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ARTICLE INFO ABSTRACT

Keywords: Traditional practice in mine planning often relies on estimation techniques that fail to account for the intrinsic
Geostatistics uncertainty of geology and grades, which may have significant consequences in the mine operation. Dealing with
Simulation

this uncertainty has been a major topic in the last years, where different algorithms and stochastic optimization
models have been proposed to tackle this issue. However, the increasing complexity of these stochastic models
and the use of several simulations to represent the deposit variability impose a computational challenge in terms
of resolution times, making them difficult to apply in large data or complex mining operations. In this paper we
explore the antithetic random fields approach as a variance reduction technique, to solve a stochastic short-term
mine planning problem, aiming to reduce the number of simulations required to obtain a reliable NPV value. The
reliability of the result is measured by the variance of the NPV when the problem is optimized with different sets
of realizations. Our results show that this technique produces a significant variance reduction in the inference of
the expected NPV value in the stochastic problem for a copper deposit application, generating a lower dispersion

Variance reduction
Mine planning

with a smaller sample size, compared to traditional simulation techniques.

1. Introduction

Uncertainty has been a major challenge in the mining industry.
Almost every decision taken in a mining project has to deal with un-
certainty in some way. In the last decades there has been an increasing
interest in addressing this uncertainty with new techniques that not
only account for a single estimate of the uncertain attributes, but a wide
range of possible scenarios of the real deposit through geostatistical
simulations. This technique has allowed the planner to make decisions
considering how a fixed production plan will respond to different sce-
narios. But a different question is how to consider this uncertainty
during mine planning optimization. This is often addressed with sto-
chastic optimization techniques, which assist the mine planner to de-
cide the best strategy under uncertainty of the parameters such as
grade, cost, price, etc. However, the incorporation of uncertainty re-
quires a large number of grade scenarios to represent the true varia-
bility of the deposit, which makes the problem prohibitively large to
solve efficiently. In this paper we tackle this issue answering the
question: Can the number of geostatistical simulations in the optimi-
zation problem be reduced, without compromising the representation

of the deposit's true variability? To answer this question, we use a
variance reduction technique applied to geostatistical simulation, and
we prove its effectiveness in a stochastic optimization problem.

In the natural resources industry, one approach to reduce the
number of simulations is the selection of a small set of simulations that
represent the characteristics of a larger set. The final number of sce-
narios is fixed, based on the computational runtime of the model stu-
died, and the challenge is finding the best subset from the larger set,
which minimize some predefined distance measure between both sets
based on a relevant attribute of the simulations. Heitsch and Romisch
(2003) applied this approach, focusing their work in a heuristic to find
the best subset of realizations from the larger set, where they add or
subtract a single scenario sequentially until they achieve a satisfactory
result. This was also used in power management problems (Dupacova
et al. (2003), Heitsch and Romisch (2009), Growe-Kuska et al. (2003)).
Armstrong et al. (2013) used this methodology in a stochastic mine
planning problem, but the sequential approach proposed by Heitsch
and Romisch (2003) did not perform as expected, delivering a subset
with a value 50% off from the true optimal for a small case study. They
proposed a different approach instead, based on a random search
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procedure considering a proxy variable for each scenario as the total
tonnage of ore for a range of cut-off grades, used to select the smaller
set. It was tested in a real deposit with promising results: the value
computed using 12 scenarios was 1% off the value computed with 100.

Scheidt and Caers (2009a, b) present a methodology to select rea-
lizations from a large set based on a clustering method on a projection
over a reduced space, using kernels and specific distances to measure
similarity between simulations. The application, requires, however,
having access to a large set of simulations of petrophysical properties
before selecting the subset to post process for history matching in
petroleum applications. Other authors have approached the problem by
defining a proxy variable that is linked to the performance response,
and devised a ranking of the realizations to then select a small number
to characterize the uncertainty in the response (Deutsch and Srinivasan
(1996); McLennan and Deutsch (2005)). A typical approach consists on
processing only a few key scenarios linked to the percentiles 10, 50 and
90, as a way of representing the expected variability of the response
(Deutsch (2007), Pereira et al. (2017)). It should be noted that the
proxy variable must have a monotonic behavior with respect to the
transfer function.

Another approach has been the implementation of variance reduc-
tion techniques. These are procedures to reduce the estimate variance
without increasing the number of simulations or, conversely, achieving
the same estimate variance with fewer simulations tested. This usually
requires modifying the simulation algorithm, in order to sample the
probability space with fewer runs. A complete review of these techni-
ques can be found in Cheng (1986), James (1985) and Kleijnen et al.
(2010). This approach does not require a large number of scenarios in
the first place, so they can be used to generate the desired number of
scenarios directly, which leads to further reduction of the computa-
tional complexity when the simulation algorithm is complex.

A particular methodology using antithetic variates was proposed by
Guthke and Bardossy (2012). Their work was based on an extension of
this technique to a sequential simulation algorithm. They showed that
this implementation can reduce the estimate variance up to 20% of the
conventional Monte Carlo methods in two stochastic hydrogeology
applications.

In this paper, we develop an implementation of the antithetic
random fields proposed by Guthke and Bardossy (2012) in a geosta-
tistical simulation algorithm, applied to a mine planning under un-
certainty problem.

Mine planning under uncertainty is the process of making the mine
planning decision considering uncertainty in the parameters such as
prices, grade, etc. A complete review of operations research in mine
planning can be found in Newman et al. (2010).

Uncertainty has been incorporated into the mine planning process
by different means. Of particular interest in this work is the stochastic
programming approach, which takes into account different decision
stages in a stochastic program, to obtain a mining sequence considering
the flexibility of changing some of these decisions based on new in-
formation. Among these works are a multistage approach proposed by
Boland et al. (2008) and a two-stage method proposed by Moreno et al.
(2017).

In this paper we test the variance reduction technique im-
plementation in a two-stage stochastic programming model that eval-
uates the timing of the blasthole grade information in short-term mine
planning, and its effect on the NPV considering grade uncertainty.

2. Methods
2.1. Antithetic variates technique

The implementation proposed in this paper is an extension of the
antithetic variates technique, which is based on generating scenarios

with negative correlation (Hammersley and Morton (1956)). Consider
the example of estimating the expected value of some transfer function
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f, Y=[E[f(X)], and two outcomes of a random simulation: f(X}) = ¥
and f(X;) = Y>. An unbiased estimator using these two values is:

Yi+Y a? + CovlY;, V5]

2 @

If both outcomes are independent, the value of the covariance is
zero and this estimator is equivalent to the conventional Monte Carlo
estimation. However, if the correlation between both values is negative,
the covariance is negative and then the variance of the estimator would
yield a lower result. This is the basic premise of the antithetic variates
method: negatively correlating each scenario to achieve a lower esti-
mation variance in the response. The negative correlation is then
achieved by modifying the simulation process used to obtain the
sample. It is relevant to notice that the transfer function must be
monotonic to preserve the negative correlation of the scenarios and
obtain a lower variance in the estimation of the response.

For the current application, we are interested in the expected value
of the net present value. The method can be applied in more general
cases, to characterize any parameter of the full distribution of possible
outcomes (e.g. min, max, quartiles, interquartile range, median, etc.),
although the impact of this variance reduction technique for these
parameters is not studied in the present work.

To apply this technique in geostatistics, we will use the Sequential
Gaussian Simulation Algorithm (Deutsch and Journel (1998)), since the
application of antithetic variates in this context is straightforward and
will be addressed in the next section.

Yay = Var[Yuy] =

2.2. Antithetic random fields

In Sequential Gaussian Simulation Algorithm, a standard Gaussian
random variable is simulated in a spatial grid, where each node of this
grid is visited sequentially in a random order, performing a simple
kriging estimation using the previously simulated nodes and the normal
scores of the true data to condition its value, and drawing a random
number from a Gaussian distribution with mean and variance given by
the kriging estimate and variance, respectively, to obtain the final si-
mulated value.

Traditionally, to generate m scenarios, this method must be re-
peated independently m times, with different random paths and dif-
ferent random numbers for the simulation stage. Our proposal is the
application of the methodology proposed by Guthke and Bardossy
(2012), imposing a correlation on these random numbers: the same
node will be simulated using negatively correlated Gaussian random
numbers in different scenarios with a fixed random path.

This methodology can be applied to an arbitrary number of sce-
narios, where all of them exhibit negative correlation. For m scenarios
with n nodes, m standard Gaussian random vectors of size n are gen-
erated and a particular correlation matrix between them is imposed.
Since we desire to obtain a constant negative correlation among every
scenario, consider matrix (2) as a correlation matrix between these m
vectors with pairwise correlation coefficient a.

1 a -+ a
c.=|% 1 ¢
a a - 1 (2)

Since we want the lowest possible correlation coefficient a, and
considering that matrix (2) has to be a valid correlation matrix, we get
that this value is constrained by relation (3) (Guthke and Bardossy
(2012)):

1
m—1

a>—

3

From Eq. (3), if the number of scenarios we want to correlate in-
creases, a gets closer to zero, since the pairwise correlation must de-
crease to get a negative correlation among every scenario.
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Then, to impose this correlation matrix to m standard Gaussian
random vectors of size n, the following algorithm must be followed:

1. The correlation coefficient a is calculated based on relation (3) and
the correlation matrix (2) is generated.

2. A matrix B is found such that BB" = C,,. This could be achieved
using a Cholesky decomposition technique.

3. Then, for each node to simulate i < n:
® A tuple of m standard Gaussian random numbers is generated, giﬂ.
e A vector z, = Bg!, is calculated

4. Finally, a matrix of Gaussian random numbers is constructed,
R = (z,)" where each row i is the vector z!, transposed. This matrix
has n rows, one for each node to simulate, and m columns, one for
each scenario, and the correlation matrix between the columns is
Cp.

Then, to get a negative correlation among m scenarios, the following
Antithetic Sequential Gaussian Simulation algorithm must be im-
plemented:

For each m-tuple of scenarios:

1. Random Path: A random path is generated.

2. Random Numbers: The matrix of random numbers R is generated
based on the previous algorithm.

3. For each scenario s of this m-tuple:

(a) Simple Kriging: Visit each node i from scenario s according to
the random path and perform a simple kriging estimation using
nearby data and any previously simulated nodes.

(b) Simulate Value: Assign the value of this node as:

Y (x) = Y& (x;) + o5 (x) Ry 4)

The main difference between the conventional sequential Gaussian
simulation algorithm and this antithetic variant is that the random
numbers are calculated beforehand. Also, the random path is fixed for
each m-tuple since the same node must be simulated in the same order
to achieve the negative correlation between scenarios.

2.3. Short-term stochastic mine planning problem

To evaluate the impact of the antithetic random fields in mine
planning we will use a two-stage stochastic model proposed in Nelis and
Morales (2017) that aims to address the short-term mine planning
problem evaluating the impact on the economic value of getting the
blasthole grade information in advance. In a two-stage stochastic op-
timization problem, decision variables are split into two groups. The
first group, or first stage variables, is made of variables that need to be
equal in all possible scenarios. The second group, resource variables,
may depend on the scenario, i.e., they need to be compatible with first
stage decisions, but can adapt depending on actual values of the un-
certain parameters.

In the setting that we propose, we have a set of periods .7, and
consider a time-period ¢* € .7~ which defines the moment at which in-
formation about the BH arrived, which we consider the moment at
which the actual grades of the blocks are known. Decisions up to that
point can only use average information for the uncertain grades, but
after that point they can adapt to them. This is exemplified in Fig. 1,
where on the left, we have depicted a conceptual scheduling up to
period t” = 4. After that period, multiple possible schedules are possible
(as many as grade scenarios are considered).

Formally, the problem is described as follows: let # be the set of
mining blocks, & the set of destinations for each block b € #,.7 the set
of periods and .7 the set of blasthole grade scenarios (with |.7] the
cardinality of such set). As it was stated before, t" is the period when the
blasthole information is available, with .7, é as the set of periods until £*,
and .7, é as the set of periods after t". Let vy be the profit for sending
block b to destination d at period t in scenario s, and vy be the average
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profit across scenarios. The objective is to maximize the schedule's NPV
and the decisions variables are separated according to the blasthole
information arrival: the first stage decision variable, y,,,, equals 1 if
block b € # is sent to destination d € & at period t € .7, 9 and 0
otherwise; and the second stage variable, x5, equals 1 if block b € #
is sent to destination d € Z at periodt € .7 ; in scenario s € ./, and 0
otherwise. Then, a short version of the two-stage stochastic model is
defined as:
sii

max 3, 3, PIDIPIPIE T

_ 1
Vpd + —
Yo Pod T

be# deo tefé s€E be# de 1e7g (5)
such that Z Yod T Z Xpeas = 1 Vse .s\be #

des te7g des te7g 6)

Ax+By=h VseZ 7

Eq. (5) is the objective function, which maximizes the expected
NPV, Eq. (6) states that each block can only be extracted once, and Eq.
(7) represents the rest of constraints for a scheduling problem such as
capacity, precedence or blending, with A, B matrices to form the con-
straints, h the corresponding right-side vector and X, y the vectors of
decision variables. A complete version of the model can be found in
Nelis and Morales (2017).

The results obtained by the model depends on the set of grade
scenarios, .. On one hand, we need as many scenarios as possible to
obtain a reliable NPV result that considers the true variability of the
deposit but, on the other hand, each scenario adds variables and con-
straints to the problem, making it harder to solve. Therefore, this is a
suitable optimization problem to test the proposed variance reduction
technique.

2.4. Convergence analysis

Comparison between antithetic and conventional simulation meth-
odologies is based on analyzing the variance between solutions
achieved in the optimization problem. Recall that each optimization
problem is solved using a number .71 of realizations (see Section 2.3).
The optimized NPV in problem (5) represents the expected value of the
NPVs obtained over different realizations. Our aim is to optimize such
NPV with the smallest number of realizations for a given precision. If a
number of scenarios |.71 is sufficient, the NPV obtained should converge
to the same value for any set of |.7] realizations, or equivalently, the
NPV's obtained using different sets of |.#1 scenarios should have a low
variance around the true optimum value. Therefore, the dispersion of
the result over different sets of .71 scenarios is a measure of the con-
vergence in the stochastic problem.

Thus, the procedure to compare the use of conventional and anti-
thetic realizations is:

1. A large number of realizations is generated with each method:

(a) For the conventional realizations, 600 scenarios are generated.

(b) For the antithetic realizations, the same number of scenarios
(600) is generated in sets of m realizations. Firstly, 300 sets of
m = 2 antithetic random fields are generated, which are noted
ARF2. Secondly, 60 sets of m = 10 antithetic random fields are
generated, noted ARF10.

2. The dispersion resulting from solving problem (5) as a function of
the type of simulation and their degree of correlation is analyzed.
Problem (5) is solved 30 times using samples of size
|.#1 = 2, 10 and 20 realizations. Depending on how the realizations
are generated (conventional, ARF2 or ARF10) individual realiza-
tions are selected within each sample without replacement. This is
explained next:

(a) For the conventional realizations, 30 sets of |.#1 = 2 randomly
selected realizations are first used. The process is repeated with
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(variables zp4s) can adapt

to each scenario.

Fig. 1. Conceptual representation of an adaptive schedule for t* = 4. To keep the example simple, we have colored the blocks by extraction period and not desti-

nation.

30 sets of .71 = 10 and then with sets of .71 = 20 scenarios.

(b) For the case of ARF2, 30 sets of paired realizations are selected
for the case of samples of size |.#1 = 2. For samples of size
[.71 = 10, each one of the 30 cases optimized is made of 5 sets of
ARF2. Similarly, for samples of size |.#1 = 20, each one of the 30
cases is made of 10 sets of ARF2.

(c) For the case of ARF10, 30 pairs of realizations belonging to the
same set of ARF10 are selected for the case of samples of size
|.#1 = 2. For samples of size 10, each one of the 30 cases opti-
mized is made of one set of ARF10. Similarly, for samples of size
20, each one of the 30 cases is made of 2 sets of ARF10.

3. A statistical analysis is performed over the 30 optimal values of the
objective function obtained in each case. The mean value is an es-
timator of the true objective function value, while the variance is a
measure of the precision of this estimation. Therefore, the perfor-
mance of the antithetic random fields technique can be measured in
terms of the variance obtained in this procedure compared to the
variance of conventional scenarios.

Table 1 shows a summary of how the cases were generated. Sample
size |.7] represents how many realizations are used to solve each one of
the 30 instances of problem (5). The selection of realizations for each

Table 1
Cases for convergence analysis.

Sample ARF2 ARF10 Conventional Total number of
Size .71 realizations used
2 1 set 2 realizations 2 realizations 60

randomly selected randomly

obtained from 1

set
10 5 sets 1 set 10 realizations 300

selected randomly

20 10 sets 2 sets 20 realizations 600

selected randomly

sample size .71 depends on how the realizations are generated (con-
ventional, ARF2 or ARF10), as the table indicates.

3. Results
3.1. Conditional and non-conditional simulation

The results of this variance reduction technique with and without
conditional data are presented, to verify the effect of correlating the
random numbers among different scenarios. The non-conditional si-
mulation is performed in a regular grid with 1 m separation between
nodes, in a domain of 250 x 250 x 10m> and a spherical variogram
model. For the conditional simulation, real data from a copper deposit
located in Chile was used, with a Gaussian transformation prior to the
simulation process. Some basic statistics of the copper content are
shown in Table 2.

Fig. 2 presents a plan view of the simulated domain without con-
ditional data. Zones with high value in one scenario present a low si-
mulated value in the other, showing the effect of the negative corre-
lation in the random numbers. The large scale structures presented in
both simulations are exactly the same since the random path and the
variogram model are unaltered. On the other hand, Fig. 3 presents a
plan view of the simulated deposit with conditional data. The effect of
these data is clear: both scenarios present zones with similar values and
structures, in response to the hard data used in the simulation, specially
in the center of the deposit where the drillhole information is denser.

Table 2

Drillhole dataset 1.
Data points 2376
Average 1.05 %
Minimum 0.12 %
Maximum 7.24 %
Standard deviation 0.64 %
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Fig. 2. Pair of antithetic simulations (¢ = —1).

However, around the corners of the images, reversed structures can be
seen since the conditioning effect is weaker with fewer data points.

More information can be gathered calculating the experimental
correlation coefficient of every scenario. Fig. 4 shows the average of
100 pairs of conventional and antithetic simulations obtained with
different number of scenarios simultaneously correlated (m). For the
simulation without conditional data, the correlation coefficient is close
to zero for the conventional case since every scenario is independent,
while the antithetic simulations present a lower correlation coefficient
that match the value obtained by Equation (3), showing that the
Gaussian sequential algorithm preserves the random number correla-
tion. The behavior seen for the conditional case is similar: the antithetic
random fields present a lower correlation coefficient than the conven-
tional simulations, and this coefficient increases with the number of
scenarios correlated simultaneously. However, the value of the coeffi-
cient is positive even when the random numbers exhibit negative cor-
relation, showing the effect of the conditional data across every sce-
nario. Even with the effect of these data, the scenarios generated by the
antithetic random fields technique still show a lower correlation than
conventional technique, proving that the proposed methodology can be
used with conditional data as well.

3.2. Short-term stochastic mine planning

3.2.1. Case study

The model described in Section 2.3 was used to study the con-
vergence rate of the proposed variance reduction technique. Since the
model is suitable for the short-term scheduling problem, a single bench
of a real deposit was used, consisting of 1547 blocks with a total ton-
nage 9.57 Mton at an average copper grade of 0.33%. The main para-
meters for the schedule are shown in Table 3. For this deposit, the
methodology described in Section 2.4 was implemented.

600 600fF

North
~ North

East

0.8F T T T T T T T T T =
06| A””A’”:::::::: Bt et BEEE EEEE |
+ ,’,_lr
g 04F o g
Q
£ 02f 1
S
g OF 4644 --4--¢
s | /_«.__n[——fl*". |
72_0'2 m-
o | =
S04t |
w
2 06] % 1
Z / -4 Conv.
Z_o08l N -m  ARF il
s -A- Conv.(cond.)
-l = -® ARF(cond.)

2 3 4 5 6 7 8 9
Number of correlated simulations

10

Fig. 4. Comparison of correlation coefficient for conventional and antithetic
random fields.

3.2.2. Scheduling results

The results are presented in Fig. 5. The middle line inside the box
represents the average value of 30 instances calculated for each type of
simulation, the box size represents two times the standard deviation of
these instances and the upper and lower whiskers represent the max-
imum and minimum values.

It can be seen that the mean converges to a value of 19.4 MUS$ for
the largest sample size (.#1 = 20) for every simulation type. Smaller
sample sizes (.71 =2 and .1 = 10) show a more erratic behavior,
especially for the sample size of |.7] = 2 where the mean value is always

6005

' 2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

North

400 400

East

(a) Drillhole Data

(b) Simulation 1/2

(c) Simulation 2/2

Fig. 3. Pair of antithetic simulations (@ = —1) and plan view of the conditional data.
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Table 3
Scheduling parameters.
Price 2.5 US$/1b
Recovery 85 %
Mining Cost 1.5 US$/ton
Processing Cost 10 Us$/ton
Selling Cost 0.3 Uss$/Ib
Discount Rate 10 %
Mining Capacity 2.1 MTon/month
Processing Capacity 1.2 MTon/month
T T
2.8 | ——1Conventional |-
- ARF1
26| ! RE10
D ARF2
24 [~ -4 , 3 1
S 220 o ]
— L ,: booeed
Z020F1 b B
= I | fengesd
Ao18) L 1
Z I -t
1.6 o .
14} 4
1.2} 4

S| = 2 S| = 10

Sample Size

|S|= 20
Fig. 5. Convergence of the value for the stochastic problem.

higher than 20 MUSS$. Since the real value of the objective function is
unknown for this type of problem, we should expect that every type of
simulation converges to the same value. For this specific case, this holds
true for the largest sample size (.71 = 20), where the mean values
across every type of simulation have a maximum difference of 0.4%.
For the smaller sample sizes, this difference is larger (2.9% for .71 = 2
and 1.7% for |.#1 = 10), but not significant for this case study.

Since every type of simulation converges to a similar value, the
standard deviation is a measure of the precision of this estimation. As it
was expected, the larger the sample size .7, the lower the standard
deviation for every case. However, for the same sample size, conven-
tional simulation always produces the highest dispersion. This indicates
that the proposed algorithm achieves a variance reduction for this op-
timization problem. The magnitude of this reduction is variable, as it
can be seen in Table 4. Specifically, with a sample size |.71 = 2, ARF2
achieves a reduction of 50% from the conventional standard deviation.
For |.#1 = 10, ARF10 achieves a reduction of 55%, and for |.#| = 20, the
reduction is 62%.

It is relevant to notice that the simulation type that achieves the
highest reduction depends on the sample size, |.71. For |.¥] = 2, the
highest reduction is achieved by ARF2. Moreover, the standard devia-
tion obtained for ARF10 and conventional are similar. This is explained
by the antithetic random fields algorithm and the sample size used: for
a sample size of |.71 = 2, each instance using ARF2 is generated with
one complete tuple, while for ARF10 each instance is generated using 2
random elements of a larger tuple. Therefore, the correlation coefficient
between these two scenarios is lower for ARF2 compared to ARF10,

Table 4
Standard deviation for different cases.
Sample size |.71 ARF2 ARF10 Conventional
2 1810605 3076 323 3618671
10 729879 671 042 1499136
20 543159 469921 1227579
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which is reflected in the lower standard deviation of the optimization
problem. These results indicate that the variability of the optimal values
obtained in the optimization problems is reduced when realizations are
generated maximizing their negative correlation.

In the case of .71 = 10 and .71 = 20 using ARF2, each sample is
made of 5 and 10 independently generated sets of realizations, with no
control of the correlation among different sets. Using ARF2 still im-
proves the result as compared to using conventional realizations.
However, given that realizations from different sets of ARF2 must be
combined to generate the sample of size |.71 = 10 or |.#1 = 20, the re-
duction is not as good as if the realizations were generated in a single
set of antithetic random fields.

Considering different sample sizes, using ARF10 with a sample size
of .71 = 10 achieves a lower variance than conventional simulations
with a sample size of .71 = 20. Therefore, fewer antithetic simulations
are needed to achieve the same precision as conventional simulations.
Since the stochastic optimization problems in mine planning are highly
demanding in computational resources, using fewer scenarios to re-
present the grade variability of the deposit could lead to being able to
solve more complex problems in terms of deposit size, number of per-
iods or destinations, making this kind of models useful in real-life ap-
plications.

This kind of analysis raises the question of the minimum number of
scenarios necessary to achieve a good representation of the deposit. As
it can be seen in Fig. 5, the difference between the maximum and
minimum value for a given sample size can be significant. For our
largest sample size, this difference in our antithetic simulations ap-
proach is 11% for ARF10 and 14% for ARF2, and up to 26% for the
conventional algorithm, which is significant. For this reason, using a
single instance for this particular deposit and optimization model could
lead to a result with a high error. Although this conclusion is specific for
this case study, this phenomenon can occur in other models and de-
posits. Therefore, an in-depth analysis of the number of scenarios
considered is recommended.

A possible extension of the antithetic simulation methodology is
taking advantage of the fixed path for each tuple. For a fixed path and
neighborhood, the kriging weights remain the same for each scenario,
reducing the computational cost of the simulation algorithm. The use of
a single fixed path is often discouraged since it can lead to artifacts and
poor reproduction of the covariance, but recent research has shown that
this effect can be reduced using a larger neighborhood and a multi-grid
approach (Nussbaumer et al. (2018)). Another option to reduce the
occurrence of artifacts is using different tuples to obtain a single in-
stance. In our case study, the use of multiple tuples of ARF2 to generate
a sample size of |.71 = 10 and |.#] = 20 still achieved a variance re-
duction, with each tuple using a different path.

4. Conclusions

An application of a variance reduction technique for a geostatistical
simulation framework is presented. This application was successful in
generating scenarios with negative correlation in non-conditional si-
mulations, as well as scenarios with lower correlation coefficient than
the conventional algorithm in conditional simulation. This led to a
significant reduction of variance in the estimation of the expected NPV
value for a short-term stochastic scheduling problem, compared to the
conventional simulation algorithm. This variance reduction technique
could be used to solve very costly computational models with fewer
scenarios, although the magnitude of this scenario reduction depends
on the optimization model and the deposit variability.
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Appendix A. Computer Code Availability

The proposed algorithm is implemented in sgsim arf.for
(74.4KB), available in https://github.com/gnelis/sgsim antithetic
since March 2018. This implementation is based on the open source
code sgsim. for from GSLIB (Deutsch and Journel (1998), www.
gslib.com), available in FORTRAN77 and FORTRAN90. The code de-
veloper was Gonzalo Nelis (address: Av. Tupper, 2007, Santiago, Chile.
Contact Number: +56-9-88397760. E-mail: gnelis@delphoslab.cl). The
code requires a FORTRAN compiler, and it was tested using Windows
10. Everyone is granted permission to copy, modify and redistribute
this code, but under the condition that the original sgsim. for
copyright is preserved.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.cageo.2018.09.003.
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