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Abstract This work introduces a model of the crew scheduling problem for the oper-
ation of trains in the mining industry in the North of Chile. The model possesses
particular features due to specific regulations with which train operators in mine mate-
rial transportation are required to comply: every week, a fixed set of tripsmust bemade
according to current demand for the transportation of mine products and supplies. In
order to balance the loads of the crews in the long term, the proposed model generates
an infinite horizon schedule by means of a rotative scheme in which each crew takes
the place of the previous one at the beginning of the next week. This gives rise to
a medium/large size 0–1 linear optimization problem, whose solution represents the
optimal assignment of drivers to trips with the number of working hours per week
distributed equally among crews. The model and algorithm have been implemented
with a user interface suitable for the remote execution of real instances on a High
Performance Computing platform. The transportation company regularly uses this
computerized tool for planning crew schedules and generating efficient assignments
for emerging and changing operational conditions.
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1 Introduction

Crew scheduling is one of themajor phases in crewmanagement in large transportation
networks such as railway, bus and airline systems, where technical, legal and time
constraints must be taken into account when scheduling drivers and crews. In our
particular application, a crew typically consists of two drivers to whom a set of tasks
(trips) are assigned from week to week.

The work presented here is concerned with a specific application of a railway
company dedicated to the transportation of mining supplies and products. In this case,
the greatest interest is in distributing the load in the most balanced way possible
between crews so as to guarantee minimal differences between the drivers’ salaries
while maintaining the weekly load within legal limits stipulated for the industry. The
two main contributions of our work are a rotative scheme that produces balanced
loads and a special local search strategy used to obtain the solution. Moreover, the
model specification is quite general in the sense that the binary variables can be used
in a similar way to represent other rotative crew scheduling problems, for example,
urban/interurban buses. Another relevant contribution is the development of a software
tool that is currently being accessed remotely by the user.

Crew assignment is a classical optimal decision problem (see for example, Ernst
et al. 2001, 2004), but the best-known contributions have been made in the context
of the air transportation industry. In general, this assignment problem can have a very
large number of decision variables which means that solving it entails a high degree
of complexity. Frequently, standard branch and bound strategies are not able to solve
large instances and many variants of well-known algorithms have been applied in an
attempt to deal with these computationally hard problems. For an urban bus system,
Desrochers and Soumis (1989) proposed a column generation approach to solve the
transit crew scheduling problem which is decomposed into two sequential stages:
a set covering problem and a shortest path problem with resource constraints. For
the aircrew rostering problem, Gamache et al. (1999) used a generalized set parti-
tioning model together with a method using column generation which is adapted to
take advantage of the structure of the problem. They claim that this method is capa-
ble of solving very large scale problems with thousands of constraints and hundreds
of sub-problems. A hybrid column generation approach for the urban transit crew
problem was studied by Yunes et al. (2005). There, the problem was divided into
two stages: crew scheduling and crew rostering, with each being solved separately
as well as combining mathematical programming and constraint logic programming
with column generation. A similar approach was used by Nishi et al. (2014), where
a two-level decomposition for solving a railway crew rostering problem is presented.
This decomposition combined an efficient branch and bound algorithm to solve the
master problem (assignment of duties to rosters) and a general purpose solver for the
lower-level problem (generation of a feasible sequence of rosters). The development
and implementation of an integer optimization model to solve disruptions to an oper-
ating schedule in the rail industry was described by Walker et al. (2005). The article
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presents favorable results for both the combined train/driver scheduling model and the
real-time disruption recovery model. In contrast, Abbink et al. (2007) used iterative
partitioning to handle large-scale crew-scheduling instances. Lagrangean relaxation
combined with subgradient optimization was applied by Beasley and Cao (1996).
Decomposition and relaxation strategies were used by Vaidyanathan et al. (2007) for
the solution of amulticommodity network flow problem representing the railroad crew
assignment. The multicommodity flow was again addressed by Mesquita et al. (2015)
for a bus driver rostering problem incorporating a day-off pattern, where the authors
propose 3 different MIP models and developed a heuristic consisting of sequentially
solving sub-problems defined using hierarchical ordering of the decisions. Heuristic
approaches, such as simulated annealing and genetic algorithms, were proposed by
Emden-Weinert and Proksch (1999), Jian andChou (2010) and Levine (1996), for both
airline and train crews. Sanders et al. (1999) apply high performance Integer Opti-
mization to the practical solution of the crew scheduling problem. They use heuristics
based on Lagrangean relaxation and a sequential active-set strategy. The problem of
finding the minimum number of crews required to carry out a given set of duties is
presented by Şahin and Yüceoğlu (2011), where a sequential approach is developed
in which the minimum capacity is first calculated without a day-off requirement and
then additional crew capacity is added to handle the day-off requirement. The authors
also developed an integrated approach consisting of a flow-problem solution with a
day-off requirement that turned out to be superior in almost every case. Finally, a very
practical contribution is due to Jütte et al. (2011), where they describe a useful software
developed for a freight carrier company, based on a set-covering-type formulation and
a column-generation solution technique.

In general terms, our crew scheduling problem consists of a given number ofweekly
trips that have to be assigned to a given set of crews. Any method proposed for solving
the problem must first provide a feasible solution composed of a rotative weekly
schedule consisting of a sequence of fulfilled trips (that is, trips with a crew assigned),
and second, an allocation of crews to weeks. Trips and the number of crews are known
a priori. The objective is to obtain a feasible and balanced schedule for crews (in terms
of total hours served in a week) that respects legal and operational constraints.

The concept of balanced loads used here is not new and is natural in many cases, but
there are few related models in the literature. In Beliën et al. (2013), Beliën et al deal
with the problem of constructing the workforce schedules of an aircraft maintenance
company. In their model they use a certain notion of rotation as we propose here,
but they consider staffing levels and time windows for jobs. In our case, we impose
linking conditions to the transitionbetween two successiveweeks and themodeling and
solving approaches are completely different. Another point of view for this problem
can be found in the theory and practice of inequity aversion problems, where equity
is the main concern and it can be competitive with other notions of efficiency (see for
example, Karsu and Morton 2015), but this framework is rarely used in the context of
railway crew scheduling.

The work presented here comes from a specific application of a Chilean railway
company. The company distributes supplies from coastal ports to mining concerns in
the North of the country and transports mining products for export on its way back to
the ports. For this case, primary interest is in distributing the load between m crews
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as equally as possible while maintaining the weekly load within certain legal bounds.
The problem solution must also provide an answer composed of a rotative weekly
schedule, in which after m weeks, every crew will have met the program for each
week. Moreover, this strategy delivers an infinite horizon schedule, however, new
schedules can be made as often as desired. Due to the rotative scheme, even when the
workload of the first week of a given diagram generated by this model deviates a lot
from the rest of weekly total hours, we observed in our numerical simulations that the
accumulated average after 4 weeks becomes quite stable.

The general solution approach is given in three sequential steps. Firstly, a feasible
solution is obtained, which is equivalent to a schedule where every trip is covered,
but the working-hours load is not necessarily balanced among weeks. Secondly, a
local search heuristic is used to improve the initial feasible solution, by balancing the
weekly crew loads. Finally, specific crews are assigned to the scheduled weeks, taking
into account the initial conditions of crews, in terms of current location, immediately
preceding load and hours-of-rest requirements.

The solution was packaged into Java-based software to allow the user to easily
interact with data and simulate different scenarios via remote execution using High
Performance Computing (HPC) resources for large-scale instances.

The rest of the paper is organized as follows: The basis for the crew-management
planning problem and the integrated optimization model for crew scheduling are set
out in Sect. 2. The algorithmic strategy for generating feasible and balanced schedules
and the flow model for assigning specific crews to weeks, are presented in Sects. 3
and 4. In Sect. 5 we describe the implementation of the software to enable the user
to interact with the computation modules through a user interface. Finally, in Sects.
6 and 7, we present some case studies and the main conclusions, summarizing our
numerical experiments on real instances.

2 The mathematical model and the solution strategy

The set of constraints must encapsulate the legal regulations and the specific labor
agreements and contracts between the company and the workers’ unions.

1. One trip, one crew. Each trip must be assigned to one and only one crew, but one
specific crew can of course be assigned to several trips during the week.

2. Overnight legal rest. For each 7-day window there must be at least 1 legal rest. In
our specific case study, a legal rest corresponds to a rest periodwhich is represented
by a fictitious trip of 33 h, beginning at 9 p.m. and ending at 6 a.m. 2 days later.
The starting time and duration of this rest period are parameters of the general
model introduced here. See Constraint (6).

3. Inter-trip rest. Between a couple of consecutive trips a time window called an
inter-trip rest must be imposed. The duration of this window is given by the labor-
regulation laws, but in this specific case study this parameter is fixed between 8
and 12 h. This is a relatively long inter-trip rest period, but in our application, most
trips take from 6 to 12 h to complete. See Constraints (3) and (4).

4. Sunday rest. There are rest regimes of 0, 1 or 2 Sundays every 4 weeks. The
Sunday rest, starting at 0:00 and ending at 24:00 (but this can be parameterized),
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Every crew take the 
place of the consecutive 
crew, when a new week 
starts.

After m weeks, all crews  
have the same number 
of hours driving

Fig. 1 The rotation scheme

must be assigned according to one specified regime. If a legal rest falls on Sunday,
then it can be considered as a Sunday rest. See Constraint (7).

5. Origin/destination. For a given assigned crew, the origin of a trip must be the final
destination of the preceding trip. This is also included in the exclusion Constraints
(3) and (4).

6. Rotation. An innovative and simplifying idea proposed for this company consists
of imposing a rotation scheme where a crew i follows the schedule of crew i + 1
in the next working week. In this manner, after m weeks (m being the number of
crews), all crews have followed all the schedules, which implies that the number
of hours worked by all the crews is the same in the long run. This is shown in Fig.
1 and represented by Constraint (5).

7. Consecutive trips. There are pairs of trips that together form a complete round trip.
In these cases, it is required that an outbound trip be followed by the corresponding
inbound trip. See Constraint (8).

Concerning the objective function, assuming that all trips can be served by a crew,
the most critical issue for this application is to schedule the workload among crews as
balanced as possible. This means that the variance of the number of hours per week
could be used as the minimizing criterion, but this is a non-linear function. To avoid
this difficulty we prefer to use a different metric that can be formulated in a linear
form.

Let V0 = {v1, . . . , vn} denotes the set of train trips in a week. We assume that these
trips are regular, in the sense that the same schedule is repeated every week. In our
model, we consider the rest days (legal and Sunday) to be special types of virtual trips,
as explained later in this section.
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Let V = V0∪{virtual trips} denote the set of all trips. Each trip in V is
characterized by a vector of attributes or parameters which we take as the given input
data for the model. These are: starting time (day, hour, minute), travel duration, initial
station or origin and final station or destination. So, we assume that the following
information is known (for any trip v ∈ V):

– Iv and Fv denote the initial station and the final destination of v, respectively;
– (hv,mv) denotes the starting time (hour, minute) of trip v, where hv and mv are
integer values satisfying 0 ≤ hv ≤ 23 and 0 ≤ mv ≤ 59;

– (Δhv,Δmv) analogously denotes the duration for trip v in hours and minutes; and
– (h̄v, m̄v) similarly denotes the arrival time for trip v.

It can be deduced that

h̄v = hv + Δhv + �(mv + Δmv)/60� mod 24

m̄v = mv + Δmv mod 60

There is also a general attribute: the rest regime, R = 0, 1, 2, 3, indicating the number
of free Sundays in each 4-week interval for every crew. Note that R = 4 is in general
forbidden, because in that case the problem would become infeasible if at least one
trip must run on Sunday.

We now come back to the two types of virtual trips associated with crew rests. Legal
(overnight) rests are interpreted as (possibly, but not mandatory) trips running every
day k ∈ D = {1, . . . , 7} and Sunday rest only runs for k = 7. An overnight legal rest
for crew i is then a virtual trip v = vLR whose attributes are

(hLR,mLR) = (21, 0)

(ΔhLR,ΔmLR) = (33, 0).

That is, the starting time is 21:00 on day k, ending at 06:00 on day k + 2 (mod 7).
Also, for this particular kind of fictitious or virtual trip, the origin and final destination
are the same.

The Sunday rests v = vSR are similarly defined, but only (possibly) running on
Sunday:

(hSR,mSR) = (0, 0)

(ΔhSR,ΔmSR) = (24, 0).

All these values, starting time and duration, can be parametrized.
In the rest of this section, we specify the variables and constraints associated with

our model. We use Dv ⊆ D to denote the set of days on which trip v takes place.
Let xivk be an integer 0–1 variable indicating if crew i ∈ T = {1, . . . ,m} is

allocated to trip v ∈ V , starting on day k ∈ Dv , that is,

xivk =
{
1 if crew i is allocated to trip v on day k
0 otherwise
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With these variables, we can now specify the constraints of the optimization problem
to be solved.

2.1 The optimization model

Since the idea is to achieve a balanced number of working hours per week for the
crews, we use the objective (balanced crew scheduling):

(BCS) min (z+ − z−),

where z+ and z− are (positive) integer variables representing the minimum and max-
imum weekly workloads of the crews, respectively, as explained below.

The requirements can be expressed through a set of (in)equalities representing the
constraints of the mathematical model.

– Balanced weekly loads. From the definition of z+ and z− we must impose the
constraint:

z− ≤
∑
v∈V0

∑
k∈Dv

Δvxivk ≤ z+ ∀i ∈ T , (1)

where Δv is the duration of trip v.
– One trip, one crew. Each real (not virtual) trip must have one and only one crew,
so we impose the following constraint:

∑
i∈T

xivk = 1 ∀v ∈ V0, k ∈ Dv (2)

This constraint does not apply to virtual trips, because either no crew or several
crews may be resting at the same time.

– Incompatibility between two trips. Let us define the compatibility index for a
pair of trips. If v, v′ are two trips in days k and k′, respectively, then we define a
parameter ηvkv′k′ by

ηvkv′k′ =
{
1 if (v, k) is compatible with (v′, k′)
0 otherwise

This compatibility index is calculated considering the time of arrival/departure
and the origin/destination of the two trips. For a precise definition of ηvkv′k′ , we
define the parameter:

H(v, k) = 24(k − 1) + hv + mv

60

which is the starting time of trip (v, k), represented by a value in the real interval
[0, 168]. Similarly, we define

H̄(v, k) = H(v, k) + Δhv + Δmv

60
,
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the finishing time of trip (v, k). This value can be greater than 168.
Then, the array η is calculated as follows. For real trips (v, k) and (v′, k′) satisfying
k′ ≥ k and H̄(v, k) ≤ H(v′, k′), and the parameter δ denoting the minimum rest
time between two successive trips (which is typically between 8 and 12 hours for
our application ), we define the parameter:

ηvkv′k′ =
{
1 if H̄(v, k) + δ ≤ H(v′, k′) ∧ {Iv′ = Fv ∨ k′ > k + 1}
0 otherwise

The incompatibility constraint is then expressed as follows:
– For different days k < k′:

xivk + xiv′k′ ≤ 1 i ∈ T , v, v′ ∈ V0, ηvkv′k′ = 0 (3)

– For the same day k = k′:

xivk + xiv′k′ ≤ 1 i ∈ T , v, v′ ∈ V0, v = v′, ηvkv′k′ = 0 (4)

The only exception to this time incompatibility is permitted on the virtual trips
representing crew rest days. This means that a rest trip is compatible with all (real
or virtual) trips.

– Crew rotation. In order to impose the trip incompatibility constraint taking into
account that crew i takes over the schedule of crew i + 1 the next week, we write

xiv7 + xi ′v′1 ≤ 1 ∀i ∈ T , v, v′ ∈ V, ηv7v′1 = 0 (5)

with i ′ = i + 1 mod m.
– Overnight legal rest. The legal rest must be assigned at least once in each 7-day
window, so we impose the constraint

1 ≤
km∑
j=k

xiv j +
k−1∑
j=1

xi ′v j v = vLR, i ∈ T , i ′ = i + 1 mod m, k ∈ D,

(6)
where km = min(7, k+6). Evidently, for k = 1, the second term on the right-hand
side does not apply.

– Sunday rest. The Sunday rest regime indicated by the R attribute determines the
number of free Sundays in a group of 4 consecutive weeks. The corresponding
constraint is written as follows:

min(i+3,m)∑
j=i

x jv7 +
i+3−m∑
j=1

x jv7 ≥ R v = vSR, ∀i ∈ T . (7)

– Consecutive trips. In some cases, the decision-maker imposes that a given pair
of trips (v, k) and (v′, k′) must be served by the same crew (for example, round
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trips). To impose these conditions we define the parameter

γvkv′k′ =
{
1 if (v, k) and (v′, k′) must be served by the same crew
0 if (v, k) and (v′, k′) can be served by different crews

and the constraint is then written as

xivk = xiv′k′ ∀i ∈ T , γvkv′k′ = 1 (8)

To avoid infeasibility, the data must satisfy the condition ηvkv′k′ = 1 for all pair of
trips (v, k) and (v′, k′), such that γvkv′k′ = 1. In other words, Constraint (8) can
only be applied to compatible trips.

3 The adapted local search strategy

In practice, the problem formulated above is hard to solve, specially due to Constraint
(2), which forces every trip to be assigned to a crew. The computational effort, in terms
of execution time, can be reduced if Constraint (2) is relaxed to

∑
i∈T

xivk ≤ 1 ∀v ∈ V0, k ∈ Dv, (9)

which permits some trips to be left without a crew being assigned to them. Then, the
optimization problem is now defined by constraints (3)–(9) and the objective function
of this (feasible crew scheduling) problem is as follows:

(FCS) max
∑
i∈T

∑
v∈V0

∑
k∈Dv

xivk, (10)

which corresponds to maximizing the number of fulfilled trips. If (BCS) is feasible,
then at the optimal solution of (FCS), Constraint (9) becomes active and the problem
(FCS) reaches the maximum value at the total number of trips to be served every week,
that is,

∑
v∈V0

|Dv|

In fact, the objective function (10) represents a sort of phase I of Linear Programming,
which looks for a feasible solution to initialize the optimizing part of the algorithm.

Given the simplified formulation above, one can solve the problem of finding a
balanced trip allocation by combining the mathematical model with a heuristic routine
which implements local search. The local search routine consists of 3 stages.

– Stage 1: We perform Phase I, whose aim is to find a feasible solution of prob-
lem (BCS). For this, we find an optimal solution to the problem (FCS), under
Constraints (3)–(9), where we seek to fulfill every trip. The relaxation means that

123



392 J. Amaya, P. Uribe

Perturbation / re-
optimization in a l-weeks 
interval, to improve the 
equilibrium between 
loads.

This interval moves along 
the general scheme, m
times 

Fig. 2 The local search

Constraint (1) is not included and Constraint (2) is replaced by the relaxed version
(9).
If the optimal value (10) reaches the upper bound

∑
v∈V0

|Dv|, the solution is a
feasible solution for themain problem (BCS). The case inwhich (10) doesn’t reach
this upper bound means that some trips cannot be served (i.e. the problem (BCS)
is infeasible) and the number of crews (m) should be increased.

– Stage 2: The optimal solution of the previous stage enables a feasible diagram
to be generated, that is to say, a weekly schedule for drivers for the first week,
as shown in Figs. 1 and 4. This diagram is fragmented into windows of a few
weeks as shown in Fig. 2 (in practice, these windows must have a maximum size
of around 10 weeks). The local search-based heuristic is an iterative routine that
takes a window, fixes the variables outside of it and leaves the variables within free
for re-optimization by applying the model for finding a balanced solution, using
objective function (BCS). This process is repeated m times, running through all
weeks and solving a low-dimensional sub-problem on each iteration, as shown in
Fig. 2. Moreover, we include the least and most loaded weeks in each of these
sub-problems with the aim of improving the objective function (BCS).

– Stage 3: Starting from the last feasible solution (warm start), one last re-
optimization is performed by releasing all variables and applying the balanced
solution model (BCS) to the whole diagram, with a time limit constraint in order
to ensure the process will end within a reasonable execution time.

This approach takes advantage of the fact that solving a problem using warm start
strategies decreases the execution time, since the number of feasible branches is imme-
diately reduced in the Branch and Bound algorithm. This, combined with the strong
reduction of complexity when multiple sub-problems are solved instead of a single
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big problem, greatly reduces the execution time and provides very balanced solutions,
as we can see in the case studies.

The main idea underlying our general approach is to produce balanced schedules in
terms ofweeklyworkload. This can be done in twoways. First, by fixing a time horizon
and building a planminimizing the differences ofworkloads between crews throughout
that horizon. Another possibility (our choice) is to produce a general schedule for all
the crews for the first week (even an unbalanced solution) and then converge to a
balanced scheme by rotating crew assignments. The application of our tool to real
cases shows that, in practice, the crews tend to obtain more balanced workloads in a
short time during the first 3–4 weeks, even if their workloads are highly variable at
the beginning. For this reason, at phase I we focus on obtaining a feasible solution for
the first week, regardless of the dispersion of the workload. The second phase seeks to
improve the imbalance in this first week, for which we apply the local search strategy
described in Sect. 3. Evidently, phase I can also be performed by minimizing the
auxiliary objective function in (10) combined with Constraint (9) written in ≥ form.
In our practical applications, this change does not produce any essential difference
with respect to the approach we applied here.

4 The crew assignment problem

The previously described model permits an optimally balanced trip diagram to be
found, but it does not include the identification of crews. For the crew assignment,
we propose considering the previous model as an input, which provides a solution but
without identifying the specific crew to be assigned to each weekly diagram. Then,
the problem in this section is to find an optimally balanced diagram.

Let i ∈ T be a given crew and j ∈ T be a week of the weekly diagram given by
the main crew scheduling model. We let wi j be the weight of crew i to be assigned to
week j . This term can be proportional to the difference between the number of hours
accumulated by the crew i in the previous week and the workload of week j .

We use the variable

yi j =
{
1 if crew i is assigned to week j
0 otherwise

(11)

This means that each crew is assigned to one and only one week of the diagram, and
eachweek is assigned to one and only one crew.We also define a bipartite graphwhose
vertices can be divided into two disjoint sets: the set of crews and the set of weeks.
The set A of oriented arcs connecting crews to weeks is defined as follows:

(i, j) ∈ A ⇐⇒ i is compatible with j

Compatibility here means that a given crew, say, i , can be effectively assigned to a
given week j . This can be expressed by the following three conditions:
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– Rest hours. Let (vi , ki ) be the last trip served by crew i in week j −1 and (v j , k j )
the first trip of the current week j . Then compatibility imposes

H̄(vi , ki ) + δ ≤ H(v j , k j ) + 168 (12)

That means that trip (v j , k j )must start at least δ hours after the end of trip (vi , ki ).
– Feasible location of the crew. The current location of the crew i must be equal
to the starting location (origin) of the first trip in the current week j . That is to
say, let Li be the current location of crew i and Iv be the origin of trip v j , then we
impose

Li = Iv (13)

– Legal rest day.The last legal rest day taken by crew i must satisfy the legal rest day
condition with respect to the current week j (one day off in every 7-day interval).
If we let ki ∈ D be crew i’s last rest day and k j ∈ D the first rest day scheduled
in week j , then

k j ≤ ki (14)

The objective of this problem is the following:

max
∑

(i, j)∈A
wi j yi j (15)

Given that the number of weeks of the diagram and the number of available crews
are equal, this problem can be interpreted as finding an optimal one-to-one assignment
between crews and weeks. Then the constraints are as follows:

∑
i / (i, j)∈A

yi j = 1 ∀ j ∈ T (16)

and ∑
j / (i, j)∈A

yi j = 1 ∀i ∈ T . (17)

The model (15)–(17) that deals with the assignment of crews to the scheduled weeks
is a simple bipartite graph, where source nodes are represented by crews and desti-
nation nodes by the scheduled weeks. A one-to-one assignment is then performed.
The feasibility depends on the initial conditions of crews, mainly the current location,
the accumulated hours worked and the last legal rest day. The costs wi j of the arcs
correspond to the square of the difference between the normalized coefficients of the
accumulated crew load and the load for the scheduled week. Thus, the objective func-
tion is to maximize the sum of the arcs weighted by their cost, which forces highly
loaded crews to be assigned to lightly loaded weeks and vice versa. This is a medium
size optimization flow problem whose solution is easy to obtain, in comparison with
the computing time for the main scheduling problem.
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5 The implementation

Our general strategy consists of three successive stages:
Phase I. Solution of the relaxed problem [in which Constraint (9) is used instead of
(2)] to find a feasible solution, using the auxiliary objective function (10).
Phase II. Improvement of the balance between crews by applying the local search
strategy, according to the optimization strategy described in Sect. 3.
Phase III. Given the efficient schedule generated in the previous stages, the crew
assignment is performed according to the driver assignment flow model presented in
Sect. 4.

The optimization models and heuristic routines were written in AMPL, a special-
ized programming language for linear models that provides enough flexibility for a
large range of operations. All the developments for this application were packaged
into a Java-based software package with a simple user interface that allows for easy
interaction and the creation of several simulation instances with the possibility of run-
ning the models using remote HPC resources. The main features of this software are to
allow the user to solve different problems for various scenarios, changing parameters
such as the number of crews, trip attributes and time limits. It also allows data files
to be easily uploaded and output solutions to be downloaded in various formats. The
user can choose between local execution using an open-source optimization solver for
small problems and a remotely hosted, proprietary optimization solver that employs
HPC resources for large-scale instances.

The interface follows a sequence of stages whenever a new instance is executed, as
described below:
Read/Transform data to AMPL language. Taking the data uploaded by the user,
new data files are generated in AMPL, so they can be read by the optimization solver.
Connect to the remote HPC platform via SSH. If the remote execution option is
selected, communication must be established with the remote server that hosts the
optimization solver in the first place. In this case we have used SSH (Secure Shell) as
the communication protocol.
Send data to High-Performance computer. Once communication has been success-
fully established, the data in AMPL are sent to the remote computer.
Trigger the execution routine.At this stage, the interface sends the instruction which
causes the remote system to start solving the problem. While the program is being
executed, the interface waits for a response, polling the remote server at regular inter-
vals for the availability of the solution file. Once the solution is available, the interface
retrieves the file, translates it into XML format and displays it on screen to be inspected
by the user and/or exported.

Some screen shots of the software can be found in Figs. 3 and 4. Figure 3 shows
an example of a set of trips with their corresponding data. Each row corresponds to
a trip characterized by trip code, starting time, duration, origin and destination, and
days of the week in which the trip must run. This information is provided in an Excel
file and can be directly modified on screen. Figure 4 presents the schedule found for
the same set of trips. Each row corresponds to a programmed week (without crew
identification), starting and final time, total number of hours served in the week, and
other operational information. We note that at the end of the schedule, a report of the
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Fig. 3 Example of input trip data for the computer tool

Fig. 4 Example of regular schedule from the computer tool (output diagram)

main statistics of the solution is displayed and the user can export the results to an
Excel file. Another possible diagram to visualize the solution is presented in Fig. 5,
corresponding to a case with 55 crews. Colors represent the different trips, gray boxes
correspond to legal rests and white spaces, to idle times. The total number of working
hours in the week is shown at the right-hand side.

The interface also enables the 4 × 4, 7 × 7 and 14 × 14 diagram programming,
but the methodology is not described in this article. In an N × N regime, the crew
works with no overnight legal rest for N days, and then rests for the next N days. This
is a non-rotative regime; therefore, the optimization problem is less complex to solve
compared to that of the regular schedule. The mathematical model for the N × N case
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Fig. 5 The schedule diagram
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Fig. 6 Main lines of the railway network

is a simplified version of our main model, the essential difference being that rotational,
overnight legal rest and Sunday rest constraints are omitted.

6 Case studies

In this section, we present numerical results obtained using the general strategy pre-
sented in Sect. 5. All instances were run using a commercial license of solver Gurobi
7.5.1 and AMPL for Gurobi, on an Intel Xeon E5-2660 v2 processor with 10 cores
and 48 Gb of RAM.We do not report here results on the assignment problem (Sect. 4)
because this is a simple flow problem that can be trivially solved in all our instances.
The potential of our approach is essentially in the initial feasible solution and opti-
mizing phases.

In Fig. 6 we show the main lines of the rail network and stations in Antofagasta
region (126,000 km2). It can be seen in the picture that there are two main branches of
the network that meet at the coastal city of Antofagasta, where a major port in northern
Chile is located. Along the path of the network, there are different courses that cover
various geographic zones with variable extension and operative characteristics. From
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Table 1 Cases description

ID Number of binary variables Average weekly load (h)

1 125 44.3

2 852 57.8

3 1818 43.1

4 1872 49.3

5 13,860 46.1

6 13,986 49.0

7 15,030 44.3

Table 2 Numerical results

ID Feasibility and Local search Balanced solution

Feasibility Local search Total time (s) σ Total time (s)

σ Time (s) σ Time (s)

1 2.9 0.1 2.0 56.9 56.9 2.0 5.8

2 3.0 9.1 2.2 8.4 17.5 2.2 22.5

3 3.0 19.0 1.4 561.0 580.0 1.4 7199.2

4 2.5 76.5 1.3 660.5 737.0 – > 7200

5 3.0 108.8 1.4 1368.4 1477.2 2.4 7198.9

6 3.1 779.6 1.9 957.8 1737.4 – > 7200

7 2.8 1428.7 1.8 1449.3 2878.0 – > 7200

(–) no solution found in 2 h running

test experiments and practical validation on real cases, we determined that execution
time increases with the number of variables and also, this effect is specially critical
when the model for finding a balanced solution is applied.

Tests using the heuristic algorithm have shown it is possible to achieve balanced
schedules in half the time taken by the balanced solution model and this result can
be improved by a factor of 10 when the heuristic algorithm is applied to medium-
sized problems. Below in Table 1, we describe some small, medium and large-size
cases we consider for testing. All cases were executed on the same computer with the
same software settings and legal constraints (values for inter-trip rest and Sunday-rest
regimes).

Table 2 shows a comparison of results for the different real-use cases described
above. Execution time of the two-phase algorithm and direct resolution are compared
for several use cases (see columns in bold). In most cases, the two-phase algorithm
turns out to be significantly better in terms of time and balance of hours than the
instances in which no heuristic is used.

In the table, Feasibility refers to Phase I, that is to say, the first feasible solution found
in which weekly working hours are not necessarily balanced among crews. The actual
objective function for this phase corresponds to the maximization of the total number

123



400 J. Amaya, P. Uribe

of trips having an assigned crew but, for display purposes, the standard deviation is
indicated in the table for each use case. Local search (Phase II) corresponds to the
heuristic stage where the feasible solution found in Phase I is used as a warm start and
improved to obtain a more balanced schedule. The third set of results is obtained by
executing the Balanced model by direct resolution, without adding any heuristic.

In general, results show that, in terms of the execution time, it is much faster to
execute the two-phase algorithm than calculating a balanced schedule directly, except
for very small problems, where the sum of the execution times of phases I and II far
exceeds the balanced-hours model execution time. This is because for small problems
with less than 10 crews (for example, Case 1), the number of variables and constraints
can be handled perfectly by any good software; thus, the heuristic option does not
seem very useful in this case. At any rate, we are talking about execution times on the
order of minutes, which is perfectly tolerable.

In terms of balancing the number of hours worked per week, results show that in
all cases, the heuristic routine achieves equal or smaller deviations in half the time
compared to the balanced-hours model. Additionally, we can see that for “demanding”
cases, (see Cases 4, 6 and 7), the balanced-hours model is not able to find a solution
in 2 h. We could say, then, that our heuristic performs better in large-scale problems
and represents a substantial improvement when compared to “brute-force” solutions.

7 Conclusions

In this article, we have tackled a real problem on crew-schedule modeling, with the
novel feature of including a rotational constraint that delivers balanced workloads
among crews while generating a reusable and infinite time horizon schedule. We
solved it by using a combination of standard integer programming and a local search
strategy, which has shown very good behavior in the instances examined.

The balanced-hours model can be slightly modified in order to generate a balanced
schedule in a shorter execution time by relaxing the one-trip one-crew constraint and
adding upper and lower bounds to the total weekly hours for all crews. The only risk
when we use this model is the possibility of generating infeasible instances because
the model is not strictly constrained to fulfil all trips; but in that case, this drawback
could be handled by using the software as a“what-if” tool for tuning good solutions.

The software tool was developed to provide a friendly environment for user inter-
action. Some alternatives to regular (weekly) schedules were also included within the
tool, for example, it permits the user to predefine the rest days in advance, by fixing
some specific variables of the model. The complexity of the problem when its size
increases leads to high execution times, which is faced by implementing a heuristic
algorithm that combines warm start strategies with an iterative local search routine.

Practical results are very encouraging, showing a strong reduction in the execution
time for medium and large-scale instances, reaching the optimal solution or stopping
very close to it. The computerized tool is currently operating in the train transportation
company, but the model could be adapted to tackle other kinds of crew scheduling
problems, especially those arising in urban and interurban buses. We have focused on
this specific train industry rather than on generic transportation essentially due to the
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fact that it is difficult to do shortcuts on the tree-like network, thus requiring a round
trip for some destinations. Moreover, in this real case we can suppose full availability
of material and human resources, and the model for the scarcity case would be out of
scope, falling in the context of stochastic or robust optimization.

The main benefits for the company are not only economic in nature (in terms
of person-hours dedicated to these tasks, which fell from weeks to hours), but also
the tool has facilitated negotiations between management and the unions, because
the system provides objective and imaginative solutions to aid the decision-making
process. Moreover, the speed of calculations permits the user to generate in some
minutes several optimal or quasi-optimal diagrams (in terms of balanced loads for
the crews) which must be compared with the traditional process based on exchanging
hand-made files during 2 or 3 weeks.
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