the structural system that they are part of,
is compromised. In the current study, the model proposed by Bel-
tran and De Vico [16], which is established for a single-helically
layered strand, is extended to account for a multilayered strand
geometry in which broken wires are asymmetrically distributed
in the outermost layer to simulate surface damage.

3.1. Description of the simplified numerical model

In the extended proposed model, the asymmetrically damaged
strand is assumed to behave as a nonlinear beam (NLBM) under
biaxial bending and axial load with Bernoullís kinematic hypothe-
sis (i.e, stick-state kinematic assumption). As explained in [16],
biaxial bending arises from the unbalanced radial contact forces
within a strand cross-section due to the asymmetric damage distri-



Fig. 3. (a) Asymmetrically damaged multilayered strand cross-section; (b) Interlayer contact pattern; (c) nonlinear beam under sinusoidal loads.
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bution, resulting in a net transverse force per unit length of strand
qR, which is decomposed into the principal planes (xy and xz) of the
damaged strand cross-section (Fig. 3a). The magnitude of the net
transverse force qR accounts for the initial helical geometry of the
unbroken strand components.

According to the model proposed in [16], the static response of
an asymmetrically damaged strand is governed by the following
equations:
ðEIzzÞsec
d4v
dx4

� qyðxÞ 1þ duðxÞ
dx

� �
� HðxÞd

2v
dx2

¼ 0 ð1Þ
ðEIyyÞsec
d4w
dx4

� qzðxÞ 1þ duðxÞ
dx

� �
� HðxÞd

2w
dx2

¼ 0 ð2Þ

where the plane directions z and y coincide with the principal
axes of the damaged cross-section; qy(x) and qz(x) are the dis-
tributed forces along the rope length in the y and z direction
respectively; (EIzz)sec and (EIyy)sec are the secant bending stiffnesses
of the strand component with respect to the z and y axes, respec-
tively; v(x) and w(x) are the deflections in the xy and xz (principal)
planes, respectively; u(x) is the displacement of the centroid in the
axial direction; and H(x) is the horizontal force relative to the axial
direction of the undeformed damaged strand.

The procedure implemented to compute the expressions for
qy(x) and qz(x) is extended relative to the one described in [16]
due to the increasing complexity of the damaged cross-section
strand analyzed in the current study as previously stated. The
determination of the net unbalanced line force qR is based on the
assumption that contact between wires is assumed to be only in
the radial direction (the so-called interlayer contact forces). The
process, and related assumptions, of estimating the value of qR
for the case of a multilayered strand, whose damaged cross-
section for illustrative purposes is depicted in Fig. 3a, is outlined
in the subsequent steps.
& Consider the asymmetrically damaged strand cross-section
depicted in Fig. 3a. This is a three-layered strand in which in
the terminology used in this study the core is always considered
to be the first layer. Damage is inflicted in the third (outermost)
layer in which cut wires are colored black.

& Assuming interlayer contact pattern between strand wires, heli-
cal wires that belong to the third layer are not in radial equilib-
rium due to the loss of symmetry of that layer associated to the
asymmetry in damage distribution. The radial line body forces
X3 of the two wires opposite to damage are unbalanced result-
ing in net radial line force X3N pointing to the centroid of the
strand (Fig. 3a). For clarity purposes, only the radial line body
forces X3 of the wires opposite to damage are depicted, because
the others cancel out in pairs. The value of the radial line body
force X3, considering each wire as a tensile element, can be esti-
mated as j3T3 where j3 and T3 is the curvature and tensile load
of a helical wire located in layer 3, for a given value of the strand
axial strain e [19].

& The resulting unbalanced net radial line force X3N is transmitted
from the outer to inner layers, considering the distance between
points of contact (discrete contact pattern) along a helical wire
as described in [20]. In this particular example, the transferred
value of X3N to layer 2, q3,2, is given by

q3;2 ¼ p2cosa2
�

p3cosa3
X3N ð3aÞ

where the angles a3 and a2
�

are defined as tan�1(p3/2p(a3–r3))
and tan�1(p2/2p(a2–r2)), respectively, where pi is the pitch dis-
tance, ai is the helix radius and ri is the radius of a wire in layer
i, with i = 2,3 for this particular example (Fig. 3b).

& From layer 2, the effect of the unbalanced radial line force has to
be transmitted to the core of the strand in order to analyze the
damaged strand as a beam element subjected to axial and bend-
ing loadings (Eqs. (1) and (2)) do not include torsional terms).
Accounting for the continuous radial contact between wires in
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the second layer and the strand core, the value of the unbal-
anced radial line force qR acting along the longitudinal axis of
the strand is given by

qR ¼ 1
cosh2

p2cosa2
�

p3cosa3
X3N

" #
ð3bÞ

where h2 is the lay angle of the wires that belong to the second
layer of the strand (Fig. 3b). In the general case, the unbalanced
radial line force qR acts in the �y1 direction forming an angle u
relative to an arbitrary axis y, in which y1 is the axis of symmetry
(also a principal axis) of the damaged strand cross-section. Due
to the helical nature of the wires, the principal plane z1y1 coin-
cides with the arbitrary plane zy for increasing values of u
(Fig. 3a) equal to np/2 (n is an integer). As proposed in [5],
instead of rotating the principal plane z1y1 along the longitudinal
axis of the damaged strand due to the helical nature of the wires
in their initial configuration, the analysis of the damaged strand
is approximated by considering the arbitrary plane zy as the
principal one (that is valid when z1y1 and zy coincide) and vary-
ing the net transverse forces in both xy and and xz planes, qy(x)
and qz(x), along the strand longitudinal axis x throughout the
relationship u = (2px/p2) where p2 is the pitch distance of the
wires that belong to the second layer. As such, the damaged
strand is analyzed with a constant cross-section and the helical
nature of strand wires in their initial configuration is captured
by the sinusoidal net transverse forces qy(x) and qz(x) that induce
a lateral deflection of the strand in the �y1 direction (Fig. 3c). In
the latter, one end of the strand is fully clamped and at the other
end a uniformly increasing axial displacement history is speci-
fied (Du) and the cross-section is prevented from rotating (dis-
placement control analysis). According to Fig. 3a, the
expressions to compute qy(x) and qz(x), which are present in
Eqs. (1) and (2), are given by

qy ¼ 1
cosh2

p2cosa2
�

p3cosa3
X3N

" #
cosu ð4aÞ

qz ¼ 1
cosh2

p2cosa2
�

p3cosa3
X3N

" #
sinu ð4bÞ

& For a general multilayered strand geometry, that is a strand
comprised of N layers, the resulting unbalanced net radial line
force XNN due to the asymmetry in surface damage distribu-
tion is transferred to layer 2, qN,2, by the following
expression:

qN;2 ¼ p2cosa2
�

pNcosaN

YN�1

k¼3

cosak
�

cosak

 !
XNN ð5aÞ

where the variables involved in the above equation were already
defined after presenting Eq. (3a). Following the above procedure,
the value of the unbalanced radial line force qR acting along the
longitudinal axis of the strand is given by
Table 2
Geometrical properties and strength values of (1x19) steel strands.

Strand
diameter [mm]

Wires radius
[mm]

Lay length (layer 2) [mm]
(left hand lay)

Lay length (layer 3) [
(right hand lay)

3.5 0.35 28.6 42.5
22.2 2.22 181.5 270
qR ¼ 1
cosh2

p2cosa2
�

pNcosaN

YN�1

k¼3

cosak
�

cosaN

 !
XNN

" #
ð5bÞ

Thus, the values of the sinusoidal net transverse forces qy(x) and
qz(x) are respectively as follows:

qy ¼ 1
cosh2

p2cosa2
�

pNcosaN

YN�1

k¼3

cosak
�

cosak

 !
XNN

" #
cos 2px=p2ð Þ ð5cÞ

qz ¼ 1
cosh2

p2cosa2
�

pNcosaN

YN�1

k¼3

cosak
�

cosak
�

 !
XNN

" #
sin 2px=p2ð Þ ð5dÞ

Once the values of qy and qz in Eqs. (1) and (2) are estimated,
these equations are analytically solved (i.e., they have closed-
form solutions) for a given value of strand axial strain e to compute
the displacement field of a generic point of each unbroken strand
wire [16]. The displacement field of a particular generic point at
section x can be described assuming a stick-state kinematic model
and using the component displacements u(x), v(x) and w(x) of the
damaged strand centroid at same section as follows:

uxðxÞ ¼ uðxÞ � y
dvðxÞ
dx

þ z
dwðxÞ
dx

ð6aÞ

uyðxÞ ¼ vðxÞ ð6bÞ

uzðxÞ ¼ wðxÞ ð6cÞ
where ux(x), uy(x), and uz(x) denote the displacements in the x, y,
and z directions, respectively (Fig. 3a), of the generic point ((z,y)
location at strand cross-section) under consideration; and d(∙)/dx
is used for the first derivate.

A cross-sectional incremental-iterative numerical algorithm is
implemented to estimate the static response of asymmetrically
damaged strand, in which material and geometric nonlinearities
are accounted for [16]. For completeness, a summary of the steps
of this numerical algorithm for the jth incremental step of the anal-
ysis is provided in Appendix A.

3.2. Validation of the simplified model based on 3D FE simulations

The proposed numerical model is validated based on compar-
isons with the results extracted from traditional and well accepted
3D nonlinear FE approach. This numerical technique has been
widely used to estimate the response of virgin and damaged cables
under variety of loading conditions [17,21–24]. To this end,
3.5 mm and 22.2 mm diameter three-layered 1x19 steel strands
are considered for validation purposes, which are commercially
available and commonly used in antenna mast guys and suspen-
sion bridges. These two steel strands are not considered in the
experimental program previously described and their numerical
modeling is only for validation purposes. The computed fill factor
values of the 1 � 19 steel strands is 0.77 and their geometrical
properties and minimum and predicted virgin strength values are
given in Table 2.
mm] Minimum Breaking
Strength [kN]

Breaking Strength 3D
FEM [kN]

Breaking Strength
NLBM [kN]

9.7 9.72 9.81
354.5 389.3 398



Fig. 4. (a) 3D FE mesh of a strand; (b) longitudinal view of a 3D FE damaged strand model for different values of axial strain.
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For 3D FE modeling purposes the commercial software ANSYS is
used having the steel strands the same geometry discretization.
Each wire is discretized using Solid186 (ANSYS) three-
dimensional linear finite elements that have three degrees of free-
dom at each node namely the translation in the x, y and z local
directions. This element is selected due to its capabilities of sup-
porting geometric and material nonlinear analysis and because it
has been successfully used in modeling 3D synthetic-fiber and
steel strands response [16,17,21]. A total of 33 linear brick ele-
ments (8-nodes elements) are used to discretize each wire cross-
section in which its perimeter was divided into 16 brick elements,
and the aspect ratio value of each element is set equal to 2:1
(length: width) in order to define its length. As such, considering
the geometrical parameters given in Table 2, each wire is dis-
cretized into 304 intervals along its length which considers two
pitch distances of the outermost layer of the strand length
(Fig. 4a). For the case of the asymmetrically damaged strand 3D
FE simulations, damage is deliberately inflicted at strands midspan
location and simulated by inducing a discontinuity in selected
strand wires. The discontinuity in the wires is achieved by dou-
bling the nodes at particular locations (strands midpans in this
case) without imposing compatibility conditions among them
[17] (Fig. 4b). A wide range of friction coefficient values are exam-
ined (values range from 0.12 to 0.5) based on the information
reported in the literature [14,25,26]. 3D FE numerical simulations
show that the value of the friction coefficient has a minor impact
on the monotonic axial response of a virgin and asymmetrically
damaged strand [27].
Tensile capacity tests are conducted in order to obtain the con-
stitutive law of the steel strand and aluminium conductor (later
used in Section 4) wires. These tests are carried out on wires (W
is used for wires in the corresponding plots) extracted from steel
strands with diameters equal to 9.5 mm and 12.7 mm and from
aluminum conductors with diameters equal to 14.3 mm and
25.3 mm. In both cases, an averaged engineering constitutive law
is fitted based on ASTM E8 standard as depicted in Fig. 5. Average
values of the mechanical properties of both materials are used for
modeling purposes, considering a bilinear engineering constitutive
law. For the steel (ST) case, these values are the following:
Elastic modulus (EST) = 197,000 MPa; yield strain (eyST) = 0.0053;
strain hardening modulus (Esh-ST) = 5300 MPa; breaking strain
(ebST) = 0.082. For the aluminium (AL) case, Elastic modulus
(EAL) = 65,000 MPa; yield strain (eyAL) = 0.0045; strain hardening
modulus (Esh-AL) = 525 MPa; breaking strain (ebAL) = 0.075. For the
3D nonlinear FE numerical simulations, the true stress–strain
curve is provided as an input to the software (ANSYS), considering
the following relationships: eT = ln(1 + e) and rT = r(1 + e), where
(r, e) are the engineering values and (rT ,eT) are the true values
of the normal stress and axial strain respectively.

In order to validate the proposed model (NLBM), comparisons of
capacity curves and axial strain fields throughout strand cross-
sections considering virgin and damaged three-layered steel
strands with diameters equal to 3.5 mm and 22.2 mm are per-
formed. These capacity curves are obtained from 3D FE simulations
and from the NLBM in which the damaged ones consider two and
six wires cut at strands midspan asymmetrically distributed on
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Fig. 5. Constitutive law for (a) steel and (b) aluminium.
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their surfaces. The Poissońs ratio and friction coefficient values
considered for performing 3D FE simulations are equal to 0.3 and
0.115, respectively [24].

As shown in Fig. 6a and b, virgin capacity curves, considering
engineering strain values, compare quite well between each other
for both strand sizes, in which the minimum breaking strength (by
strand manufacturer) and estimated by both NLBM and 3D FEM are
listed in Table 2. For the case of damaged curves, for analysis pur-
poses, it is considered one (1-D), two (2-D), and six (6-D) out of
nineteen wires cut (Fig. 1) corresponding approximately from 5%
to 32% of the strand cross-section damaged. Due to the complex
interaction between undamaged wires, the yield load predicted
by 3D FE simulations are lower than the ones predicted by NLBM
that ignore all the contact patterns between strand wires. NLBM
overestimates the yield load and residual strength (maximum
capacity) values relative to the 3D FE ones in about 20% and 15%
respectively, inducing a larger linear response of the damaged
strands. However, the linear and post-yielding stiffnesses provided
by both models compares quite well between each other. Specifi-
cally, in Fig. 6c, the non-dimensional parameters related to residual
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strength and linear-elastic stiffness provided by both model are
compared between each other and relative to the net area line
(model). Both non-dimensional parameters are the ratios of the
corresponding damaged variables relative to their undamaged (vir-
gin) values for each of the models presented; and the net area line
accounts for the fact that the reduction in strand strength and
strand linear-elastic stiffness is proportional to the damage level
inflicted on the strand. Based on the results presented, NLBM esti-
mates a reduction in both parameters proportional to the level of
damage inflicted (i.e, results lie on the net area line). For the case
of the 3D FEM results, predicted linear-elastic stiffness values
somewhat deviate from the net area line (maximum underestima-
tion relative to this line model is 7%) and for the case of the residual
strength, deviation from this line ranges from �8% to �15%, in
which the maximum deviation is reached for the case of two wires
(2-D) cut.

Estimated capacity curves previously presented are plotted up
to the failure of the first initial unbroken wire predicted by the
corresponding numerical models (3D FEM and NLBM) based on
the maximum failure strain criteria (failure true strain value
equal to 0.079). In this way, the capacity curves of damaged
strands for particular damage distributions are assessed, not con-
sidering the following continuous change in damage distribution
due to the progressive failure of the strand cross-sections. Based
on 3D FEM results, strands with one and two wires initially cut
(a) 

(c)

(e)

IA=0.167 

IA=0.167

NLBM 3D FEM

Fig. 7. Axial strain field for a 3.5 mm diameter strand at 0.4% axial deformation: (a) vir
deformation: (b) virgin case, (e) two wires cut, (f) six wires cut.
present premature wire failure relative to the strand with ini-
tially six wires cut (Fig. 6d). The presence of isolated damage
(one or two wires cut; Fig. 1) seems to amplify the effects of sin-
gularities in the model (normal and tangential shear contact
stresses in the contact regions between wires) inducing higher
axial strain and resulting in a premature failure of the most
strained wires (values between 50% and 60% of the virgin case).
The latter is supported by the analysis of the strain field devel-
oped throughout damaged strand cross-sections presented in the
subsequent paragraph and Fig. 7. Contrary, a more distributed
damage (six wires initially cut) seems to perturb less the dam-
aged strand geometry, contact forces are better distributed not
inducing premature failure in the most strained wires. More
details on this issue can be found in [27]. In fact, similar failure
axial strain values to the virgin ones are predicted by 3D FEM
for the six wires damaged strand (Fig. 6d) as estimated by the
NLBM, which neglects the contact interaction between wires in
the calculation of the strain field. Thus, the latter model predicts
a slightly reduction in the failure axial strain values relative to
the virgin case as the damage level increases (Fig. 6d).

Regarding the axial strain field throughout damaged strand
cross-section predicted by both numerical models (NLBM and
3D FEM), two levels of true axial strand deformation are chosen
for comparison purposes (Fig. 7), in which broken wires are col-
ored black: 0.4% and 4%, values that correspond to the linear and
(b)

(d)

(f)

IA=0.213

IA=0.213

NLBM 3D FEM

gin case, (c) two wires cut, (d) six wires cut; 22.2 mm diameter strand at 4% axial
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post-yielding (plastic) regime of damaged strand behavior
respectively. It is important to point out that, after extensive
analysis presented in [27], 3D FEM results suggest that axial
strain distribution within damaged cross-section is constant
along the strand́s length, considering sections away from the
strand ends. As such, the NLBM, which is a numerical algorithm
that relies on a cross-sectional analysis, can be performed to
estimate damaged strand response. In each figure, the left plot
corresponds to the NLBM and the right plot to the 3D FEM. As
a reference, strain distributions for the virgin case in also plotted
in the aforementioned figure: Fig. 7a corresponds to the axial
strain field through the virgin 3.5 mm diameter steel strand
cross-section for an axial strain equal to 0.4% and Fig. 7b to
the axial strain field through the virgin 22.2 mm diameter steel
strand cross-section for an axial strain equal to 4%. In both cases,
good agreement is obtained between the results provided by
both models. For the damaged cases, as a general conclusion,
neglecting local effects presented in the 3D FE simulations that
amplify the effects of singularities in axial strain values, both
numerical models predict similar maximum strain values devel-
oped adjacent to damage and a similar negative gradient in axial
strain distribution in which strain values decrease for wires
away to damage. Both strain distributions compare quite well
between each other up to the inner surface of the undamaged
wires opposite to damage (outermost layer of the strands). In
these opposite wires, minimum axial strain values are developed,
but 3D FE simulations are very sensitive to singularities and
local effects that induce rapid changes in strain values through-
out cross-sections of them which leads to estimate axial strain
gradient equal to 100% for all the cases studied. This conclusion
is valid for both elastic regime (Fig. 7c and d for a 3.5 mm diam-
eter strand) and plastic regime (Fig. 7e and f for a 22.2 mm
diameter strand). In the latter, comparing the results provided
by the 3D FE simulations, the two wires cut configuration
induces greater axial strain in the wires adjacent to damage
(in the range of 0.06–0.1) than the six wires cut configuration
(in the range of 0.04–0.075), which results in a premature failure
of the wire in the former case as commented in Fig. 6a,b and d.
Induced bending effect on axial strain values decreases for the
six wires cut strand due the shifting of the neutral axis reducing
the lever arm value of the most strained unbroken wires relative
to the case of two wires cut strand.

Beltran and Vargas [17] proposed a scalar quantity termed
the index of asymmetry (IA) to quantify the degree of asymme-
try of the cross-section for particular damage level and damage
distribution. This index captures the shift of the center of stiff-
ness of the strand cross-section from its centroid due to the
asymmetry of damage distribution as explained in detail in
[17]. Based on the results shown in Fig. 7, as the index of asym-
metry (values written above the damaged cross-sections)
increases, the gradient in the axial strain field throughout strand
cross-section, induced by the asymmetry in damage distribution,
increases as well. Both models predict that maximum and min-
imum axial strain values are developed adjacent and opposite to
damage, respectively. In particular, for the case of the 3.5 mm
diameter steel strand with two (Fig. 7c) and six (Fig. 7d) wires
cut considering a strand axial strain value equal to 0.4% (elastic
regime), both models estimate that maximum and minimum
axial strain values are 13% greater and 11% smaller than the vir-
gin case (Fig. 7a) respectively, for the strand with two wires cut
and 19% greater and 22% smaller for the strand with six wires
cut. For the case of the 22.2 mm diameter steel strand consider-
ing the same damage distributions as in the previous case and a
strand axial strain value equal to 4% (plastic regime), the maxi-
mum and minimum axial strain values are 5% greater and 4%
smaller than the virgin case (Fig. 7b) respectively, for the strand
with two wires cut (Fig. 7e) and 6% greater and smaller for the
strand with six wires cut (Fig. 7f).

In order to further develop the analysis presented in Fig. 7,
dependence on the IA values of the amplification factor, defined
as the ratio between the maximum/minimum strain developed
by a particular wire in a damaged state (considering one, two,
and six wires cut) and the strain developed by the same wire
in the virgin state, is shown in Fig. 8 based upon the results pro-
vided by the NLBM. In the latter, strand diameter and strand
axial strain value (written in parenthesis) are indicated in the
legends of the plots. For the case of the amplification factor asso-
ciated to the maximum strain, fmax, (developed by wires adjacent
to damage), in addition to increase as the IA value increases,
these values are greater for the 22.2 mm diameter strand, sug-
gesting that there is a diameter effect on the strain gradient
developed in an asymmetrically damaged strand cross-section.
Focusing on the elastic range, the amplification factor increases
in 8% for the 22.2 mm diameter strand relative to the 3.5 mm
diameter strand (Fig. 8a). The amplification factor associated to
the minimum strain, fmin, (developed by wires opposite to dam-
age) decreases as the strand diameter and IA value increase
(Fig. 8b). In the elastic regime, this factor reaches a minimum
value equal to 0.6 for the 22.2 mm diameter strand, 30% less
than for the 3.5 mm diameter strand (diameter effect). Although
the analysis conducted is mainly focused on the elastic damaged
strands response, due to the safety factors used in their design
[5] (values vary from 3 to 10 relative to the breaking load) that
based upon the capacity curves shown in Fig. 6a and b, strands
behave linear-elastic under their operational service, it is impor-
tant to point out that in the plastic regime (plotted results for
strand strain greater than 0.004 in Fig. 8), these amplification
factors (both for the maximum and minimum wire strains) tend
to approach 1 because net transverse forces magnitudes, qy(x)
and qz(x) (Eqs. (4a) and (4b)), decrease due to the small value
of the hardening modulus of the material (Fig. 5a). As such,
the induced bending due to asymmetric damage distribution
possesses lower influence on asymmetrically damaged strand
response.

Based on the formulation of the NLBM and the results presented
in Figs. 7 and 8, along with the gradient in axial strain field
throughout strand cross-section (associated to the development
of bending stresses), asymmetry in damage distribution also
induces a lateral deflection in the damaged strand (Fig. 9a). This
type of damaged strand behavior has been previously reported
based on the results obtained from experimental studies
[9,28,29]. In Fig. 9b and c, the maximum radial displacement
estimated by both 3D FEM and NLBM for steel strands with diam-
eters equal to 3.5 mm and 22.2 mm with one (1-D), two (2-D) and
six (6-D) wires cut in their linear regime response are presented,
respectively. The results presented by both numerical models com-
pare quite well between each other in which the values predicted
by the NLBM are in the range of [�15%, +12%] relative to the ones
predicted by the 3D FEM (Fig. 9b and c). According to the ISO 4309
[6], one of the discard criteria for a damaged strand is the waviness
(deformation) induced by an uneven stress distribution in strand
cross-section that is this particular study is related to the
asymmetric surface damage distribution (Fig. 9a). This induced
waviness can accelerate wear damage in the outer wires of a
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strand. In hoisting strands, for example, waviness results in accel-
erated asymmetrical wear and plastic deformation as the strand
passes over the sheave wheel and winding drum. The flattering
of the outer wires will not be uniform around the strand circumfer-
ence and broken wires can develop at this site with rapid deterio-
ration in strand strength [30]. The waviness criteria establishes
that the gap between a straightedge and the underside of the helix
(Fig. 9a) should not be greater than 1/3d or 1/10d, being d the
diameter of the strand, if the strand never runs through a sheave
or spools on to the drum or if it does respectively. The gap can
be safely estimated as twice the value of the maximum radial dis-
placement experienced by the damaged strand. As such, for the
entire range of damage level considered, the gap estimated for both
strands are lower than the two aforementioned critical values. In
fact, for the 3.5 mm and 22.2 diameter strands, the maximum
radial displacement values are 1.4% and 1.7% of their diameter val-
ues respectively, considering in both cases six wires cut (6-D)
(Fig. 9b and c).

It is worth to mention that the computational efficiency of the
proposed model is very high relative to the results provided by
the 3D FE nonlinear simulations. Few iterations (less than five)
are needed to meet the set convergence criteria in Step 8 of the pro-
posed algorithm (Appendix A). For every capacity curve, strain field
distribution and deformed configuration estimated by the NLBM,
less than three minutes are needed to complete the computations
on a standard multi-core processor laptop (Intel Core i7-16 Gb
RAM). Conversely, 3D FE models are run on an Intel Xeon server
10 cores 2.2 GHz processor, 64 Gb RAM taking between 6 and
24 h to complete each analysis. The robustness of the NLBM is con-
firmed with the fact that all the capacity curves, strain distribu-
tions and deformed configurations associated to the damaged
strands analyzed, compare well with 3D FEM results for two types
of strand construction (1 � 7 and 1 � 19) accounting for a wide
range of damage level and damage distribution (IA values).
4. Discussion of experimental results

In this section, the main results drawn from the experimental
program conducted on asymmetrically damaged steel strands
and aluminium conductors (hereafter referred as strands) are pre-
sented. In addition, the proposed model (NLBM) is used to extend
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and interpret the aforementioned experimental data along with
performing an additional validation process of it.

Comparisons of the measured and predicted (by NLBM) capacity
curves and axial strain distributions in the unbroken wires for
some of the most representative specimens tested are presented
in Fig. 10. As previously established in the Sub-Section 3.2, the
analysis of the axial strain distributions in the unbroken wires is
restricted to the elastic behavior of the strands and conductors
considering the safety factors used in their designs [5] and the
capacity curves shown in this figure. For the case of axial strain dis-
tribution, the nomenclature used to describe the results presented
in this figure is as follows: SGi is the strain measured with the i-th
strain gauge placed on the surface of a particular wire sketched in
the figure; ES-Wi is the estimated strain provided by the NLBM
developed in the wire over which the i-th strain gauge was placed.
The position of the strain gauges within the damaged cross-
sections and the damage distribution (cut wires are colored black)
are depicted in the same figure. In general, good correlations are
obtained between the measured and predicted axial strain values
for all the cases shown in Fig. 10. Some local nonlinear response
of the measured strain values, especially for low strand axial load
values that induces deviations from the predicted ones, can be
attributed to the initial bedding down process of the unbroken
wires within the strands. In some particular cases (SG2 in
Fig. 10c and SG0 in Fig. 10e), this initial nonlinearity strongly
affects subsequent strain gauges measurements causing constant
deviation between measured and predicted strain values relative
to the other cases. Despite these particular cases, both measured
and predicted values suggest that a gradient in axial strain distri-
bution is developed in which greater strains take place adjacent
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to damage and smaller strains opposite to damage (Fig. 10a,c and
e). The latter agrees with the finding drawn in Sub-Section 3.2 as
discussed in comments related to Fig. 7. The measured gradient,
however, is greater than the estimated one: the ratio values
between the maximum and minimum strain are in the range
[1.8, 2.2] for the measured values case and in the range [1.32,
1.6] for the estimated values case.

Regarding the capacity curves presented in Fig. 10, both
experimental virgin and damaged strands strength values are
well estimated by the NLBM, in which these values are estimated
within a range of �10% to +6%. The estimated initial virgin
strand stiffness (i.e., linear elastic range) values given by the
NLBM have good correlation with the experimental ones, in
which the latter are predicted within a range of �10% to +4%.
For the case of damaged strands, this estimate range increases
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approximately from �5% to 14% considering all the cases pre-
sented in Fig. 10. It is important to point out, that the reduction
in the initial stiffness value due to damage given by the NLBM is
proportional to the loss of cross-sectional area (i.e., net area
effect) as discussed in detail later in Fig. 11. For the particular
case of the 19.9 mm diameter aluminium strand (Fig. 10f), both
virgin and damaged simulations based upon 3D FE models have
been considered to strength the validation process of the NLBM,
using Poisson’s ratio and friction coefficient values equal to 0.33
and 0.5, respectively [25]. In both cases, there is a good correla-
tion in terms of the estimates of the initial stiffness values. For
the virgin strand response, the transition region from elastic to
fully plastic behavior is wider for the case of the 3D FE model
inducing a strength capacity conductor 8% greater than the one
predicted by the NLBM. For the damaged case, 3D FE simulation
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gives an earlier transition from the elastic to the inelastic regime
than the estimated by the NLBM, but considering that this tran-
sition region is wider for the former, NLBM overestimates the
residual conductor strength in less than 4%.

In terms of the residual strength and initial elastic stiffness of
the damaged steel and aluminium strands tested in this research
project, the dependency of both parameters (normalized with
respect to the virgin values) relative to remaining cross-
sectional area is shown in Fig. 11. In general, for both parame-
ters, experimental and estimated results lie on the net area line
(dashed line). The net area line represents the fact that the
reduction in strand strength and initial elastic stiffness is propor-
tional to the loss of cross-sectional area due to damage. For the
case of the residual strength parameter (Fig. 11a and b for mea-
sured and estimated values respectively), some deviation from
the net are line is observed for measured values associated to
the minimum value of the cross-sectional area considered in this
study, which is equal to 57%. This deviation is consistent only for
the 10. 1 mm diameter aluminium strand in which the measured
residual strength is about 10% greater than the loss of cross-
sectional area (Fig. 11a). This conclusion is consistent with ear-
lier analysis reported in [16] on two layer small-scale (ropes
diameter equal to 6 mm) asymmetrically damaged polyester
ropes. In the latter, for values of the remaining cross-sectional
area greater than 65%, estimated residual strength values pro-
vided by 3D FE and NLBM simulations slightly deviate from their
corresponding net area curves. For the case of the initial elastic
stiffness (Fig. 11c and d for measured and estimated values
respectively), there is a greater fluctuation of the measured data
around the net area line than the one associated to the residual
strength parameter. This fluctuation, however, is limited to the
interval [�10%, +10%] relative to the net area line for a wide
range of remaining cross-sectional area values (from 57% to
100%) considered in the analysis.

The dependency of the deformation capacity of the damaged
strands as function of the damage level and degree of asymme-
try (IA values) are presented in Fig. 11e and f respectively. The
net are line curve is included as a reference curve in Fig. 11e.
In these both plots, it is observed that measured and estimated
curves approach to a unique measured and estimated curve
Table 3
Summary of the residual strength, elastic stiffness and deformation capacity values of asy

Strand Diameter [mm] Damage Level Residual Strength (kN)

Measured Estimat

9.5 Virgin 72.2–72.9 76.1
1-D 62.6–63.1 64.6
2-D 51–53.3 53.9
3-D 38.8–42.8 43.9

10.1 Virgin 16.9 20
1-D 14.1–14.4 16.8
2-D 13.2–13.3 14.6
3-D 10.7–10.9 11.4

12.7 Virgin 130.5–130.7 139.4
1-D 109.3–111.9 118
2-D 91.7–92.7 97.1
3-D 62.8–70.4 78.4

14.3 Virgin 38.2–39.4 39.9
1-D 33.1–34.9 34.1
2-D 28.8–29.3 28.4
3-D 23.7 22.7

19.9 Virgin 73.2–78.9 67.3
2-D 69.4–70.4 60.5
4-D 59.9–60.1 56.3
6-D 52.2–54 46.3
respectively, in which some consistent deviation is found for
the measured 10.1 mm diameter strand curves. Considering the
1 � 7 stands geometry, both, measured and predicted data,
decrease as the damage level and IA values increase, having
the measured data a steeper decreasing rate reaching a mini-
mum average value equal to 71% of the virgin measured value
for a remaining cross-sectional area value of 57% of the virgin
strands cross-sections and an IA value equal to 0.5. For the same
aforementioned maximum damage level and IA values, the aver-
age estimated value is equal to 95% of the virgin one. The 1x19
damaged metallic strand, however, show a somewhat different
dependency on IA values: measured and predicted data suggest
that the minimum deformation capacity (76% and 96% of the vir-
gin value for the measured and predicted data respectively) is
reached for an IA value equal to 0.21 to then increase to percent-
ages equal to 82 and 98 correspondingly for an IA value equal to
0.5. This difference in the response of the 1 � 7 and 1 � 19 dam-
age strands is consistent with the fact that one of the variables
that rules damaged strand response is the type of strand con-
struction (number of wires, wires arrangement, helical parame-
ters, wire diameters, etc.) as reported in the literature [7–15].
Based on this analysis, it seems that for the strands considered
in this study, the dependency of the deformation capacity on
strand diameter and strand material is weak, because the afore-
mentioned progression curves tend to approach to a unique
curve, except for the 10.1 diameter AL strand case that consis-
tently has lower values as previously discussed. More analyses
and data are needed, however, to better understand the effect
of damage level and the degree of asymmetry of damage distri-
bution on the deformation capacity of damaged strands due the
difficulties encountered in some of the tests performed and the
fact that NLBM does not incorporate the effect of contact and
frictional forces among strand wires on strands failure.

A summary of the residual strength, deformation capacity,
and elastic stiffness values given by the NLBM along with exper-
imental data is presented in Table 3. Based upon the data listed
in the aforementioned table, the major difference between mea-
sured and estimated values is related to the deformation capac-
ity of damaged strands, especially for the 1 � 7 aluminium
strands (diameters equal to 10.1 mm and 14.3 mm). In some of
mmetrically damaged strands.

Elastic Stiffness (kN) � 103 Deformation Capacity

ed Measured Estimated Measured Estimated

10.2–10.4 10.3 0.082 0.082
8.65–9.07 8.89 0.076 0.08
6.9 7.39 0.064 0.079
6.2–6.3 6.04 0.06 0.078

3.7 3.9 0.049 0.074
2.8–3.05 3.36 0.04 0.072
2.6–2.8 2.8 0.035 0.072
2.0 2.24 0.03 0.07

14.5–19.0 19.04 0.083 0.081
13.8–15.4 16.0 0.076 0.08
11.8 13.2 0.064 0.079
9.02–9.2 10.8 0.06 0.077

7.1–7.7 7.8 0.063 0.074
5.85–6.8 6.69 0.056 0.072
5.01–5.76 5.57 0.05 0.071
4.3–4.37 4.46 0.048 0.069

12.5–12.8 12.8 0.071 0.074
10.6–11.3 11.75 0.064 0.072
9.2–10.0 10.44 0.058 0.073
8.1 9.08 0.054 0.071
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Fig. 12. (a) Damaged cross-sections and IA values; (b) diameter and IA effects on axial strain gradient throughout cross-section.
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the tests performed, as the strands are asymmetrically damaged,
unevenly strain/stress distributions are developed within strand
cross-section as discussed previously in Figs. 7 and 10. For this
type strain/stress distribution, the role of contact forces on the
failure strain values is even more relevant especially for a soft
material as aluminium, particularly for cross-sections with thin
and few unbroken wires (1 � 7 cross-section) available to redis-
tribute contact forces. Thus, this unevenly strain/stress distribu-
tion in strand terminations induces a premature failure of the
strands. In fact, the measured virgin strength values obtained
from capacity tensile tests are greater than the minimum break-
ing strength provided by the strands suppliers listed in Table 1,
except for the case of the 10.1 mm diameter AL strand whose
failure regions were consistently located near to one of the
socket, reducing its virgin breaking strength value. The proposed
NLBM does not consider contact forces effect on damaged strand
response; hence, estimated values of the deformation capacity of
damaged strands do not have a significant reduction as the dam-
age level and index of asymmetry values increase (Table 3). This
conclusion is consistent with one associated to the comparisons
of deformation capacity values provided by the 3D FEM and
NLBM discussed in Fig. 6d. As such, the most representative val-
ues of the measured deformation capacity are reported in Table 3
and rather than comparing absolute measured and estimated
deformation capacity values, the analysis of the progression of
the normalized quantities (with respect to the corresponding vir-
gin values) relative to the remaining cross-sectional area and IA
values is presented in Fig. 11e and f.

The values of the apparent modulus of elasticity obtained
from the capacity tests on virgin ST and AL strands reported in
Table 4
Measured and estimated amplification factors and estimated lateral deflection.

IA value Strand diameter [mm] fmax factor fmin fac

Measured NLBM Measu

0.2 7.0 1.29 1.11 0.64
9.5 1.47 1.12 0.72
9.8 1.62 1.13 0.76
12.7 1.98 1.14 0.90

0.38 7.0 1.42 1.16 0.31
9.5 1.75 1.18 0.43
9.8 2.0 1.19 0.5
12.7 2.7 1.20 0.82

* () Values computed considering the aluminium strands.
[31], are used to calculate the value of the modular ratio
between the steel and aluminium. In this way, the aluminium
strands are transformed into equivalent steel strands whose
diameter values depend upon the aforementioned modular ratio
value. The values considered in this computations are: Eapp-ST
and Eapp-AL equal to 153 GPa and 65 GPa, which are the apparent
elastic moduli of steel and aluminium respectively. The afore-
mentioned values compare well with the EQ (modulus of elastic-
ity for persistent design situations during service) value specified
in [32] for steel spiral strand ropes (150 ± 10 GPa) and with the
modulus of elasticity for 1 � 7 aluminium strands (59 GPa) listed
in [33]. As such, the modular ratio value considered is 2.3 and
the corresponding equivalent diameter values of steel strands
are 7.0 mm and 9.8 mm for the 10.1 mm and 14.3 mm diameter
aluminium strands respectively. Having all the tested specimens
of the same material (steel in this case) and using the principle
of strain equivalence (i.e., aluminium conductors and their
equivalent steel strands develop the same axial strain field),
the amplification factors are computed, fmax for the wires adja-
cent to damage and fmin for the wires opposite to damage, and
their dependency on both diameter of equivalent strand and IA
values are studied. Two damage distributions are considered
for this purpose: one and two out of seven wires cut (colored
black in Fig. 12a) whose IA values are 0.2 and 0.38 respectively.
Based on the results presented in Fig. 12b and Table 4, for a
fixed IA value, as the diameter value increases, both estimated
(given by the NLBM) and measured fmax (values above horizontal
dashed line at 1) and fmin (values below horizontal dashed line at
1) values increase as well. The rate of increase of both measured
parameters is greater for the fmax parameter for IA equal to 0.2
tor fgsf factor Lateral deflection [mm]

red NLBM Measured NLBM NLBM

0.78 2.01 1.42 0.47*

0.81 2.04 1.38 0.53
0.83 2.13 1.36 0.17*

0.91 2.20 1.25 0.32

0.48 4.58 2.42 1.2*

0.5 4.06 2.36 1.39
0.54 4.0 2.20 0.43*

0.75 3.29 1.60 0.84
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and greater for fmin for IA equal to 0.38; thus the measured gra-
dient in the strain field (parameter fgsf = fmax/fmin) is greater for
larger diameter values for IA equal to 0.2 (fgsf value increases
from 2.01 to 2.20) and gets smaller for larger diameter values
for IA equal to 0.38 (fgsf value decreases from 4.58 to 3.29). Con-
trary, for both IA values, the estimated gradient decreases as the
strand diameter increases (fgsf value decreases from 1.42 to 1.25
for IA = 0.20 and from 2.46 to 1.6 for IA = 0.38), because fmax is
nearly constant and fmin gets larger as strand diameter increases
(Table 4). Both estimated and measured strain field gradient (fgsf)
increase under the following conditions: for larger values of IA
and fixed strand diameter values and if both IA and strand diam-
eter values increase (fmax increases and fmin decreases). It is
important to point out that measured fgsf values are greater than
the estimated ones within a range of 1.42–2.06, in which the dif-
ference between these values is mainly due to the fmax values. In
fact, both estimated and measured fmin values compare quite
well between each other (estimated values are bounded by mea-
sured ones @@(Fog. 12b)), but measured fmax values are greater
than the estimated ones within a range of 16%–125%. It is
believed that the aforementioned difference could be the result
of that the localized inflicted damage perturbs the strain gauges
measurements in the wires adjacent to it, which in fact are
related to the amplification factor fmax. In addition, maximum
lateral deflection values in the elastic range of the tested dam-
aged strands given by the NLBM are listed in Table 4. For the
case of one wire cut (IA = 0.2), lateral deflection values range
from 1% to 5.5% of the diameter strand values. For the case of
two wires cut (IA = 0.38), these values are in the range of
[3%, 15%] relative to the diameter strand values. Although the
damage level values considered exceed the 10% of the strand vir-
gin cross-sections, established as a discard criterion for visible
broken wires in [4,34], the estimated lateral deflections are rel-
atively small suggesting that the original straight strand config-
urations are slightly perturbed by the loss of cross-sectional
symmetry of the strands. These values are not measured during
the experimental tests.
5. Conclusions

In this paper, a robust and computational efficiency numerical
model is proposed to estimate the static response of multilayered
strands asymmetrically damaged on their surfaces. The proposed
model relies on the assumption that a strand asymmetrically dam-
aged on its surface behaves as a 1D nonlinear beam under uncou-
pled biaxial bending and axial load along with the fact that strand
wires are mainly in radial contact. The proposed model is validated
by comparisons with the results provided by 3D FE simulations
and experimental data obtained from an experimental program
performed in this study. Two types of metallic strand construction,
made of steel and aluminium, are considered for the numerical val-
idation and experimental testing: 1 � 7 and 1 � 19, with diameter
values that range from 3.5 mm to 22.2 mm and a wide range of
damage level (from 5% to 43% of the strand cross-section damaged)
and different degree of asymmetry in damage distribution (cap-
tured by the index of asymmetry IA values).

Based on the comparisons performed, the proposed model cap-
tures the dependency of the damaged strand response on type of
the strand construction and damage level, degree of asymmetry,
and strand diameter values. The analyses made reveal that the
response (residual strength and stiffness) of metallic strands asym-
metrically damaged on their surfaces is mainly governed by the net
area effect in which the loss of symmetry of the cross-section
slightly perturbs the straight strand configuration inducing some
small bending deformation that reduces the deformation capacity
of the strand relative to the virgin case (up to 8%), based on the
results of the numerical simulations. The bending deformation
gives rise to a gradient in the axial strain field within strand
cross-section in which greater and smaller strains are developed
in wires adjacent and opposite to damage respectively. The esti-
mated ratio between the maximum and minimum strain devel-
oped in the elastic regime ranges from 1.1 to 2.5, for all the cases
studied. In addition, waviness of the damaged strand is also
induced in which most of the values computed in the elastic
regime are in the range of 1%–5% of the corresponding strand
diameter value.

The proposed model seems to be a promising computational
tool to provide some information on the integrity of damaged
strand based on some discard criteria specifically applied to
strands. In particular, this model can be used to assess the potential
damage distribution within strand cross-section by a trial and
error procedure based upon strand distortion (waviness) measure-
ments obtained during regular inspections; it can reduce the need
of conducting expensive and time-consuming tests on damaged
strands to determine if they are replaced or not based on some dis-
card criteria; it can be combined with a (magnetic) non-destructive
quantification of loss of metallic cross-sectional area (LMA) for
assessment of strand condition and correlate LMA, loss of strand
strength (LSS), and strand distortion; and it can evaluate the bend-
ing effect on damaged strand modeling. If bending curvature is big
enough, unbroken wires slip between each other inducing a non-
linear bending response of the damaged strand [23–25].

Regardless of the good performance of the proposed model
described in this paper, additional comparisons with numerical
models based upon well-accepted technique (e.g., 3D FEM) and
experimental data that consider other strand materials and strand
constructions are needed to established the range of its applicabil-
ity to estimate the static response of a multilayered strand asym-
metrically damaged on its surface. Strand wires are treated as
tensile elements in the proposed model, neglecting its transverse
deformation. Due to the complex interaction between strand wires
owing to their curved configuration along strands length, a more
general model that treats each wire as a rod element to include
transverse deformation and frictional, local bending, and contact
effects needs to be explored. Despite these limitations, and based
on the preliminary results presented in this paper and the low
computational cost relative to the 3D FE models, the proposed
model seems to be a promising computational tool to estimate
the static response of a of a multilayered strand asymmetrically
damaged on its surface.
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Appendix

A. Numerical algorithm to estimate asymmetrically damaged
strand response
In the above algorithm, the variable tol is a prescribed tolerance
(5E-4 used in this study) set to establish the convergence of the
algorithm. In addition, the initial value of the horizontal axial force
Hj

0 (Step 1) can be estimated as

H0
j ¼

X
k

Akrk
uj

L0
cos h0ð Þk
� �2� �

cos h0ð Þk ðA:1Þ
where uj is the total strand axial displacement in the jth incre-
mental step of the analysis; L0 and h0 are the initial strand
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length and lay angle of the kth unbroken strand wire
respectively.
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