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A B S T R A C T

Anthropogenic Marine Debris (AMD) is one of the most important pollutants in the oceans. Millions of tons of
debris across oceans have created a critical environmental problem. This study presents a novel method aimed to
improve the identification of macroplastics through remote sensing over beaches, combining AMD hyperspectral
laboratory characterization and digital supervised classification in high spatial resolution imagery. Several
samples were collected from the Chiloé Island beaches, Chile. Spectral signature samples and physical properties
were assessed through laboratory work. HyLogger3® (CSIRO), PS-300 Apogee and ASD Field Spec hyperspectral
systems were used to characterize each sample. Using those measurements, a spectral library was generated by
processing, filtering and sorting the spectral data gathered, determining distinctive spectral bands for digital
classification. By using this spectral library, a digital classification method was implemented over World-View 3
imagery, covering the three beaches selected as test sites. Distinct classification methods and geospatial analyses
were applied to determine land cover composition, aimed for the detection of Styrofoam and the rest of an-
thropogenic marine debris. Four field campaigns were carried out to validate the AMD classification and mass
retrievals, performed on> 300 ground based points. The AMD hyperspectral library was successfully applied for
an AMD digital classification in satellite imagery. Support Vector Machine method showed the best performance,
resulting in an overall accuracy equivalent to 88% and over 50 tons of debris estimated on the pilot beaches.
These results prove the feasibility of quantifying macro-AMD through the integration of hyperspectral laboratory
measurements and remote sensing imagery, allowing to estimate anthropogenic influence on natural ecosystems
and providing valuable information for further development of the methodology and sustainable AMD man-
agement.

1. Introduction

From the north to the south pole, anthropogenic marine debris
(AMD) has accumulated on coastlines, in estuaries, marshes, ocean
surfaces and even down into its depths (Thompson et al., 2009; Woodall
et al., 2014). AMD represents a concern for many disciplines and
communities (Bergmann et al., 2015; Nelms et al., 2017; UNEP, 2009).
Studies on the composition of AMD in different regions of the world
indicate that plastics represent between 50% and 90% of the total,
which varies according to the proximity to the sources of pollution
(Derraik, 2002; Galgani et al., 2010; Pham et al., 2014). Moreover,
global plastic production soared from 5million tons to 311million tons
between the years 1960 and 2014 (PlasticsEurope, 2012, 2015).

Some examples of how AMD impacts the environment and the fauna
includes entanglement and ingestion, which can lead to the injury and/
or death of turtles, cetaceans, seals, birds and fishes (Rochman and
Browne, 2013; Gall and Thompson, 2015; Hardesty et al., 2015;
Newman et al., 2015; Lavender, 2017; Nelms et al., 2017; Chubarenko
and Stepanova, 2017; Unger et al., 2016). AMD can transport organic
and non-organic pollutants across beaches and oceans (Barnes, 2002;
Barnes and Milner, 2005; Nelms et al., 2017; Chubarenko and
Stepanova, 2017; Romera-Castillo et al., 2018), on the seafloor it pro-
vides shelter for small animals and can reduce the gas exchange be-
tween the water column and the sediment, displacing multiple ben-
thonic species (Watters et al., 2010; Lavender, 2017). It also impacts
human communities with the loss of aesthetic value and the reduction
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of economic activities on beaches and other public locations (Cheshire
et al., 2009). It is widely thought that AMD can be a major factor in the
possible collapse of the ocean health, being a global stress together with
others transformations, such as rising sea levels, warming waters, and
changes in the ocean chemistry (Cheshire et al., 2009; ICC, 2009).
However, the long-term impact of marine pollution on the deterioration
of ecosystems and in the loss of biodiversity is still uncertain
(Hyrenbach and Kennish, 2008; Mouat et al., 2009).

In Chile, numerous studies were carried out to identify, quantify and
describe AMD on beaches and in coastal waters which have shown that
anthropogenic marine debris is a problem along the entire coast (Bravo
et al., 2009; Hidalgo-Ruz and Thiel, 2013; Hinojosa and Thiel, 2009;
Hinojosa et al., 2011). Some of the studies highlight the abundance of
plastics, either because they were found at all the points under study, or
because they made up over 80% of the total observed AMD (Bourne and
Clarke, 1984; Bravo et al., 2009; Hinojosa and Thiel, 2009; Ivar do Sul
and Costa, 2007; Thiel et al., 2003). The abundance and composition of
AMD found in southern Chile might be related to the aquaculture ac-
tivity in the area (Hidalgo-Ruz and Thiel, 2013; Hinojosa and Thiel,
2009), which requires the use of plastics such as ropes, floats, and
buoys. Eventually, part of the materials breaks off from the structures
and can float away for long distances as floating marine debris
(Astudillo et al., 2009; Jara and Jaramillo, 1979; Thiel et al., 2003).
How far they travel depends on ocean currents and winds, as well as
how long each object stays afloat, which is usually reduced by water
saturation, biofouling, and stranding on beaches (Astudillo et al., 2009;
Fujieda and Sasaki, 2005; Gregory and Andrady, 2003).

In Los Lagos region of Chile, rapid growth in aquaculture since the
1980s has had undesired side effects, such as beaches polluted with
AMD, especially on the Island of Chiloé (Kiessling et al., 2017). Ac-
cording to DIRECTEMAR reports (2016), 141.8 linear km of coastline
on Chiloé's channels and fjords are affected by AMD, mainly in the form
of polystyrene buoys (i.e. Styrofoam), plastic ropes, and remnants of
nets or meshes used in aquaculture. The region is currently home to
39% of Chile's salmon production (Salmo salar, a foreign species to the
marine ecosystem of Chiloé) and 99.9% of its mussel production (My-
tilus chilensis), making it the region with the highest intensity and
density of salmon and mussel farming in Chile (Hinojosa and Thiel,
2009; SERNAPESCA, 2015). This relates directly to the large quantities
of AMD found in Chiloé, which vary between 10 and 50 Items/km2 in
the sea, and exceed the 200 Items/km2 in areas such as the Desertores
Islands (Hidalgo-Ruz and Thiel, 2013; Hinojosa and Thiel, 2009; Ivar do
Sul and Costa, 2007).

Furthermore, due to the remoteness of the areas where AMD can
potentially accumulate, such as uninhabited and geographically iso-
lated islands, refined and widely applicable estimation methods must
be developed (Convey et al., 2002; Morishige and McElwee, 2012). The
methods for estimating AMD quantities and distribution can be grouped
into the following categories: surveying on beaches, surveying from
vessels, trawl sampling, surveying from diving, and surveying via sa-
tellite or aerial remote sensing (Brainard et al., 2000). To apply these,
considerable logistics and economic resources are required, with re-
mote sensing as the less constricted in spatial coverage and temporal
resolution (Brainard et al., 2000; Driedger et al., 2015; McElwee et al.,
2012; Pichel et al., 2012). However, remote sensing it is not widely
developed for the detection of AMD in the marine environment
(Driedger et al., 2015), and their identification through classification
algorithm is still a challenge due to their variety and disposal in dif-
ferent site conditions and backgrounds (Morishige and McElwee, 2012).

Flow models may also be included in the previous categories, as a
method that predicts distribution and quantities of AMD, considering
the influence of oceanic flows in the trajectory and accumulation
through simulation algorithms (Derraik, 2002; Sepulveda et al., 2011).

In remote sensing one of the primary detection methods are su-
pervised classifications, which has multiple applications including the
determination of environmental damage, monitoring land use, urban

planning, and tree species distribution (Michez et al., 2016; Zhong and
Zhang, 2012). It has also been used for the detection of hydrocarbons as
plastics (Driedger et al., 2013; Hasituya et al., 2016; Hörig et al., 2010;
Kühn et al., 2004; Novelli and Tarantino, 2015; Pichel et al., 2012;
Slonecker et al., 2010), but not for AMD in the natural environment
with high spatial resolution satellite imagery. It should be noted that to
support the proper identification of each cover, supervised classifica-
tions require training data with valuable spectral information (Egorov
et al., 2015).

Considering plastics as the usual AMD type, and its different size
classes: microplastics (1 to< 5mm), mesoplastics (5 to< 25mm), and
macroplastics (> 25mm) (Barnes, 2002; Lee et al., 2013), the main
objective of this work is to estimate the amount of macroplastics AMD
on beaches through the use of very high spatial resolution imagery, and
the hyperspectral characterization of AMD in the laboratory. Here we
present an application to determine the amounts of AMD in a large scale
over the Island of Chiloé, generating coastal maps of AMD, information
that may be used for debris management strategy in the coordination of
beach cleaning and decision making regarding the current status of
AMD in Chiloé.

2. Study area and data

The Chiloé Archipelago is located in the northwestern area of
Chilean Patagonia as an extension of the coastal mountain range lo-
cated between 41° 48′–43°22′ S and 74° 14′–73° 20′ W, approximately.
The Isla Grande of Chiloé is separated from the mainland by the Gulf of
Ancud to the east, by the Corcovado Gulf to the south, and is sur-
rounded by the Pacific Ocean to the west. Tourism and fishing, espe-
cially aquaculture, have become prevalent on the island of Chiloé as a
result of the local economic growth, which has led to a major shift in
human settlements and to the expansion of the population limits, with
insufficient land planning that might provide adequate accessibility and
connectivity (Andrade et al., 2000).

The climate in the area is temperate and humid, with increased
rainfall and maritime influence towards the southern and western parts
of the island. The annual precipitation for Isla Grande is 2073mm,
spread out over the year with maximums in the winter months. The
meteorological station in the provincial capital Castro records an ac-
cumulate average of 1891mm per year (74–289mm in February and
June respectively) and an average temperature of 10.5 °C (14–6.8 °C in
the months of January and July) (Pesce and Moreno, 2014).

For this work, we selected the inner sea of Chiloé which includes
Detif, Punta Apabón, and Punta Mallil-Cuem beaches located in the
communes of Puqueldón and Quinchao, respectively, both in the Los
Lagos Region (Fig. 1). The sector has been recognized by the Aquatic
Environment group of the Dirección General del Territorio Marítimo y
de Marina Mercante (“General Directorate of Maritime Territory and
Merchant Marine”) (DIRECTEMAR), as a site of coastal debris accu-
mulation (DIRECTEMAR, 2014, 2016).

3. Method

3.1. Sample collection

Between January and February 2017, fieldwork was carried out on
the beaches in the study area by collecting various AMD macroplastics,
such as Styrofoam, plastic buoys, ropes, general plastics (e.g. bottles,
containers, fragmented plastics) and any other type of object with a
coverage > 0.5m2. These AMD selection criteria were estimated in
campaigns through frequency, abundance and superficial area, from the
intertidal zone until the presence of dense vegetation (ending of a
stone-sand substrate). In addition, samples of natural elements such as
algae, sands, stones and shells were acquired to characterize the natural
substrate on the beaches. Over 144 samples were collected on the
beaches of Punta Mallil-Cuem, Detif and Punta Apabón, as shown in
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Table 1, they were characterized, labeled, some of them geo-referenced
(accumulations), and carefully moved inside sealed boxes, to be ana-
lyzed later in the laboratory. The inert substrate samples were taken at
the center of the squares defined by the stratified sampling method,
at< 10 cm deep.

3.2. Laboratory measurements and spectral library

All the acquired samples were characterized by size, weight, density
and color. Their spectral signatures were acquired in the laboratory
using a HyLogger 3 reflectance spectrometer system (HL3™; Huntington
et al., 2010), which has an integrated suite of hardware for the acqui-
sition and analysis of spectral signatures (e.g. TSG software) in a linear
and continuous 4mm wide track and is unique in South America. The
hardware has three sensors with spectral resolutions of 4 nm in the
visible-near infrared (VNIR) [380–1000 nm] and short-wave infrared
(SWIR) [1000–2500 nm], and 35 nm spectral resolution in the thermal
infrared [6000–14,500 nm] (TIR), while also providing a height of the
samples profile via a laser profilometer, and high resolution RGB
images of the samples analyzed (Schodlok et al., 2016). This system was
developed by CSIRO (2016) in Australia and is specifically designed to
automatically detect mineralogy in drill core logging, though its ver-
satility allows it to capture spectral signatures of any material, which
can then be exported into data sheets for processing on other platforms
(Schodlok et al., 2016).

The resulting spectra were compared to those obtained through the
spectral instruments PS-300 from APOGEE® (PS300) for the VNIR
range, and TerraSpec 4 Hi Res from ASD Inc. (TS4) for the VNIR-SWIR
range. The integrated use of the mentioned instruments allowed the
creation of a spectral database generated from the different instru-
ments, in order to establish a comparison in terms of spectral and
spatial resolution, enabling the validation of the spectral measurements
acquired in the field through a quantitative assessment with those ob-
tained in the laboratory.

Processing the acquired information involves performing a com-
parative data assessment, since there may be anomalous spectra due to
different phenomena such as edges or unwanted pollutant material
covering the instrument field of view. The multiple spectra (10 re-
petitions) of each sample were filtered according to mean and standard
deviation criteria, enabling a better identification of the AMD spectral
patterns. For the generation of the reference spectral library for the

different types of AMD, the same filter was applied between the sig-
natures of the samples in the same category. In this analysis, the sta-
tistical criterion of standard deviation (SD or σ) was used for each
wavelength and the anomalous acquisitions falling outside the range of
the average ( ±X 1 SD ) obtained through Eqs. (1) and (2), respectively,
were discarded.
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where, ρλ : is the average of the sampling spectrums for a given wave-
length (λ), ρλi: is the reflectance measured for the spectrum i of the
AMD sample category, n: is the number of spectra acquired for the
sample, SDρ: is the standard deviation of the n spectra of the AMD
sample.

Additionally, a comparison was performed between PS300, TS4 and
HL3™ by calculating the Difference of the Amplitude “D” (Eq. (3)) as
proposed by Price (1994), which was used to measure the difference
percentage between the two spectra obtained by different sensors
within a given spectral region.
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where, S1: is spectrum A for a given wavelength λ, S2: is spectrum B for
a given wavelength λ, λb−a: Spectral wavelength or band [nm].

3.3. Image processing

A WorldView 3 (WV3) scene acquired on February 25, 2017, was
used in this work. This image covers an area of 163 km2, 8 bands in the
VNIR spectral region (Coastal, Blue, Green, Yellow, Red, Red Edge,
Near-IR1 and Near-IR2) and the panchromatic band (PAN), which has a
spatial and radiometric resolution of 1.2 m for 14 bits, and 0.3m for
11 bits, respectively.

The image was corrected atmospherically using the Atmospheric
Compensation algorithm from DigitalGlobe (AComp; Pacifici, 2016).
This recent algorithm has been used in high resolution imagery
(Matasci et al., 2015; Pacifici et al., 2014) and compared to the well

Fig. 1. Study area for the Chiloé islands highlighting the test sites of Detif, Punta Apabón and Punta Mallil-Cuem.
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Table 1
Manmade AMD and natural samples collected from the study area.

Type No. samples Image

Buoy 18

Nautical rope 15

Rope 13

Mesh 4

Plastic 8

Styrofoam 25

Total 83

Netting 4

Bag 17

Shell 4

Sand 30

Rocks 6

Total 61
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know methods FLAASH (Matthew et al., 2000) and QUAC (Bernstein
et al., 2012), showing that in general AComp have more accuracy over
different surfaces like asphalt, concrete, dirt, grass, sand, deep water
and superficial vegetation in water (Pacifici, 2013) and a better per-
formance for the identification of tree species (Cross et al., 2018).
Subsequently, the surface spectral reflectance was estimated according
to Eq. (4) and based on the data processing suggested by DigitalGlobe
(Inc).

=ρ ND
NDmax( )k

k

k (4)

where, ρk: Reflectivity in band k. NDk: Digital level in the band k.

3.4. Spectral signature convolution for satellite modelling

The hyperspectral spectra were convolved using RSRCalculator® to
estimate the AMD reflectance values for the spectral bands corre-
sponding to different remote sensors (Durán-Alarcón et al., 2014). This
allowed to compare the spectral signatures measured in laboratory for
each AMD, with the surface reflectance from WV3. The RSRCalculator®
uses a weighted spectral convolution for each spectral band (Ck) (Eq.
(5)) to calculate the value acquired from the spectral signature.
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where, Ck: Value obtained for the spectral convolution for band k, rsr λ:
is the relative spectral response of the band, ρ λ: is the spectral signature
under analysis, λ: Wavelength.

3.5. Image classification

3.5.1. AMD zone delimitation
The amount of AMD was identified on the high tide line, avoiding

the spectral influence of large surfaces such as vegetation and sea. This
procedure was carried out using a digital supervised classification to
identify the surfaces, vegetation, and the intertidal zone.
Photointerpretation points were generated to represent the spectral
footprint of each surface and to delimit the specific sector of the in-
tertidal zone on each beach. Regarding the number of sampling points
(pixels) for digital classification, Foody and Mathur (2004b) point out
that for multispectral images, a range of 25 times the number of spec-
tral (variable) bands involved in the classification is generally used.
However, if clear spectral differences are recognized between the sur-
faces under analysis, a smaller number of sampling points can be se-
lected because this would basically provide the same accuracy as a
greater number of points (Huang et al., 2002). Therefore, for each class,
90 pixels were selected from the scene to develop a supervised classi-
fication model. For this purpose, suitable and recommendable methods
are Support Vector Machines (SVMs), algorithms that has shown higher
accuracy and best adapted to small sample sizes as compared to tra-
ditional classification techniques such as decision trees, neural net-
works or conventional probabilistic methods (Foody and Mathur,
2004b; Huang et al., 2002). To complement the digital classification, an
analysis of the distances between the high tide line and vegetation was
performed because of the proximity of certain coastal zones to popu-
lated areas, which contain surfaces that might confuse the predictive
model (e.g. zinc roofs, rural roads, Styrofoam in use or storehouse).

3.5.2. AMD spectral features and classification
A spectral separability analysis of the different materials collected

was performed under controlled laboratory conditions. This analysis
represent a key step to assess the ability to map the different classes of
AMD by remote sensing, where each class must be assumed to have a
unique and different spectral signature (Cho et al., 2009; Cochrane,
2000; Price, 1994). The spectral separability and unique spectral

features of each AMD class were determined using the Spectral Am-
plitude Difference metric (Eq. (3)) (Féret and Asner, 2011).

For AMD digital classification over beaches under study, the con-
volved spectral signatures from the WV3 (Eq. (5)) were used to train
non-parametric methods such as Support Vector Machine (SVM) and
Random Forest (RF), which have certain comparative advantages since
they do not assume any representative statistical distribution of training
data (e.g., average, variance) and often have greater classification
power with small data sets (Belgiu and Drăguţ, 2016; Foody and
Mathur, 2004a; Huang et al., 2002; Pal, 2005; Rodríguez-Galiano et al.,
2012). SVM is a model that classifies the data set using a Kernel type
vector function, establishing and adjusting the separability limits be-
tween the categories under analysis (Kuhn and Johnson, 2013). This
algorithm is extremely flexible because it allows different Kernel (e.g.
Linear, Radial) and tuning parameters. With regards to RF method
(Breiman, 2001), it consist in an algorithm for machine-learning clas-
sification based on decision trees, which has been used in remote sen-
sing with excellent results in the classification of vegetation species,
land cover and other types of surfaces (Immitzer et al., 2012; Pal, 2005;
Puissant et al., 2014). This would facilitate satellite classification of
AMD on beaches because this algorithm does not rely on previous
knowledge of the statistical distribution of the satellite data (Belgiu and
Drăguţ, 2016; Rodríguez-Galiano et al., 2012). We also use Linear
Discriminant Analysis (LDA) which is an easily-implemented conven-
tional parametric statistical technique (Bandos et al., 2009). LDA has
been used in different studies for spectral discrimination of vegetation
and surface cover in various ecosystems (Clark et al., 2005; Féret and
Asner, 2011). Basically, this method builds a set of linear functions that
best discriminate the defined classes by combining predictive variables
in a way that the variance between classes is maximized compared to
the variance within the same class (Fung et al., 2003).

3.5.3. Predictive model and validation
The development of a predictive classification model is an iterative

process aimed at obtaining an accurate prediction using the data
available (Kuhn and Johnson, 2013). For this reason, it is common for
classification models to be tuned via re-sampling techniques; different
data subsets are used to train the model and other, for their validation,
with the objective of obtaining a true quantification of each method
error results (Castro-Esau et al., 2006). To build the prediction model
for AMD, a combined database of laboratory spectral signatures was
used along with GPS control points obtained in the field campaigns
(January, February, June and July of 2017). Then, the photo-inter-
preted points, WV3 imagery, and field survey were used to identify
large agglomerations of AMD, such as expanded polystyrene, other
debris and pixels of sand. Accordingly, the built database was separated
into one subset for training (70%) and another for validation (30%),
and the training data were re-sampled by cross-validation (10-fold) for
different AMD categories. The performance of the digital classification
methods was assessed using a confusion matrix, allowing a series of
effective evaluation statistics.

3.6. Estimated AMD mass on study area

To estimate the mass of the AMD on beaches, a stratified sampling
method was developed at different distances from the intertidal zone
(Fig. 2). To do this, a grid scheme like the WV3 pixel was used to
quantify the debris present in a certain area (1.2× 1.2m). On each
sampling point, all AMD inside the grid was weight to determine a
relative density of AMD. This method was repeated all along the beach
and descriptive information was recorded, such as the spatial co-
ordinate (GPS), the types of AMD identified, the weight, and photo-
graph before and after the shifting, among others. This method enabled
assessing the reliability of the AMD prediction algorithm and eventually
estimating the total mass of AMD on the beach. The information was
stored in a database created in Google Earth (“www.github.com/
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Labuchile/PREDRES”), which represents the sampling location points
with photos of the AMD and metadata.

Finally, Fig. 3 summaries the proposed methodology in four steps,
including the (1) Data Acquisition, obtaining the satellite image and
ground truth data which included the AMD samples, GPS points of AMD
accumulation, and the grid sampling method for the posterior mass

determination. The (2) Data Processing and Algorithm Construction
incorporates the generation of the AMD Spectral Library, the organi-
zation of all the ground truth data, the corrections of the satellite image
and the application of the supervised classification methods. The next
step (3) a Validation of the AMD classification were performed, in-
cluding an iteration of the model for a broader understanding in the

Fig. 2. Sample methods for AMD weight quantification over the Mallil-Cuem beach. Letters show different types and concentration of AMD such as, A) Without AMD,
B) Ropes, Oil bottles, Ropes and meshes of aquaculture, among others, C) Pet bottles and other plastics, D) Styrofoam and plastics materials and E) Sand.

Fig. 3. Flowchart for AMD classification over Chiloé beaches.
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performance of the accuracy errors. Finally, (4) AMD Quantification,
estimation using the mass description collected at in-situ, in order to
quantify the AMD Surface Mass for the entire beaches.

4. Results

4.1. Spectral data base

The spectral signatures acquired by HL3™ were processed and
sorted in a database for digital classification of the images. First, the
multiple spectral signatures of each sample were filtered, and then the
signatures of all the samples of the same AMD class were again filtered
(Fig. 4, example for Styrofoam). There was a wide variability among
samples analyzed throughout the range of VNIR (380–1000 nm) and
SWIR (1000–2500 nm), which matches with their variability in dirt,
color, water content, biofouling and other environmental weathering
processes (e.g. solar irradiance, air humidity, winds). Some of the
samples had high variability between their own surfaces, and in that
case, we separated them in two different sides (treated as different
samples), in order to include this variation in the AMD spectral library.
The external face (Side A) corresponded to the surface affected by the
variety of environmental weathering processes, also with scratches and
different roughness, and the internal face (Side B), corresponded to an

inner cut of the samples, without direct environmental exposure and a
relative flat surface (Fig. 5). The standard deviation filter had a sig-
nificant effect on the elimination of spectral signatures with extreme
values, which may be result of small roughed areas in the samples that
overestimated reflectance. For Styrofoam, reflectance increased pro-
gressively by 30% between 380 and 680 nm and then an average value
of 72% in the NIR (700–1000 nm) and 68% in the SWIR (Fig. 4). Ad-
ditionally, in the SWIR range, there were spectral features of differ-
entiated absorption appearing in the regions of 1670–1690 nm,
2130–2190 nm and 2430–2500 nm (Fig. 4).

It should be noted that the available WV3 satellite information only
covers the VNIR spectral region, which means subsequent analyses only
considered wavelengths between 400 and 1100 nm.

The degree of similarity between the internal and external face of
each Styrofoam sample obtained with HL3™ was analyzed. To do so, the
difference in spectral amplitude (D, Eq. (3)) was calculated for the VIS
(Dvis) and NIR (Dnir) regions, which for the total 24 Styrofoam samples
analyzed, gave an average value of 20% and 15%, respectively. This
variability existed mainly between 380 and 680 nm, for example,
sample N58 had a Dvis value of 19% (Dnir, 10%), for N60 there was a
spectral difference of 31% for Dvis (Dnir, 13%), in the case of sample
N54, a Dvis value of 23% was obtained (Dnir 17%) and finally for
sample T5, a Dvis value of 25% (Dnir 5%) (Fig. 5). These differences

Fig. 4. Spectral signatures and images acquired by HyLogger 3. Top: Different samples of Styrofoam collected from field campaign. Left: non-filtered spectral
signatures. Right: Filtered spectral signatures of each samples with mean ± 1 standard deviation. External Face (Side A): correspond to the side of the sample
collected in the beach undergone environmental weathering. Internal Face (Side B): correspond to an inner cut of the same sample which has not suffered en-
vironmental exposure.
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were also found in all the analyzed Styrofoam samples, in which a
potential feature in the NIR region for spectrally separating Styrofoam
was identified.

4.1.1. Results of spectral signature processing
The processing and analysis of the spectral signatures generated by

HL3™, as well as the data filter by standard deviation, was performed on
all the materials collected in the study area (Fig. 6, left). The spectrally
convolved value was then estimated for the different types of AMD,
obtaining a boxplot graph associated with the reflectance variability in
WV3 bands (Fig. 6, right).

Buoys corresponded to high density polyethylene material with a
low reflectance in the VNIR (< 20%). This AMD is widely used in
mussel farming and others, and can be found in different colors, re-
sulting in its variation in the same part of the spectrum. In the NIR
region, on the other hand, it showed a spectral absorbance pattern in
the 930 nm band for all the evaluated samples. Ropes had a variable
spectral pattern with a reflectance below 35% in the VNIR and a
minimum SD of 5% in NIR. At the same time, the boxplot (right) clearly
corresponded to the sectors with the highest spectral variability in the
signature according to the interquartile deviation (yellow, red and red
edge bands). The Nets (aquaculture nets) had a reflectance under 10%
between 400 and 500 nm, which increased to 15–20% in the remaining
bands. The particular case of Other Plastics, corresponded to frag-
mented black plastic pieces together with PET bottles and other trans-
parent materials, resulting in a low reflectance (5–7%) with a minimal
variability (< 3%) for the entire analyzed spectrum. Styrofoam pre-
sented the highest reflectance (40–70%) of all the types of AMD, with a
persistent variation of ~10% related directly to the multiple processes
of environmental degradation that may affect it reflectance. Sacks had
the most variable reference spectral signature, with up to a ~10–15%
amplitude between the 510 and 780 nm range caused by the various
coloration and levels of wear, as also occurs in the Buoys. In the case of
the Sand, it spectral signature was characterized by low and constant
reflectance (< 10%), attributable to the moisture content of the sam-
ples acquired in the coastal area.

The AMD spectra signatures were convolved according to the WV3
band spectral response function (Fig. 6, right). In comparison, Styr-
ofoam had clear spectral difference to the rest of the AMD materials

analyzed, and thanks to its high reflectance, it is differentiable at the
WV3 imagery level. Instead, the remaining AMD materials studied
showed low spectral amplitude and high dispersion in the spectral re-
gion analyzed. This is attributed to the level of degradation and che-
mical characteristics causing a significant overlap in the VNIR bands,
thus making it impossible to spectrally separate it at WV3 scale
(Fig. 7A).

4.2. Digital classification

Results of the spectral processing showed that it was not possible to
spectrally classify all the AMD separately due to their great variability
in the WV3 bands (Fig. 7A), and even more, by their lack of pixel re-
presentation in the WV3 scene for each type of AMD. However, Styr-
ofoam had a unique spectral characteristic compared to other AMD
materials and enough representation in the study area, thus the digital
classification could be performed separately for this type of AMD.
Therefore, the categories classified corresponded to Expanded Poly-
styrene AMD (Styrofoam), and AMD Mixture, which corresponds to the
other types of AMD together (Fig. 7B).

The supervised classification was done with the methods Random
Forest, Linear Discriminant Analysis and Support Vector Machine, the
last with 3 different kernels (Linear, Radial and Polynomial) (Fig. 8).

For Punta Apabón beach, the best method corresponded to SVM
Linear, with an overall accuracy of 91% and Kappa index of 84%. In this
sector, there were big accumulations of Styrofoam among the debris
dispersed on a beach made of stones (1.5–3 cm in diameter). Punta
Mallil-Cuem beach had overall results above 80% in all the methods,
with maximums for LDA, RF and Radial SVM (88%). This is attributed
to a fine white sand and greater presence of herbaceous vegetation in
the high tide section. As for Detif beach, an overall accuracy of 83% was
achieved with SVM Linear, detecting high concentration of AMD along
the high tide line on a 3m wide strip, mainly of Styrofoam debris,
fishing ropes and household litter. Lastly, the Matao validation beach
performed well in the classification, with values over 80% in the best
cases (RF and Linear and Radial SVM), but with poor Kappa index re-
sults, which might be directly related to lower availability of testing
data. Nevertheless, low concentrations of AMD in the field were con-
firmed.

Fig. 5. Comparison of internal and external face of four different Styrofoam samples affected by environmental weathering such as N58: Dirt and physical damage;
N60: Solar radiation; N54: Dirt, water and solar radiation; T5: Inlay dirt and microorganism.
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In general terms, the accuracies of the different AMD classification
models were>75%, depending basically on the data selected for ca-
libration and validation. To evaluate which of the five predictive
methods perform consistently better, 100 iterations of the classification
on the Mallil-Cuem beach were made, with the data being randomly
sub-sampled in each case (Fig. 9). Radial SVM corresponded to the
classification method with the best overall accuracy on average, having
it higher frequency close to 90%.

4.3. Mass determination

The estimation of AMD concentration on each beach was performed
by taking the WV3 pixel area and the average density of styrofoam
(38.16 kg/pixel) and of an AMD mixture (1.75 kg/pixel). A summary of

the mass determination for each beach (Table 2), showed that Detif was
the one with the highest AMD mass, with an average of 26.85 tons and a
standard deviation of 8.8 tons, directly related to the extension of the
beach (~4 km), however, it also has the greatest amount of AMD per
area, with a maximum of 0.692 kg/m2 estimated with SVM Polynomial.
Punta Apabón and Mallil-Cuem beaches had an average concentration
of 8.29 and 6.67 tons and a standard deviation of 2 and 1.6 tons, re-
spectively, with a maximum of 0.447 and 0.248 kg/m2. Lastly, Matao
beach had the lowest average concentration of AMD, with 1.89 tons and
a standard deviation of 0.8 tons, estimating 0.137 kg/m2 with Random
Forest.

The variability observed in the prediction of the models is primarily
linked to the estimates made with LDA, given that they have a marked
difference with the remaining classification methods, with the

Fig. 6. Representative spectral signatures (left) and WV3 convolution boxplot (right) of different types of AMD and sand.
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exception of Mallil-Cuem beach. This might be related to the structure
of the method, which has a standardized linear statistical mechanism
and depends on the amount of input data, which produces a method
that over-fits to the training and validation data.

5. Discussion

The acquisition of spectral signatures of AMD is crucial for im-
proving their identification on beaches using satellite images. The

spectral characterization in laboratory allows the application of digital
classification algorithms on images acquired by multispectral sensors
onboard satellites, aircraft and others UAV. This create the opportunity
to automatize the identification of AMD, reducing efforts and time, and
becoming one of the first studies to successfully quantify macroplastic
marine debris in a multispectral and high resolution image.

The current satellite missions provide the opportunity to choose
from a wide range of sensors designed to meet objectives according to
the spatial and spectral characteristics, and the revisit time on the area

Fig. 6. (continued)

Fig. 7. (A) Normalized spectral signatures of the different types of AMD in terms of WV3 Bands. (B) Final spectral classes used as input in the classification.
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of interest. The high level of spatial and spectral details obtained from
WV3 imagery is essential for identifying and classifying AMD in the
territory of Chiloé. However, the climate in the study area is heavily
influenced by its coastal location and high moisture content, resulting
in low availability of cloud-free scenes and the need for robust atmo-
spheric corrections in order to minimize the effect of marine and ter-
restrial aerosols on the results.

Due to the diversity of substrates where AMD are usually deposited,
some factors that might affect classification are the type of sand-soil or
clast on the beaches under analysis, where anything from round rocks
to fine sand can be found. This could affect the spectral contrast existing
between the reflectance of the sand, the AMD mixture and the
Styrofoam, affecting the ability to classify properly. Therefore, it be-
comes necessary to take in account a spectral signature of the substrate
where the AMD classification is to be carried out.

Regarding the performance of the predictive models, it was de-
monstrated that AMD digital classification is feasible, and its accuracy

mainly depends on the calibration and validation data of the supervised
methods. For this study, however, a combination of different analytical
methods of digital supervised classification was carried out, thus re-
ducing any uncertainty associated with the methods thanks to a series
of iterations. This technique of iteration and reduction in classification
error has been used to create bioclimatic models of plant species dis-
tribution (Thuiller et al., 2009, Engler et al., 2011, Araújo and New,
2007) and mapping of tree species (Engler et al., 2013).

A similar AMD study is presented by Garaba and Dierssen (2018),
identifying specific absorption features in the spectral signatures of
microplastics, although their samples did not reveal being affected by
environmental exposure, such as surfactants and biofouling. The sam-
ples collected in this work were affected in a wide range of organic
matter, biofouling and environmental weathering. Therefore, the AMD
spectral signature generated in this work mostly represent the actual
debris to be founded in the beaches of Chiloé, making possible the
aggregation of several spectra in a “bulk” signature that was applied for

Fig. 8. Supervised classification assessment over Punta Apabón, Mallil-Cuem, Detif and Matao beaches. Highest overall accuracy and kappa indexes are also shown.
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the classification in the imagery. This work contributes to better un-
derstand the high range of spectral signatures of AMD affected by
weathering conditions which differs from the spectra directly obtained
from virgin plastics.

Other research must be conducted to improve the knowledge of
macroplastics spectra at varying the time of environmental conditions,
the content of water, biofouling and dirt. In this context, the resolutions
for SWIR in most satellites might allow an asset, although the SWIR of
WV3 has a coarser resolution than the VNIR and NIR bands, making
difficult its inclusion in the analysis and in the predictive model pro-
posed in this work. Nevertheless, our results represent, as a first ap-
proach, a feasible predictive model which used a limited spectral and a
high spatial resolution imagery, retrieving the location and extent of
plastics in the natural environment, improving the actual state of re-
mote sensing applications (Driedger et al., 2013; Hasituya et al., 2016;
Hörig et al., 2010; Kühn et al., 2004; Novelli and Tarantino, 2015;
Pichel et al., 2012; Slonecker et al., 2010). The proposed method can be
automated and used for monitoring debris in beaches, periodically and
with high accuracy, although some hyperspectral features of natural

surfaces are site dependent.
One of the most important results of this study is related to the

decision making regarding to the AMD environmental problems on the
Island of Chiloé. The results obtained are crucial for determining the
minimum requirements for AMD transport and processing logistics as
they can provide a priori knowledge of the loads to be collected, the
area where the AMD are to be stockpiled and pre-treated. The economic
and/or environmental transfer of this debris for reevaluation in the
market or for its final disposal in landfills is another aspect where this
work can add value, by providing the approximate mass of AMD ac-
cumulation on the beaches. However, some basic assumptions were
made in estimating AMD density, such as the area covered by AMD in
the WV3 pixel, and its relation to Styrofoam with an average height,
which could be modified and adapted to other type of AMD.

6. Conclusions

This work presents a spectral characterization of anthropogenic
marine debris identified on the beaches of Chiloé, Chile, which is then

Fig. 9. Distribution plot of 100 iterations assessment for each classification method over Mallil-Cuem beach.

Table 2
Summary for each beach and it estimation of mass for the five classification methods.

Test site Classification method Area [m2] [Tons] [kg/m2]

Beach extension [m] Expanded polystyrene Mixture AMD Expanded polystyrene Mixture AMD Total

Punta Apabón Random forest 21,232.80 207.36 3186.72 5.495 3.885 9.380 0.442
SVM linear 204.48 3000.96 5.419 3.658 9.077 0.427
SVM polynomial 201.60 2851.20 5.342 3.476 8.818 0.415
SVM radial 269.28 1936.80 7.136 2.361 9.497 0.447
LDA 142.56 743.04 3.780 0.910 4.680 0.220

Mallil-Cuem Random forest 35,972.60 216.00 1389.60 5.724 1.694 7.418 0.206
SVM linear 162.72 1307.52 4.312 1.594 5.906 0.164
SVM polynomial 149.76 570.24 3.969 0.695 4.664 0.130
SVM radial 298.08 840.96 7.899 1.025 8.924 0.248
LDA 231.84 276.48 6.140 0.340 6.480 0.180

Detif Random forest 44,926.60 479.52 10,038.24 12.707 12.238 24.945 0.555
SVM linear 545.76 11,344.32 14.463 13.830 28.292 0.630
SVM polynomial 714.24 14,656.32 17.477 13.616 31.093 0.692
SVM radial 659.52 11,168.64 18.927 17.867 36.795 0.819
LDA 360.00 2934.72 9.540 3.580 13.12 0.292

Matao Random forest 19,175.00 27.36 1560.96 0.725 1.903 2.628 0.137
SVM linear 21.60 1556.64 0.572 1.898 2.470 0.129
SVM polynomial 21.60 1084.32 0.572 1.322 1.894 0.099
SVM radial 53.28 515.52 1.412 0.628 2.040 0.106
LDA 15.84 23.04 0.420 0.030 0.450 0.023
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applied in a digital supervised classification using very high-resolution
satellite images. The spectral signatures obtained with the Hylogger-3
equipment allowed the spectral patterns of each AMD to be determined.
Expanded polystyrene and AMD mixtures deposited on the beaches in
images of 0.3 to 1.2 m spatial resolution could be detected with low
error. One opportunity for improvement would be to include other
ranges of wavelengths (spectral bands) that may enable the classifica-
tion in adverse weather conditions, as well as distinguishing types of
waste in AMD mixtures other than expanded polystyrene. The digital
supervised classification methods employed in this work varied in their
performance according to the type of substrate, remarkably with pre-
cision of 80% in general. This work provides new sources of informa-
tion that might be applied to environmental problems associated to
AMD on a global scale, making easier to create an environmental
management strategy for coordinating beach cleaning and decision
making regarding AMD monitoring in Chiloé.
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