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H I G H L I G H T S

• Microgrids provision of reliability and resilience is quantified at system-level.

• Multiple sources of uncertainty are modelled using probabilistic capacity tables.

• Long supporting duration differentiates resilience services from reliability ones.

• Probabilistic metrics are defined to indicate microgrids’ capacity contribution.

• Aggregation of microgrids at system-level demonstrates significant synergic effect.
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A B S T R A C T

Microgrids are emerging to coordinate distributed energy resources and locally increase reliability to expected
events and resilience to extreme events. Furthermore, by deploying their inherent flexibility, grid-connected
microgrids are capable to provide different services at the system-level too. However, these are often assessed
independently and a comprehensive integrated framework that can assess benefits for the whole power system is
missing. In this outlook, this paper introduces a system-level assessment framework based on the concept of
different duration’s reserve services that can be provided by microgrids to the main electricity grid in response to
both credible (reliability-oriented) and extreme, possibly unforeseen (resilience-oriented) contingencies.
Probabilistic capacity tables accounting for different sources of uncertainty related to both microgrids’ operation
and occurrences of unfavorable events are built to assess the microgrids’ potential capacity contribution to a
particular reserve service. Case studies based on representative microgrids and a British test system clearly
illustrate and quantify how aggregation of microgrids could provide significant contribution to both short-term
reliability and longer-duration resilience services far beyond the simple summation of the individual contribu-
tions, thus demonstrating a clear synergic effect, as well as the key role played by different forms of energy
storage. The proposed framework can assist policy makers and regulators on the strategic role of microgrids for
energy system planning and policy developments, including design of ancillary services markets not only to
enhance system reliability but also resilience.

1. Introduction

1.1. Background and literature review

Energy systems are undergoing revolutionary changes, which are
driven by various reasons including climate change [1], energy effi-
ciency [2], system resilience [3] and the advancement of new

technologies [4,5]. One of these changes is the integration of grid-
connected microgrids formed by distributed energy resources, such as
combined heat and power (CHP), solar photovoltaic (PV), and energy
storage (thermal and electrical). New services to exploit flexibilities of
grid-connected microgrids for improving the performance of energy
systems are hence becoming available to the system operators [5,6]. As
it has been pointed out by Mancarella [5,6] and Capuder [7],
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microgrids present more technical and economic value when these
distributed multi-energy resources are coordinated at community-level,
compared with those values presented on their own. Most importantly,
coordinating complementary technologies in microgrids can exploit
their flexibility to provide a diverse range of services to the main
electricity grid, as suggested by Good [8], Martinez-Cesena [9],
Neyestani [10], Mancarella and Chicco [11].

One of the key benefits from grid-connected microgrids is their
potential capability to enhance the reliability and resilience of the
main electricity grid, in addition to the support to their internal cus-
tomers during contingencies [12,13]. More specifically, the traditional
reliability concept and its principles focus on credible or known con-
tingencies associated with high probability low impact events [3,14].
Particularly, power system security, as a key aspect of reliability, can
be effectively maintained by committing operating reserve in order to
be prepared for short periods of the system experiencing unexpected
increase in demand or generation unavailability within a “credible”
range [15]. On the other hand, power system resilience [16] (to which
power system engineers are drawing more and more attention) em-
phasizes the system’s response to extreme and rare events, or high
impact low probability events [3] and [17–19]. In this context, tra-
ditional operating reserve typically with short supporting duration
(such as up to 2 h [15]) may not be able to effectively help the system
overcome those unfavorable and highly impactful events (e.g., wind
storms [3]) requiring a prolonged restoration period, and thus leading
to the potential need for new reserve services featuring prolonged
supporting duration for resilience enhancement (for instance a period
of 24 consecutive hours while the system is being restored, possibly
following a black system event). In fact, the literature has demon-
strated that microgrids have the potential and capability to contribute
to both reliability (in particular security) and resilience. For instance,
as investigated by Martinez-cesena [9] and Syrri [20], in addition to
the self-sufficient operation as islands, operating reserve services for
balancing system demand and a new reliability service for accelerating
the restoration of supply to neighboring customers (which can be seen
as the reserve for disruptions in distribution network) can be provided
by microgrids using their electricity generation capacity surplus (i.e.,
the microgrid’s capacity that is not utilized to supply its internal cus-
tomers). Besides, Wang [21] and Chen [22] investigated how to dy-
namically split a distribution network into multiple microgrids in the
aftermath of natural disasters, while prioritizing the restoration of
critical customers. More recently, it has been highlighted by Li [23]
and Chen [24] that the main benefit from grid-connected microgrids
lies in their ability to help each other as well as to supply neighboring
customers during extreme events. Aki [25] reviewed real-life con-
tribution from microgrids in Japan, where immediate supply to critical
customers was provided by PV and batteries but for a relatively short
duration and further supply was sustained by gas-fired distributed
generators (assuming the presence of an unaffected gas network) until
full restoration of the system.

1.2. Relevance, novelty and contribution

Distributed microgrids can be the key means of renewable integra-
tion and providers of various services to the legacy energy system for
achieving sustainability, reliability and resilience at multiple scales
(including community level [26–28] as well as national level [29–31]).
In this light, the system-level assessment of multiple services and po-
tential benefits is crucial to inform on the strategic role that microgrids
could play, including for system-planning and policy developments
[32]. More specifically, this provides insights into the optimal use of
energy resources distributed across a sustainable energy system (in
particular a sustainable electricity system); and in addition this can also
guide energy policy makers, system regulators, industrial stakeholders
as well as prospective investors to incentivize, regulate and also invest
in the implementation of such microgrids, with a transparent

understanding of their potential value presented at the system-level.
However, only few studies [9,20] have laid particular emphasis on

their system-level contribution to the main electricity grid during
stressed conditions, such as providing various reserve services. Ad-
ditionally, there have been no studies focusing on the system-level
quantification of to what extent microgrids can contribute to both re-
liability and resilience of the main grid via various reserve services,
including both traditional, reliability-oriented operating reserve ser-
vices (with relatively short service durations) for enhancing system
security and resilience-oriented services featuring prolonged duration.
This is therefore the research gap that this paper aims to fill.

In fact, for example according to National Grid [33] the total
capacity of small-scale (less than 1MW) CHP units will gradually
increase to over 900MW by 2040; while the total capacity of all dis-
tributed CHP units will reach 2,348MW. These CHP units will have the
potential to operate as microgrids, and therefore it becomes critical to
quantify to what extent they can contribute to system operation. Si-
milarly, the PV installation, mostly domestic rooftop panels, in the
British electricity system is expected to be 36.7 GW by 2040, and when
coupled to distributed electricity storage (expected to have an installed
capacity of 12.5 GW by 2040 [33]) they could contribute to different
services [34].

On the above premises, the objectives of the research work pre-
sented in this paper, which are also the main novelties and contribu-
tions, are to develop a framework for quantifying the electricity capa-
city contribution from microgrids to the main electricity grid through
various reserve services in different timescales, also including:

• the definition of a probabilistic capacity table for a microgrid as well
as the approach for building such probabilistic capacity table with
consideration of both operation-related and service-related un-
certainties (i.e., those originated by changing operating conditions
within the microgrid –including operation of flexible demand, sto-
rage and availability of renewables–, and by the occurrence of un-
favorable events in the main electricity grid creating the necessity to
call upon reserve services);

• the optimization model for evaluating the electricity generation
capacity surplus of a microgrid over a particular service in real time
(i.e., when reserve services are exercised);

• the consideration of a newly introduced reserve service with pro-
longed service durations for enhancement to system resilience;

• the approach for aggregating the probabilistic capacity tables of
individual microgrids so as to determine the aggregated contribu-
tion at system-level, and;

• the metrics for quantifying the electricity capacity contribution from
microgrids to reserve services at system-level.

In particular, the proposed assessment framework and modelling
approach has to take proper account of the constraints imposed by the
operation of microgrids, considering an array of system conditions
driven by operation-related and service-related uncertainties that may
affect microgrids’ capability to provide the indicated reserve services.
In this light, similar to the classic Capacity Outage Probability Table
used in analytical assessments of power system reliability [14],
probabilistic capacity tables associating states of certain amount of
available capacity surplus with their corresponding likelihoods are
applied in the proposed framework so as to take account of those
uncertainties.

1.3. Paper structure

The remainder of the paper is organized as follows: Section 2 in-
troduces the general framework for quantifying the electricity capacity
contribution from microgrids, including: the definition and creation of
the probabilistic capacity table for an individual microgrid, and the
optimization model proposed for evaluating the electricity generation
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capacity surplus of a microgrid over a particular service in real time1; in
addition, the adopted model for the scheduled operation of microgrids
under planned, normal or expected conditions is also briefly in-
troduced. Section 3 presents the proposed system-level assessment
methodology as well as the metrics defined to provide concise quanti-
fication. The case study application based on two representative types
of microgrids within the context of the British system is demonstrated
in Section 4. Finally, Section 5 concludes the paper.

2. Assessment framework and modelling approach for an
individual microgrid

This section presents the general framework for quantifying the
electricity capacity contribution from a microgrid to reserve services at
system-level, when considering both operation-related and service-re-
lated uncertainties, as introduced below:

• The operation-related uncertainties include weather conditions,
energy market prices and price signals for reserve services. These
uncertainties have direct impacts on microgrids’ internal energy
demand and their scheduled or planned operation with the objective
to minimize energy cost and to maximize revenue.

• The service-related uncertainties focus on the starting time of var-
ious reserve services and the service duration (thus as mentioned in
the Introduction tackling reliability-events of shorter duration as
well as resilience-events of longer duration) during real time op-
eration.

With consideration of the above uncertainties, probabilistic capacity
tables can be built for individual microgrids to represent their technical
capability to deploy their electricity generation capacity surplus (i.e.,
the microgrid’s capacity that is not utilized to supply its internal cus-
tomers) to supply neighboring customers. The general framework is
described in detail as follows.

2.1. General framework for modelling an individual microgrid

The proposed framework can be represented by the flowchart in
Fig. 1, which considers the operation-related uncertainties in the outer
layer (i.e., those related to scheduled or planned operation) and the
service-related uncertainties in the inner layer (i.e., those related to the
exercise of the service in real time).

The outer layer firstly considers a database of weather conditions to
model the energy demand (including both electricity and heat due to
the typical background of multiple energy vectors) and availability of
renewable energy resources. This database of weather conditions also
represents the corresponding uncertainty set of energy demands and
renewable availabilities. More specifically, this database can be created
using historical data of weather conditions (such as temperatures and
solar irradiance), which inherently captures the uncertainty in weather
conditions along with their correlations. On the other hand, it can also
be built using weather simulation software, which generates weather
conditions based on statistical features (thus the uncertainty) of
weather conditions (such as the Weather Generator tool developed
under the UK Climate Change Projections [35]). Afterwards, this da-
tabase is taken as input to the high resolution simulator for multi-en-
ergy domestic demand profiles, as developed in [36] (where a diversity
of appliances and occupancy profiles are further considered). Mean-
while, solar irradiance and temperatures in the database are used to

calculate the power outputs of PV panels [37]. Additionally, it is worth
noting that this database outlined in the framework is flexible (meaning
it can be built via different means as mentioned earlier) to accom-
modate further uncertainties or scenarios if desired.

The scheduled or planned operation model of microgrids is another
key part of the outer layer in Fig. 1. This planned operation model
determines the operating statuses of the energy resources in a micro-
grid, particularly the state of charge (SOC) of energy storage (which is
critical for exploiting microgrids’ flexibility). For instance, the CHP unit
in a microgrid can use its spare electricity generation on condition that
the accompanying heat production can be consumed internally or
stored in thermal energy storage; similarly, a microgrid with PV panels
may rely on batteries to maintain a stable contribution of electricity
capacity, or its batteries may be the sole source of electricity capacity.
In this light, the SOC of energy storage (electrical or thermal) at the
starting time of delivering a specific reserve service is key to assess the
contribution from microgrids to security and resilience. In other words,
this is the energy-limited feature of microgrids. Eventually, the planned
operation model of microgrids provides the profiles indicating chron-
ological operating statuses of these energy storage units.

The inner layer in Fig. 1 captures the service-related uncertainties
(i.e., the starting time and service duration) during real time. Micro-
grids may provide reserve services to the main electricity grid at any
time, leading to various service starting times. Additionally, the service
duration is another key factor in the proposed optimization model. As
mentioned earlier, traditional operating reserve typically requires a
service duration of about two hours [15]. On the other hand, this paper
also lays emphasis on reserve services with prolonged service durations
(e.g., 24 h), aiming to enhance the system resilience to rare events with
extreme (and in this case prolonged) impacts. In this light, the inner
layer assesses the microgrid’s electricity generation capacity surplus
considering various starting times and durations of reserve services.
Thus, a database of the electricity capacity contributed by microgrids
can be obtained in the end. This database can hence be used to build
probabilistic capacity tables subject to specific service durations.

As a further remark, the benefit (i.e., the electricity capacity con-
tribution) from microgrids lies in their capability to supply the elec-
tricity demand in their vicinities. More specifically, the System
Operator would see short periods of reduction in the system demand
when the reserve for security provided by microgrids is exercised. On
the other hand, the new reserve service for resilience would be seen as
microgrids supplying neighboring customers for a prolonged period of
time until the restoration of the system. Nonetheless, networks con-
necting the microgrids to their vicinity are not explicitly modelled in
this framework. This is because the microgrids affected by disrupted
networks cannot contribute unless these networks are restored. This
impact of networks is not relevant to the internal characteristics and
operation of microgrids.

Furthermore, it is also acknowledged that the system-level con-
tribution from microgrids comes from and heavily relies on the co-
operation and other interactions of these microgrids. As highlighted in
[38] and [39], the cooperation of microgrids is crucial to maximizing
the utilization of these distributed energy resources within the micro-
grids. In this line, in order to quantify the maximum capacity con-
tribution from microgrids as well as allow transparent implications to
be drawn at the system-level, (prefect) cooperation is assumed to be
achieved by cost-minimising operation of the aggregated microgrids
when providing reserve services to the main electricity grid. Further
studies in cooperation issues, albeit very important, are beyond the
scope of this paper and are suggested as future work.

2.2. Evaluation of capacity contribution from an individual microgrid to
various reserve services

This section presents the definition of the electricity capacity con-
tribution from a microgrid to various reserve services that, as

1 In this paper, real-time operation refers to the operation during the utili-
zation or exercise of a reserve service during its delivery in real time so as to
support the main electricity grid under a contingent event, while planned or
scheduled operation refers to the operation determined ahead of real time, when
idle capacity margins can be booked.
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highlighted in the Introduction, are differentiated by the service dura-
tion (particularly in this paper we consider a range of service durations
from 1 to 24 h). These services are used to provide support to the main
electricity grid in case unfavorable conditions occur and thus they can
be exercised at any time by the System Operator. This section also
presents the optimization-based assessment model for evaluating that
contribution by maximizing the utilization of microgrid’s electricity
generation capacity surplus in real time (particularly when the micro-
grid is oversized for economic benefits [40,41]). Importantly, note that
this optimization problem is related to the real time operation of the
microgrid (as explained in this Section 2.2), while the planned opera-
tion (determined before this contribution is evaluated) is obtained by
another optimization problem as explained in Section 2.3.

2.2.1. Definition of the electricity capacity contribution to reserve services
The System or Network Operator would have certain requirements

on reserve provision (such as those required by the British system op-
erator [15]), i.e., a consistent amount of electricity capacity provided,
which if called upon in real time, has to be maintained during a specific
time window. Importantly, in the absence of energy storage, it is clear
that the capacity surplus at a given time will be simply the difference
between the available generation capacity minus demand within the
microgrid and this can be assessed by using the planned or scheduled
operating condition. However, the presence of energy storage within
the microgrid originates the need to test the effects of exercising reserve
services in real time, assessing how much and for how long a given
export level (i.e., the difference between generation output and internal
demand in real time) can be maintained from the microgrid to the rest
of the system (this will be mathematically introduced later on in Section
2.2.3).

For instance, Fig. 2 demonstrates the available generation capacity,
the planned and real time generation dispatches and the evolving

generation capacity surplus of a microgrid during a typical summer
weekday in England. This microgrid has a gas-fired CHP unit with an
electricity generation capacity of 51 kW, as modelled in [9]. Further,
Fig. 2 illustrates a constant available generation capacity due to the
nature of the generation technology (i.e., CHP); on the contrary, in the
case a microgrid features variable renewable generation (e.g. PV), the
available generation capacity would be changing over time. Planned
and real time generation dispatches are differentiated when reserve
services are utilized, increasing generation outputs in real time to
support the main electricity grid in case a contingent event happens.

In Fig. 2, the capacity surplus (i.e., the difference between the
available generation capacity Pavail minus the planned generation dis-
patch Pplanned) is changing over the entire 24-h horizon. Particularly, the
capacity surplus is utilized from t0 to t1 to support the main system; note
that the minimum contribution is denoted as C1 (assuming the real time
generation −Preal time output is equal to Pavail). Therefore, when we refer to
the capacity contribution associated with a reserve service from a mi-
crogrid, we use the term minimum capacity surplus since capacity surplus
can vary across a time window (for example, due to a change in internal
demand) and we use the minimum value within that window as the
capacity that a microgrid can really commit for the security of the main
electricity system (later on in Section 2.2.3 we show that this minimum
value is maximized in real time operation of the microgrid).

Further, as highlighted earlier, the service duration is considered in
this paper to differentiate the reserve services for reliability (or more
accurately security) from those for resilience. In this light, a threshold
can be specified for reserve services to define security-related services
and resilience-related services, i.e., a service with a duration less than
the threshold is classified as a security service, while one with a dura-
tion greater than the threshold is classified as a resilience service.

It has to be noted that this threshold for service duration is highly
system-specific. For instance, in the context of the British system, the

Fig. 1. General framework for evaluating the electricity capacity contribution from microgrids.
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cold start time (from notice to full load) of a combined cycle gas tur-
bine2 (CCGT) is typically from 3.5 to 4 h [42], while it is expected to
take a crew 5 h to restore supply to the affected customers in a dis-
tribution network [9]. This means that under stress conditions the
system “normally” needs support within the first 5 h. Therefore, in this
paper the threshold for the service duration is specified to be 5 h, i.e., a
reserve service lasting equal to or less than 5 h is considered to be se-
curity-related services, whereas a reserve service lasting more than 5 h
is categorized as resilience-related services. Note that this threshold can
be changed to another similar value without affecting our main ob-
servations and conclusions.

2.2.2. Probabilistic capacity table for a microgrid
With consideration of the aforementioned uncertainties, a set of

minimum electricity generation capacity surpluses can be calculated
through the simulation of various scenarios (see Fig. 2), which can be
further used to build a probabilistic capacity table for a microgrid.

The probabilistic capacity table is defined as a discrete probability
distribution over the range between zero and NC (i.e., the table length
corresponding to the maximum available capacity) with steps of one
capacity interval CΔ (which is specified depending on the requirement
on accuracy, i.e., the smaller the capacity interval CΔ the higher the
accuracy, as the more capacity states the table can represent). Each
capacity state i (which varies from zero to NC) represents an available
capacity equal to i multiplied by CΔ and the capacity state i is asso-
ciated with a probability p i( ) corresponding to the likelihood of having
the available capacity of i multiplied by CΔ . For instance, assuming a
microgrid can present a maximum generation capacity surplus of
100 kW and the capacity interval CΔ is 20 kW, a probabilistic capacity
table in Table 1 can be built for the microgrid (note that, for this ex-
ample, the probabilities are arbitrary).

Let K be the set of minimum electricity generation surpluses C kmin,
that are determined for the reserve services (varying starting times but
the same duration), and NK be the size of the set. Then, the table length
NC can be calculated from (1). Afterwards, the probability of a capacity
state p i( ) can be calculated from (2) using indicator functions CI ( )i kmin, ,
which are defined in (3) when i is 0; and in (4) when i is greater than 0.

= ∈N C CKRound(Max{ }/Δ )C kmin, (1)

∑= ∈p i C N CI K( ) ( )/ ,
k

i k kKmin, min,
(2)

= ⎧
⎨⎩

∈
C

C C
I ( )

1, [0, 0.5·Δ ]
0, otherwisek

k
0 min,

min,

(3)

= ⎧
⎨⎩

∈ − +
> C

C i C i CI ( )
1, [( 0.5)·Δ , ( 0.5)·Δ ]
0, otherwisei k

k
0 min,

min,

(4)

According to the calculation in (2)-(4), the capacity interval CΔ can
affect the probability of a capacity state p i( ), leading to an impact on
the assessment accuracy. Thus, for individual microgrids a small ca-
pacity interval is more accurate, as it can capture more capacity states.
On the other hand, when the total contribution of a number of micro-
grids is assessed and aggregated at system-level, it may become ne-
cessary to increase the capacity interval while aggregating the prob-
abilistic capacity tables. In this light, the calculation in (5) and (6) is
proposed to increase the capacity interval. Let ′CΔ be the new capacity
interval and ′NC be the new table length, which can also be calculated
based on (1) using ′CΔ .

′ = = … ′p j j N( ) 0, for all 0, 1, 2, , C (5)

′ = ′ + = ⎛
⎝ ′

⎞
⎠

= …p j p j p i j i C
C

i N( ) ( ) ( ), Round · Δ
Δ

, for all 0, 1, 2, , C (6)

2.2.3. Real time optimization for evaluating electricity capacity contribution
to reserve services

The optimization model is proposed to determine real time opera-
tion by maximizing the minimum electricity generation capacity sur-
plus of a microgrid in a specific scenario where the reserve service is
exercised. This is different to the scheduled or planned microgrids’
operation where some capacity room might be booked but not actually
utilized, as the model shown later in Section 2.3. By focusing on the
technical constraints imposed by internal energy demand, renewable
energy resources and storage, a microgrid is assumed to operate for
reserve provision with the objective to maximize its minimum

Fig. 2. Demonstration of electricity capacity contribution from a microgrid.

Table 1
Demonstration of a probabilistic capacity table.

Capacity state i 0 1 2 3 4 5

Probability p i( ) 0.1 0.2 0.4 0.15 0.1 0.05

Available capacity i C·Δ (kW) 0 20 40 60 80 100

2 In the British system, CCGT as key intermediate generation plays an es-
sential role in maintaining the system’s secure operation due to its operational
flexibilities (such as the start-up time and ramping up rate) [31].
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electricity generation capacity surplus (i.e., the minimum surplus is the
level that can be committed to support the main electricity grid, see
Fig. 2) subject to its internal energy and reliability constraints. The
maximization problem is justified since we want to determine the po-
tential, maximum security or resilience support from a microgrid to the
main electricity grid. In this context, the following formulation is pro-
posed.

Additionally, the presented optimization assumes perfect fore-
casting for energy demand and renewable availability. This may not be
ideal in terms of performing short-term operation scheduling for in-
dividual microgrids (although we do acknowledge the presence of un-
certainty –in a deterministic way- by scheduling reserve capacities).
Nonetheless, using typical days to represent the uncertainty and var-
iation of energy demand and renewable generation is generally applied
in academic research [2,7,8], long-term planning methods and tools
employed by relevant industries in the UK [43], as well as technical
consulting reports for resource planning published on behalf of gov-
ernments [44]. Similarly, as the aim of the paper is to inform on the
strategic role that microgrids could play in long-term system-planning
and policy developments, it would be adequate to represent the un-
certainty and variation of energy demands and renewable generation in
microgrids particularly with consideration of various typical days of
weather conditions in the outer layer of the assessment framework in
Fig. 1.

• Objective function

The objective function maximizes the minimum electricity genera-
tion capacity surplus during a service window. Let W be the number of
time steps included in a service window and t represents a time step.
The electricity generation capacity surplus is denoted by C , where the
subscript “min” is for minimum.

CMaximize: min (7)

⩾ = …C C t W{ , 1, 2, , }tmin (8)

The evolving electricity generation capacity surplus Ct can be cal-
culated from (9). P refers to the real time dispatch with consideration of
CHP units, PV panels and batteries (for the sake of clearness and
without loss of generality), which are denoted by the subscripts “CHP”,
“PV”, “Chg” and “Disc” (corresponding to charging and discharging),
respectively. The subscript “D” in (9) represents the total internal
electricity demand of that microgrid. It has to be noted that Ct can be
also understood as the “exporting” power from a microgrid and it might
be also a negative value (a deficit of internal supply leading to the need
for a power import), due to the intermittency of renewable generation,
changing demand and the energy-limited nature of energy storage. It
has to be noted that other distributed resources can also be included as
appropriate.

= + + − −C P P P P Pt t t t t D tCHP, PV, Disc, Chg, , (9)

• Model of CHP unit

A CHP unit generates electricity and heat at the same time. In order
to use its spare electricity generation, the accompanying heat produc-
tion has to be consumed or stored in thermal energy storage. Let H be
the heat production and it can be calculated from (10), where ηe and ηh

represent the electricity and heat efficiencies, respectively. Ad-
ditionally, the maximum electricity capacity of the CHP unit is con-
strained in (11).

=H P
η
η

·t t

h

eCHP, CHP,
(10)

⩽P PtCHP, CHP,max (11)

• Model of thermal energy storage

Thermal energy storage is modelled in order to provide CHP units
the flexibility of continuing to generate electricity when the accom-
panying heat production becomes excessive. The SOC of thermal energy
storage at the next time step ( +S tHeat, 1) can be calculated from (12)
based on the SOC at the current time step (S tHeat, ), the CHP heat pro-
duction (H tCHP, ), the thermal loss (H tLoss, ) and the heat demand (H tDem, ).
Additionally, an alternative heat supply source (H tAlt, ) is assumed when
the CHP is sized based on the electricity peak demand of the microgrid,
rather than the heat peak demand. For instance, this alternative heat
supply source can be gas boilers, as in the case study application later.
According to [9], the thermal loss can be calculated from (13), where
YTherm and RTherm represent the thermal capacitance and the thermal
resistance of thermal energy storage; in addition, the length of a time
step is denoted by tΔ and the ambient temperature surrounding the
thermal energy storage is denoted by Tt . Moreover, the size of thermal
energy storage can be represented by the maximum and minimum
temperatures, which are denoted by Tmax and Tmin as in (14). Further-
more, the SOC of thermal energy storage at the beginning of a service
window (SHeat,0) relies on the planned operation of the microgrid, which
is an input from the outer layer depicted in Fig. 1.

= + − − ++S S H H H H t( )·Δt t t t t tHeat, 1 Heat, CHP, Dem, Loss, Alt, (12)

=
−

H
T

Rt

S
Y t

Loss,
Therm

tHeat,

Therm

(13)

− ⩽ ⩽ −T T Y S T T Y( )· ( )·t t tmin Therm Heat, max Therm (14)

• Model of electrical energy storage

Electrical energy storage (e.g., batteries) provides flexibility for
microgrids particularly in the presence of distributed renewable gen-
eration. More specifically, the SOC of electrical energy storage at the
next time step ( +S tElec, 1) can be calculated from (15) taking account of
the SOC at the current time step (S tElec, ) as well as the charging (P tChg, )
and discharging (P tDisc, ) powers of batteries. The charging and dis-
charging efficiencies are denoted by +δ and −δ in (15); in addition,
binary variable bt is used to indicate whether the batteries are charging
(i.e., =b 1t ) or discharging (i.e., =b 0t ).

Constraints in (16) and (17) would make sure that the energy and
power limits of batteries are respected and batteries can only be
charged by local distributed generators in service operation (e.g., PV
panels in (18)). The constraint in (19) represents the requirement on the
SOC of batteries (SElec,req) at the end of a service window. Similarly, the
SOC of electrical energy storage at the beginning of a capacity service
window (SElec,0) also depends on the planned operation of the micro-
grid, which is an input from the outer layer depicted in Fig. 1.

= + − − ++
+ −S S P δ t P δ t·(1 )·Δ ·(1 )·Δt t t tElec, 1 Elec, Chg, Disc, (15)

⩽ ⩽S S StElec,min Elec, Elec,max (16)

⩽ ⩽ ⩽ ⩽ −P P b P P b0 · , 0 ·(1 )t t t tChg, Chg,max Disc, Disc,max (17)

⩽P Pt tChg, PV, (18)

⩾S SWElec, Elec,req (19)

In summary, the optimization problem expressed in (7) and (8) is
complemented with the extra constraints in (9)-(19). The optimization
will be carried out for each type of reserve service. Reserve services are
differentiated by their durations (i.e. timespan in which a given capa-
city surplus level can be ensured –or guaranteed with a given confidence
level as explained later on in Section 3.2.1– and delivered from a mi-
crogrid to the main electricity grid) and they can be exercised at any
time across a day by the System Operator.
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2.3. Sheduled operation strategies for individual microgrids

In this work, the proposed framework (as seen in Fig. 1) is not
limited to a specific scheduled operation strategy of microgrids. Instead,
various scheduled operation strategies can be integrated in the frame-
work and more importantly different scheduled operation strategies
will lead to different probabilistic capacity tables of microgrids. This is
due to the fact that different scheduled operation strategies might
present significantly different impact on the SOC of energy storage.
Moreover, this paper focuses on introducing the framework in Fig. 1,
rather than developing an optimization for microgrids’ planned, normal
operation. That being said, the mixed-integer linear programming
(MILP) model proposed in [9] for optimizing the operation of micro-
grids is adopted in this paper.

As modelled in [9], the objective function of a microgrid’s scheduled
operation is the minimization of the cost of meeting its internal energy
demand by purchasing and selling electricity at importing and ex-
porting prices in the electricity market as well as buying gas from the
gas market; in addition to trading energy, the objective function can
also include a further reduction in the cost (i.e., increase in revenue) by
providing reserve services to the main electricity grid at certain price
(which is £ 0.00451 per kW per hour as modelled in [9] following the
British market information [15]). The aforementioned objective func-
tion of microgrids’ scheduled operation is optimized subject to the
technical constraints of CHP units, gas boilers, PV generation avail-
ability, thermal storage and batteries. The scheduled operation strate-
gies introduced here may book certain capacity headroom for reserve
services depending on the economic revenue based on the reserve price,
rather than exercising the services. As results, profiles of the chron-
ological SOCs of energy storage units are obtained and further utilized
to evaluate the actual electricity capacity contribution when reserve
services are exercised, as modelled in Section 2.2.3.

Though multiple strategies for scheduled operation were in-
vestigated for their economic benefits in [9], this paper, with its ob-
jective to quantify microgrids’ contribution to the aforementioned re-
serve services, focuses on the following two strategies for microgrids’
scheduled operation based on the optimization model developed in [9].

• Base Strategy: Minimization of Energy Cost

With regard to the Base Strategy, the scheduled operation of mi-
crogrids has the sole objective of minimizing their energy cost by
purchasing and selling electricity at fixed importing and exporting
prices as well as buying gas from gas market. In other words, microgrids
only participate in energy arbitrage. This is to demonstrate to what
extent microgrids can provide reserve services, though there are no
proper incentives from the main electricity grid.

• “Res” Strategy: Minimization of Energy Cost plus Maximization of
Revenue via Provision of Reserve Services

With regard to the Res (which stands for “reserve”) Strategy, in
addition to the minimization of microgrids’ energy cost, microgrids’
operation is also planned or scheduled to also receive payment for
providing reserve services to the main electricity grid. This is for the
purposes of quantifying the improvement in the amount of reserve that
can be provided by the incentivized microgrids, compared with those
microgrids without incentives under the Base Strategy. Thus, if prices of
reserve services are sufficiently attractive to be provided by a micro-
grid, its scheduled operation will feature idle capacity margins that can
be, later on, used in real time to export power and provide reserve
services to the main electricity grid (this real time operation is de-
termined through the optimization model explained in Section 2.2.3).

3. System-level assessment methodology for aggregated
microgrids

This section presents the methodology for assessing the contribution
of electricity capacity from aggregated microgrids at system-level. The
underlying assumption is that the infrastructure and networks inside
the microgrids, as well as the connections between microgrids and
upstream grids are intact; so that the microgrids can successfully supply
the electricity demand in their vicinity. Further, the probabilistic ca-
pacity table of a microgrid is created with specific service durations.
This means the following assessment is separately performed for dif-
ferent service durations. More importantly, this allows clear quantifi-
cation of microgrids’ contribution to traditional reserve services with
short durations (i.e., for security purposes), as well as new reserve
services with prolonged service durations for overcoming extreme
events (i.e., for resilience purposes), respectively. Additionally, the
microgrids distributed across the main electricity grid are assumed to
operate with full cooperation when providing reserve services. From a
theoretical point of view, this enables transparent implications at the
system-level, focusing on the fundamental trends associated with the
availability of resources from microgrids. From a more practical per-
spective, this serves as an upper bound, determining the maximum
amount of capacity support from the microgrids.

3.1. Probabilistic aggregation of electricity capacity contribution from
microgrids to reserve services

Electricity capacity contribution from individual microgrids to re-
serve services with a particular service duration (that is obtained by the
process described in Section 2.2.3) is aggregated via convolution of
their probabilistic capacity tables, i.e., the discrete probability dis-
tribution of the total capacity contribution from these microgrids is the
convolution of their individual distributions. The convolution of these
probabilistic capacity tables assumes that the operation of these mi-
crogrids is independent from each other. It is acknowledged that the
closer geographically the more correlated the microgrids are, while
assuming independency among microgrids might lead to overestimate
their aggregated contribution. On the other hand, the quantification of
to what extent dependency among microgrids (such as dependency of
resource availabilities and dependency due to responses to the system
price signals) can affect their contribution at the system-level to reserve
services is therefore suggested as a key future work.

The calculation in (20)-(22) corresponds to the convolution of two
probabilistic capacity tables with the same capacity interval. Let p i( )
and p j( ) represent the two probabilistic capacity tables, while p h( ) is
the result of this probabilistic aggregation. The table length of p h( ) is
calculated from (22), where NCi and NCj are the table lengths of p i( ) and
p j( ), respectively. Prior to (21), p h( ) needs an initialization as in (20).

= = …p h h N( ) 0, for all 0, 1, 2, , Ch (20)

= + = + = …

= …

p h p h p i p j h i j i N j

N

( ) ( ) ( )· ( ), , for all 0, 1, 2, , and all

0, 1, 2, ,
Ci

Cj (21)

= + +N N N 1Ch Ci Cj (22)

3.2. Electricity capacity contribution metrics based on guranteed capacity

This section introduces the metrics defined to indicate the level of
capacity contribution from microgrids. The proposed metrics are based
on the concept of guaranteed capacity, which has been applied to eval-
uate the capacity value of renewable generation in [45]. The concept of
guaranteed capacity is in line with the probabilistic capacity table, and
can provide concise quantification of the level of contribution from
microgrids, which can be compared with other generation resources on
a level playing field.
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3.2.1. Quantification of the guaranteed capacity of microgrids at System-
level

As described in [45], the “Guaranteed Capacity” of an electricity
supply resource is defined to be the least available electricity capacity
that can be expected with a specified probability. In this paper, this
metric is adopted to indicate the electricity capacity that microgrids can
contribute to reserve services at system-level, based on the aggregated
probabilistic capacity table. The evaluation of guaranteed capacity is
introduced in detail as follows.

In mathematical terms, the probabilistic capacity table of a number
of microgrids (i.e., p i( ), = …i N0, 1, 2, , C) describes a discrete prob-
ability distribution, which can be used to create a complementary cu-
mulative probability distribution as expressed in (23). In the context of
this paper, this complementary cumulative probability distribution can
be more aptly referred to as an “available capacity duration curve”
[45]. Afterwards, with consideration of a specific probability p, the
guaranteed capacity of these microgrids can be calculated from (24),
where “inf” refers to infimum or the greatest lower bound. An example
for evaluating the guaranteed capacity of 1,000 microgrids is shown in
Fig. 3.

∑= = …
⩾

F i p j i N( ) ( ), for all 0, 1, 2, ,
j i

C
(23)

= ∈ … ⩾C p C i N F i p( ) Δ ·inf{ {0, 1, 2 , }: ( ) }C (24)

Fig. 3-(a) presents the probabilistic capacity table p i( ) built for these
microgrids with a total CHP capacity of 51.4 MW. Afterwards, the
available capacity duration curve F i( ) can be created based on p i( ), as
seen in Fig. 3-(b). Further, it can be seen in Fig. 3-(b) that with a
probability of 90% the guaranteed capacity of these 1000 microgrids is
35.6 MW. The underlying service duration is one hour.

Ultimately, this metric provides a direct value with a specific level
of confidence (i.e., the amount of available capacity associated with the
corresponding probability) to indicate the level of electricity capacity
contribution. Consideration of a confidence level is key; note that, in
practice, not even a bulk, grid-connected peaking (very fast and reli-
able) generating unit can ensure provision of its total idle capacity as a
reserve service with a 100% confidence (and this contradicts actual
deterministic market design of ancillary services [46]). Therefore, it is
important to define a reasonable confidence level against which reserve

services are guaranteed so as to allow a fair comparison among various
resources (from the generation and demand side) for the provision of
the services.

3.2.2. Quantification of the additional available capacity of microgrids at
System-level

In order to properly evaluate the additional electricity capacity that
is made available by these microgrids to the system, the “additional
available capacity” metric is defined based on the concept of afore-
mentioned guaranteed capacity.

Firstly, the probabilistic capacity table of the generation system is
built through convolution of probabilistic capacity tables of single
conventional generators and renewable generation. In order to do so,
the probabilistic capacity table of a single conventional generator can
be built as in (25) and (26), where a is the average availability of that
conventional generator, NC corresponds to the table length, Cgen is the
nameplate capacity and CΔ genis the capacity interval. It has to be noted
that CΔ gen is the capacity interval defined for the generation system,
which in general would be much greater than the capacity interval

CΔ micfor individual microgrids.

=
⎧
⎨
⎩

− =
=p i

a i
a i N( )

1 , 0
,

0, otherwise
C
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⎝
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⎠
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C
C

Round
ΔC

gen
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Then, similar to microgrids, the probabilistic capacity table of a
renewable generation resource can be built as presented from (27) to
(30), where Gren is the power output from historical database R of the
renewable generation resource and NR is the length of the probabilistic
table.

= ∈N G CRRound(Max{ }/Δ )R ren gen (27)

∑= ∈p i G N GI R( ) ( )/ ,
k

i Rren ren
(28)

= ⎧
⎨⎩

∈G G C
h

I ( ) 1, [0, 0.5·Δ ]
0, ot erwise

0 ren
ren gen

(29)

Fig. 3. Available capacity duration curve of 1000 microgrids with a total CHP capacity of 51.4MW and the guaranteed capacity is of 35.6MW with a probability of
90%.
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Further, the probabilistic capacity table of the generation system is
obtained via convolution of the above probabilistic capacity tables of
conventional generators and renewable generation, which is referred to
as p i( )gen . Afterwards, the capacity interval CΔ mic of the probabilistic
capacity table of a number of microgrids is increased to the capacity
interval CΔ gen, as described in (5) and (6); such that, a new probabilistic
capacity table of the whole supply resources (both the generation
system of the main grid and microgrids) can be computed via con-
volution of the probabilistic capacity table of the generation system and
the one of the microgrids, which is referred to as p i( )all .

Moreover, the corresponding availability capacity duration curves
F i( )gen and F i( )all can be obtained based on p i( )gen and p i( )all , respec-
tively. According to the definition of guaranteed capacity, with a spe-
cified probability p, two guaranteed capacities can be obtained from
F i( )gen and F i( )all , which are referred to as C p( )gen and C p( )all , respec-
tively. Eventually, the difference between C p( )gen and C p( )all is defined
as the additional available capacity A p( )MGs . Note that this additional
available capacity is subject to a particular duration of the reserve
service. Fig. 4 illustrates a conceptual example of the evaluation of the
additional available capacity of the microgrids.

Unlike the metric “Guaranteed Capacity” introduced earlier that
quantifies the level of electricity capacity contribution from the micro-
grids’ point of view, this metric, “additional available capacity”, clearly
indicates the amount of capacity that is made available (also with a
specific confidence/probability) from the perspective of the generation
system. In other words, it draws a complete picture for all the supply
sources including both the main generation system and microgrids.

4. Case study application

This section demonstrates the case study application using typical
types of microgrids based on the models of general British households
[36] as well as a test British electricity system for assessing the elec-
tricity capacity contribution from microgrids to the system.

4.1. Description of test microgrids and test British electricity system

4.1.1. Test microgrids: energy demand and technology sizing
Two typical types of microgrids are modelled in the case study ap-

plication. On the one hand, both of the microgrids consist of the same 100

households, which are assumed to be semi-detached houses taking ac-
count of a diverse range of appliances and occupancy profiles with con-
sideration of the UK statistics. As modelled in [9], the annual heat and
electricity demands, that feature a 30-min resolution, are 826 MWh and
124 MWh, respectively, which have been validated in the studies carried
out in [36,47]. Weather data of seven typical days are considered in
modelling the energy demand, as shown in Fig. 5, including weekdays (w/
d) and weekends (w/e) of winter, summer, shoulder (i.e., spring and au-
tumn) seasons, and a peak day representing the highest demand days (this
corresponds to a practice exercised by the British System Operator [48]).
The aforementioned seven typical days are therefore used to represent the
uncertainty set of energy demands and renewable availabilities in the case
study application. In addition, detailed profiles of energy demands, tem-
peratures and PV outputs are provided in Appendix A.

On the other hand, the two typical types of microgrids have distinct
energy supply resources. The first test microgrid (referred to as MG1)
has a gas-fired CHP unit, a gas boiler and a thermal energy storage,
while the second one (referred to as MG2) is equipped with rooftop PV
panels and batteries as well as a gas boiler (but no thermal energy
storage). Electricity and heat demands are supplied through distribu-
tion feeders and a district heating network inside the microgrids.

Table 2 shows the sizing of different technologies. As seen in the
table, the CHP unit in MG1 is sized to cover its electricity peak demand
(51.4 kWe, see Fig. 5.b), while the rest of the heat peak demand is
supplied by the gas boiler. The thermal energy storage is sized to be 210
kWhth, which corresponds to a volume of 7250 L with maximum and
minimum temperatures of 80 °C and 55 °C, respectively (determined in
[41] using a detailed cost-benefit analysis). The total PV installation in
MG2 is 275 kWp, as suggested by the UK’s Energy Savings Trust [49];
meanwhile, the batteries in MG2 is sized at 109.8 kWh for total energy
capacity, which is equal to the highest electricity demand for five
continuous hours [9], and the total power capacity is 65.9 kW con-
sidering 60% for the ratio of power capacity over energy capacity [50].

In summary, MG1 and MG2 represent two distinct types of micro-
grids. The electricity capacity contribution from MG1 comes from the
CHP unit, which can be controlled. Meanwhile, flexibility of MG1 relies
on thermal energy storage, which stores the unconsumed heat pro-
duction accompanying the electricity generation. Unlike MG1, the
electricity supply source of MG2 is PV panels, which are intermittent
and can be controlled to a limited extent (i.e., generation curtailment).
Thus, MG2’s key source of flexibility comes from batteries. It has to be
highlighted that the two microgrids specifically simulated in this paper
are considered to be two distinct and representative types of

Fig. 4. Demonstration of evaluating the additional capacity of microgrids at system-level. The Whole Supply Source curve contains capacity contribution of both the
main generation system and microgrids.
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microgrids. In other words, this paper does not aim to present results
representing accurately the real system, but rather illustrative ones
based on recognized resources that would be implemented in the real
system. Ultimately, the objective is to present transparent results and
discuss in a clear way the main distinctions among different reserve
services and the main trends associated with the contributions from
microgrids (including also the quantitative framework). Nonetheless, a
large number of microgrids of each type is considered in the case study
application focusing on the test British system (aggregation of 9046
MG1 and 15,272 MG2). Furthermore, the framework illustrated in
Fig. 1 is sufficiently general to deal with any type of microgrids, which
can be aggregated with others at the system-level/national-level.

As a further remark, the case study later extrapolates the con-
tribution from the two representative microgrids (i.e., MG1 and MG2)
to that from all microgrids to the main test British system. This implies
for example that an identical profile of PV generation is considered for
all the PV installation. This will add to the discrepancy between the
numerical results in the paper and the actual contribution from these
distributed energy resources. Nonetheless, the numerical results
(though demonstrating an estimation of the contribution from micro-
grids at the system-level) can be further improved and become more
realistic by using energy demand and PV generation profiles with actual
spatiotemporal differences across the British electricity system.

4.1.2. Test British electricity system
A test British electricity system is adopted based on public data

published by the British System Operator (i.e., National Grid [51]) and

the system regulator (i.e., Ofgem [52]). Table 3 presents the generation
portfolio of the test British electricity system in 2015 [51] and the
corresponding average availability of the generation technologies. The
detailed models of solar and wind generation at system-level have been
described in [34] and [53], respectively. More specifically, the seasonal
and geographical features of solar generation come from the models in
[34] that correspond to the solar generation when modelled directly at
a national level (i.e., modelling the aggregated solar generation of the
test British system using historical solar irradiance at 11 representative
locations as well as corresponding installed PV capacities across the
British system [34]). It has to be highlighted here that this is different
comparing the modelling of PV outputs of MG2 (which are modelled
based on the solar irradiance of the aforementioned seven typical days
and also included in the Annex), as described in the framework for
modelling individual microgrids. This direct aggregation of solar gen-
eration at a national level is used in Section 4.3.2, where the con-
tribution from PV installation is not via the form of microgrids.
Meanwhile, the seasonal and geographical features of wind generation
are based on the study in [53], where 39 representative onshore and
offshore wind farms are used to model the aggregated wind generation
of the test British system.

4.2. Electricity capacity contribution of an individual microgrid to reserve
services

This section demonstrates the respective electricity capacity con-
tribution of each of the two test microgrids as introduced in Section

Fig. 5. Energy demand of 100 British semi-detached houses for seven typical days: (a) heat demand; (b) electricity demand.

Table 2
Parameters assumed for CHP unit, thermal energy storage, PV installation and
batteries.

MG1 MG2

CHP Electricity capacity (kWe) 51.4 –
Electricity efficiency 37% –
Heat efficiency 47% –

Thermal energy storage Thermal capacity (kWhth) 210 –
PV panels Capacity (kW) – 275
Batteries Power capacity (kWe) – 109.8

Energy capacity (kWhe) – 65.9
Roundtrip efficiency – 90%

Table 3
Generation portfolio of the test british electricity system and average avail-
abilities of different generation technologies.

Technology Total capacity
(GW)

Average capacity per
generator (MW)

Average
availability

Nuclear 9 1781 81%
CCGT 33.5 734 85%
Biomass 2.1 458 88%
Coal 16.2 1368 88%
Pumped Hydro 2.7 809 96%
Wind 12.9 – –
Solar 4.2 – –
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4.1.1. The results focus on the contribution with various service dura-
tions. More specifically, the service duration (as defined in Section
2.2.1) varies from 1 to 5 h for traditional operating reserve, i.e., for
security purposes. Afterwards, in order to highlight the difference be-
tween security-related and resilience-related services, prolonged service
durations including 10 h, 15 h, 20 h and 24 h are studied with respect to
the reserve services that may be required to enhance the system resi-
lience to high impact low probability events.

4.2.1. Probabilistic capacity tables of MG1
Probabilistic capacity tables of MG1 with different service durations

are presented as boxplots3 in Fig. 6, while the available capacity duration
curves are illustrated in Fig. 7. As seen in the figures, given a particular
service duration, the electricity capacity contribution from MG1 varies
from 0 to 51 kW depending on the starting time. It can be found that the
longer the service duration, the more likely the service window would
cover high levels of electricity demand inside MG1, and hence the less the
contribution from MG1 to system-level reserve services.

More importantly, Figs. 6 and 7 demonstrate that though MG1’s
CHP unit is not oversized particularly for providing electricity capacity
to upstream networks, there is a considerable amount of time
throughout the year that MG1 has a considerable amount of electricity
generation capacity surplus. This intrinsic flexibility of microgrids is
properly captured here.

4.2.2. Probabilistic capacity tables of MG2
Similarly, with consideration of different service durations, prob-

abilistic capacity tables and available capacity duration curves of MG2
are presented in Fig. 8 (in the form of boxplot) and 9, respectively. As
seen in Fig. 8, the probabilistic capacity tables of MG2 distribute widely
from 0 to 296 kW, while the majority of the electricity capacity con-
tribution is within the range between 0 and 75 kW (as indicated by the
boxes in Fig. 8).

Additionally, Fig. 9 clearly demonstrates that the available capacity
duration curves of MG2 have widespread long and thin tails. This im-
plies that high levels of electricity capacity contribution may be pos-
sible but the corresponding probability is low (also as indicated by the
outliers “+” in Fig. 8). Though the installed PV capacity is considerably
higher than the electricity peak demand (275 kWp compared with 51.4
kWe), the chance for PV panels to reach their peak generation is rare
and the intermittency of PV generation makes the high electricity ca-
pacity contribution be possible only at particular times. This is funda-
mentally different from MG1, where the CHP unit can be dispatched
according to the need of system.

Further, it can be seen that MG2 yields much lower electricity ca-
pacity contribution to reserve services for resilience purposes, i.e., those
with service duration longer than 5 h. In addition, when Fig. 9 is
compared with Fig. 7, it can also be found that the electricity capacity
contribution of MG2 decreases much faster than that of MG1 following
the increase of service duration. This is because, apart from the impact
of internal electricity demand, MG2 is an energy-limited microgrid
compared with MG1. More specifically, it is considered that MG1 has
continuous supply of gas (i.e., energy unlimited), allowing its CHP unit
to generate electricity as long as the accompanying heat production can
be consumed or stored. In contrast, the batteries in MG2, as a key player
in the service provision, are energy-limited (i.e., relying significantly on

the energy stored at the beginning of a service), which may or may not
be able to be charged by the variable PV generation (see Eq. (9)). The
energy-limited feature of MG2 leads to the phenomenon observed in
Fig. 9, i.e., the electricity capacity contribution from MG2 decreases
drastically following the increase of service duration.

4.2.3. Comparison of MG1 and MG2 for reserve services based on
guaranteed capacity

The guaranteed capacity is evaluated for MG1 and MG2 with the
probability of 90% (other probability can be chosen as appropriate), as
seen in Table 4 where the average electricity capacity contribution is
also listed. Additionally, two operation strategies introduced in Section
2.3 (“Base” and “Res” Strategies) are also compared.

Generally, both the guaranteed capacity and the average contribu-
tion decline when the service duration increases. For instance, with
regards to the services for security, the guaranteed capacity of MG1
decreases by 7 kW (from 19 kW to 12 kW) when the service duration
increases from 1 h to 5 h; whereas, that of MG2 drops from 29 kW to
1 kW. This is attributed to the energy-unlimited feature of MG1 (i.e.,
assuming adequate supply of gas) and the energy-limited feature of
MG2 (i.e., limited energy stored in batteries). Further, the support from
a single microgrid to the reserve services featuring prolonged service
duration (i.e., those over 5 h for resilience purposes) is very limited,
such as for the service duration of 24 h MG1 presents a guaranteed
capacity of 1 kW or an average contribution of 12.7 kW.

Moreover, when comparing the guaranteed capacity between
“Base” and “Res” Strategies, it is found that MG1 exhibits the same level
of guaranteed capacity; whereas, the guaranteed capacity of MG2 de-
monstrates a significant increase attributed to the reserve payment (i.e.,
£ 0.00451 per kW per hour). In other words, the reserve payment books
electricity capacity headroom (particularly in MG2’s batteries) in the
planned operation of microgrids [9]. On the other hand, as the thermal
energy storage in MG1 is oversized for energy arbitrage and heat supply
[9], it has sufficient headroom regardless of the strategies.

4.3. Collective electricity capacity contribution at system-level

This section presents the case study application on the assessment of
the collective electricity capacity contribution from microgrid across
the network at system-level.

4.3.1. Aggregation of probabilistic capacity tables of microgrids
This section presents the aggregation of probabilistic capacity tables

of microgrids using MG1 as example. A thousand identical MG1s are
aggregated and their probabilistic capacity tables are shown in Fig. 10.
These probabilistic capacity tables are mostly normally distributed. As
seen in Fig. 10, a wider range of the probabilistic capacity table can be
found for the minimum capacity surplus that can be contributed to re-
serve services lasting between 1 and 5 h (reliability-related), compared
with that found for the minimum capacity surplus that can be contributed
to reserve services lasting between 10 and 24 h (resilience-related). This
means that the contribution from 1000 MG1s to short duration services
depends more on the starting time of the reserve service than that to long-
lasting services, when the starting time of the relevant service varies. In
other words, the contribution to long-lasting reserve services (resilience-
related) is mostly constrained by the internal energy consumption pattern
as well as the energy-limited resources of those microgrids, rather than
the starting time of the reserve service.

In addition, the corresponding guaranteed capacity of the con-
sidered group of microgrids (1,000 MG1s) is listed in Table 5, where the
guaranteed capacity of a single MG1 is also presented. It can be ob-
served that the guaranteed capacity of the considered group of MG1s is
much higher than a thousand times of that of a single MG1, owing to
the diversity inherent in their electricity capacity contribution (as these
microgrids are assumed to be independent). More importantly, though
a single microgrid fails to make a substantial contribution to the reserve

3 For a clear illustration of the probabilistic capacity tables, Fig. 6 demon-
strates these probabilistic capacity tables in the form of boxplot. The bar in the
middle of the box is the median value, while the edges of the box are the 25th
and 75th percentiles. The whiskers extend to the values that are covered by the
3-sigma rule (i.e., if the data were normally distributed, 99.7% of the data
would be within the whiskers), whereas the most extreme values (or outliers)
are represented by “+” outside the whiskers. The same standard is applied to
Fig. 8.
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Fig. 6. Probabilistic capacity tables of MG1 presented as boxplots with consideration of various durations of reserve service.

Fig. 7. Available capacity duration curve of MG1 with consideration of various durations of reserve service.

Fig. 8. Probabilistic capacity tables of MG2 presented as boxplots with consideration of various durations of reserve service.
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services for resilience, a group of microgrids, on the other hand, can in
fact provide a significant amount of available capacity at system-level
to enhance system resilience to extreme events needing prolonged re-
storation time. For instance, the guaranteed capacity of 1000 MG1 is
12MW for a service duration of 24 h, whereas that of a single MG1 is
merely 1 kW (see Table 5), demonstrating a significant improvement in
the provision of security and resilience services associated with the
aggregation of microgrids.

Fig. 9. Available capacity duration curves of MG2 with consideration of various capacity service windows.

Table 4
Guaranteed capacity with a probability of 90% and average capacity contribution evaluated for MG1 and MG2 under different scheduled operation strategies and
different durations of reserve service.

Microgrid Strategy Metric Length of service window (h)

1 2 3 4 5 10 15 20 24

MG1 Base & Res Guaranteed capacity (kW) 19 18 16 12 12 2 2 1 1
Average (kW) 36.1 33.4 31.0 28.6 26.3 17.2 14.7 13.5 12.7

MG2 Base Guaranteed capacity (kW) 0 0 0 0 0 0 0 0 0
Average (kW) 61.7 47.2 38.6 31.6 25.4 6.2 1.7 0.7 0.4

Res Guaranteed capacity (kW) 29 15 6 2 1 0 0 0 0
Average (kW) 83.1 63.4 48.2 37.9 29.8 6.8 2.0 0.9 0.6

Fig. 10. Aggregated probabilistic capacity tables of one thousand identical MG1s with the capacity interval of 1MW.

Table 5
Guaranteed capacity evaluated for a group of microgrids with a probability of
90%.

Duration of reserve service (h) 1 2 3 4 5 10 15 20 24

1000 MG1s (MW) 36 33 30 28 26 17 14 13 12
A Single MG1 (kW) 19 18 16 12 12 2 2 1 1
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4.3.2. Assessment of additional available capacity
This section evaluates the additional available capacity of a group of

microgrids in the system under two distinct scenarios, which are in-
troduced as follows. According to National Grid [33], the total installation
of distributed and small-scale CHP units is 465MW in 2016. In this light,
the first scenario (referred to as S1) considers that all the distributed and
small-scale CHP units operate as MG1 without loss of generality, leading
to 9046 identical MG1s (i.e., 465MW divided by 51.4 kW).

In S1, the probabilistic capacity table of the test British electricity
generation system is created based on all the generation technologies as
listed in Table 3, according to the approach in Section 3.2.2. Mean-
while, the aggregated probabilistic capacity table of the group of MG1s
(with 465MW of CHP units) is created through convolution of the
probabilistic capacity table of MG1 in Fig. 6, separately for all service
durations from 1 to 24 h. A new probabilistic capacity table of both the
test British electricity generation system and these MG1s can be ob-
tained separately for all service durations from 1 to 24 h. Eventually,
the available capacity duration curve of the test British electricity
generation system and that of both the test British electricity generation
system and these MG1s can be developed, as shown in Fig. 11 for the
duration of 1 h (i.e., for security purposes).

As seen in Fig. 11, the electricity capacity contribution from these
microgrids with a total CHP capacity of 465MW, considering a prob-
ability of 99% [45], can provide an additional available capacity of
319MW (68.6% of the total CHP capacity) to enhance system security
via reserve services lasting 1 h. Additionally, their contribution to other
reserve services (both security and resilience purposes) is presented in
Table 6 in the form of additional available capacity considering a prob-
ability of 99%. Despite the observed declining trend of their contribu-
tion to the system available capacity, these microgrids with a total CHP
capacity of 465MW can for instance provide an additional available
capacity of 149MW to enhance system resilience via reserve services
with the duration of 10 h, i.e., 32% of the total CHP capacity, while the
contribution to resilience-related reserve service lasting for 24 h is
109MW (which is significant considering the supporting duration).

On the other hand, as seen in Table 2, the total solar capacity is 4.2
GW; and in fact according to National Grid [51], the majority of the
solar capacity corresponds to the installation of PV panels in distribu-
tion networks. Therefore, the second scenario (referred to as S2) con-
siders that all the solar capacity is adopted to form microgrids re-
presented by MG2. This corresponds to approximately 15,272 identical
MG2s (i.e., 4.2 GW divided by 275 kW).

Unlike the assessment shown earlier, the probabilistic capacity table
is built for the test British electricity generation system excluding the
solar generation. This is because all the solar installation in S2 belongs
to microgrids. Meanwhile, the aggregated probabilistic capacity table of
the group of MG2s is created by convolution of the probabilistic ca-
pacity table of MG2 as seen in Fig. 8, separately for all service durations
from 1 to 24 h. Eventually, the available capacity duration curve of the
test British electricity generation system without solar generation and
that of the one with additional electricity capacity contribution from all
the microgrids are presented as an example in Fig. 12 for the duration
of 1 h (i.e., for security purposes).

In Fig. 12, an additional available capacity of 1,247MW can be
contributed by microgrids with a PV installation of 4.2 GW for the
purposes of enhancing system security via reserve services with dura-
tion of 1 h (also seen in the figure that the direct contribution from the
PV installation is only 258MW). Similarly, their contribution to other
reserve services including both security-related and resilience-related
are presented in Table 7. As seen in the table and most importantly, the
contribution from a single MG2 to resilience (via reserve services with a
supporting duration longer than 5 h) is extremely limited (close to zero
as seen in Table 4); however, according to Table 7 the collective con-
tribution from a group of MG2s at system-level can reach to 102MW via
reserve services with duration of 10 h (though not as significant as their
contribution to security). Nevertheless, in order to deliver this level of
additional available capacity, the system will have a battery installation
of approximately 1.6 GWh.

4.3.3. Impact of the level of microgrid integration on contribution to reserve
services

As mentioned in Section 1.1, the level of microgrid integration is
expected to increase significantly in the future [30]. In this light, the
following studies are carried out focusing on the increasing penetration

Fig. 11. Contribution to security via reserve services with duration of 1 h: available capacity duration curves of the test British electricity generation system and all
the electricity supply resources including microgrids formed by 465MW of CHP units; as well as the assessment of the corresponding additional available capacity.

Table 6
Contribution to system available capacity from a group of microgrids with a
total CHP capacity of 465MW.

Duration of reserve service
(h)

1 2 3 4 5 10 15 20 24

Additional available
capacity considering a
probability of 99%
(MW)

319 294 273 252 232 149 127 115 109
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of distributed CHP units and PV panels in the British system, which is
represented by the two representative types of microgrids (i.e., MG1
and MG2, respectively).

More specifically, the penetration level of CHP units is analyzed by
varying it from 500MW to 2.5 GW with steps of 500MW (as mentioned
in Section 1.2 the total CHP capacity will reach 2,348MW by 2040 [33]).
Fig. 13-(a) demonstrates the increase in the additional available capacity
following the increase of CHP penetration level. It can be seen clearly
that the additional available capacity increases linearly when CHP pe-
netration increases. More importantly, it is also found that the incre-
mental rate of the additional available capacity via reliability-related
services (with service duration from 1 to 5 h) is much higher than that of
the additional available capacity via resilience-related services (with
service duration over 5 h). This implies that the additional system-level
contribution to resilience provision would be lower compared to relia-
bility provision, when more microgrids are formed and participate in
providing reserves services. Similarly, the same trend is found in Fig. 13-
(b), where the results are for microgirds with PV installation (which is
varied from 5 GW to 16.5 GW according to the projection in [33]). Due
to the energy-limited feature of batteries, the increase in the additional
available capacity via resilience-related services (with service duration
over 5 h) is also very limited (extremely low incremental rate of addi-
tional available capacity under service duration longer than 10 h in
Fig. 13-(b)) even though the number of microgrids with PV installation
(represented by the penetration level of PV) increases rapidly.

In summary, these results provide valuable information to the policy
makers to obtain a more comprehensive understanding of the addi-
tional contribution from integrating more microgrids to the main
electricity grid, i.e., the corresponding additional contribution depends
significantly on the duration of reserve services. In other words, the
additional contribution to reliability provision is different from that
resilience provision, though from the same number of additional mi-
crogrids. According to Fig. 13, integrating more microgrids would
present higher value to reliability provision than to resilience provision.

4.4. Discussion and limitation of the case study application

Specific case study applications have been carried out on two re-
presentative microgrids and a test British electricity generation system.
The two representative microgrids are fundamentally distinct to each
other, i.e., the first one (MG1) represents those with controllable gen-
eration resources (such as distributed CHP units or diesel generators),
whereas the second one (MG2) exemplifies the microgrids with inter-
mittent renewable generation (uncontrollable as PV panels) and elec-
trical energy storage. It can be seen from the results that the electricity
capacity contribution from MG1 decreases when the service duration
increases due to the fact that the longer the service duration the higher
the likelihood that the service window would cover the electricity peak
demand of MG1, when the capacity surplus is naturally reduced. On the
other hand, it can also be observed that the electricity capacity con-
tribution from MG2 can be higher than that from MG1 when the service
duration is short (e.g., one hour); however, it drops significantly faster
when the service duration increases (the guaranteed capacity with the
probability of 90% becomes zero when the capacity service duration is
over 5 h). This is mainly because, in addition to the constraint imposed
by the internal energy demand, the energy stored in batteries can only
sustain the supply for certain amount of time. Additionally, in the light
of the energy-limited feature of batteries, the two sets of studies ana-
lyzed for MG2 clearly suggest that proper incentives (or market struc-
tures) can make a substantial difference, i.e., the guaranteed capacity of
MG2 would be zero if there were no incentive for reserve service.

The aforementioned results clearly demonstrate how, though in-
dividually constrained by the power and/or energy capacities of in-
ternal resources, aggregation of various microgrids can significantly
improve their contribution to both reliability and resilience at the
system-level, far beyond the simple summation of the individual con-
tributions, demonstrating a clear synergic effect. More specifically,
from the British case study applications, coordination of distributed and
small-scale CHP units in the form of microgrids can contribute a sub-
stantial proportion (68.6%) of their installed capacity to the available
generation capacity of the system through one-hour services. Even more
importantly, the contribution from PV to the system’s available capacity
is much higher (approximately 5 times higher) when the distributed PV
panels are combined with batteries and are operated in the form of
microgrids, compared with the contribution made solely by PV panels.
These results can be applied by local aggregators to participate in re-
serve markets as well as be considered by policy makers and system
regulators to introduce new markets or other arrangements to imple-
ment new “resilience” services.

Fig. 12. Contribution to security via reserve
services with duration of 1 h: available ca-
pacity duration curves of the test British
electricity generation system excluding solar
generation and all the electricity supply re-
sources including microgrids formed by 4.2
GW of PV installation; as well as the as-
sessment of the corresponding additional
available capacity.

Table 7
Contribution to system available capacity from a group of microgrids with a
total PV capacity of 4.2 GW.

Duration of reserve service
(h)

1 2 3 4 5 10 15 20 24

Additional available capacity
considering a probability
of 99% (MW)

1247 953 724 569 446 102 28 14 14
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Further, studies focusing on the impact of increasing penetration
levels of microgrids are also carried out in the context of the British
system. It is found that in general integrating more microgrids presents
different additional values for reliability provision and resilience pro-
vision at the system-level.

However, the numerical results obtained in the case study applica-
tion have to be understood in the context of the following assumptions
to enable transparent conclusions, such as:

a) The proposed optimization considers perfect forecasting, though
uncertainties in energy demands and renewable generation are
modelled using seven typical days;

b) Full cooperation of microgrids is considered and achieved by cost-
minimizing, while in reality the actual contribution from microgrids
heavily relies on their cooperation;

c) Various types of microgrids can be formed in the context of the
British system, not being limited to the two specific types of mi-
crogrids simulated and analyzed in detail earlier (though they are
representative in terms of the resources they have);

d) Extrapolating the contribution from a single MG2 to that from a
number of MG2s at the level of the test British system implies that
the spatiotemporal diversity of solar irradiance and temperature
cannot be captured by the relevant results;

e) Dependency among microgrids can affect their aggregated con-
tribution to the main electricity system. Independency is assumed
for the case study application, in the light of the large number of
microgrids aggregated at the system-level and their inherent di-
versity.

Nonetheless, the aforementioned impacts could be captured through
more complex modelling approaches as well as more realistic scenarios
of microgrids, and this is suggested for future investigations.

5. Conclusions and future work

This paper has introduced a framework for quantifying the system-
level electricity capacity contribution from microgrids to various reserve
services, including prolonged support following potential rare, cata-
strophic events. Probabilistic capacity tables have been defined in order

to take account of multiple sources of uncertainty related to both the
operation of the microgrids and the occurrence of unfavorable events in
the main electricity grid. An optimization model has been proposed to
determine microgrid’s operation in real time by maximizing the electricity
capacity that can be provided by a microgrid in a particular scenario
when a reserve service is exercised. The proposed framework uses service
duration to differentiate the reserve services for security purpose from
those for resilience purpose. Hence, we have also defined a new type of
reserve service with prolonged service duration, which is complementary
to the traditional operating reserves featuring short supporting duration.
The concept of guaranteed capacity has been extended to indicate the
level of electricity capacity contribution from microgrids with a specific
probability (or confidence), which quantifies the contribution from the
microgrid’s point of view. Additional available capacity has been defined
to quantify the contribution from the generation system’s point of view.

As key findings we showed that due to the constraints imposed by the
internal energy consumption of a microgird as well as the energy lim-
itation of storage, a single microgrid can contribute much more to re-
serve services with short supporting durations (for reliability provision),
compared with its contribution to those requiring prolonged supporting
durations (which are for resilience provision). However, in spite of the
individual capacity and/or energy limitations, aggregation at the system-
level of various microgrids can significantly improve the contribution to
both reliability and resilience, far beyond the simple summation of the
individual contributions, demonstrating a clear synergic effect.
Generally, integrating more microgrids presents higher additional value
to reliability provision than to resilience provision at the system-level.
The results focusing on the penetration level also demonstrate that the
proposed framework can inform policy makers and regulators on the
strategic role of microgrids for energy system planning and policy de-
velopments, and assist them to design appropriate ancillary services and
markets not only to enhance system reliability (as current reserve ser-
vices worldwide do) but also its resilience.

For future application of the proposed framework, various types of
microgrids for the British system (representing the actual diversity of
resources in the British system) will be modelled and their aggregated
contribution to reserve services will be quantified using the presented
framework, in order to provide more realistic results and implications
to assist specific planning decisions on the British system development.

Fig. 13. Increase in the additional available capacity through providing reserve services (for both reliability and resilience purposes) owing to the increase in the
penetration level of microgrids: (a) the microgrids with CHPs represented by MG1 and (b) the microgrids with PV panels and batteries represented by MG2.
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Future work will focus on developing an economic framework such that
the economic value of the electricity capacity contribution from mi-
crogrids can be properly quantified. This could also further influence
the development of microgrids in terms of their individual design to
allow new business cases, for example by oversizing them for the pur-
pose of providing capacity services to upstream networks. Additionally,
it is also essential to thoroughly investigate how and to what extent the
cooperation of microgrids can impact their contribution to system-level
reliability and resilience via various reserve services, which will be a
critical part of additional research built on the work carried out in this
paper. Similarly, the quantification of to what extent dependency
among microgrids (such as dependency of resource availabilities and
dependency due to responses to the system price signals) has to be
conducted to demonstrate a complete picture of microgrids’s con-
tribution at the system-level to reserve services.
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Appendix A

(see Tables 8 and 9).

Table 8
Database of typical day temperature and PV output.

Time Summer w/d Summer w/e Shoulder w/d Shoulder w/e Winter w/d Winter w/e Peak

Temp (°C) PV (kW) Temp (°C) PV (kW) Temp (°C) PV (kW) Temp (°C) PV (kW) Temp (°C) PV (kW) Temp (°C) PV (kW) Temp (°C) PV (kW)

00:00 15.3 0 14.6 0 2.2 0 4.7 0 6.7 0 5.8 0 0.7 0
00:30 15 0 14.1 0 2 0 4.5 0 6.5 0 5.7 0 0.7 0
01:00 14.9 0 13.7 0 1.9 0 4.1 0 6.4 0 5.9 0 0.7 0
01:30 14.7 0 13.5 0 1.9 0 3.9 0 6.4 0 6 0 0.7 0
02:00 14.5 0 13.5 0 1.9 0 3.5 0 6.3 0 6 0 0.6 0
02:30 14.3 0 13.6 0 2.2 0 3.1 0 6.3 0 6 0 0.7 0
03:00 13.8 0 13.2 0 2.2 0 2.7 0 6.5 0 6.2 0 0.7 0
03:30 13.9 0 12.8 0 2.1 0 2.3 0 6.4 0 6.3 0 0.4 0
04:00 13.6 0 12.5 0 2.1 0 1.9 0 6.2 0 6.3 0 0.3 0
04:30 13.6 0 12 0 2.1 0 1.6 0 6.2 0 6.2 0 0.4 0
05:00 13.4 0 11.8 0 1.9 0 1.3 0 6.2 0 6.1 0 0.6 0
05:30 13.1 0 11.5 0 1.8 0 1 0 6.2 0 6 0 0.3 0
06:00 12.7 0 11.4 0 1.8 0 0.4 0 6.1 0 6 0 0.4 0
06:30 12.4 2.7 11.3 0.3 2 0 0.2 0 6.1 0 6 0 0.8 0
07:00 12.4 12 11.2 5.9 2.2 0.5 0 0.1 6.3 0 6.1 0 1.1 0
07:30 12.8 18.5 11.8 21 2.4 6.2 −0.1 2.8 6.3 0 6.1 0 1.1 0
08:00 13.3 42.9 12.8 34.6 2.7 20.9 0.5 10.5 6.3 0 5.8 0 1.1 0.1
08:30 14.1 68.6 13.5 57.3 3 34.2 1.3 22.9 6.4 0.4 5.6 0.1 0.9 1.2
09:00 14.7 86 14.2 86.5 3.3 52.6 2.1 38.7 6.5 0.4 5.6 1.5 0.7 3.9
09:30 15.1 130.2 14.9 133.8 3.6 77.6 2.9 57.1 6.7 0.9 5.5 3.5 0.9 13.3
10:00 15.8 97 15.1 93 4 120.2 3.5 75.4 6.9 2.5 5.6 9.8 1.4 21.7
10:30 15.7 136.3 15.5 178.2 4.8 172.8 4.6 91.7 7.2 4.3 6.2 18.4 1.5 27.6
11:00 16.2 151 16 190.6 5.1 171.8 5.1 107.3 7.5 5.9 7.1 25.6 1.9 33.9
11:30 16.3 133.2 16.1 234.7 5.5 193.3 5.8 118.5 7.4 6.4 7.4 30.7 1.5 30.8
12:00 16.5 208.8 15.9 148.6 6 228.1 6.3 125 7.2 5.6 7.7 28.6 1.7 32.4
12:30 16.8 187.8 16 249.4 6.1 238.9 6.8 126.3 7.2 7.7 7.9 31 1.6 33.1
13:00 16.9 221.6 16.2 180 6.3 245.1 7.4 125.8 7.4 6.8 7.9 21.4 1.8 32.1
13:30 17.3 255.6 15.9 230.9 6.5 241.8 8.1 128.8 7.6 4.6 8.2 21.9 1.4 23.8
14:00 17.3 155.2 16.5 246.2 6.6 198.2 8.8 108 7.5 2.9 8.5 20 1.4 16.9
14:30 17.7 215.5 16.1 184.7 6.5 211.2 8.9 88.7 7.5 1.8 8.4 9.4 1.4 8.6
15:00 17.7 174.6 16 154.5 6.9 207.4 8.7 72.2 7.6 0.6 8.2 2.7 0.9 3.7
15:30 18 198.6 16.4 208.5 6.8 159 8.7 53.4 7.6 0 7.7 0 0.8 0.1
16:00 18 179.6 16.2 158.3 6.8 130.1 8.1 30.2 7.3 0 7.3 0 0.7 0
16:30 18.2 158.7 16.3 156 6.6 114 7.9 19.7 7.1 0 7 0 0.7 0
17:00 18.4 110.9 16.6 127.2 6.9 98.9 7.7 6.7 7 0 6.8 0 0.8 0
17:30 18 58.6 16.3 98.1 6.7 69.9 7.3 0 6.9 0 6.6 0 0.8 0
18:00 17.9 59.6 16.2 71.7 6.6 37.7 7.4 0 6.8 0 6.6 0 0.7 0
18:30 17.9 48.3 15.8 24.2 6.4 18.8 7.3 0 6.9 0 6.6 0 0.8 0
19:00 18.1 33.8 15.5 13.3 5.8 6.3 7.2 0 6.8 0 6.8 0 0.7 0
19:30 18 14.3 15.2 0.6 5.4 0 7 0 6.8 0 7.2 0 0.3 0
20:00 17.5 0.3 15.2 0 4.9 0 6.5 0 6.7 0 7 0 0.4 0
20:30 16.9 0 14.9 0 4.5 0 6.2 0 6.6 0 6.9 0 0.7 0
21:00 16.6 0 14.5 0 4.2 0 6 0 6.6 0 6.9 0 0.6 0
21:30 16.4 0 14.3 0 3.7 0 5.9 0 6.7 0 6.8 0 0.2 0
22:00 15.9 0 14.3 0 3.3 0 5.5 0 6.8 0 6.6 0 −0.1 0
22:30 15.5 0 14 0 2.9 0 4.9 0 6.7 0 6.7 0 −0.1 0
23:00 15.2 0 13.8 0 2.6 0 3.8 0 6.8 0 6.8 0 −0.1 0
23:30 15 0 13.8 0 2.4 0 3.3 0 6.6 0 6.7 0 −0.3 0
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Table 9
Typical day profiles of energy demands (electricity and heat) in kW.

Time Summer w/d Summer w/e Shoulder w/d Shoulder w/e Winter w/d Winter w/e Peak

Elec Heat Elec Heat Elec Heat Elec Heat Elec Heat Elec Heat Elec Heat

00:00 1.9 19.5 2.1 22.8 2.2 19 2.9 43.9 2.8 23.5 1.3 38.8 2.7 33.2
00:30 1.4 16.4 2.6 20 1.5 20.8 2.2 29.1 2.1 20.4 3.4 26 2.1 28.6
01:00 1.5 13.3 1.6 19.1 1.9 19.7 1.4 31.7 2.1 22.4 3.6 17.3 2 50.4
01:30 1 16.2 3 20.4 1.2 22 1.5 44.6 2.1 20 1.7 16.5 2 66.1
02:00 0.8 10.8 1.7 21.7 1 36.9 1.7 60.6 1.6 23.4 1.2 27.1 1.6 75.5
02:30 1.1 13.5 0.9 23.3 1 54.5 0.8 82.2 1.3 47.9 1.4 33.3 1.3 95.2
03:00 1.3 13.9 1.8 20.3 1.5 56.8 1.7 101.4 1.5 59.5 1.1 57.2 1.4 126.4
03:30 1.5 16.1 1.9 16.7 0.7 76.6 0.9 111.9 1 69.8 1.4 79.1 1 159.2
04:00 1.1 28.2 1 19 1.4 115.7 1.9 130.9 2.3 81 2.3 87.6 2.2 200.2
04:30 1.1 53 1.1 34.3 1.2 173.2 1.3 163.7 3 99.2 1.7 101 2.9 245.3
05:00 2.1 60.2 1.6 50.3 1.7 215.5 1.6 197.8 1.5 133.6 1.9 134.4 1.5 273.7
05:30 10.9 76.8 6.1 65.9 11.1 245.9 4.2 219.1 21.5 165 6.8 155 20.8 276.3
06:00 21.2 75.7 7.2 77 25.1 252.9 4.4 242.2 25.4 199.4 8.3 179 24.5 272.4
06:30 23 68.1 7.5 90.4 16.4 237.3 7.6 246.2 30.2 217.7 11.2 208.2 29.2 264.2
07:00 39.6 51.6 19.8 86.9 33.7 211.9 11.5 240.5 51.3 208.3 22.4 212.6 49.6 253.2
07:30 21.9 72.8 15.5 74.2 27.3 176.5 15.6 219.8 46.7 199.7 18.4 216.6 45.2 244.5
08:00 26.6 54.2 25.1 63.6 20 73.9 33.7 168 30.6 177.6 36.7 200.3 29.5 218.1
08:30 12.3 41.9 23.9 62.9 18.1 42 33.9 103.5 24.2 141.5 26.5 198.4 23.4 162.7
09:00 14.7 34.4 21.4 61.2 20.2 40.8 28.9 63.8 20.2 147.6 30.6 149.6 19.5 120.5
09:30 8.8 38 21.6 45.7 14.6 49.2 24.5 48.5 16.8 135.9 32.9 113.5 16.2 56.9
10:00 7.3 33.7 16.5 36 12.2 45.7 26.8 49.4 20.2 110.4 36 60.6 19.6 48.7
10:30 6.9 38.3 19.3 42.8 16.6 35.7 18.7 47.5 20 77.2 25 49.1 19.3 41.9
11:00 10 41.8 14 46.7 16.1 33.9 18.8 46.6 20.4 73.9 21 52.3 19.8 45
11:30 7.8 30.8 13.6 43 17 37.1 18.7 51.8 15.6 77.9 18.8 43.8 15.1 40.7
12:00 10.6 28.8 14.6 55.3 12.8 35.1 23.6 54.9 15.4 80.1 21.6 54.1 14.9 32.9
12:30 11.2 34.2 19.1 55.3 15.3 41 22 49.9 19 75.3 25 54.1 18.4 37.4
13:00 11.7 30.8 16.6 48.9 13.3 33.9 19.2 46.9 21.1 74.3 23.1 58.9 20.4 52.1
13:30 7 25.9 16.6 48.2 11.6 34 21 43.9 18.1 66.2 27.5 55.8 17.5 47
14:00 9.2 31 11.9 42.5 11.1 39 16 38.3 13.3 52.4 26.7 45.3 12.9 32.3
14:30 8.3 31.7 12.1 43.5 8.7 34.2 15.6 38.9 14 75.8 24.3 35.5 13.5 40.7
15:00 8.9 26.5 13.7 43.1 9.4 35.3 14.4 36.6 9.9 104.1 23.1 38.1 9.5 30.1
15:30 8.5 28.6 12.2 39.7 12.5 42.7 17.3 43.3 9.7 155.3 20 136.8 9.4 135
16:00 12.7 47.6 14 51.2 14.1 46.3 15.4 36.3 14.7 187.8 19.9 143.9 14.2 170.3
16:30 16 63.3 16.9 74.4 18.3 51.6 13.7 37.8 19.8 209.6 21.7 166.1 19.1 206.9
17:00 16.5 73.6 19.5 76 23 69.2 16.2 48.5 24.2 204.2 31.5 176.6 23.4 230.4
17:30 25.7 82.1 24.3 80.4 31.6 69.2 22.5 151 35.1 194.5 37 185.8 33.9 247.3
18:00 28.2 73.9 18.6 72 29.2 69.8 29.3 153 38.1 194.9 42.7 195.7 36.8 251.9
18:30 24.8 74.8 35.2 76.9 34.1 80.6 30.4 170 42 198.6 50.2 181.2 40.6 253
19:00 18.6 75.4 33.5 82.6 24.7 75.7 34.3 177.6 34.4 198.7 34.1 174.5 33.2 253.4
19:30 24.5 70.5 23.8 77 24.6 196.7 30.6 190.2 27.1 201.7 24 176.7 26.2 258.7
20:00 17.5 72.7 14.1 96.4 20.7 205.7 24 203.4 27.4 215.8 30.7 176.8 26.4 276.5
20:30 15.7 66.4 8.6 102.8 14.7 217.2 14.4 199.2 21.1 220.8 15.5 181.6 20.4 277.1
21:00 9.7 58.1 10.9 105.7 14.8 231.1 12.1 192.2 13.9 205.7 16.6 182.7 13.4 261.6
21:30 9.2 64.5 9.3 100.3 12.3 215.2 8.7 180.7 12.4 195.7 13.7 171.7 12 260.9
22:00 7.4 57.8 8.1 97.4 7.9 199 8.4 166.9 12.9 167.6 10.7 153.7 12.4 230.8
22:30 8.4 63.9 5.6 84.5 8.7 174.2 8 139.4 9.7 132.1 8.3 126.1 9.4 176.5
23:00 4.8 46.9 3.3 63.5 10.5 140.2 5.9 110.5 3.6 89.2 6.4 85.9 3.5 123.2
23:30 3.4 25.2 2.4 30 7.7 39.3 3.8 33.9 3.3 34.9 6.5 29.7 3.2 35.2
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