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We show that the shape of the inflationary landscape potential may be constrained by analyzing
cosmological data. The quantum fluctuations of fields orthogonal to the inflationary trajectory
may have probed the structure of the local landscape potential, inducing non-Gaussianity (NG)
in the primordial distribution of the curvature perturbations responsible for the cosmic microwave
background (CMB) anisotropies and our Universe’s large-scale structure. The resulting type of NG
(tomographic NG) is determined by the shape of the landscape potential, and it cannot be fully
characterized by 3- or 4-point correlation functions. Here we deduce an expression for the profile
of this probability distribution function in terms of the landscape potential, and we show how this
can be inverted in order to reconstruct the potential with the help of CMB observations. While
current observations do not allow us to infer a significant level of tomographic NG, future surveys
may improve the possibility of constraining this class of primordial signatures.

Is there any feature about our Universe that would re-
quire us to assume primordial non-Gaussian initial con-
ditions? Up until now, cosmic microwave background
(CMB) and large-scale structure (LSS) observations are
fully consistent with the premise that the primordial cur-
vature perturbations were initially distributed according
to a perfectly Gaussian statistics [1, 2]. This has fa-
vored the simplest models of inflation –single field slow-
roll inflation– based on the steady evolution of a scalar
field driven by a flat potential [3–7]. In these models,
the self-interactions of the primordial curvature pertur-
bation lead to tiny non-Gaussianities suppressed by the
slow-roll parameters characterizing the evolution of the
Hubble expansion rate H, during inflation [8–11].

The confirmation of non-Gaussian initial conditions
would help us to decipher certain fundamental aspects
about inflation [12–15]. Indeed, non-Gaussianity (NG)
can be generated by nonlinearities affecting the evolu-
tion of primordial curvature perturbations (denoted as
ζ). These nonlinearities are the result of self-interactions,
or interactions with other degrees of freedom, such as
isocurvature fields (fields orthogonal to the inflationary
trajectory in multifield space). Inevitably, perturbation
theory limits the extent to which we can study the emer-
gence of NG, forcing us to focus on the lowest order op-
erators (in terms of field powers) in the ζ Lagrangian.
Thus, most of the recent effort devoted to the study of
NG has relied on parametrizing it with the bispectrum
and trispectrum, the amplitudes of the 3- and 4-point cor-
relation functions of ζ in momentum space. Understand-
ing how different interactions lead to different shapes and
runnings of the bispectrum has constituted one of the
main programs in the study of inflation [12–15].

It is conceivable, however, that certain classes of in-
teractions may lead to NG deviations that cannot be
parametrized just with the bispectrum and/or trispec-
trum. This is the subject of the companion article [16],

where we argue that in multifield models characterized by
a rich landscape structure (i.e., with minima separated
by field distances of order, or smaller than, H), extra
fields can transfer their NG to ζ. In two-field models,
the mechanism by which this NG is generated relies on
the existence of an isocurvature field ψ interacting with ζ
via a generic coupling that appears in multifield models.
The mechanism may be understood as the consequence
of the following two independent statements:

I. If on superhorizon scales the amplitude of ψ does
not vanish, then it will act as a source for the am-
plitude of ζ. The field ζ will grow on superhorizon
scales and become related to ψ (e.g., [17–19]).

II. If ψ has a potential ∆V (ψ) with a rich structure,
then around horizon crossing ψ will fluctuate and
diffuse across the potential barriers. After horizon
crossing, it will be more probable to measure ψ at
values that minimize ∆V (ψ) [20].

Together, these two statements imply that the proba-
bility of measuring ζ is higher at those values sourced
by ψ that minimize ∆V . This was shown in [16] for
the particular case in which ψ is an axionlike field, with
∆V = Λ4 [1− cos(ψ/f)]. There, the main result con-
sisted in the derivation of a probability distribution func-
tion (PDF) ρ(ζ) that depended explicitly on the barrier
height Λ4 and the field range f .

The purpose of this Letter is to extend the derivation
of [16] to an arbitrary analytic potential ∆V , and to show
how it is possible to reconstruct its shape with current
and/or future cosmological data. Our main claim is that,
if the primordial landscape had a rich structure, then
its shape (around the inflationary trajectory) could be
stored in the statistics of ζ through a type of NG (tomo-
graphic NG) that cannot be fully parametrized with the
bispectrum alone.
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Our starting point is to consider the following generic
Lagrangian describing ζ and ψ (MPl = 1):

L = a3
[
ε(ζ̇−αψ)2− ε

a2
(∇ζ)2 +

1

2
ψ̇2− 1

2a2
(∇ψ)2−∆V

]
,

(1)
where a is the scale factor, and ε = −Ḣ/H2 is the
usual first slow-roll parameter (H = ȧ/a). In this sys-
tem, ζ interacts with ψ via Lint ∝ αζ̇ψ (with α con-
stant). Note that we are treating both ζ and ψ up to
quadratic order, except for ψ appearing in ∆V . We
assume that ∆V/Vinfl � 1 so that inflation, driven by
Vinfl = 3M2

PlH
2, is unaffected by ∆V . In what follows, x

and k denote comoving position and momentum, whereas
q = k/a denotes physical momentum.

If ∆V = 0, Eq. (1) gives us two linear equations of
motion for ζ and ψ coupled through α. In k space, the
dynamics is such that the mode function ψk(t) becomes
frozen to a constant value at horizon crossing. Then, ψk
acts as a source for the amplitude of ζk, and one finds [19]

ζk = (α∆N/H)ψk, (2)

where ∆N is the number of e-folds after horizon crossing.
As a result, the power spectrum of ζ is determined by

that of ψ as Pζ(k) = α2∆N2

H2 Pψ(k). Thus, the field ψ
transfers its Gaussian statistics to ζ via α.

On the other hand, if ∆V 6= 0, the field ψ continues
to transfer its statistics to ζ (thanks to α), but this time
it will inherit NG deviations. In momentum space, ∆V
induces nonvanishing n-point correlation functions of the
local type, given by

〈ζnk1...kn〉c = (2π)3 hn δ
(3)
( n∑
i=1

ki

)k3
1 + · · ·+ k3

n

k3
1 · · · k3

n

, (3)

where c informs us that we are only keeping fully con-
nected contributions (in the language of perturbation
theory). To obtain the set of amplitudes hn for an ar-
bitrary potential we first consider the following Taylor
expansion

∆V (ψ) =
∑
m

cm
m!
ψm. (4)

This expansion gives us an infinite number of m legged
vertices, each one of order cm. Using the in-in formal-
ism, the computation of 〈ζnk1...kn

〉c requires us to con-
sider the sum of each Feynman diagram proportional to
cn+2m with m ≥ 0. In any such diagram, n legs become
ζ external legs (due to the α coupling), whereas 2m legs
become m loops. Finally, 〈ζnk1...kn

〉c is the result of sum-
ming all of these diagrams after taking into account the
appropriate combinatorial factors. One finds

hn = −
(
αH∆N

2

)n
∆N

3H4

∞∑
m=0

cn+2m

m!

(
σ2

0

2

)m
, (5)

where σ2
0 ≡ (2π)−3

∫
d3k ψ∗k(t)ψk(t), appearing because

of the loops, is the variance of the field ψ. Here, ψk(t) is
the mode function of a free massless field in a de Sitter
spacetime. It turns out that σ2

0 is time independent [20].
Performing the sum in Eq. (5), one obtains

∞∑
m=0

cn+2m

m!

(
σ2

0

2

)m
= e

σ20
2 ∂

2
ψ
∂n

∂ψn
∆V

∣∣∣∣
ψ=0

. (6)

Notice that σ2
0 is formally infinite, and hence, we are

forced to introduce infrared (IR) and ultraviolet (UV)
physical momentum cutoffs. The UV cutoff qUV corre-
sponds to a wavelength well inside the horizon (qUV �
H), whereas the IR cutoff qIR corresponds to the wave-
length of the largest observable mode. In addition to
these scales, it is convenient to introduce an arbitrary
intermediate momentum qL that splits σ2

0 into two con-
tributions: σ2

0 = σ2
S + σ2

L, from short and long modes,
respectively. This splitting allows us to define a renor-

malized potential ∆Vren(ψ) ≡ exp
(
σ2
S

2
∂2

∂ψ2

)
∆V (ψ). In

this way, observables can only depend on ∆Vren, which
is independent of qUV.

According to Eq. (6), this renormalization pro-
cedure simply corresponds to defining ∆Vren(ψ) =∑
m c

ren
m ψm/m!, where the coefficients cren

m are related to
the bare couplings cm as

∞∑
m=0

cn+2m

m!

(
σ2

0

2

)m
=

∞∑
m=0

cren
n+2m

m!

(
σ2
L

2

)m
. (7)

This result allows us to identify ∆Vren as the potential
obtained by integrating out the high energy momenta
beyond the scale qL, just as in the Wilsonian approach
of QFT. Now, it is crucial to notice that the n-point
function of Eq. (3) is an observable, and so it cannot
depend on qL. This implies that hn is independent of σL.
For this to be possible, the coefficients cren

m defining ∆Vren

must run in such a way so that the entire expression (5)
remains independent of σL. Equation (7) reveals how the
coefficients cren

m run as more (or fewer) modes participate
in σ2

L (again, in agreement with the Wilsonian picture).
To continue, using the Weierstrass transformation, the

right hand side of Eq. (6) can be rewritten as

e
σ2L
2 ∂2

ψ
∂n

∂ψn
∆Vren

∣∣∣∣
ψ=0

=

∫
dψ

e
− ψ2

2σ2
L√

2πσL

∂n

∂ψn
∆Vren. (8)

Then, by performing several partial integrations, we fi-
nally obtain the following expression for hn:

hn =
1

n

(
αH∆N

2σL

)n
∆N

3H4

∫
dψ

e
− ψ2

2σ2
L√

2πσL
Hen (ψ/σL)

×
(
σ2
L

∂2

∂ψ2
− ψ ∂

∂ψ

)
∆Vren(ψ), (9)
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where Hen(x) ≡ exp(− 1
2
d2

dx2 )xn is the nth “proba-
bilist’s” Hermite polynomial. In the particular case
where ∆V (ψ) = Λ4 [1− cos(ψ/f)], Eq. (9) allows us to
recover the expression for 〈ζnk1...kn

〉c obtained in [16].

We now compute the nth moment 〈ζn〉 for a particu-
lar position x. Because of momentum conservation, the
specific value of x is irrelevant. In practice, we only have
observational access to a finite range of scales, implying
that the computation of 〈ζn〉 must consider a window
function selecting that range. We use a window function
with a hard cutoff, and write

ζL =
1

(2π)3

∫
k<kL

d3k ζk e
−ik·x. (10)

Notice that we have chosen to cut the integral with the
same cutoff kL = a qL introduced to split σ2

0 = σ2
S + σ2

L.
Up until now, qL was an arbitrary scale introduced to
select the scales integrated out to obtain ∆Vren. However,
we can now choose qL to coincide with the physical cutoff
momentum setting the range of modes contributing to
the computation of 〈ζnL〉. Given that we are interested in
a q−1

L larger than the horizon, we can write

σ2
L = (H2/4π2) ln ξ, (11)

where ξ ≡ kL/kIR. Following our companion paper [16],
the nth moment of ζL is given by

〈ζnL〉c = (2π)3 hn In(ξ), (12)

In(ξ) =
n

(2π2)n+1

∫ ∞
0

dx

x
Gξ(x) [Fξ(x)]

n−1
, (13)

where Gξ(x) =
∫ 1

ξ−1 dzzx
2 sin(zx) and Fξ(x) =∫ 1

ξ−1
dy
y

sin(yx)
yx . The function Fξ(x) satisfies Fξ(0) = ln ξ,

and Fξ(x) ≤ ln ξ. The PDF ρ(ζ) must be such that

〈ζnL〉 =

∫
dζ ρ(ζ)ζn, (14)

where 〈ζnL〉 is the full nth moment, including dis-
connected contributions, related to 〈ζnL〉c by 〈ζnL〉 =∑bn/2c
m=0

n!
m!(n−2m)!2mσ

2m
ζ 〈ζn−2m

L 〉c. Here, σ2
ζ is the vari-

ance of ζ, which according to Eqs. (2) and (11), is given
by σ2

ζ = α2∆N2σ2
L/H

2 =
[
α2∆N2/

(
4π2
)]

ln ξ. Planck

fixes σ2
ζ/ ln ξ = Pζ(k)k3/

(
2π2
)

= (2.196± 0.158)× 10−9.

To derive ρ(ζ) we just need to focus on the n depen-
dence of 〈ζn〉c. According to Eq. (12), this dependence
has the form [X]n−1Hen(Y ), where X and Y are given
quantities (the presence of the integrals do not alter this
argument). This alone allows us to infer the PDF for ζ,

−3 −2 −1 0 1 2 3

ζ/σζ

0.0

0.1

0.2

0.3

0.4

ρ
(ζ

)

FIG. 1. The PDF (violet) resulting from a potential ∆V (ψ) ∝
[2− cos(ψ/f1)− cos(ψ/f2)], with f1 = 0.1σL and f2 =
0.02σL (light green). Both contributions have the same am-
plitude; however, f2 contributes less than f1. A Gaussian
PDF is plotted for comparison (red, dashed).

which is found to be given by

ρ(ζ) =
1√

2πσζ
e
− ζ2

2σ2
ζ [1 + ∆(ζ)] , (15)

∆(ζ) ≡
∫ ∞

0

dx

x
K(x)

∫ ∞
−∞
dζ̄

exp
[
− (ζ̄−ζ(x))

2

2σ2
ζ(x)

]
√

2πσζ(x)

×∆N

3H4

(
σ2
ζ

∂2

∂ζ̄2
− ζ̄ ∂

∂ζ̄

)
∆Vren

(
ψζ̄
)
. (16)

In the previous expression, ∆(ζ) parametrizes the NG
deviation. To write it, we defined the following quanti-
ties: ζ(x) ≡ [Fξ(x)/ ln ξ]ζ, σ2

ζ (x) ≡ σ2
ζ (1− [Fξ(x)/ ln ξ]2),

K(x) ≡ 4πGξ(x)/Fξ(x), and ψζ ≡ (α∆N/H)−1ζ. These
definitions satisfy |ζ(x)| ≤ |ζ| and σ2

ζ (x) ≤ σ2
ζ .

Equation (15) gives us the PDF of ζ at the end of in-
flation. It is possible to verify that the perturbativity
condition on the potential is ∆Vren/H

4 � 1, and that
the next to leading order term is of order O(∆2) (see
Ref. [16]). The presence of the derivative operator act-
ing on ∆Vren implies that the probability of measuring
ζ at a given amplitude increases at those corresponding
values ψζ that minimize the potential. In addition, the
x dependence of ζ(x) and σ2

ζ (x) has the effect of filter-
ing the structure; sharper structures contribute less to
the PDF. Figure 1 shows the PDF obtained for a po-
tential ∆Vren(ψ) ∝ [2− cos(ψ/f1)− cos(ψ/f2)]. In this
example there are two sinusoidal contributions with field
scales f1 = 0.1σL and f2 = 0.02σL. Both contributions
have the same amplitude, however, the NG deformation
implied by f2 is smaller than that of f1. Notice that to
plot the figure, we used the relation ψζ/σL = ζ/σζ .

Let us now attempt to reconstruct ∆Vren out of the
CMB data. This requires us to deal with the observed
temperature fluctuation Θ ≡ ∆T/T , instead of ζ at the
end of inflation. Thus, we introduce a linear transfer
function to write Θ(k, n̂) ≡ T (k, µ)ζk, with µ = n̂ · k̂,
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where n̂ is the direction of sight of an observer stand-
ing at x. It follows that 〈Θn

k1...kn
〉c = T (k1, µ1) · · ·

T (kn, µn)〈ζnk1...kn
〉c, from which we are able to derive the

connected nth moment:

〈Θn
L〉c = (2π)3hn (σΘ/σζ)

n
ITn (ξ), (17)

where ITn (ξ) is given by

ITn =
n

2(2π2)n+1

∫ +1

−1

dµ

∫ ∞
0

dx

x
GTξ (x, µ)

[
FTξ (x, µ)

]n−1
, (18)

GTξ =
σζ
σΘ

∑
`

(2`+ 1)P`(µ)

∫ 1

ξ−1

dzz2x3T`(zkL)j`(zx), (19)

FTξ =
σζ
σΘ

∑
`

(2`+ 1)P`(µ)

∫ 1

ξ−1

dy

y
T`(ykL)j`(yx). (20)

In the previous expressions, P`(x) and j`(x) stand for the
`th Legendre polynomial and `th spherical Bessel func-
tion, respectively. In addition, T` is the Legendre mo-
ment of T (k, µ). The variance of Θ is found to be σ2

Θ =
1

4π

∑
`(2`+ 1)C`, with C` = 4π[σ2

ζ/ ln ξ]
∫ kL
kIR

dk
k |T`(k)|2.

One can now derive a PDF ρ(Θ) for Θ similar to that
of Eqs. (15) and (16). However, we will not need an
explicit expression for ρ(Θ) to engage in reconstructing
∆V . Instead, we may define the following cumulants
parametrizing NG:

an ≡
∫
dΘ ρ(Θ) Hen (Θ/σΘ) . (21)

Independently of the form of ρ(Θ), these coefficients are
directly related to the fully connected moments of Θ
through the relation 〈Θn

L〉c = σnΘan. Together with (17),
this further implies

hn = anσ
n
ζ /[(2π)3ITn (ξ)]. (22)

Then, by expanding the potential in terms of Hermite
polynomials ∆Vren(ψ)/H4 =

∑
m
bm
m! Hem(ψ/σL), one

finds that the coefficients bn determining the shape of
the potential are given by

bn = − 3an
(2π)3∆NITn (ξ)

(
ln ξ

2π2

)n
. (23)

The potential ∆Vren(ψ) obtained by such a reconstruc-
tion has renormalized coefficients cren

m evaluated at the
scale kL, and so it can be interpreted as the potential
generating NG in the range kIR ≤ k ≤ kL.

Having Eq. (23) at hand, we may proceed to out-
line the reconstruction process. Figure 2 shows values
of the coefficients an acquired from Planck CMB maps
(see also Ref. [21] for a similar analysis). The coeffi-
cients were obtained by counting the occurrences of Θ
values in Planck’s SMICA temperature map. Here we
chose two possible values for σ2

Θ: the sample variance

3 10 17 24 31 38 45

n

−0.006

−0.004

−0.002

0.000

0.002

a
n
/√

n
!

σ2
Θ of CMB

σ2
Θ = 1.62× 10−9

FIG. 2. The an coefficients obtained from Planck. We have
limited the data to regions far enough from the galactic plane
so that the outcome from SMICA agrees with the other
pipelines (and removing each pipeline’s masked pixels), ef-
fectively considering a third of the sky. The error bars are an
estimate of the noise present in the data, computed by com-
paring half-mission maps. The grey contours represent the
intrinsic noise σ(an) due to Gaussian simulations obtained
using full-sky maps generated with CAMB.

FIG. 3. The reconstructed potential ∆V/3H4 for two different
values of σ2

Θ. This reconstruction considers an coefficients up
to n = 7. Since a2 is a correction to the 2-point function –and
hence, to the propagator– we do not include this term in the
reconstructed potential.

computed from the CMB map σ2
Θ = 1.50 × 10−9, with

which a2 = 0, and the one preferred by simulations
σ2

Θ = 1.62 × 10−9. The grey contours show the intrin-
sic noise σ(an) (1- and 2-σ regions) resulting from 500
Gaussian simulations using CAMB [22] with the cosmo-
logical parameters reported by Planck [23] (with a beam
resolution of 5 arcmin FWHM), and σ2

Θ = 1.62 × 10−9,
which is the average over simulations of the sample vari-
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ances. As one might have expected, the observed values
are mostly compatible with a Gaussian distribution. To
get the bn coefficients via Eq. (23), we set ∆N = 60 and
fix ln ξ = 8, which corresponds to the range of momenta
10−4 Mpc−1 ≤ k ≤ 0.3 Mpc−1 for the observed modes in
the CMB [24, 25]. Given that Fig. 2 lacks a conclusive
imprint of non-Gaussianity, the potential in Fig. 3 serves
for illustrative purposes only. However, we must note
that this type of analysis is cosmic variance limited, as
evidenced by the different results obtained from the two
values chosen for σ2

Θ. Additionally, there are a number of
anomalies present in the CMB that we disregard herein,
such as the statistical differences between the north and
south hemispheres [25]. Nevertheless, we encourage the
community to keep an eye out for these signatures, as well
as to perform more sophisticated analyses with available
data sets. For instance, one approach to try and circum-
vent the aforementioned effects is to compute the trans-
fer functions for a restricted multipole range, which can
be done by modifying accordingly the sums in Eqs. (19)
and (20), then to consider a filtered CMB map that only
contains those contributions, and finally use Eq. (23) as
before to obtain the reconstructed potential.

The NG studied here has a fixed shape of the local type
[recall Eq. (3)], meaning that any relevant information is
entirely contained in the coefficients hn, related to the
an’s via (22). However, the zero-lag cumulants approach
offered in this Letter might not constitute the most effi-
cient strategy to constrain the hn’s. Shapes other than
local, present in the data, will contribute to the measured
an cumulants, increasing the uncertainty on the deduced
values of the hn’s. Hence, to break the shape degeneracy
hidden in the cumulants, more sophisticated techniques
may be considered. For instance, following similar steps
to those described here, one could derive the full proba-
bility functional containing information about the local
shape (or other shapes, in the case of nontrivial interac-
tions not considered here) to perform reconstructions.

Our methods may be repeated to attempt reconstruc-
tions employing LSS, 21 cm, and CMB spectral distortion
data. The main difference would rest on the treatment
of specific transfer functions needed to connect the hn’s
with new an cumulants parametrizing new types of dis-
tributions (e.g., matter distribution in the case of LSS
surveys). Granted that foregrounds and secondary NG’s
can be accurately modeled, these surveys should offer us
the opportunity to perform better reconstructions of the
landscape potential for the same reasons that they will
improve upon current CMB constraints on the f local

NL pa-
rameter [i.e., reducing the uncertainty σ(f local

NL )]: they
will give us access to a broader range of scales and/or
larger data sets, allowing us to perform statistics with
sharper cumulant uncertainties σ(an). In this respect,
it is worth recalling that soon to come LSS surveys will
be able to reduce σ(f local

NL ) by a factor of 5− 10 [26–28],
whereas future 21 cm and CMB spectral distortion ex-

periments promise to do so by factors ∼ 102 [29–31] and
∼ 103 [32], respectively. An important pending challenge
is to understand to what degree a reduction of σ(f local

NL )
will come together with a reduction of the σ(an)’s.

To summarize, we have analyzed a novel class of pri-
mordial signatures that deserves to be thoroughly stud-
ied both theoretically and observationally, particularly
on the wake of new CMB [33] and LSS [34, 35] surveys.
Multifield models of inflation allow for regimes in which
the statistics of isocurvature fields are transferred to ζ,
encoding information about the shape of the inflationary
landscape potential in the observable curvature perturba-
tions. We have considered a sufficiently generic situation
described by the Lagrangian (1), however, the transfer
mechanism might be even more generic, and as such, con-
straining this type of NG has an enormous potential for
characterization of the early Universe.
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