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Abstract. The discrete Fréchet distance is a measure of similarity
between point sequences which permits to abstract differences of res-
olution between the two curves, approximating the original Fréchet dis-
tance between curves. Such distance between sequences of respective
length n and m can be computed in time within O(nm) and space within
O(n + m) using classical dynamic programming techniques, a complex-
ity likely to be optimal in the worst case over sequences of similar length
unless the Strong Exponential Time Hypothesis is proved incorrect. We
propose a parameterized analysis of the computational complexity of the
discrete Fréchet distance in function of the area of the dynamic program
matrix relevant to the computation, measured by its certificate width ω.
We prove that the discrete Fréchet distance can be computed in time
within O((n + m)ω) and space within O(n + m).

Keywords: Adaptive algorithm · Dynamic programming
Fréchet distance

1 Introduction

Measuring the similarity between two curves has applications in areas such
as handwriting recognition [14], protein structure alignment [10], quantifying
macro-molecular pathways [13], morphing [3], movement analysis [7], and many
others [15]. One of the most popular solutions, the Fréchet Distance is a
measure of similarity between two curves P and Q, that takes into account the
location and ordering of the points along the curves. It permits, among other
features, to abstract the difference of resolution between P and Q, with appli-
cation to morphing, handwriting recognition and protein structure alignment,
among others [15]. In 1995, Art and Godau [9] described an algorithm comput-
ing the Fréchet Distance between two polygonal curves composed of n and
m segments respectively in time within O(mn log(mn)).

One year before (1994), Eiter and Mannila [4] had extended the notion of
the Fréchet Distance between curves to the Discrete Fréchet Distance

See a longer version at the url http://arxiv.org/abs/1806.01226 (pdf) and https://
gitlab.com/FineGrainedAnalysis/Frechet (sources).
J. Barbay—Supported by project Fondecyt Regular no. 1170366 from Conicyt.

c© Springer Nature Switzerland AG 2018
T. Gagie et al. (Eds.): SPIRE 2018, LNCS 11147, pp. 50–60, 2018.
https://doi.org/10.1007/978-3-030-00479-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00479-8_5&domain=pdf
http://orcid.org/0000-0002-3392-8353
http://arxiv.org/abs/1806.01226
https://gitlab.com/FineGrainedAnalysis/Frechet
https://gitlab.com/FineGrainedAnalysis/Frechet


Adaptive Computation of the Discrete Fréchet Distance 51

between sequences of points of respective sizes n and m, demonstrating that
the latter can be used to approximate the former in time within O(nm) and
space within O(n + m) using classical dynamic programming techniques. Two
decades later (2014), Bringmann [2] showed that this worst case complexity is
likely to be optimal, unless a bunch of other problems (among which CNF SAT)
can be computed faster than usually expected. Hence, the bounds about the
computational complexity of the Discrete Fréchet Distance in the worst
case over instances of input sizes n and m are reasonably tight.

Yet, for various restricted classes of curves (e.g. κ-bounded, backbone, c-
packed and long-edged [8] curves), both the Fréchet Distance and the
Discrete Fréchet Distance are known to be easier to compute. Among other
examples, we consider the Fréchet Distance Decision problem, which con-
sists in deciding whether the Fréchet Distance between two curves is equal to
a given value f . In 2018, Gudmundsson et al. [8] described an algorithm decid-
ing if the Fréchet Distance is equal to a given value f in time linear in the
size of the input curves when each edge is longer than the Fréchet Distance

between those two curves. Those results easily project to the Discrete Fréchet
Distance.

Those results for the mere computation of the Discrete Fréchet Distance

suggest that one does not always need to compute the n × m values of the
dynamic program. Can such approaches be applied to more general
instances, such that the area of the dynamic program which needs to
be computed measures the difficulty of the instance?

In this work we perform a parameterized analysis of the computational com-
plexity of the Discrete Fréchet Distance, in function of the area of the
dynamic program matrix relevant to the computation, measured by its certifi-
cate width ω. After describing summarily the traditional way to compute the
Discrete Fréchet Distance and the particular case of long edged curves
(Sect. 2), we describe an optimization of the classical dynamic program based on
two simple techniques, banded dynamic programming and thresholding (Sect. 3),
and we prove that this program runs in time within O((n + m)ω) and space
within O(n + m) (Sect. 4). We conclude with a discussion in Sect. 5 of how our
results generalize those of Gudmundsson et al. [8], and the potential applica-
tions and generalizations of our techniques to other problems where dynamic
programs have given good results.

2 Preliminaries

Before describing our results, we describe some classical results upon which
we build: the classical dynamic program computing the Discrete Fréchet
Distance, and the “easy” case of long-edged curves described by Gudmundsson
et al. [8].

Classical Dynamic Program: Let P [1..n] and Q[1..m] be sequences of n and
m points with n ≥ m. The Discrete Fréchet Distance between P and Q is
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the minimal width of a traversal of P and Q, where the width of a traversal is
the maximal distance separating two points u ∈ P and v ∈ Q, where u and v
progress independently, but always forward.

Such a distance is easily computed using classical techniques from dynamic
programming. Algorithm 1 (page 4) describes a simple implementation in
Python, executing in time within O(nm).

While such a simple algorithm also requires space within O(nm), a sim-
ple optimization yields a space within O(n + m), by computing the Discrete

Fréchet Distance between P [1..i] and Q[1..j] for increasing values of i and j,
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one column and row at the time, keeping in memory only the previous column
and row. We describe in Sect. 3 a more sophisticated algorithm which avoids
computing some of the n × m values computed by Algorithm 1.

Easy Instances of the Fréchet Distance: For various restricted classes of
curves, such as long-edged [8] curves, both the Fréchet Distance and the
Discrete Fréchet Distance are known to be easier to compute (or approxi-
mate). In 2018, Gudmundsson et al. [8] showed that in the special case where all
the edges of the polygonal curve are longer than the Fréchet Distance, the
latter can be decided (i.e., checking a value of the Fréchet Distance) in linear
time in the size of the input, computed in time within O((n + m) lg(n + m)).

In the next section, we describe a quite simple algorithm which not only takes
advantage of long edged curves, but of any pair of curves for which a consequent
part of the array of the dynamic program can be ignored.

3 An Opportunistic Dynamic Program

We describe an algorithm based on two complementary techniques: first, a banded
dynamic program, which approximates the value computed by a classical dynamic
program by considering only the values of the dynamic program within a range
of width w (for some parameter w) around the diagonal (a technique previously
introduced for the computation of the Edit Distance between two strings); and
second, a thresholding process, which accelerates the computation by cutting the
recurrence any time the distance computed becomes larger or equal to a threshold
t (for some parameter t corresponding to a distance already achieved by some
traversal of the two curves). The combination of those two techniques, combined
with a parametrization of the problem, yields the parameterized upper bound
on the computational complexity of the Discrete Fréchet Distance.

Banded Dynamic Program: When computing the Edit Distance (e.g.,
the Delete Insert Edit Distance, or the Levenshtein Edit Distance [1])
between similar strings S ∈ [1..σ]n and T ∈ [1..σ]m (i.e., their Edit Distance d
is small), it is possible to compute less than n×m cells of the dynamic program
array, and hence compute the Edit Distance in time within O(d(n + m)) ⊆
O(nm). The “trick” is based on the following observation: when the distance
between the two strings is d, the “paths” corresponding to d operations trans-
forming S into T in the matrix of the dynamic program errs at most at distance
d from the diagonal between the cell (1, 1) and the cell (n,m). Based on this
observation, it is sufficient to compute the number of operations corresponding
to paths inside a “band” of width d around such a diagonal [1]. This tech-
nique needs some adaptation to be applied to the computation of the Discrete

Fréchet Distance f between two curves, for two reasons: first, f is a real
number (it corresponds to the Euclidean distance between two points) and not
an integer as the number of edition operations, and this number is independent
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of the number of cells of the dynamic program being computed; and second, the
definition of the Discrete Fréchet Distance is based on a maximum rather
than a sum, which actually makes another optimization possible, described in
the next paragraph.

Thresholding: Given two sequences of points P [1..n] and Q[1..m], consider the
Euclidean matrix E(P,Q) of all n × m distances between a point u ∈ P and a
point v ∈ Q. Any parallel traversal of P and Q corresponds to a path in E(P,Q)
from the top left cell (1, 1) to the bottom right cell (n,m); the width of such
a traversal is the maximum value in E(P,Q) on this path; and the Discrete

Fréchet Distance is the minimum width achieved over all such traversals.
Now suppose that, as for the Edit Distance between two similar strings,

the traversal of the Euclidean matrix E(P,Q) corresponding to the Discrete

Fréchet Distance f between P and Q is close to the diagonal from (1, 1) to
(n,m), and that any traversal diverging from such a path “encounters” a pair of
points (u, v) at euclidean distance larger than f (in particular, this happens when
the two curves are “long edged” compared to f). Then, some of the values of
the cells of the dynamic program matrix outside of this diagonal can be ignored
for the computation of the Discrete Fréchet Distance between P and Q.

In the following paragraph we describe how to combine those two techniques
into an adaptive algorithm taking advantage of “easy” instances where a large
quantity of cells of the dynamic program can be ignored.

Combining the Two Techniques: The solution described consists of two algo-
rithms: an approximation Algorithm 2 which computes a parameterized upper
bound on the Discrete Fréchet Distance, and a computation Algorithm 3
which calls the previous one iteratively with various parameter values, in order
to compute the real Discrete Fréchet Distance of the instance.

Algorithm 2 lists an implementation in Python of an algorithm which, given
as parameters two arrays of points P and Q, an integer width w, and a float
threshold t; computes an upper bound of the Discrete Fréchet Distance

between P and Q, obtained by computing only the cells within a band of width
2w around the diagonal from the top left cell (1, 1) to the bottom right cell
(n,m), and cutting all sequences of recursive calls when reaching a distance of
value t or above. This algorithm uses space within (n + m) as it computes the
values from (1, 1) to (n,m) by updating and switching alternatively two arrays of
size n and two arrays of size m (respectively corresponding to rows and columns
of the dynamic program matrix). Its running time is within O(w(n + m)), as it
computes at most w(n + m) cells of the dynamic program array. Furthermore,
it not only returns the value of the upper bound computed, but also a Boolean
breached indicating if the border of the banded diagonal has been reached during
this computation. When such a border has not been reached (and the threshold
value t is smaller than or equal to the Discrete Fréchet Distance between
P and Q), the value returned is equal to the Discrete Fréchet Distance

between P and Q.
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Algorithm 3 lists an implementation in Python of an algorithm which, given
as parameters two sequences of points P and Q, calls the approximation Algo-
rithm 2 on P and Q for widths of exponentially increasing value (by a factor
of two). The first call is performed with an infinite threshold (no information is
available on the similarity of the curve at this point), but each successive call
uses the best upper bound on the Discrete Fréchet Distance between P
and Q previously computed as a threshold.

In the next section, we analyze the running time of Algorithm 3, and describe
a parameterized upper bound on it.

4 Parameterized Upper Bound

The running time of the approximation Algorithm 2 when given parameter w
is clearly within O(w(n + m)): it computes within O(w) cells in at most n + m
rounds, each in constant time. A finer upper bound taking into account the value
of the parameter t requires more hypothesis on the relation between P and Q,
for which we need to consider the running time of the computation Algorithm 3.
We model such hypothesis on the instance in the form of a certificate, and more
specifically in the form of a certificate area of the Euclidean matrix corresponding
to a set of values which suffice to certify the value of the Discrete Fréchet
Distance.

Definition 1. Given two sequences of points P [1..n] and Q[1..m] of respective
lengths n and m and of Discrete Fréchet Distance f , a Certificate Area of
the instance formed by P and Q is an area of the Euclidean matrix of P and Q
containing both (1, 1) and (n,m), and delimited by two paths (one above and one
below), both such that the minimum value on this path is larger than or equal to
f . The width of such a certificate area is the minimal width of a banded diagonal
containing both paths.
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The surface of such an area is a good measure of the difficulty to certify the
Discrete Fréchet Distance, but the minimal width of such an area lends
itself better to an analysis of the running time of the computation Algorithm 3:

Definition 2. Given two sequences of points P [1..n] and Q[1..m], the Certifi-
cate Width ω of (P,Q) is the minimum width of a certificate area, taken over
all possible certificate areas of (P,Q).

Such a width can be as large as n + m in the worst case over instances
formed by sequences of points of respective lengths n and m, but the smaller
this certificate width is, the faster Algorithm 3 runs:

Theorem 1. Given two sequences of points P [1..n] and Q[1..m] forming an
instance of certificate width ω, Algorithm 3 computes the Discrete Fréchet
Distance between P and Q in time within O((n + m)ω) and space within
O(n + m).

Beyond the necessity to measure experimentally the certificate width of prac-
tical instances of the Discrete Fréchet Distance, and the exact running time
of Algorithm 3 on such instances, we discuss some more subtle options for future
work in the next section.

5 Discussion

The results described in this work are by far only preliminary. Among the vari-
ous questions that those preliminary results raise, we discuss here the relation to
the long edged sequences recently described by Gudmundsson et al. [8]; a poten-
tial parameterized conditional lower bound matching our parameterized upper
bound on the computational complexity of the Discrete Fréchet Distance;
(the not so) similar results on the Orthogonal Vector decision problem; and
the possibility of a theory of reductions between parameterized versions of poly-
nomial problems without clear (parameterized or not) computational complexity
lower bounds.

Relation to Long Edged Sequences: In 2018, Gudmundsson et al. [8]
described an algorithm deciding if the Fréchet distance is equal to a given value
f in time linear in the size of the input curves when each edge is longer than
the Fréchet Distance between those two curves. Algorithm 3 is more general
than Gudmundsson et al.’s algorithm [8], but it also performs in linear time on
long-edged instances: the traversal corresponding to the Fréchet Distance of
such an instance is along the diagonal, implying a certificate width of 1. See
Figs. 1, 2 and 3 for the Euclidean matrix, Fréchet Matrix and Dynamic Program
Matrix of a random instance formed of 5 points, each edge of length 100 with a
Fréchet Distance of 13.45.
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The ratio between the Fréchet Distance and the minimal edge length of
the curves might prove to be a more “natural” parameter than the certificate
width to measure the “difficulty” of computing the Fréchet Distance of a
pair of curves: we focused on the certificate width in the hope that such a tech-
nique can find applications in the analysis of other problems on which dynamic
programming has yield good solutions (Fig. 4).

1.41 101.43 193.97 294.66 199.17 227.36
100.14 13.45 94.67 195.37 99.5 142.89
199.48 97.99 5.39 105.43 6.13 113.25
290.44 192.56 104.04 6.0 97.26 109.6
193.23 93.14 13.17 104.98 10.44 99.05
232.69 156.27 112.89 104.58 107.64 6.4

Fig. 1. Euclidean matrix for a long
edged instance: the 6 points from the
first curve were randomly generated at
distance 100 of each other, while the
points from the second curve were gen-
erated by perturbing within a distance
of 10 from the points of the first curve.

1.41 101.43 193.97 294.66 294.66 294.66
100.14 13.45 94.67 195.37 195.37 195.37
199.48 97.99 13.45 105.43 105.43 113.25
290.44 192.56 104.04 13.45 97.26 109.6
290.44 192.56 104.04 104.98 13.45 99.05
290.44 192.56 112.89 104.58 107.64 13.45

Fig. 2. Fréchet matrix for the same
long edged instance as Fig. 1: the
traversal corresponding to the
Fréchet Distance of the instance
is along the diagonal (highlighted in
bold here), resulting in a Fréchet
Distance of 13.45.

1.41 inf inf −1.0 −1.0 −1.0
inf 13.45 inf inf −1.0 −1.0
inf inf 13.45 inf 6.13 −1.0
−1.0 inf inf 13.45 inf inf
1.0 1.0 13.17 inf 13.45 inf

Fig. 3. Dynamic program matrix for
the same long edged instance as
Fig. 1, with width 3 and threshold 20:
“inf” denotes interrupted recurrences
because the distance found is already
larger than the threshold, meanwhile
values outside of the band of width 3
are marked with “−1”.

9.43 19.48 19.48 −1.0 −1.0 −1.0
18.81 11.31 11.31 16.86 −1.0 −1.0
18.81 14.26 11.31 11.31 inf −1.0
−1.0 inf 16.07 11.31 16.5 13.77
−1.0 −1.0 inf 11.31 11.31 11.31

Fig. 4. Dynamic program matrix for a
general instance. The 6 points from the
first curve were randomly generated at
distance 10 of each other, the points
from the second curve by perturbing
within a distance of 10 the points of
the first curve. The computation of the
matrix is performed with width 3 and
threshold 20 as before.

Parameterized Conditional Lower Bound: The original motivation for this
work was to prove a parameterized conditional lower bound on the computational
complexity of the Discrete Fréchet Distance as a step-stone for doing the
same for the computation of various Edit Distances. The first step in this direc-
tion was the identification of a parameter for this problem: the certificate width,
that seems to be a good candidate. The next step is to refine the reduction from
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CNF SAT to the Discrete Fréchet Distance described by Bringmann [2],
in order to define a reduction from (a potential parameterized version of) CNF

SAT to a parameterized version of the Discrete Fréchet Distance.

Parameterized Upper and Lower Bound for the Computation of
Orthogonal Vectors: Bringmann [2] mentions that the reduction from SAT

CNF to the computation of the Discrete Fréchet Distance is similar to
Williams’ reduction from SAT CNF to the (polynomial) problem of deciding
if two sets of vectors contain an Orthogonal Vector pair, and that there
might be a reduction from the Orthogonal Vector decision problem to the
computation of the Discrete Fréchet Distance. This mention called the
Orthogonal Vector decision problem to our attention, and in particular
(1) the possibility of a parametrization of the analysis of this problem, and
(2) a potential linear (or parameterized) reduction from such a parameterized
Orthogonal Vector decision problem to the parameterized computation of
the Discrete Fréchet Distance described in this work. It turns out that there
exists an algorithm solving the Orthogonal Vector decision problem in time
within O((n + m)(δ + log(n) + log(m))), where n and m are the respective sizes
of the sets of vectors forming the instance, and δ is the certificate density mea-
suring the proportion of cells from the dynamic program which are sufficient to
compute in order to certify the answer to the program. The reduction of this to
the Discrete Fréchet Distance will be more problematic: the two measures
of difficulty seem completely unrelated.

A Theory of Reduction Between Polynomial Parameterized Problems:
The study of the parameterized complexity of NP-hard problems [6,11] yields
a theory of reduction between pairs formed by a decision problem P and a
parameter k. The study of adaptive sorting algorithms [5,12] yields a theory of
reductions between parameters measuring the existing disorder in an array to be
sorted (which can also be seen as a theory of reductions between pairs of problems
and parameters, but where all the problems are equal). Considering the theory
of reductions between polynomial problems such as the Discrete Fréchet
Distance, the various Edit Distances between strings, the Orthogonal

Vector decision problem, and many others, one can imagine that it would
be possible to define a theory of reductions between parameterized versions of
these problems.
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