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Abstract Recent interest on studying possible violations
of the Equivalence Principle has led to the development of
space satellite missions testing it for bodies moving on cir-
cular orbits around Earth. This experiment establishes that
the validity of the equivalence principle is independent of
the composition of bodies. However, the internal degrees of
freedom of the bodies (such as spin) were not taken into
account. In this work, it is shown exactly that the circular
orbit motion of test bodies does present a departure from
geodesic motion when spin effects are not negligible. Using
a Lagrangian theory for spinning massive bodies, an exact
solution for their circular motion is found showing that the
non-geodesic behavior manifests through different tangen-
tial velocities of the test bodies, depending on the orientation
of its spin with respect to the total angular momentum of
the satellite. Besides, for circular orbits, spinning test bodies
present no tangential acceleration. We estimate the differ-
ence of the two possible tangential velocities for the case of
circular motion of spinning test bodies orbiting Earth.

1 Introduction

The equivalence principle (EP) is one of the cornerstones of
general relativity. Among all the different possible ways in
which it has been stated, one of its simplest form (called
its weak form) establishes that all bodies fall with the
same acceleration in a given gravitational field [1], implying
the equivalence between gravitational and inertial masses.
Another precise form to enunciate it is that all bodies mov-
ing under the influence of gravitational forces only follow
geodesics [1]. The EP only applies in a region of spacetime
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small enough to neglect the inhomogeneities of gravitational
fields [1].

In order to determine experimentally the validity of the EP,
some experiments have been carried out recently in differ-
ent settings [2–7]. They consider the trajectories of massive
composed falling bodies, measuring their accelerations, and
determining whether (or not) the Eötvös ratio parameter that
characterizes the falling is non-zero. The Eötvös parameter
� measures the relative difference between accelerations for
falling test bodies, and according to the EP, it should vanish.

These experiments run from atomic to celestial scales. For
instance, in Ref. [2], 87Rb atoms were studied in a vertical
free-falling configuration, where the cluster spin was verti-
cally aligned, pointing either up or down. This experiment
determined that � ∼ 10−7, establishing that the experimen-
tal results were not in agreement with any of the considered
theoretical models for spin-curvature and spin-torsion cou-
plings developed in Refs. [8–10]. Other experiments test-
ing EP with atoms have been performed in Refs. [3,4]. The
kind of experiment performed by the MICROSCOPE satel-
lite (MS) mission [5] is different. The aim of this mission was
to measure the forces required to maintain two cylindrical
test massive bodies in the same circular orbit around Earth.
Bodies with the same and different compositions showed
no difference on their trajectory behavior, finding an Eötvös
ratio of the order � ∼ 10−15. The MS mission was focused
in determining if the atomic composition of massive bodies
can produce any violation of EP, and their findings have a
strong indication that it does not. Even tough, recent obser-
vations have helped to probe the validity of EP at galactic
scales [6,7].

However, these experiments do not consider any internal
degree of freedom of the test bodies, such as spin. In general,
it is well-known that spin introduces tidal forces that devi-
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ate any massive free-falling spinning body from a geodesic.
Therefore, any spinning massive particle does not follow
geodesics [11]. The pioneering works of Mathisson [12,13]
and Papapetrou [14] showed that the equations of motion
for spinning massive particles are non-geodesic, deriving
them as limiting cases of rotating fluids moving in gravi-
tational fields. The Mathisson–Papapetrou equations (MPE)
have been used to obtain several exact solutions (see for
example Refs. [15–19]). However, the MPE present several
problems in the description of spinning massive particles.
For example, they are dynamical equations of third order
that do not preserve the square root of the Casimir operator
of the Poincaré group PμPμ (formed by the momentum Pμ),
among others. These difficulties are analyzed below [20].

Action approaches can be used to describe the dynamics
of spinning massive particles from first principles [21]. In this
work, we use the Lagrangian theory developed in Refs. [22–
34], which also allow us to avoid the several issues of MPE.
This theory can be derived rigourously from first principles
allowing the proper treatment of the crucial lack of paral-
lelism between velocity and momentum, which otherwise
cannot be obtained as the canonical momentum cannot be
appropriately defined (as in MPE). This Lagrangian theory
has been used to study spinning massive particles (tops) in
different contexts and gravitational fields [26–34], always
finding new effects on the dynamics associated to the non-
geodesics motion of tops due to spin-gravity coupling. More-
over, in Ref. [22] was shown that this Lagrangian model
for tops matches the experimental conclusions of Ref. [2].
The Lagrangian theory exactly predicts the results of 87Rb
atoms experiment [2], rigourously showing that in tops in a
vertical free-falling trajectory with spins aligned (with the
trajectory), the forces induced by the spin-gravity coupling
vanishes, and thereby the top does follow a geodesic [22].
Besides, in Ref. [22], a different and more concrete experi-
mental setting was proposed for tops moving “parabolically”
in a non-geodesic orbit, where a measurement could be pos-
sibly performed.

This previous success in the agreement of the results
which stem from Lagrangian theory for tops with exper-
iment, leads to wonder what experimental settings can be
appropriated to measure deviations of from geodesic orbits.
It is the purpose of this work to study the circular orbits of
tops in a Schwarzschild background using this Lagrangian
theory, showing how the spin induces non-geodesic motion
of the test bodies. We apply these results to estimate these
deviations for a possible circular orbit around Earth. There
exist other schemes that allow us to study the motion of tops
in gravitational fields, such as post-Newtonian approxima-
tion for spinning massive particle [35–40]. In particular, the
chaotic motions in post-Newtonian systems of spinning com-
pact binaries were investigated in Refs. [41–50]. Also, circu-
lar orbits of tops on a Schwarzschild background have been

studied using the MPE approach [51,52], and the chaotic
motions of tops in this spacetime background were explored
in Refs. [53,54]. However, in here we restrict ourselves to the
Lagrangian formalism of Sect. 2, as it allows us to obtain an
exact solution for the motion of tops in circular trajectories,
without the difficulties introduced by the MPE approach.

2 Lagrangian theory for tops

The Lagrangian model for spinning particles consider tops
with mass m, spin J , energy E and total angular momentum
j . The full theory is developed in Refs. [22–28], and we limit
ourselves here to highlight its most relevant results.

2.1 Equations of motion

It is well-known that the velocity uμ of a spinning particle
is not parallel, in general, to the canonical momentum vec-
tor Pμ. The velocity vector may, under some circumstances,
become spacelike [23–25]. However, the momentum vector
remains always timelike and gives rise to the dynamical con-
servation law of mass m2 ≡ PμPμ > 0 [24,28]. The spin
of tops is defined through an antisymmetric tensor Sμν (see
below). The action S = ∫

L dλ associated to the Lagrangian
theory for tops is λ-reparametrization invariant, where the
Lagrangian L(a1, a2, a3, a4) = (a1)

1/2L(a2/a1, a3/(a1)
2,

a4/(a1)
2) is an arbitrary function of four invariantsa1, a2, a3,

a4, and L is an arbitrary function of three variables where
a1 ≡ uμuμ, a2 ≡ σμνσμν = −tr(σ 2), a3 ≡ uασαβσβγ uγ ,

a4 ≡ det(σ ) [22,24,28], where uμ and σμν are the top’s
velocity and angular velocity respectively defined in terms
of derivatives with respect to the arbitrary parameter λ (see
Refs. [22–28]). The momentum vector Pμ and the anti-
symmetric spin tensor Sμν are canonically conjugated to
the position and orientation of the top, Pμ ≡ ∂L/∂uμ

and Sμν ≡ ∂L/∂σμν = −Sνμ. Explicit examples of such
Lagrangians can be found in Refs. [23,28]. In this way, it is
found that the dynamics of a top describes a non-geodesic
behavior, seen through the momentum equation [24,27,28]

DPμ

Dλ
≡ Ṗμ + 


μ
αβ P

αuβ = −1

2
Rμ

ναβu
νSαβ, (1)

and the equation for the spin tensor

DSμν

Dλ
≡ Ṡμν + 


μ
αβ S

ανuβ + 
ν
αβ S

μαuβ = Pμuν − uμPν .

(2)

The overdot represents the derivative with respect to an arbi-
trary parameter (λ), in such a way that velocity uμ = ẋμ

is the derivative of coordinates. In addition, 
ν
ρτ are the
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Christoffel symbols for the metric field gμν (the speed of
light is set equal to 1). The six independent components of the
antisymmetric spin tensor generate Lorentz transformations,
and in order to restrict them to generate three dimensional
rotations we impose the Tulczyjew constraint Sμν Pν = 0
[20,23,24,55]. This constraint has been shown to be impor-
tant in the consistency of a theory for spinning massive parti-
cles [20], as it can be deduced as a constraint which emerges
from the Lagrangian of the theory, and not an external impo-
sition on the top dynamics [23] (there are other Hamiltonian
formulations which do not require these constraints [56]).
Lastly, in this theory, the (square) top spin J 2 ≡ 1

2 S
μνSμν

can be shown to be a conserved quantity [24–28].
The non-geodesic behavior of a top moving on a back-

ground gravitational field is determined by Eqs. (1) and (2),
plus the constraint. As a result, the top can be interpreted
as an extended object that is subject to tidal forces due to
gravity. Spin gives internal structure to the classical massive
particles, and they cannot be longer described as pointlike
objects. Due to the fact that any extended object is crossed
by infinitely many geodesics (only a pointlike object is tra-
versed by just one geodesic) the averaged motion does not
align with any of the constituent geodesics, and the motion is,
in general, non-geodesic. Similar effects have been studied
for fields [57,58] (which are naturally extended objects) and
electromagnetic waves [57,59,60]. Thus, one should expect
that the inclusion of spin in the dynamics of massive particles
should lead to non-geodesic orbits.

2.2 Comparison with Mathisson–Papapetrou theory

The above theory does not coincide with the MPE for massive
spinning particles [12–14]. As it is discussed in Ref. [20],
the MPE present several problems in their description for
tops. The MPE formalism is composed by the third-order
dynamical equations

DPμ

Ds
= −1

2
Rμ

ναβu
νSαβ,

Pμ = muμ + uν

DSμν

Ds
,

DSμν

Ds
+ uμuα

DSνα

Ds
− uνuα

DSμα

Ds
= 0. (3)

where Pμ is the momentum defined in that theory, and D/Ds
is the s-parametrized covariant derivative for the proper time
s of the spinning particle. It is not difficult to obtain [20]
that the system preserves the timelike behavior of the veloc-
ity uμuμ = 1. However, the MPE establishes that there is
no dynamical conservation law for the mass [20]. In fact,
it can be proved that the MPE, under the Pirani constraint
Sμνuν = 0, the square of momentum PμPμ is not a con-
stant of motion [20]. On the other hand, under the Tulczyjew

constraint, it can be shown that the MPE implies that the mass
is not a constant of motion [20]. Both results of the MPE rep-
resent a very undesired behavior for a relativistic theory of
massive particles. We refer the reader to Ref. [20], where a
deep discussion on the difficulties of the MPE formalism is
presented.

Without a Lagrangian formulation the canonical momen-
tum and the spin tensor cannot be appropriately defined.
That is the reason the MPE equations have those difficul-
ties, whereas the above Lagrangian theory does not.

2.3 Integrability and non-integrability in Schwarzschild
background

Several authors have discussed the integrability and non-
integrability of different models for spinning objects in
a Schwarzschild field background. For example, the non-
integrability of system formed by a Schwarzschild black
hole orbited by a spinning companion in the Mathisson–
Papapetrou formalism under the extreme-mass-ratio limit
was proved in Refs. [53,54], showing the chaoticity of the
model. Furthermore, in Refs. [43,61] was shown that the
post-Newtonian Lagrangian formulation of the two-black
hole system with one body spinning can be chaotic. Also, the
post-Newtonian Hamiltonian formulation of the two-black
hole system with one body spinning was shown to be inte-
grable and regular [62,63]. Through the relation between
Lagrangian and Hamiltonian approaches at the same post-
Newtonian order [64,65], it has been proved that these two
models are integrable [66].

Differently, the Lagrangian model used along this work
and described in Sect. 2.1, allow us to integrate a particular
solution, under assumptions detailed in the following sec-
tion. In general in this model, the spinning particle moving
on a gravitational background has, effectively, six degrees of
freedom, after taking into account the Tulczyjew constraint
Sμν Pν = 0. Therefore, six constants of motion in involu-
tion are needed for the system to be integrable in Liouville’s
sense. The constants of motion for the spinning particle tra-
jectory as described by the Lagrangian formalism are the rest
mass m2 = PμPμ, the spin J 2 = SμνSμν and one constant
Kξ = Pμξμ−(1/2)Sμνξμ;ν associated to each of the Killing
vectors ξμ of the background metric gμν .

In the case of a Schwarzschild background, there are
four different Killing vectors. One of them is associated
to time translation and other three are associated to three
dimensional rotations. Nevertheless, only two combinations
of the three components of the conserved angular momen-
tum three dimensional vector are in involution, namely
j2 ≡ jx

2 + jy2 + jz2 and jz . Therefore, on a Schwarzschild
background, the problem has six constants of motion, five of
them in involution.
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In order to be able to integrate the system, we study the
simpler case described in the following section, in which we
consider an equatorial orbit with the three dimensional spin
vector perpendicular to the plane of the orbit. This constitutes
a particular exact solution to the system.

3 Circular motion solution in a Schwarzschild
background

Several different general and exact solutions of the Lagrangian
theory for tops have been found in Refs. [22,24–32]. Here
we present only the key steps to obtain the solution for a cir-
cular motion of the top with spin perpendicular to the plane
of motion. We refer to readers to those references for a full
and detailed procedure to get the solutions for the equations
of motion derived from the Lagrangian theory.

Assuming a Schwarzschild field background (describing
approximately the Earth gravitational field), the equatorial
motion of a top can be solved exactly, as any equatorial
plane can be defined for circular motion to take place. We
write the metric in spherical coordinates gtt = 1 − 2r0/r ,
grr = − (1 − 2r0/r)−1, gθθ = −r2, gφφ = −r2 sin2 θ ,
where r0 = GM with the gravitational constant G and the
Earth mass M . The circular motion is defined as such by
ṙ = 0. Besides, without any loss of generality, we can study
the motion in the plane defined by θ = π/2. If the top is
initially in that plane and θ̇ = 0, then it remains in that
equatorial plane, where Pθ = 0 [22,24,28]. In this solu-
tion, spin can be chosen to be orthogonal to the equatorial
plane Srθ = Sθφ = S0θ = 0 [22,24,28], being parallel
or antiparallel to the total angular momentum of the top
along the whole trajectory. This total momentum angular
j for the top in this trajectory is a conserved quantity. In
Refs. [22,24,28] is shown that the general solutions for the
momenta equations (1) are Pφ = (− j ± E J/m)/(1 − η),
and Pt = [E ∓ j Jr0/(mr3)]/(1 − η), with the dimension-
less parameter η = J 2r0/(m2r3). Here, the ± stands for two
trajectories that depend on the spin orientation, parallel or
antiparallel to the total angular momentum of the top, both of
them remaining perpendicular to the plane of motion. These
two momenta are conserved (Ṗt = 0 and Ṗφ = 0) for circu-
lar motion [22,28], and thus, the Eötvös ratio is meaningless
for this particular orbit. The non-geodesic motion manifests
itself in changes of the velocity, not acceleration.

From the constant of motion PμPμ = m2, we get that

Pr = 0 =
[
P2
t −

(
P2

φ /r2 + m2
)

(1 − 2r0/r)
]1/2

, in con-

sistency with the circular motion solution, and the rela-
tion between the radial momentum and the radial velocity
ṙ = (1 − 2r0/r) (Pr/Pt ) = 0, given by solutions of the
Lagrangian theory for tops [22,24,28]. This constraint deter-

mines the energy of each trajectory
(

E± ∓ j Jr0

mr3

)2

=
(

1 − 2r0

r

)

×
[

m2(1 − η)2 + 1

r2

(

− j ± E± J

m

)2
]

,

(4)

of a top moving on a circular orbit of radius r . The solutions
of Eq. (4) for energy can be readily obtained as

E± =
±�2 +

√
�2

2 + �1�3

�1
, (5)

where

�1 = 1 − J 2

m2r2

(

1 − 2r0

r

)

,

�2 = j J

mr2

(
3r0

r
− 1

)

,

�3 =
(

1 − 2r0

r

) (
j2

r2 + m2(1 − η)2
)

− j2 J 2r2
0

m2r6 . (6)

Circular orbits are obtained by the study of the behavior of
the effective potential V±(r) = E±(r)2 [67]. By calculating
the zeros of the derivative of the effective potential a con-
dition for the radius of the orbits can be obtained, while
their stability can be studied through the positive behav-
ior of its second derivative. If spin is neglected (�1 = 1
and �2 = 0), the effective potential becomes simply V =
(1 − 2r0/r)

(
j2/r2 + m2(1 − η)2

)
, and from the zeros of the

its derivative we obtain a relation between the allowed radius
and the angular momentum of spinless particles [67]

j = mr
√
r0√

r − 3r0
. (7)

From where we obtain that circular orbits are allowed only for
r > 3r0. By checking the second derivative of the effective
potential, the stability of circular orbits are restricted only to
r > 6r0. When spin is included, the condition for circular
orbits can be obtained by the zeros of the first derivative of
the complete solution for energies (5). The calculation is not
straightforward, however for a small spin contribution J �
j , and for tops far from the black hole r0 � r , the allowed
stable circular orbits are still for r � 6r0. This is the case for
the estimations of the trajectory deviations for tops around
Earth studied in next section. A numerical calculation of the
radius of the innermost stable circular orbit from the energies
(5) is shown in Fig. 1. We plot the dimensionless distance
z = r/r0 in terms of the normalized spin J = J/(mr0). The
behavior of the radius of the innermost stable orbit is shown
for J � 1, which is consistent with the condition J � j .
For this case, we have that the innermost radius has a linear
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Fig. 1 Radius of the innermost stable circular orbit for non-zero spin
contribution from the total energy (5). We plot the dimensionless dis-
tance z = r/r0 as a function of normalized spin J = J/(mr0). We
focus in the J � 1 regime

relation with spin, with the form of z > 6 + √
4/3J . For

completeness, in the inset plot we show the behavior of the
innermost radius as J increases. However, this last regime
will not be used in the estimations performed in the following
section. We can see that our assumptions for stable circular
orbits at r � 6r0 are justified for small spin contribution.

On the other hand, the non-trivial spin evolution equations
(2) relevant to the circular motion in the plane θ = π/2,
reduce to DStr/Dλ = 0 and DStφ/Dλ = Pt φ̇ − Pφ [22,
24,28]. These equations, together with the relations Str =
−Sφr Pφ/Pt and (Sφr )2 = J 2 (Pt )2/(m2r2) that can derived
from the two constants of motion and the Tulczyjew condition
[22,24,28], allow us to get the angular velocity φ̇± for the
two possible trajectories of this motion [22,24,28]

φ̇± = 1

r2

(

1 − 2r0

r

) (
2η + 1

η − 1

) ( − j ± E± J/m

E± ∓ j Jr0/(mr3)

)

,

(8)

where the energy E± are given by solutions of (4). Tops
can have two tangential velocities r φ̇±, according to Eq. (8).
The interplay of its spin with gravity, introduces different
corrections in this tangential velocity, which depends on the
spin orientation, such that the top with antiparallel spin is
faster than the one with the parallel spin to the total angular
momentum r φ̇− > r φ̇+.

A possible measurement of a maximal manifestation of
non-geodesic motion can be achieved if two test bodies (with
equal composition) are set to rotate in order to have opposite
(internal) angular momenta directions, parallel and antipar-
allel to the total angular momentum of the circular motion of
the satellite. In such cases, any deviation from geodesic orbits

must be reflected in different measurements of the angular
velocities of the test bodies. Thus, the dimensionless ratio

δ = φ̇− − φ̇+
φ̇− + φ̇+

=
[
− j + E+ J

m

] [
E− + j Jr0

mr3

]
+

[
j + E− J

m

] [
E+ − j Jr0

mr3

]

[
j − E+ J

m

] [
E− + j Jr0

mr3

]
+

[
j + E− J

m

] [
E+ − j Jr0

mr3

] ,

(9)

is non-zero in the case of circular orbit for the non-geodesic
behavior of tops.

Notice that for these circular motions described by solu-
tion (8), tops do not present tangential accelerations φ̈ = 0,
as the radius remains constant. Therefore, there is no relative
acceleration between the two test bodies. Furthermore, when
spin is neglected J = 0 (η = 0), a massive particle can only
have a unique angular velocity φ̇ = j/(r2E) and an unique
energy, yielding the usual result δ = 0 for geodesic motion
in the Schwarzschild field [68]. The approximately vanish-
ing Eötvös ratio and δ = 0 are the results measured in the
MS mission [5], which is in agreement with the Lagrangian
theory for tops.

4 Estimations of the trajectory deviations

The inclusion of spin into the test bodies is essential for
experiments carried out to demonstrate the validity of non-
geodesic motion of massive spinning bodies. To study the
first order corrections to the circular orbit of test bodies due to
its spin, let us consider the following approximations. Let us
study tops motion with J � j . In this case, the total momen-
tum angular j is approximately by the orbital momentum
angular of the top.

At first order in spin, the energy solutions of Eq. (4) is

E± ≈ m

√(

1 − 2r0

r

) (

1 + j2

m2r2

)

∓ j J

mr2

(

1 − 3r0

r

)

.

(10)

With this solution, we can obtain the angular velocity (8) of
tops at first order in spin to be

φ̇± ≈ 1

mr2

√√
√
√ 1 − 2r0

r

1 + j2

m2r2

⎡

⎣ j ∓ J

√√
√
√ 1 − 2r0

r

1 + j2

m2r2

⎤

⎦ . (11)

Therefore, at first order in spin, the δ-parameter (9) becomes

δ ≈ J

j

√√
√
√ 1 − 2r0

r

1 + j2

m2r2

. (12)
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Now, consider a possible experiment near the Earth sur-
face (where r0 ∼ 4.4×10−3[m] � r ∼ 7×106[m]) in order
to measure the non-geodesic behavior of a top in circular tra-
jectory. This kind of experiment have been performed by the
MS mission [5]. Let us consider a model of two test bodies
with the same total angular momentum (which is a conserved
quantity for each one) but different spin orientations. Thus,
considering a small spin contribution and r0 � r , the top total
angular momentum can be approximated by Eq. (7). Notice
that this angular momentum is consistent with Kepler’s law of
motion, as for a general angular momentum j = mrv (with
test top’s velocity v much smaller than the speed of light) we
can write v = r� for a circular orbit, where � is the angular
frequency of the satellite’s trajectory. By Kepler’s law, this
frequency is related to the trajectory radius by �2 = r0/r3.
Using this, the angular momentum becomes j ≈ m

√
rr0,

which is an approximation to Eq. (7).
Thus, the energy of top (10) at first order becomes

E± ≈ m
(

1 − r0

2r

)
∓ J

r

√
r0

r

(

1 − 3r0

2r

)

, (13)

while the approximated angular velocity (11) at first order is

φ̇± ≈ 1

r

√
r0

r

(

1 − 3r0

2r

) [

1 + 3r0

2r
∓ J

m
√
r0r

(

1 − 3r0

2r

)]

.

(14)

Notice that the gravitational correction factor 3r0/2r to the
spin-coupling also appears in post-Newtonian theories [69].
Lastly, the parameter (12) at first order becomes simply

δ ≈ J

m
√
r0r

(

1 − 3r0

r

)

. (15)

The behavior of this parameter is shown in Fig. 2, in terms of
dimensionless quantities. We have plotted δ/J as function of
the normalized radius z = r/r0 and J = J/(mr0). The plot
is presented for z � 1, according to the used approximations.
It is straightforward to show from (15) that δ/J = (1 −
3/z)/

√
z, implying that the parameter has the same behavior

for any given spin, depending only on the orbit radius r . From
the plot, we can see that δ decays as 1/

√
z.

We can estimate in a closer form the parameter (15) for a
test spinning body. Assuming that the intrinsic spin of each
top can be estimated as J ∼ md2ω, whered is a characteristic
length of the experimental test top body and ω is its internal
angular frequency of rotation. Thus, the correction to the
circular trajectory of two massive test objects with different
spin orientations can be estimated through the ratio (15) to
be δ ≈ (d2ω/

√
r0r)(1 − 3r0/r). This approximated δ-ratio

depends on the test top parameters r , ω and d. For motion in
a stable circular orbit near the Earth surface z = r/r0 ∼ 109.

Fig. 2 Behavior of the parameter (15), in terms of z = r/r0 and J =
J/(mr0). The plots are for z � 1, according to our approximations

Hence, assuming that the test tops have dimensions of the
order of d ∼ 10−2 [m], then the ratio gives of the order

δ ≈ 10−15 ω. (16)

where the internal angular frequency of tops is measured in
[Hz]. For a higher intrinsic angular velocity, a larger deviation
from a geodesic path can be achieved.

5 Conclusions

The main purpose of this work is to bring attention to the
notion of non-geodesic motion, showing that it is the spin
(internal dynamics) and not the composition, size or shape of
the test bodies, the key for detecting a possible non-geodesic
trajectory.

In the simplest case of a circular motion for a spin-
ning massive particle, the complete dynamics can be solved
exactly, and it describes a non-geodesics motion whose devi-
ations depend on the magnitude and direction of the parti-
cle’s spin. Notice that the solution presented above has con-
stant momenta, and thus, the non-geodesic motion cannot be
detected by measuring the Eötvös ratio, as the non-geodesic
motion is manifested only in the change of the velocities of
test bodies. Of course, this is not a general rule, and more
complicated motions in different spacetimes may indeed
present non-vanishing Eötvös ratios [22,28,30]. As the δ-
ratio show in Eq. (9), when spin is negligible then geodesic
motion is expected. Therefore, it comes as no surprise that
the EP is repeatedly confirmed for non-spinning test bodies.

Any experimental setup designed to measured non-
geodesic motion must be constructed in order to capture the
spin-gravity coupling and its effects. In particular, for experi-
ments around Earth the δ-ratio has enough freedom to adjust
the parameters of the orbit radius of the satellite and the
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characteristic length and inner angular velocity of test body,
depending on the accuracy of the setup. Thus, any exper-
imental setting should also consider the angular momenta
of test bodies in order to prove the validity of non-geodesic
motion due to spin.

Open Access This article is distributed under the terms of the Creative
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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