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A B S T R A C T

This paper synthesizes evidence from Workshop 8 ‘Big data in the digital age and how it can benefit public
transport users’ of the 15th International Conference on Competition and Ownership in Land Passenger
Transport. Big data in public transportation has increasingly attracted the attention from both scientists and
practitioners, resulting in an increasing number of scientific studies and practical applications in this field.
However, compared to the scientific developments, we see that practical big data applications are relatively
limited, and that these are applied with a relatively low pace. This indicates that big data has not been used to its
full potential in practice yet, meaning that public transport passengers currently do not fully benefit from the
opportunities big data offers in terms of public transport quality and attractiveness. Based on literature study and
input gained from a qualitative expert session with scientists, public transport authorities, public transport
operators and transport consultants together during the conference workshop, we come to the conclusion that
the challenges to stimulate further and faster use of big data in practice are institutional rather than technical.
This complexity results from required coordination and cooperation among public and private entities that are
not always aligned. A framework has been proposed with four components to stimulate a further and faster
adoption of big data in practice, directing to different stakeholders or relations between stakeholders: align
technical ambitions of big data applications with their institutional environment; enable/ease the use of big data
by PT authorities by developing common definitions, data standards and consolidation; incorporate the use of
big data by PT operators in the contract between authority and operator; quantify and visualize the business
value of big data for PT operators. We illustrate our framework by successful case studies in Chile, the
Netherlands and Sweden.

1. Introduction

In the last decade many developments have taken place in what has
been called the era of big data. This has also been affecting the public
transport sector. Big data in public transportation has increasingly at-
tracted the attention from both scientists and practitioners, resulting in
an increasing number of scientific studies and practical applications in
this field. A variety of data sources are used in these studies and ap-
plications, such as smart card data resulting from Automated Fare
Collection (AFC) systems, GPS and Automated Vehicle Location (AVL)
data, information about occupancies based on Automated Passenger
Count (APC) data, Wi-Fi information and mobile phone data. Over the
recent years, scientific research has further evolved, leading to more
advanced and complex big data studies, which potentially can benefit
the quality and attractiveness of public transport for its users. Also in

the public transport industry, big data is increasingly used. However,
compared to the scientific developments, we see that practical big data
applications are relatively limited, and that these are applied with a
relatively low pace. This indicates that big data has not been used to its
full potential in practice yet, meaning that public transport passengers
currently do not fully benefit from the opportunities big data offers in
terms of public transport quality and attractiveness.
Already in 2016, Sanchez-Martinez and Munizaga (2016) stressed

the importance of the further development and dissemination of tools
and use cases for big data, to stimulate the transport industry to adopt
the application and development of big data. The main question we
address in this research is therefore how big data in this digital age can
further benefit public transport users, and how to stimulate further and
faster big data applications in the public transport industry. We address
this question based on scientific literature and based on input gained

https://doi.org/10.1016/j.retrec.2018.08.008

∗ Corresponding author.
E-mail addresses: M.D.Yap@TUDelft.nl (M. Yap), mamuniza@ing.uchile.cl (M. Munizaga).

Research in Transportation Economics 69 (2018) 615–620

Available online 03 September 2018
0739-8859/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/07398859
https://www.elsevier.com/locate/retrec
https://doi.org/10.1016/j.retrec.2018.08.008
https://doi.org/10.1016/j.retrec.2018.08.008
mailto:M.D.Yap@TUDelft.nl
mailto:mamuniza@ing.uchile.cl
https://doi.org/10.1016/j.retrec.2018.08.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.retrec.2018.08.008&domain=pdf


from a qualitative expert session with scientists, public transport au-
thorities, public transport operators and transport consultants together
during the 15th Thredbo International Conference Series on Competi-
tion and Ownership in Land Passenger Transport held in August 2017 in
Stockholm, Sweden. To be able to address this question, a clear defi-
nition of big data is needed. Although big data can be considered a
catch-all with a variety of definitions existing, in line with Sanchez-
Martinez and Munizaga (2016) we consider big data as ‘large amounts
of data resulting from increased automation, improvements in sensing,
storage and communication technologies, exceeding capabilities to use
and understand with traditional tools and methods’. This means that
what is being considered big data is dynamic, can change over time and
is discipline-dependent, depending on the baseline dataset size which
can be handled by tools and methods being used in a certain discipline
at a certain time.
This paper is structured as follows. Section 2 provides a non-ex-

haustive overview of some state-of-the-art studies and applications of
big data in public transport. Section 3 identifies four key components
which can contribute to bridge the gap between scientific research and
practical applications related to further and faster adoption of big data.
Based on this, we introduce three case studies in section 4 of this paper
which were presented in the workshop and are illustrative of how some
of these four components can be addressed, resulting in public transport
users further taking the benefit from the big data developments taking
place. Conclusions and policy recommendations are formulated in
section 5.

2. Literature

In this section we show some examples of state-of-the-art research to
public transport systems in which big data is used. Given the large
amount of studies existing around this topic, the aim is not to address
all study areas and methods, but mainly to give a flavour of the range of
big data applications which can currently be found.
Data from AFC systems is widely used in relation to origin-desti-

nation (OD) matrix estimations. Many studies can be found focusing on
inference of passenger destinations, in case of AFC systems where
passengers only have to tap in with their smart card, or in case pas-
sengers forget to tap out in case of entry-exit AFC systems (e.g.
Munizaga & Palma, 2012; Nunes, Dias, & eCunha, 2016; Trépanier,
Tranchant, & Chapleau, 2007; Zhao, Rahbee, & Wilson, 2007). Also
transfer inference is a topic widely addressed in science, aiming to infer
whether a passenger alighting is considered a transfer or final desti-
nation of the public transport journey. These algorithms range from
using relatively simple criteria (e.g. a maximum time threshold be-
tween a passenger tap out and next tap in), to more complex

behavioural criteria, and address generic travel patterns or specific
scenarios such as behaviour during public transport disruptions (see for
example Devillaine, Munizaga, & Trepanier, 2012; Gordon,
Koutsopoulos, Wilson, & Attanucci, 2013; Munizaga, Devillaine,
Navarrete, & Silva, 2014; Seaborn, Attanucci, & Wilson, 2009; Sánchez-
Martinez, 2017; Wang, Attanucci, & Wilson, 2011; Yap, Cats, Van Oort,
& Hoogendoorn, 2017a).
While the studies mentioned above mainly focusing on improving

OD matrix estimation, other studies focus on data fusion, travel pattern
identification or visualization. For example, Nijënstein and Bussink
(2015) perform a fusion of AFC data from different public transport
operators; De Regt, Cats, Van Oort, and Van Lint (2017) fuse smart card
data and mobile phone data to identify latent public transport demand.
Fusion and visualization of AFC, APC and GTFS data is for example
applied by Giraud, Légaré, Trépanier, and Morency (2016). Also un-
supervised learning methods such as k-means, hierarchical clustering
and DBSCAN are applied to AFC data to identify, classify and visualize
spatial and/or temporal journey patterns (e.g. Agard, Morency, &
Trépanier, 2007; Briand, Come, Trépanier, & Oukhellou, 2017; Cats,
Wang, & Zhao, 2015; El Mahrsi, Come, Oukhellou, & Verleysen, 2017;
Luo, Cats, & Van Lint, 2017; Ma, Wu, Wang, Chen, & Liu, 2013).
Other big data applications relate to better prediction of public

transport ridership based on AFC and AVL data. Idris, Habib, and
Shalaby (2015) improve mode choice models based on revealed pre-
ference data obtained from AFC data. Van Oort, Brands, and De Romph
(2015) developed an elasticity-based public transport ridership pre-
diction model based on smart card data, to predict public transport
mode and route choice after network changes. Yap, Nijenstein, and Van
Oort (2018) further calibrate the parameters of this model to predict
passenger behaviour specifically during planned track closures and
disruptions, based on AFC data obtained during several previous track
closures. Several studies adopt machine learning approaches for short-
term passenger predictions. For example, Wei and Chen (2012) use
neural networks for short-term metro ridership predictions. Ding,
Wang, Ma, and Li (2016) use gradient boosting decision trees to predict
metro ridership, and Li, Wang, Sun, and Ma (2017) apply a multiscale
radial basis function (MSRBF) network for ridership prediction under
special occasions.

3. Key components for big data adoption in practice

After addressing some state-of-the-art research in the field of big
data and public transport, in this section we formulate four key com-
ponents to stimulate a further and faster adoption of big data in public
transport practice. These components are directed towards different
stakeholders relevant in the industry and their institutional

Fig. 1. Framework with key component to stimulate big data adoption in the public transport industry.

M. Yap, M. Munizaga Research in Transportation Economics 69 (2018) 615–620

616



environment, and summarized in the framework we developed as
shown in Fig. 1. In this framework, the left-hand side shows the public
transport authority (PTA), operating within a certain institutional en-
vironment, and the public transport operator (PTO). From this institu-
tional environment in a specific country certain regulations, policies
and culture result, which give directions to the way the PTA works. One
hierarchical level lower, there is the relation between the public
transport authority and the public transport operator. Although not the
case for all countries, it has become standard practice for many coun-
tries to separate the PTA and PTO as different stakeholders. This rela-
tion is formalized based on a contract between PTA and PTO, for ex-
ample resulting from a tendering process, which specifies the PT supply
the PTO must deliver against certain pre-defined KPIs. The four key
components to stimulate further and faster big data adoption in practice
are shown in the right-hand side of Fig. 1. These components affect the
public transport system via different stakeholders or relations between
stakeholders, operating on different hierarchical levels. The framework
shows the importance of an integrated approach to really fasten big
data adoption in practice, where attention should be given to all dif-
ferent stakeholders, their institutional environment, and the regulations
and contracts relating stakeholders and their environment.

3.1. Governance: alignment between technical and institutional
environment

Cities worldwide are keen on exploring ways to use mobility plat-
forms using big data to better predict current and future vehicle and
passenger flows, in order to improve accessibility, liveability and sus-
tainability. Veeneman, Van der Voort, Hirschorn, Steenhuisen, and
Klievink (2017) studied 10 mobility platforms, and pilot projects in
Haifa, Rome and Venice, with the aim to identify key governance me-
chanisms that affect the success of mobility platforms using big data.
They concluded that the more ambitions a mobility platform has, the
more governance challenges arise due to several mechanisms. A higher
technical ambition level leads to more misalignment with existing in-
stitutions, especially if this higher ambition level requires the use of
more personal data in relation to privacy regulations. A higher ambition
level of a mobility platform regarding the number of goals to realize
and the number of stakeholder to get involved, makes it more difficult
to define and realize consensus about the directions of the platform, and
increases the need for a clear governance structure and coordination.
The study performed by Veeneman et al. (2017) shows that sub-

stantial differences exist in both technical ambition level and institu-
tional environment for different mobility platforms over the world. For
example, there can be substantial differences regarding privacy reg-
ulation for the use of big data between countries. They also state that
the institutional context should mainly be considered an ‘as-is’ state.
Technical ambitions should be aligned with the given institutional en-
vironment the mobility platform is positioned in, to successfully in-
stitutionalize the use of big data in mobility platforms. For researchers
to have their state-of-the-art work adopted by practitioners, it is thus
essential to be aware of the institutional environment a specific PTA or
PTO operates in. Next to the traditional focus researchers tend to have
on technical ambition and innovation, for a successful adoption in
practice it is therefore necessary that researchers make sure the meth-
odology and data used in a study can be institutionalized.

3.2. Enable/ease use of big data by public transport authorities: definitions,
standards, consolidation

Once technical ambitions and the institutional environment re-
garding big data are aligned, the second component to further stimulate
big data adoption in practice relates to enabling and easing the use of
big data by public transport authorities. As illustrated in section 2.1,
there are many scientific applications of big data. These applications
are however relatively scattered, performed in different institutions,

different countries and by different researchers applying their own
definitions, data formats, methods and software. In order to ease the use
of big data for PTAs, it is important for the scientific community to
develop common definitions and standard data formats, together with
the industry. We therefore urge to define and further standardize the
data formats and variables resulting from AFC, AVL and APC systems.
Besides, valuable information can be extracted from big data once

different data sources are fused. Fusion of AFC and AVL data can for
example result in vehicle occupancies, without the need of having a
separate APC data source (see for example Yap, Cats, Yu, & Van Arem,
2017b). As another example, fusion of AFC and mobile phone data can
provide information about the share of public transport in the modal
split between specific parts of the city (see for example De Regt et al.,
2017). While fusion of data sources is commonly applied by several
researchers, consolidation is not always common practice in the public
transport industry yet. Agreeing on common data formats also eases
consolidation of data sources and can support PTAs to get more value
from big data. We therefore recommend the development of standard
definitions and data formats for commonly consolidated datasets, such
as AFC-APC, AVL-APC and AFC-AVL data fusions.

3.3. Incorporate big data in contracts between public transport authority
and public transport operator

The third component to stimulate big data adoption in practice re-
lates to incorporating the use of, and access to, big data in contracts
between public transport authority and operator. Given the different
institutional environments in different countries, access to different big
data sources differs between countries as well. Most often, AVL and
GTFS data containing information about public transport schedules,
locations and realized arrival and departure times, is publicly available.
Data availability and data ownership regarding AFC data however
differs more between countries and also depends on agreements spe-
cified in contracts between PTA and PTO. For example, in the
Netherlands AFC data is owned by the PTO. Whether PTAs have access
to this data, merely depends if the contract specifies that the PTO needs
to share AFC data with the PTA. Such sharing agreements can stimulate
the use of big data by PTAs, so more of its potential can be used. Given
the often relatively long duration of a tender, it is therefore re-
commended that the requirement to share AFC data with the PTA is
explicitly added in tendering documents as well.
Besides, big data use can be further stimulated if contracts between

PTA and PTO require usage and innovations of big data. For example, in
these contracts KPIs could be specified which could or should be ob-
tained from big data. Continuous innovation using big data is another
aspect which is recommended to incorporate in contracts. The fast pace
with which technological developments take place can be contradicting
with the usually relatively long duration of contracts between PTA and
PTO. It can be challenging for a public transport authority to in-
corporate KPIs and requirements in a contract that is valid for 10–15
years, which are robust and flexible enough to keep stimulating big data
innovation throughout the whole duration of the contract. We therefore
recommend designing contracts that incentivize big data innovation
during the execution of a concession, in order to align practical op-
erations with technological developments and to keep stimulating big
data innovations.

3.4. Quantify the business value of big data for public transport operators

The fourth component aims to stimulate big data use by public
transport operators, by quantification and visualization of the business
value of big data. Especially in more deregulated environments, public
transport operators generally align their performance with the KPIs as
specified in the contract with the public transport authority. Therefore,
it is important to show how big data can contribute to achieving or
improving these KPIs. Next to studies using big data to show direct
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passenger or societal benefits, there can be potential for big data studies
that contribute to operator efficiency or increase operator revenues. For
example, if big data applications can better align PT services with PT
demand, this might save the operator redundant capacity, or can im-
prove the crowding level and perceived quality of public transport on
busy tracks, which in turn can increase public transport ridership and
operator revenues.
In many contracts between PTA and PTO, KPIs related to customer

satisfaction are incorporated. From the expert session, a clear demand
arose to better quantify and predict customer satisfaction, since this is
currently considered a difficult KPI to predict due to the discrepancy
between objective performance (such as punctuality) and subjective
perception by passengers. There is an opportunity to show the business
value of big data, if big data studies can contribute to better predict
customer satisfaction.
At last, a clear need for visualization of the value of big data outputs

can be observed. Next to a mathematical quantification of the value of
big data outputs, there is a need to show this business value in clear
visualizations to, for example, managers, authorities or policy makers.
Investments in systems to handle big data can be expensive and deci-
sions for this are often not made by the public transport planners
themselves. This means there is a necessity to clearly communicate and
illustrate the business value of big data, as contrast to required costs for
systems to handle these amounts of data.

4. Case studies

In this section we introduce three case studies of big data applica-
tions in Chile, the Netherlands and Sweden, being illustrative how can
be contributed to the four components addressed in our framework to
stimulate that big data is being used more and at faster pace in public
transport practice.

4.1. Case study Santiago, Chile

Over the last years, several methods have been developed and ap-
plied to data from Transantiago, the public transport system in Santiago
de Chile. In the previous Thredbo conference, Gschwender, Munizaga,
and Simonetti (2016) presented a synthesis of the developments and big
data applications made up to that moment, that included bus speeds
estimations, OD matrix estimations, and quantification of level of ser-
vice indicators. Most importantly however, they describe “a successful
experience of collaboration between academia and the public transport
authority to develop tools based on passive data processing”. In the
expert session held during Thredbo 15, four applications of passive data
processing are presented that use the Transantiago data.
In Santiago many passenger complaints are related to buses skip-

ping a scheduled bus stop, while passengers were waiting for that bus.
To make public transport services more attractive for users, it is
therefore important for the PTA to determine how often this occurs. In
the contract between PTA and PTO, it is stated that the PTO is fined if a
bus incorrectly skips a scheduled bus stop in such cases. While the PTA
performed several manual inspections resulting in fines, in a city with
such a large bus network as Santiago - having 11,000 bus stops - it is
impossible to perform a structural, systematic check on this manually.
However, with the availability of GPS data of each bus every 30 s, big
data has potential to contribute to the quantification of this KPI as
specified in the contract between PTA and PTO.
Garcia and Herrera (2017) study models which identify buses which

incorrectly skipped formal bus stops based on GPS data. Next to existing
models, they develop a machine learning model based on Support
Vector Machines to improve the prediction accuracy of these models. In
this study, GPS data of 371 buses around a case study stop is gathered.
Based on this data, a kinematic-based model and two machine learning
models – Support Vector Machines and Linear Discriminant Analysis –
are developed to predict if a bus incorrectly skipped a stop based on

time- and position information from GPS data. The study results during
the model validation showed that the prediction accuracy of the kine-
matic-based model was about 86%, whereas this was about 89–90% for
both machine learning methods. Both machine learning methods also
slightly outperform the kinematic-based model in terms of the per-
centage buses incorrectly identified as ‘incorrect stop skipping’ while
they were actually stopping, and incorrectly identified as ‘stopping’
while in reality they incorrectly skipped the stop.
This approach can provide the PTA insights how often stops are

skipped in an automated way using big data, which can be used to
quantify the pre-defined KPI in the contract between authority and
operator. This case study is therefore exemplary for how big data could
be incorporated in contracts to quantify a certain KPI, which would be
very difficult to fully quantify by inspections only.
Bus speeds prediction is valuable for the PT operator. It can support

prioritizing mitigation measures at locations where the largest bottle-
necks for PT occur, or operators can anticipate their supply, which
possibly results in higher punctuality, customer satisfaction, and an
increase in PT ridership as consequence.
Schmidt, Moya, Cruz, and Munoz (2017) use AVL data to identify

and visualize operational bottlenecks for public transport lines. Based
on previous research, they build on a method proposed by Bucknell,
Schmidt, Cruz, and Munoz (2017), using more detailed and more fre-
quent GPS data. They incorporate queue length for identified bottle-
necks, and incorporate bus occupancies in prioritizing the bottlenecks.
Berczely and Giesen (2017) develop different models to better predict
bus travel speeds, to better align scheduled and realized travel times
and thus to improve public transport reliability. They compare three
machine learning based models, Multiple Linear Regression, Support
Vector Machines and Neural Networks, with traditional benchmark
models. Results showed that all machine learning models reduce the
prediction error up to 10–25% compared to the traditional model,
whereby the use of Neural Networks outperforms the other two ma-
chine learning models. Cubillos and Munizaga (2017) develop a model
to evaluate the impact of different bus priority schemes on bus travel
speed and time using big data. Based on AVL data from buses of San-
tiago, Chile, a bus travel time prediction model is developed, among
others incorporating dummy variables reflecting if there is mixed
traffic, a median busway or a separated one or two lane bus segment.
Their results show that median busways are predicted to realize the
largest reduction in bus travel times.
These applications show how the collaboration between the aca-

demia and the public transport authority can contribute to the align-
ment between technical and institutional environment. It also shows
how the business value of big data for a PT operator can be quantified
and visualized. The studies contribute to better regularity and relia-
bility of bus services, if travel times can be predicted more accurate,
bottlenecks can be better identified, and if the effectiveness of measures
aiming to improve bus speed and reliability can be compared. This
improves the public transport service provided to passengers and can
result in increased operator revenues from ridership increases, but also
improve the operator performance on pre-defined KPIs between au-
thority and operator in relation to punctuality, regularity or customer
satisfaction. The applications presented here facilitate the use of big
data by the public transport authority and by the operators.

4.2. Case study The Hague, the Netherlands

This case study, presented in Van Oort, Brands, De Romph, and Yap
(2016) and Yap et al. (2017b), considers a possible frequency increase
on the urban public transport network of the city of The Hague, the
Netherlands. Specifically, it relates to a busy tram line in this city,
currently operating 6 trams per hour per direction, of which the PTO
considers a frequency increase in morning and evening peak to 8 trams
per hour. From the operator perspective, it is important to have a
business case with expected additional operating costs and revenues to
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support this decision. Traditional ridership prediction models, such as
elasticity-based approaches, do incorporate the impact of reduced
waiting times of such frequency increase on ridership. However, ri-
dership increase is also expected from a reduced crowding level in case
of a frequency increase, resulting in a less negative perception of in-
vehicle time. In this case study, the aim is to use big data to predict the
impact of this reduced crowding level on public transport ridership.
This contributes to the fourth component as mentioned in chapter 2, by
quantifying and visualizing the business value of big data to the public
transport operator.
In Yap et al. (2017b) revealed preference data obtained from AFC

and AVL systems is used to estimate a Mixed Logit model with panel
effects to infer how passengers value crowding in urban tram and bus
transportation. Contrary to traditional stated preference (SP) experi-
ments which tend to overestimate estimated coefficients, this study uses
revealed preference (RP) data obtained from passive data source to
estimate crowding valuation. Only OD pairs with more than one ob-
served route alternative chosen are incorporated in the model estima-
tion. The attribute levels in relation to travel time are obtained from
AVL data, whereas attribute levels related to crowding are obtained by
fusion of AFC and AVL data. Based on observed route choices resulting
from AFC data, crowding valuation has been estimated using a max-
imum likelihood estimation. Study results show that crowding valua-
tion obtained from SP studies tend to overestimate crowding valuation
in public transport up to 40%, compared to our RP-based values.
The results of the case studies revealed the predicted ridership in-

crease of this frequency increase without and with incorporation of
benefits from reduced crowding levels. As Fig. 2 visualizes, ridership
benefits would be underestimated substantially if crowding was not
incorporated. For the AM and PM peak period, the ridership and op-
erator benefits would be underestimated by 30% and 20% respectively,
given the more concentrated morning peak compared to the evening
peak in the case study area. This case study is illustrative how research
to crowding valuation based on big data rather than SP experiment is
translated to quantified and visualized ridership increases, which al-
lows calculation of the expected revenue increases for the PT operator.

4.3. Case study Stockholm, Sweden

Another study illustrating the business value of big data for public
transport operators is undertaken by Jiang and Brundell-Freij (2017) in
Stockholm, Sweden. In this study Jiang and Brundell-Freij (2017) use
big data to estimate price sensitivities of different public transport
passenger segments in Stockholm, showing to be highest for youngster
and senior segments. Based on this, they estimate a MNL model for
card-type choice for these different segments. Compared to traditionally

used stated preference experiments, using revealed preference data in
the model estimation does not entail the risk of bias between stated and
realized behaviour. Therefore, revealed preference data from AFC sys-
tems provides an opportunity to determine passenger preferences and
sensitivities more accurately. Results of this study have direct value for
PT operators by creating a better understanding of price sensitivities
and ticket preferences of different passenger segments.

5. Conclusions and recommendations

Based on literature study and a three day expert session with sci-
entists, public transport authorities, public transport operators and
transport consultants together, we come to the conclusion that the
challenges to stimulate further and faster use of big data in practice - to
improve the quality of public transport for the user - are institutional
rather than technical. In a time of fast technological developments, the
technical challenges can be solved easier, whereas solving institutional
challenges tend to be much more complex. This complexity results from
required coordination and cooperation among public and private enti-
ties that are not always aligned. A framework has been proposed with
four components to stimulate a further and faster adoption of big data
in practice, directing to different stakeholders or relations between
stakeholders:

• Align technical ambitions of mobility platforms using big data with
their institutional environment;
• Enable and ease the use of big data for PT authorities by developing
definitions, common standards and formats for big data sources and
commonly consolidated datasets;
• Require PT operators in contracts between PT authority and op-
erator to share big data with the PT authority, and require usage and
innovation of big data by the operator in the specification of KPIs;
• Show and visualize the business value of big data for the PT op-
erator.

We can formulate several policy recommendations when aiming to
further adopt big data in the public transport industry. First, public
agencies such as public transport authorities and operators should ac-
tively identify priorities and opportunities for big data applications, to
give direction to the topics of scientific research. Second, as mentioned
previously, we urge the development of standards, common definitions
and data formats for separate and consolidated, integrated data sources
in close cooperation between scientific researchers and practitioners.
We also recommend an incremental, step-by-step approach when fur-
ther adopting big data in the public transport industry. This gives public
entities time to learn from their experiences in a controlled

Fig. 2. Comparison between predicted ridership effects of a frequency increase without crowding (left) and with crowding (right) effects incorporated (derived from
Van Oort et al., 2016).
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environment, and time to attract sufficient qualified people to their
organizations to transfer information from big data to knowledge.
Reporting and sharing these experiences among the industry is essen-
tial, so that stakeholders can look at successful cases and learn from
unsuccessful cases. Building trustworthy relations between stakeholders
is important, but at the same time it is relevant to secure data sharing
between stakeholders, for example between PT operator and authority,
to make sure the passenger and societal perspective prevails. At last, we
recommend looking at experiences with big data applications in other
sectors than public transport to learn from (un)successful cases and
experiences.
Following our study we also formulate contracting recommenda-

tions to stimulate big data adoption in practice via contracts between
PT authority and PT operator. First, it is recommended that PT autho-
rities guarantee access to (integrated) big data sources in these con-
tracts between operator and authority. Second, incorporating the use of
big data in the definitions of KPIs can be valuable to stimulate and
guarantee the use of big data by the operator. Third, it is recommended
to design contracts between PT authority and operator in such manner
that incentives are provided to the operator to perform big data in-
novations during the execution of a contract. This can reduce the ten-
sion between the institutional environment with usually a relatively
long duration of PT contracts on the one hand, and the fast pace by
which technological developments take place on the other hand.
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