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a b s t r a c t

When large-scale photovoltaic power plants (PV-PPs) operate under partially-shaded conditions, their
power output can be extremely fluctuating. This situation may compromise the energy balance of the
electricity grid, which in turn threatens its secure operation from a frequency control viewpoint. In this
context, the development of control strategies to reduce the variability of the power generated by PV-PPs
is a key issue towards reaching sustainable electric systems. With this purpose, this paper proposes a
novel control strategy to reduce the negative effects that PV-PPs operating under partially-shaded
conditions may cause on the frequency control of electricity grids. The control operates the PV-PP in
deload mode, i.e. keeping power reserves. The deload level of the PV-PP is set dynamically during the day
considering a 10-min forecast of solar generation. The forecast is performed with artificial neural net-
works, first predicting the day-type (sunny, cloudy, overcast) and then the solar power. The controller
continuously monitors the condition of the PV-PP: when the plant is under non-uniform shaded con-
ditions, it deploys the power reserves to smooth the PV power. The proposed control was applied to a
Chilean case study focused on the Atacama Desert, testing different control rules for the deload level. The
obtained results show that the implementation of the proposed control considerably improves the
frequency performance of the electricity grid. Although operating in deload mode implies energy losses
in the PV-PP, the use of a dynamic deload level minimizes these losses when compared to a constant
deload level. Altogether, the dynamic simulations show that such a control can play a relevant role for
frequency control in electrical power systems with high shares of photovoltaic power. Our findings give
important insights to electricity regulators about the technical requirements that they should impose to
large-scale PV-PPs in electric power systems dominated by renewables energies.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The deployment of large-scale photovoltaic power plants (PV-
PPs) has been remarkable during the last years. The worldwide
installed capacity of PV generation exceeded 300 GW in 2016with a
yearly growth rate of 70 GW (REN21, 2017). Chile contributed with
an installed capacity of around 2 GW. Towards a more sustainable
society, the penetration of solar power plants, together with other
renewables technologies (Ha�skov�a, 2017; Mardoyan and Braun,
2015), will need to keep on growing. Chile is particularly inter-
esting given its relevance in the worldwide copper market, an
essential material for renewable technologies. Higher shares of
nn).
renewable generation would consequently also imply a cleaner
copper production (McLellan et al., 2012; Moreno-Leiva et al.,
2017).

However, large shares of renewable generation technologies
may significantly affect the operation of electric power systems
(Carvalho et al., 2011; Jones, 2017). For a satisfactory operation of
the electricity grid, the frequency should remain nearly constant
around its nominal value (50 Hz in Europe). This means that at each
point in time, electric power systems must keep the total energy
production equal to the total consumption. In case of a generation
surplus, the grid frequency increases; for generation deficits, the
opposite happens. This balance management is called frequency
control or frequency regulation. An energy imbalance can trigger
the disconnection of key system components, which in turn may
lead to a system blackout. Accordingly, frequency control repre-
sents a vital task for ensuring the security of the electricity supply.
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The variability and uncertainty of solar power impose different
challenges to transmission system operators (TSOs) (Faranda and
Leva, 2008), especially regarding the frequency regulation of the
electricity grid (Eto et al., 2010); (Ruiz-Rodriguez et al., 2016). The
variability of solar energy occurs on different time scales. On the
one hand, under a clear sky, the daily solar resource follows the
typical “hill-shaped” profile, which changes with the seasons in
response to the sun-earth geometry. On the other hand, passing
clouds provoke short-term (seconds to minutes) fluctuations often
called cloud-transients (Kankiewicz et al., 2010). As PV-PPs usually
operate at their maximum power point (MPP), these irradiance
fluctuations are directly converted into power variations. In Cali-
fornia, for instance, large-scale PV-PPs have shown power changes
over 70% in a 5e10min timeframe during partially clouded days
(Mills and Wiser, 2011). These fluctuations are not only large but
also difficult to forecast. Moreover, a highly variable net load leads
to more intense cycling of conventional power plants, thus directly
affecting their operation and maintenance as well as life expec-
tancy (Lew et al., 2013). Beyond a more fluctuating output, partial
shading has further negative effects such as a lower power output
(difficulty of tracking the maximum power point) (El-Dein et al.,
2011; Rani et al., 2013) and hot spots in the PV panels (which
may harm the modules) (Bidram et al., 2012; El-Dein et al., 2011).
More details on partially-shaded PV installations can be found in
the literature, for example in references (Ishaque et al., 2012; Kok
Soon Tey and Mekhilef, 2014; M€aki and Valkealahti, 2012).

The intensity and duration of the cloud-transients depend on
the PV-PP size, cloud speed, cloud height, and other factors (Hoff
and Perez, 2010; Mills et al., 2010; Remund et al., 2015). The issue
becomes increasingly more relevant given the numerous large-
scale PV-PPs that are being deployed worldwide. In fact, utility-
scale PV systems are responsible for the largest capacity addi-
tions, a trend that is increasing (SolarPower Europe, 2017). In Chile,
this situation is extreme: about 99% of the country's PV installed
capacity correspond to large-scale PV-PPs (Haas et al., 2018). The
90% largest plants have an average installed capacity of 70MW
(National Energy Commission of Chile (CNE), 2017). At roughly
three hectares per MW, this means areas of 1.5 km by 1.5 km
approximately per PV-PP. At these scales, it is frequent to have
partial shadowing on some sections of the PV-PP. Naturally, the
shadowed areas depend on the cloud size and speed, which may
vary widely. Reference (Lave and Kleissl, 2013) addresses the
impact of cloud speeds on solar variability. It explored clouds
ranging from 0.1 to 3.0 km traveling between 1 and 25m/s. For
example, a 0.5 km-cloud traveling at 5m/s would shadow one-
ninth of an average (70MW) PV-PP and take about five minutes
to cross the whole array.

Considering these challenges, sustainable electric power sys-
tems with high levels of solar power can only be achieved bymeans
of innovations and new services able to ensure the secure operation
of the electricity grid. Particularly, novel control strategies are
needed to allow PV-PPs to contribute actively to regulate the fre-
quency. These strategies may be either the integration of energy
storage systems (Cebulla et al., 2018), e.g. batteries (Pamparana
et al., 2017) or hydrogen (Bhandari et al., 2014), or PV-PPs oper-
ated below their maximum power point.

As what refers to studies about the use of storage technologies
for large-scale PV installations, earlier studies (Guishi Wang et al.,
2012) propose to smooth the output power of a PV-PP with the
help of a redox-flow battery or hydropower plants (with storage
capacity) (Jurasz and Ciapała, 2017). Reference (Beltran et al., 2013)
generalizes the sizing of storage to provide a constant PV output
and found that values around 1MWh of storage per MW peak of PV
are adequate. Controlling a combined PV and storage -under
forecast errors- to minimize the resulting variations (ramp-rates) is
done in reference (Duchaud et al., 2018). Using batteries to improve
system security (real and reactive power for frequency and voltage
support) in distributed systems has also been explored (Hill et al.,
2012). Many of the ideas above are combined in reference
(Hern�andez et al., 2017). They study the how frequency can be
improved (primary frequency control and inertial response) with a
PV unit supported by a hybrid energy storage, including its sizing,
and conclude that this system can effectively do the job. For very
quick variations of solar radiation, capacitors are also an option for
controlling the power fluctuations of PV-PPs (Kakimoto et al.,
2009). Other alternatives for mitigating PV power fluctuations,
such as flywheels, ultracapacitors, and fuel cells are presented in
reference (Shivashankar et al., 2016). Production of hydrogen could
also become economically viable soon to use energy excesses of
solar generation (Marou�sek et al., 2013). Although energy storage
systems are an adequate technical alternative, their use for miti-
gating power fluctuations still involves high investment costs,
which may discourage their use depending on the market
conditions.

Research about mitigating the variability of the power gener-
ated by PV-PPs without the use of storage technologies still remains
sparse. Reference (Craciun et al., 2013) is one of the few examples;
it operates the PV-PP below its MPP, leaving ramp-up capacity for
frequency support and the ability to limit the fluctuations of the
power output of the PV-PP. The work presented in (Xin et al., 2013)
proposes a strategy (droop control) in PV-PPs for primary fre-
quency support, including an additional emergency control that
allows reducing the PV power to avoid large frequency deviations
during severe disturbances. The decentralized structure allows the
control to be applied to large-scale PV-PPs. For electrical power
distribution, the authors of reference (Yang et al., 2014) present a
control strategy for keeping a constant PV output power when a
power or voltage limit of the grid is reached. The power difference
to the MPP is curtailed. In their case study, they calculated that
limiting the output power to 80% (of the possible output) implies
losing about 6% of energy per year. In our previous work, we pro-
posed a strategy based on sectioning the PV-PP in different zones,
in which each zone keeps a given level of reserve achieved by
means of deloaded operation (Rahmann et al., 2016). If one or more
zones are (partially) shaded, the control deploys the reserves of the
unshaded areas. This action allows smoothing power plant's
output. Although the proposed strategy showed a good perfor-
mance from a technical viewpoint, the deload level (and thus the
reserve margin of the PV-PP) was kept constant during the whole
day, thus making it economically less attractive. The main hy-
pothesis of the present work is that a dynamic deload level (set
dynamically during the day) can achieve a good technical and
economic performance given an accurate forecast of the solar
irradiation.

The present work proposes a dynamic control strategy to reduce
the negative effects that large-scale PV-PPs operating under
partially-shaded conditions may cause in the frequency regulation
of the electricity grid. The control dynamically sets a reserve level
over time, considering a 10-min ahead forecast of the solar irradi-
ation and system operating conditions. The forecast is done based
on a set of artificial neural networks distinguishing the kind of day
in terms of variability of the solar radiation. The control is designed
to allow PV-PPs to participate in the frequency regulation while
minimizing the energy curtailment. Innovative controls such as the
proposed here represent the basis to design new services to be
provided by PV-PPs in the future. Indeed, in electric power systems
with large shares of solar generation, this kind of functions will be
technically needed, and thus they should be remunerated as
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ancillary service.
The next section briefly reviews the existing literature for solar

forecasting. Section 3 summarizes the proposed control strategy
including the controller and forecast model. Section 4 describes the
case study. Finally, the results are presented in Section 5 and the
conclusions in Section 6.

2. Review: solar forecasting methods

There are many methods for PV-forecasting. Their accuracy
strongly depends on the involved temporal and spatial scale.
Regarding the temporal scale, for short-term forecasting (minutes
to a couple of hours), statistical methods are frequently chosen
(Diagne et al., 2013; Huang et al., 2013). Short-term forecasts be-
tween 0.5 and 6 h are usually addressed with ground-based or
satellite images to determine the cloud motion (Diagne et al., 2013;
Rigollier et al., 2004). Long-term forecasting, i.e. from 6 h to days, is
often performed with numerical weather predictions (Diagne et al.,
2013). Regarding the spatial scale, the challenge of forecasting the
production of a small PV system usually lies in the high variability
of the local weather. In the case of large-scale PV-PPs, although the
spatial distribution of the panels smoothens out part of their fluc-
tuations, the forecast needs to deal with multiple external variables
such as humidity, irradiance, and temperature from different
weather stations (Zhang et al., 2014). Hence, in practice, the fore-
cast types are frequently grouped according to the PV-system size:
small-distributed PV arrays (Bacher et al., 2009; Shi et al., 2012),
large centralized PV-PPs (Mao et al., 2013) or aggregated PV pro-
duction at system level (Zhang et al., 2014).

Among the most used methods to forecast solar irradiance and/
or output power of PV-PPs in short time-frames are autoregressive
methods (for instance, Autoregressive Moving Average eARMA-
(Diagne et al., 2013) and Autoregressive Integrated Moving Average
eARIMA- (Reikard, 2009)), statistical time series analysis (Markov
chains (Ngoko et al., 2014)), and artificial neural networks (Inman
et al., 2013; Voyant et al., 2017). Other less used approaches are
cloud imagery (Chow et al., 2011), unobserved components models
(Harvey, 1990), transfer functions (Reikard, 2009), among others.
For a detailed overview of existing forecast methods, references
(Diagne et al., 2013; Inman et al., 2013; Voyant et al., 2017) can be
consulted.

The upside of autoregressive linear methods is that they are
easy-to-implement and accurate (Reikard, 2009). The downside is
that they demand a large amount of data and are able to model
linear effects only (Box et al., 2015). On the other hand, as tradi-
tional time series analysis requires the data to be stationary, some
workmust be done to capture seasonality and the stochastic nature
of the irradiance. If enough data is available, these methods can
accurately forecast the irradiance. However, the analysis requires
intensive computational processing.

Reference (Inman et al., 2013) reviewed over 200 publications
on solar forecasting methods and confirms the successful use of
artificial neural networks (ANN) from the subhourly to the yearly
timeframe in both data poor and data-rich applications. Another
study follows a similar structure by looking at 100 publications and
underlines the flexibility of ANN (Voyant et al., 2017). Based on the
available data and conducted review, we have decided to apply
ANN, which have been proven to be an efficient forecasting
technique.

ANN are models inspired by human neurons. They learn based
on data by building an input-output mapping. Key advantages of
ANN are that they do not require deriving the equations of the
model explicitly and can capture nonlinear behaviors for the sys-
tem under study.

An ANN consists of many interconnected neurons, organized by
layers. Each connection (between two neurons) has a weight
(Rehman and Mohandes, 2008), which is adjusted in the learning
process. In the simulation, each neuron ðiÞ receives a signal ðxijÞ
from the neurons of the previous layer. Each neuron proceeds to
add up all its received signals multiplied by the weights of the
corresponding connection. From that sum, each neuron then sub-
tracts a fixed value called the activation threshold or bias ðwi0Þ,
attaining the internal activity level ðaiÞ. This threshold makes sure
that only values above it generate a meaningful neuron output (yiÞ,
once the activation function (f) of Equation (2) is applied. (The goal
of f, a nonlinear function, is to squeeze the neurons activity -a real
number-into a range between 0 and 1. Here, very negative numbers
adopt values close to zero, whereas very positive numbers are close
to one). The resulting neuron output is then passed on to the next
layer.

ai ¼
Xn
j¼1

wij$xij �wi0 (1)

yi ¼ fðaiÞ (2)

The ability of ANN easily capturing nonlinear effects and their
proven accuracy in short timeframes are their main advantages for
forecasting solar irradiance or PV output power (Chen et al., 2011;
Rehman and Mohandes, 2008). However, if the long-term system
conditions change (e.g. climate change), they would need to be
updated.

3. Dynamic control strategy

In this section, we detail the methods of our study.We propose a
dynamic control strategy composed of a forecasting model and a
controller. The strategy is based on solar panels operating in deload
mode in order to keep some power reserves. The level of deload is
set dynamically over time considering a 10-min solar irradiation
forecast and the operating conditions of the electricity grid.

To implement the proposed control, the PV-PP must allow
tracking of multiple maximum power points. This can be achieved
by different inverter architectures, including string, multi-string,
and central inverters (Bidram et al., 2012; Kouro et al., 2015). In
these configurations, the PV-PP can be seen as divided into
different sections (strings or sets of strings), each of them
composed by several panels connected to the network either
through DC/AC converters or through DC/DC inverters (which are
then connected to a central DC/AC inverter). These types of con-
figurations are widely used in large-scale grid-connected PV sys-
tems (Kouro et al., 2015; Li and Wolfs, 2008).

A general block diagram of the control strategy is shown in Fig.1.
It is composed by two main blocks: “Forecasting model” and
“Controller”. The forecastingmodel is in charge of predicting the PV
generation 10-min ahead (~Pouttþ10 ) based on a set of ANN. The
controller is composed by the blocks “Deload level”, “Supervisory
control”, and several “Local control i”. While the supervisory con-
trol acts over the whole PV-PP (from a centralized perspective), the
local controls act locally in each section of the PV-PP.

3.1. Forecasting model

Contrasted to sunny or overcast days, forecasting the solar
irradiation in partially clouded conditions is particularly chal-
lenging. Different studies have shown that considering the type of
day (sunny, cloudy, and overcast) results in more precise forecasts,
as when only using one model for a generic kind of day (Ahrens,
2012). Further, due to the many stochastic drivers involved, the



Fig. 1. Block diagram of the dynamic control strategy.
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accuracy of forecasts quickly declines with the prediction horizon
(Pelland et al., 2013). Based on this background (and the learnings
from Section 2), our forecast model for the irradiance consists of
two main stages (see Fig. 2):

Stage one: an ANN forecasts the day-type (overcast, sunny,
cloudy) of tomorrow (dþ 1). The classification of these days is
based on the clear-sky index (CSI) (Larra~neta et al., 2015) as
presented in Table 1. This ANN has three inputs from the day
before: day-type (CSId), average temperature (Td), and average
global solar radiation (GSRd). See the left part of Fig. 2.
Stage two: three ANNs (one for each day-type) are in charge of
forecasting the solar radiation 10-min ahead, as shown in the
right part of Fig. 2.

In the construction of the ANNs, a correlation analysis was
performed using the Spearman correlation coefficient since it
captures the monotonic relationship between the random and the
other variables (Papaefthymiou et al., 2006). Concretely, for the first
stage (CSI-ANN), the clear-sky index of the next day ðCSIdþ1Þ is
correlated with the corresponding day of the year (dþ 1), and with
other variables of the day d (e.g. average temperature, average
global solar radiation, average relative humidity, clear sky index).
For the ANNs specific to each day-type, the global solar radiation of
the next ten minutes (GSRtþ10) was correlated with the current
values of global solar radiation, relative humidity, and temperature,
as well as with the current day of the year (d). These variables were
Fig. 2. General block diagram of the forecasting model.
selected because of the availability of real data. The activation
functions used in all ANN were Sigmoid.

Regarding the input data division for training, validation, and
testing of the ANNs:

� The input data for the CSI-ANN are first categorized into types of
day and then separated into the different kinds of days to avoid
over-representation of one type of day in either of the subsets
and to ensure each type of day was well represented. The data
was finally divided in order to have the subsets for training,
validation, and testing with a proportion of 70-20-10%.

� The sets for each GSR-ANN are selected such that the 10-min
daily data was not broken apart for different training sets. This
means that each 10-min data was used in the same set (training,
validation, and test) that the rest 10-min data of the same day.
The data was then divided into training, validation, and testing
subsets in a proportion of 70-20-10%, respectively. However, in
this case, a 10-fold cross-validation process was set in order to
avoid overfitting of the network and to have a better general-
ization capability in the final model.

Each fold ANN was then compared with each other, and there
were no statistically significant differences among them, which
confirms that the sets were statistical homogenous. The number of
nodes in the hidden layer of the ANNs is determined by trial-and-
error, which is a common practice in this kind of forecasts (Liu
et al., 2015).
3.2. Controller

As shown in Fig. 1, the “Controller” is composed by the blocks
“Deload level”, “Supervisory control”, and several “Local control i”.
The block “Deload level” uses the forecasted PV power (~Pouttþ10 ) and
the current PV generation (Poutt ) to set the deload level ðcÞ at which
the panels of each section should operate. Since the objective is to
mitigate the variability of the power generated by the PV-PP, the
deload level is defined considering the (forecasted) variation of the
PV output power over a period of 10min, i.e.:

c ¼ f
�
~Pouttþ10 ; Poutt

�
(3)

The block “Supervisory control” constantly monitors each sec-
tion of the PV-PP through the signal Pimpp. When shadows are cast
on one or more sections of the PV-PP, the supervisory control or-
ders to deploy some power reserves in order to counteract the
power deficit. Considering a deload level ðcÞ ranging from0 to 1, the
amount of operating reserves available in the PV-PP is calculated
based on:

RtðcÞ ¼
XN
i¼1

PimppðH; TÞ$c (4)

where Pimpp is the maximum power of section i (as a function of
temperature T and irradiance H), and N the amount of sections in
the PV-PP. The ideal operating condition is that each section of the
PV-PP receives the same irradiation level. If that is not the case, the
power deficit DP due to the shading situation is calculated ac-
cording to:

DP ¼
(XN

i¼1

max
n
Pimpp

o
i¼1…N

� Pimpp

)
$ð1� cÞ (5)

In other words,DP is greater than zero onlywhen at least one PV



Fig. 3. Simplified diagram of the power system including PV-PPs and meteorological
stations.
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section is operating with a solar irradiation level different from the
rest. Otherwise, DP becomes zero, and hence, no action is taken.

The supervisory control regulates the deployment of the power
reserves through the signal Kr . This signal is calculated based on the
operating reserves Rt and the power deficit DP according to:

Kr ¼

8><
>:

1� DP
RtðcÞ 0 � DP � RðcÞ

0 DP >RðcÞ
(6)

From Eq. (6) it can be seen that the signal Kr takes values be-
tween ½0;1�. When Kr ¼ 1 ðDP ¼ 0Þ, no action is taken and each, PV
section maintains its current operation. On the other hand, when
Kr <1, the power reserves are deployed in order to smooth the
output power of the whole PV-PP.

Each PV section receives and reacts on the control signal Kr by
changing (or sustaining) its output power accordingly. The local
controls implemented at each section i, use a d� q reference frame.
The deloading technique used for allowing the sections to keep
some power reserves is achieved by decreasing the PV voltage
below the MPP voltage (Rahmann et al., 2016).

4. Case study

4.1. Electric power system under study and data

The isolated Northern Interconnected System (NIS) of Chile is
studied here. Its generation matrix is based on fossil fuels genera-
tion (coal, oil and natural gas). The projected peak load for 2020 is
3300MW, characterized by about 90% of industrial and 10% of
residential load (National Energy Commission of Chile (CNE), 2016).
At the time of this study, the NIS was still operating in isolated
mode, separated from the rest of the country. The islanding oper-
ation, together with slow generation units with limited ramp rates
and low levels of inertia, has led the NIS to constantly have a poor
frequency regulation performance.

Placed in the heart of the Atacama Desert, the system has access
to one of the highest solar potentials around the world (Cordero
et al., 2016; Solargis s.r.o., 2018). Accordingly, many large-scale
PV-PPs have been deployed during the last years. The scenario
under study assumes that about 15% of the system's installed ca-
pacity corresponds to PV-PPs (Haas et al., 2018). This corresponds to
around 900MW of the total installed capacity of the system by
2020 distributed among fourteen PV-PP. The PV-PPs are allocated in
three zones throughout the system. The structure of the electricity
grid, the location of the meteorological stations, and the location of
the PV-PPs are shown in Fig. 3.

In this study, each PV-PP is considered to have multiple
maximum power point trackers (such as it is the case of multi-
string inverter architectures or central inverters). The PV-PPs
were divided into 4 sections, each with its own MPPT and
different forecast. The required data for the forecasting model is
collected from existing meteorological stations distributed
throughout the system (Cordero et al., 2016; Department of
Geophysics - University of Chile and Ministry of Energy of Chile,
2012). The ANNs of each zone are trained, validated, and tested
with the data from the nearest meteorological station (see Table 2):
PALM, CRUC 1,2, SLAR for zones 1, 2, and 3, respectively. These sta-
tions include data for radiation (diffuse, direct normal, global hor-
izontal), temperature, humidity, and wind speed, and have a
resolution of 10-min.

For the ANNs specific to each day-type, the 10-min data was
split into the different day-types, following the classification
mentioned earlier (based on the CSI). Table 3 shows the resulting
data entries of each station for each day-type. Each of these groups
was used to train the respective ANN. It can be seen that the data
availability of SLAR is lower, which could be an issue for the pre-
cision of the corresponding ANN.
4.2. Cases considered in the dynamic simulations

The control's dynamic performance was tested on a dynamic
model of the NIS (considering its projection to the year 2020). The



Table 1
Classification and description of the types of day according to CSI.

Type of day Description CSI

Sunny Mostly or totally clear day. No clouds. (0.6 e 1.0]
Cloudy Mostly covered day with great fluctuations or thin clouds with fluctuations. (0.3 e 0.6]
Overcast Totally covered and mostly covered days with some fluctuations. [0e0.3]

Table 2
Characteristics of the meteorological stations.

PALM CRUC 1, 2 SLAR

Latitude 20�1502500 S 22�1602900 S 22�2002700 S
Longitude 69�4603000 W 69�3305800 W 68�5203600 W
Elevation 1024m.a.s.l.a 1185m.a.s.l. 2526m.a.s.l.
Data 08/01/2008e10/29/2015 08/28/2009 e 11/11/2014 05/20/2010 e 12/31/2012

a m.a.s.l¼meters above sea level.

Table 3
Total 10-min data (in thousands) per day-type in each meteorological station.

Station Sunny Cloudy Overcast

PALM 49 k 94 k 41 k
CRUC 45 k 69 k 28 k
SLAR 19 k 22 k 11 k

5% 10% 15% 20%

level daole
D

0%
PV-PP output power variation over 10 minutes 

S15c
SSteps

SRamp

15%

5%

10%

Fig. 4. Considered deload strategies.
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model of the electric power system was implemented in the
simulation tool DIgSILENT Power Factory. The performance of the
control strategy (including the forecasting model) was tried out on
critical days. These days were selected in terms of the (high) fluc-
tuations of solar radiation. The dynamic simulations were per-
formed considering four different strategies regarding the deload
level c:

� Strategy S0c: the control strategy is disabled (0% deload level).
� Strategy S15c: as in (Rahmann et al., 2016), the control strategy
is operated with a constant deload level of 15% during the whole
day.

� Strategy SRamp: the control strategy considers a deload level
based on a ramp function.

� Strategy SStep: the control strategy considers a deload level
based on a step function.

The deload rules (or strategies) used in this work, SRamp and Sstep,
are shown in Fig. 4. Here, for example, the point ð5%;5%Þ indicates
that if a power ramp of 5% is forecasted, a deload level of 5% is
considered by the controller for the next 10min. The power ramp is
calculated considering the current output power of the PV-PP in
time t and the forecasted output power in time tþ 10. For both
strategies, we used a minimum deload level of 2% (based on the
errors inherent to the forecasting tool), and amaximum level of 15%
(based on the best-case reported by (Rahmann et al., 2016)). Other
rules could also be considered depending on the power system
under study and the characteristics of the solar resource in the
location of the PV-PP.
4.3. Data availability

To ensure the use and reproducibility of the proposed control
and also to make it easier for readers to extend our work, we have
made the data used available in our institutional site (Centro de
Energía - University of Chile, 2018). The repository includes the
data for the meteorological stations (CRUC, PALM, and SLAR) and
the database developed for the NIS in DIgSILENT Power Factory.
Each tab contains the global solar radiation (GSR), relative humidity
(RH), temperature (T), day of the year (DOY), month, hour, and
minutes plus the type of day calculated.
5. Results and discussion

5.1. Forecasting model

For each zone presented in Fig. 3, four ANNs were trained in
order to forecast the generated power by the pertinent PV-PP: one
CSI-ANN to forecast the kind of day and three ANNs for each kind of
day. The ANN models were created by using Matlab Simulink.

Table 4 presents the number of nodes in the hidden layers and
the normalizedmean squared error (NMSE) for the CSI-ANNs. It can
be seen that the obtained CSI-ANNs present a NMSE between 1.8%
and 2.4%.

Fig. 5 illustrates the structure of the obtained ANNs for cloudy
and sunny days in the meteorological station PALM. The output of
each ANN is the forecasted global solar radiation at time tþ 10.

Since the CSI-ANN can be mistaken, the ANNs of each kind of
day are evaluated not only considering the pertinent day, but also
the other kinds of days. The results are summarized in Table 5. The
ANNs, when evaluated in their corresponding day-type, present an
NMSE below 3%. This shows that the forecasting tool has a good



Table 4
NMSE and nodes in the hidden layer per CSI-ANN.

Meteorological
Station

Number of nodes in the hidden
layer

NMSE of the CSI-
ANN

PALM 6 2.4%
CRUC 14 1.8%
SLAR 13 1.9%

Fig. 5. ANNs for a sunny and cloudy day in the meteorological station PALM.

Table 5
NMSE per ANN for every type of day.

Station Data ANN

Overcast Cloudy Sunny

PALM Overcast 2.0% 1.9% 2.7%
Cloudy 4.5% 1.7% 1.2%
Sunny 4.7% 1.8% 1.3%

CRUC Overcast 2.3% 3.5% 5.9%
Cloudy 8.3% 2.9% 2.2%
Sunny 7.9% 2.9% 1.9%

SLAR Overcast 3.0% 5.0% 21.1%
Cloudy 8.6% 2.6% 44.0%
Sunny 9.7% 2.8% 2.0%
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performance when the day-type is correctly predicted. Conversely,
when the forecast of the day-type is mistaken, the NMSE increases
(to 4.7%, 8.3%, and 44.0% for PALM, CRUC, and SLAR). The impreci-
sion of forecasts in SLAR can be explained by the lack of long-term
data, which was already mentioned in Section 4 (see Table 3).
Moreover, station SLAR is locatedwithin the Atacama Desert, which
is characterized by special weather conditions during one month
each year. This natural phenomenon, the Bolivian Winter, occurs
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Fig. 6. Results of the forecasting model for all meteorologica
each January and is characterized by increased rainfall in the area.
This implies some days in January with unstable weather condi-
tions. The presence of this phenomenon makes it even more
imperative to have a larger amount of data in order to achieve good
forecasting performance even during extreme conditions.

Fig. 6 presents the forecasted and the measured radiation in the
meteorological stations PALM, CRUC and SLAR for the worst-case
scenarios in terms of radiation ramps and bias in each of the
three stations. Even for these critical cases, the forecasting models
perform quite good for all stations. The maximum bias for the
sunny day in PALM station is nearly 450 W=m2 (around 9:00 a.m.).
For the cloudy day in CRUC station the peak is around 550 W=m2

(at 3:30 p.m.), and for the cloudy day in SLAR station it is nearly 430
W=m2 (around 8:30 a.m.).
5.2. Dynamic performance of the power system

The control's dynamic performance was tested on a dynamic
model of the NIS (considering its projection to the year 2020). The
model of the system was implemented in the simulation tool DIg-
SILENT Power Factory. Although the proposed control was tested
considering several days of the year, we only present the results for
a sunny (Jan. 27, 2014) and a cloudy day (Feb. 11, 2011). These days
were selected because they exhibit high solar irradiance variability,
meaning that they represent a worst case from a system frequency
perspective.

Fig. 7 shows the evolution of the frequency during the day in all
considered strategies. The horizontal lines in 49.8 and 50.2 Hz
highlight the minimum and maximum values allowed for the fre-
quency during normal operation according to the Chilean grid code
(National Commission of Energy, 2016). It can be observed that the
implementation of the control always improves the frequency
regulationwhen compared to the case without control (S0c). This is
valid for a constant deload level during the day (S15c) and dynamic
deload levels strategies (SRamp and SStep). During a cloudy day
(Fig. 7a), the control is able to keep the system frequency within the
allowable band during the day. However, for a sunny day (Fig. 7b),
the frequency drops below 49.8 Hz evenwhen the control is active.
Nonetheless, the minimum frequency achieved during the day
(49.5 Hz at 17.20 p.m.) is higher than when the control is not used.
Moreover, the control strategy decreases the percentage of the time
that the frequency is below 49.8 Hz from 30% to 14%, thus signifi-
cantly improving the frequency regulation. This performance of the
control during a critical sunny day could be expected due to the
characteristics of the conventional generation units and the iso-
lated nature of the power system. However, the performance could
be further enhanced by defining different deload strategies per
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, February 11th 2012
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type of day.
Fig. 8 shows the energy losses for the strategies S15c, SRamp, and

SStep. It can be seen that there is an important difference between
considering a constant deload level during the day and a variable
one. The energy losses during a cloudy day in case of S15c are
around 7%, whereas in the cases SRamp and SStep are around 2%.
Moreover, during a sunny day, the energy losses considering a
dynamic deload level are even smaller than 2%. Thus, the definition
of a dynamic deload level allows an important reduction of the
energy losses of the PV-PP. Moreover, this reduction of energy
losses is accomplished without worsening the controller's perfor-
mance (recalling Fig. 7). It is important to highlight that the energy
losses shown in Fig. 8 were calculated for two critical days from a
system frequency perspective (i.e. days with high solar irradiance
variability). Since our control strategy is designed to more keep
power reserves in those days in which the expected variability is
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Fig. 8. Total energy losses (for the evaluated days) per control strategy.
high, it can be concluded that the energy losses in other less critical
days of the year should be less (or equal) than 2%. Accordingly, we
expect that our control strategy loses no more than 2% of solar
energy per year.

Fig. 9 shows the changes in the main control signal (Kr) which is
in charge of deploying the reserves and changing the deload level in
each PV section. During a cloudy day, the control signal Kr of S15c
changes more frequently its reference as when compared to the
cases SRamp and SStep. The response when considering the strategies
SRamp and SStep is better from a controller perspective, since less
efforts are required. On the contrary, during a sunny day, maximum
reserves are deployed more often (Kr ¼ 0Þ, because the radiation
drops can be more pronounced than during a cloudy day. From this
figure, it can also be concluded that a ramp-strategy for the deload
level is more efficient than a step-strategy since Kr (of the ramp-
strategy) is zero most of the time, meaning that all the reserves
are deployed.

Fig. 10 compares the output power of one of the PV-PPs for a
cloudy and sunny day considering the deload strategies under
study. The figure confirms that the dynamic control strategies are
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Fig. 9. Control efforts (signal Kr) of the different strategies. a) Cloudy day b) Sunny
day.



Fig. 10. Output power of a PV-PP for the different deload strategies. a) Cloudy day b) Sunny day.
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more efficient, as compared to the case with constant deload level
(S15c), because the energy losses are smaller (the generation pro-
files of the variable control strategies are closer to the generation
profile of the case without deload).
6. Conclusions

This paper proposes a novel control strategy to reduce the im-
pacts that large-scale PV power plants, when operating under
partially-shaded conditions, may cause on the frequency regulation
of electric power systems. The essence of the controller is to
operate different sections of a PV plant in deload mode, allowing
the PV modules to keep power reserves. The deload level of each
section is dynamically defined during the day considering a 10-min
forecast of the solar irradiation.

The proposed forecasting model is based on artificial neural
networks, divided into twomain stages. The first stage forecasts the
type of day based on the clear sky index and the second stage
predicts the radiation level. Distinguishing between different types
of days shows a better performance (lower errors) than considering
only one kind of day. In our case study, the use of three types of days
allows for an accurate forecast of irradiationwith normalized mean
square errors ranging between 1.8% and 2.4%. The results show that
to achieve good performance with the artificial neural networks, at
least 5 years of measurements are needed.

The dynamic simulations (in DIgSILENT) indicate that the
implementation of the proposed control eeither with a constant or
dynamic deload level strategye always improves the frequency
regulation of the electricity grid. However, from an economic
perspective, there is an important difference between considering a
constant or dynamic deload level in the PV power plant. Concretely,
in our case study, limiting the output power to 85% (15% constant
deload level) of the maximum available in the PV power plant
implies losing about 7% of energy per day. Instead, a variable deload
level achieves energy losses below 2% depending on the kind of day
(level of irradiance variability). Accordingly, the PV power plant can
operate closer to the maximum power point more often. Thus, a
dynamic deload level not only contributes to keeping the frequency
of the electricity grid within the allowable band, but also allows
decreasing the energy losses, making the implementation of the
proposed control economically more attractive.

In view of our results, we proved that our control strategy can
efficiently reduce the effects that partially-shaded PV power plants
have on the frequency of electricity grids when the deload level is
set dynamically during the day. The good performance was ach-
ieved not only from a technical viewpoint but also from an eco-
nomic one. This, in turn, means that to manage electric power
systems more economically, the reserve margin kept in PV power
plants should vary with time, rather than being fixed for the whole
day. These findings give important insights to electricity regulators
about how they should define the technical requirements for large-
scale PV power plants in grids dominated by solar generation.

As future work, we identify comparing the precision of the
artificial neural networks with other forecasting methods that are
promising on the pertinent timescale, for example, Markov Chains.
Furthermore, understanding the number of critical situations from
a power system operation point of view is needed to fully describe
the economic impacts of operating the PV power plants in deload
mode. In this context, the implementation of our control in PV
power plants with energy storage systemsmay also be an appealing
solution in electric power systems with large shares of PV gener-
ation. Storage devices can both decrease the energy losses from a
deloaded operation and improve the dynamic performance of the
electricity grid. We applied a deloaded control strategy as an
alternative to potentially more expensive energy storage systems
considering current market conditions in Chile. However, the case
of other electric power systems with more attractive remuneration
schemes for this kind of ancillary service might be different.
Regardless of the way inwhich the control strategy is implemented
(by means of deload operation or storage devices), the develop-
ment of innovative controls, such as the one proposed here, is a key
issue to move towards sustainable electrical power systems, while
assuring a secure operation of the electricity grid.
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Annex

Nomenclature of model

Symbol Description

ANNS (Artificial neural networks)
xij Signal that neuron i receives from neuron j
wi0 Bias of neuron i
ai Internal activity level of neuron i
fðaiÞ Sigmoid function
yi Output of neuron i
CSId Clear sky index of day d
Td Temperature of day d
GSRd Global radiation of day d

Dynamic control strategy
~Pouttþ10 10-min ahead forecast of solar power
Poutt Current solar power
c Deload level of the power plant
Kr Control signal to alter the deload level as a function of

operating conditions
H Solar radiation (in the corresponding time step)
T Cell temperature (in the corresponding time step)
PimppðH;TÞ Maximum power output of section i as a function of H

and T
RtðcÞ Amount of available operating reserves in the power

plant
DP Power deficit caused by partial shading
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