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a b s t r a c t

Takagi–Sugeno fuzzy models are cataloged as universal approximators and have been proven to be a
powerful tool for the prediction of systems. However, in certain cases they may fail to inherit the main
properties of a system which may cause problems for control design. In particular, a non-suitable model
can generate a loss of closed-loop performance or stability, especially if that model is not controllable.
Therefore, ensuring the controllability of a model to enable the computation of appropriate control laws
to bring the system to the desired operating conditions. Therefore, a newmethod for identification of fuzzy
models with controllability constraints is proposed in this paper. The method is based on the inclusion of
a penalty component in the objective function used for consequence parameter estimation, which allows
one to impose controllability constraints on the linearized models at each point of the training data. The
benefits of the proposed scheme are shown by a simulation-based study of a benchmark system and a
continuous stirred tank: the stability and the closed-loop performances of predictive controllers using
themodels obtainedwith the proposedmethod are better than those usingmodels found by classical and
local fuzzy identification schemes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, advances in control theory are closely related with
the development of mathematical models that represent the dy-
namic behavior of physical systems. Several approaches have been
reported to model dynamic systems in the specialized literature,
being Takagi–Sugeno (TS) fuzzymodels one of themost prominent
ones to model non-linear dynamic systems [1]. Indeed, TS fuzzy
models often are referred as universal approximators of non-linear
functions [2,3], and thus of non-linear dynamics.

One of the main concerns about TS fuzzy models is structure
selection and parameter identification. For example, Zhao et al. [4]
described a methodology that integrated both structure selection
and parameter identificationwith the selection of the inputs of the
model. In this methodology, authors used the Gustafson–Kessel
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(GK) [5] and Compatible Cluster Merging (CCM) algorithms for
cluster identification, cluster merging (to reduce the complexity
of the resulting model and selection of the input variables) and
identification of the parameters of the premises; whereas they
used the least squares method to identify the parameters of the
consequences. In [6], the authors pre-processed the information
used in [4] to reduce the information loss during the identification
procedure and to clearly define the membership functions to be
used in the resultingmodel. Such pre-processing consisted inmak-
ing a rotation of the input space which allowed defining auxiliary
variables that account for the information that is not captured by
the model itself. In [7], the authors proposed an approach based
on linear piece-wise modeling. The state space is divided into
several subspaces in accordance with the previous knowledge of
the system, and a linearmodel is assigned to each subspace. Finally,
the parameters of each local linear model are identified.

In addition, several modifications to the aforementioned ap-
proaches have been reported in the literature. For instance, clus-
tering methodologies have been discussed in [8–10]. Specifically,
in [8] the Gath–Geva algorithm was used, while the authors in [9]
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and in [10] respectively proposed the use of neural networks and
gravitational search-based hyperplane. While the GK algorithm
requires a priori definition of the number of rules (or a well-
defined search domain), theworks of [11–14] aremore flexible and
allow explicit elicitation of the number of rules during the training
procedure. Local learning schemes, i.e. where the parameters of
each rule are estimated separately, have been explored in [12–
15]. It has been shown that local learning is usually more stable
and homogeneous than global learning [16]. Algorithms that in-
clude uncertainty and noise have been proposed in [17] and [18].
Generalized TS fuzzy systems consider arbitrarily rotated rules and
as such can show better performance than conventional TS fuzzy
systems [19,20]. Online learning, including rule parameters and
structure updating, in the so-called evolving TS models has been
proposed and studied in [21–24]. Some new TS fuzzy models that
use the Kronecker product have been proposed in [25,26]. Other
relevant aspects and features for the identification of fuzzymodels
can be seen in [16,27,28].

Although TS fuzzy models are known as universal approxima-
tors, and despite the efforts done by the researchers to propose
methodologies that allow capturing all features of the dynamic
system under analysis, little attention has been paid to include in
thesemethodologies typical properties of dynamic systems such as
controllability, observability and stability. Indeed, currentmethod-
ologies for the identification of TS fuzzy models focus on minimiz-
ing the prediction error of the model, and leave aside the study
of the previously mentioned properties. It is important to remark
that not including properties like controllability and observability
could restrict the range of applications of the model. Specifically,
the development of control strategies might not be possible if
the model used to represent the system to be controlled is not
controllable. In fact, controllability is a property that guarantees
that a system could be driven towards a desired state from any
initial state by means of a feasible control action [29]. Therefore,
it is relevant to analyze the conditions that must be met by the TS
fuzzy model to guarantee controllability.

In the literature, several approaches have been proposed to an-
alyze the controllability of dynamic systems. For instance, the au-
thors in [29] and [30] analyzed the controllability of linear dynamic
systems, establishing the following condition for the absence of
controllability: there exists a zero–pole cancelation in the model.
Such condition can be verified using the Sylvester matrix as shown
in [31]. Regarding non-linear systems, it is concluded in [32] that
if a continuously differentiable continuous time nonlinear system,
with continuous third order derivatives, is linearized around the
origin and (i) the resulting model is controllable, and (ii) the free-
response of the model is globally asymptotically stable, then the
nonlinear system is controllable. The conditions however are too
restrictive.

To the best knowledge of the authors of this manuscript, there
are no works dealing with the controllability of discrete-time dy-
namical TS systems, whereas some tackle the controllability of TS
fuzzy models of continuous time state space fuzzy models. The
authors in [33] analyzed continuous time state space TS fuzzymod-
els by regarding them as time-varying linear systems. The time-
dependency of theparameterswas determinedby themembership
functions and the inputs (and their changes) considered in the
model, and controllability can be checked by means of the invert-
ibility of a time-varying controllability matrix. The same class of
models are analyzed in [34] by means of Lie algebra and a model
relaxation. This relaxation considers the TS fuzzy models as linear
systems with matrices contained in convex hulls. Lie algebras are
also used for the analysis of continuous time TS models in [35]. In
this case, the accessibility conditions were analyzed instead of the
controllability conditions. Accessibility is a relaxation of controlla-
bility in which only a set of final/desired states are considered [36].

Notwithstanding the efforts done by the fuzzy systems commu-
nity to provide an adequate procedure for parameter identification
of TS fuzzy models and to derive conditions that allow analyzing
properties such as controllability, little effort has been done to
propose a methodology for parameter identification that includes
a measurement of the controllability of the resulting model, so as
to impose such a feature. Furthermore, there are no works dealing
with the conditions to establish controllability for discrete time
fuzzy models. Thus, the current paper proposes a methodology for
parameters identification in which both the prediction error and
the controllability of the model are considered. The methodology
consists in a modification of the typical least squares identifica-
tion, such that a barrier function is introduced into the objective
function used for the identification of the parameters of the con-
sequences, so that the cost function tends towards to infinity if
the identified model is not controllable. More precisely, the TS
fuzzy model is linearized at every point of the training data for the
identification, and the Sylvester matrix is then used to determine
if every local linearized model is controllable or not. Then, if the
model is not controllable, a large penalty is applied. This procedure
guarantees that each local linearized model is controllable. This
is a heuristic approximation to impose the controllability of the
identified fuzzy model. The proposed methodology is tested using
two case studies: a benchmark system and the CSTR described
in [37].

The remainder of this paper is organized as follows: Section
2 introduces the relevant preliminaries, i.e. theory regarding the
controllability analysis of dynamic systems and Takagi & Sugeno
fuzzy models; Section 3 presents an analysis of the controllability
conditions for discrete-time dynamical TS fuzzy models; Section 4
presents the proposed methodology for parameter identification
of TS fuzzy models; Section 5 describes the case studies used to
validate the methodology; and Section 6 presents the concluding
remarks and future work.

2. Preliminaries

This section discusses the controllability conditions for general
non-linear systems, the concept is then specialized to linear sys-
tems, and finally introduces fuzzy Takagi & Sugeno models.

2.1. Controllability of non-linear systems

Consider a discrete-time dynamic systemwith a state equation
given by

x (k + 1) = f (x (k) , u (k)) , (1)

where f (·) ∈ RM
× RU

→ RM , x(k) ∈ RM denotes the state and
u(k) ∈ RU is the input. For system (1) controllability is defined
as the ability to reach any desired state x (k1) = x1 from any
initial state x (k0) = x0, by using an admissible sequence of control
actions u (k0) , . . . , u (k1), for some k1 > k0 [29,38]. In several cases
these conditions are hard to verify or are not strictly fulfilled by a
system, thus relaxed versions of the concept of controllability are
usually considered.

One of the most used relaxations is given by the so called
accessibility analysis. Let R (x0, T ) denote the set of states that can
be reached from x0 in a finite time T . Then the set

R (x0) =

⋃
T≥0

R (x0, T ) (2)

denotes the set of states that can be reached from x0. If R (x0) = RM

then the system (1) is said to be controllable at x0. If R (x0) contains
only a neighborhood of x0 the system (1) is said to be locally
controllable [39]. Furthermore, if R (x0) = RM for all x0 ∈ RM then
system (1) is controllable.
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2.2. Controllability of linear systems

In the literature there are several approaches to determine if a
linear system is controllable or not (see e.g. [29]). In this paper, only
the method proposed in [31] is considered since it can be used in
discrete-time dynamic systems represented as a transfer function
from u (q) to y (q), being y (q) ∈ R the output of the system (with
abuse of notation here u (q) ∈ R). Moreover, since, in this paper,
only Takagi & Sugeno fuzzy models with linear consequences have
been considered, deriving the transfer function for each conse-
quence is straightforward. Let G (q) denote the transfer function of
a discrete-timedynamic system. ThenG (q) is expressed as follows:

G (q) =
y (q)
u (q)

=
θny+1qny−1

+ · · · + θny+nuq
ny−nu(

qny − θ1qny−1 − · · · − θny
) , (3)

with ny > nu and qy (k) = y (k + 1). From (3) the controllabil-
ity of a dynamic system is determined by the set of parameters{
θ1, . . . , θny+nu

}
. If the numerator and the denominator are not co-

primes there is a zero–pole cancellation and therefore the system
is non-controllable [30]. In fact, given this condition the system (3)
behaves as a lower order system. Note that analyzing the existence
of zero–pole cancellations is an easy way to determine if a system
is controllable or not. However as the order of the system increases
determining the zeros and poles is a more challenging task. An
alternative to analyze the controllability of (3) consists in using
the Sylvester matrix. From (3), the Sylvester matrix S (y (q) , u (q))
between y (q) and u (q) is given by

S (y(q), u(q))

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 θny+1 0 · · · 0
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. . .

.

.

.
.
.
. θny+1

. . .
.
.
.

.

.

. −θ1
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.
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. . .
.
.
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.

.

.
. . . −θny

.

.

. θny+nu
0 · · · 0 −θny 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4)

Then, if det (S (y (q) , u (q))) = 0 the numerator and the de-
nominator in (3) are not co-prime. That is, if the Sylvester matrix
is singular the system (3) is not controllable.

2.3. Takagi & Sugeno Fuzzy models

Takagi & Sugeno (TS) models are used in this work to represent
the dynamic behavior of a dynamic system. These models define
IF-THEN rules such as:

Rr : IFz1 (k) is MF r
1 and . . . and zp (k) is MF r

p THEN

yr (z (k)) = fr (z (k)) (5)

where Rr denotes the rth rule of the fuzzy model, with r ∈

{1, . . . ,Nr} and Nr the total number of rules; yr (z (k)) is the con-
sequence or local model; z (k) = [z1 (k) , . . . , zp (k)] is the premise
vector at time k defined as z(k) =

[
y (k − 1) , . . . , y

(
k − ny

)
,

u (k − 1) , . . . , u (k − nu)
]T ; fr (z (k)) is a function of the model

premises; and MF r
i is the fuzzy set (membership function) of the

ith premise corresponding to the rth rule. The membership grade
µr (zi (k)) is of the ith premise zi (k) to the fuzzy setMF r

i is defined
as

µr (zi (k)) = exp
(
−0.5 ·

(
ar,i ·

(
zi (k) − br,i

))2) (6)

where ar,i and br,i are themembership function parameters. Linear
consequences are considered in this work; the rth local model is
given by:

fr (z (k)) = θ T
r z (k) = θr,1y (k − 1) + · · · + θr,nyy

(
k − ny

)
+ θr,ny+1u (k − 1) + · · · + θr,ny+nuu (k − nu) (7)

where θ T
r =

[
θr,1, . . . , θr,ny+nu

]T . Then, the fuzzy model output
becomes:

yfuzzy (k) =

Nr∑
r=1

hr (z (k)) · θ T
r z (k) (8)

with hr (z (k)) =
wr (z(k))∑Nr
l=1 wl(z(k))

and wr (z (k)) =
∏ny+nu

i=1 exp
(
−0.5 ·(

ar,i ·
(
zi (k) − br,i

))2).
To the best of the authors’ knowledge, there are no identifi-

cation procedures for TS discrete fuzzy models that enforce the
controllability of the resulting dynamical model. Furthermore, the
study of the conditions to ensure controllability of the fuzzymodel
has only been performed for continuous time models. Thus, the
controllability of TS fuzzy models is studied in the next section,
and a heuristic identification that considers the controllability of
the resulting discrete time TS fuzzy model is proposed after.

3. Controllability of Takagi & Sugeno Fuzzy models

The controllability of discrete-time dynamical TS fuzzy models
will be analyzed using the Sylvester matrix criterion. For this, a
linear approximation and a transfer function from u (k) to y (k) are
required.

Let z0 be the linearizing point. Then the derivative of the fuzzy
model with respect to each premise zi(k) is given by:

dyfuzzy (k)
dzi (k)

=

Nr∑
r=1

{
dhr (z (k))
dzi (k)

θ T
r z (k) + hr (z (k)) · θr,i

}
(9)

With
dhr (z (k))
dzi (k)

= −
(
ar,i

)2 (
zi (k) − br,i

)
· hr (z (k))

− hr (z (k))
Nr∑
l=1

−
(
al,i

)2 (
zi (k) − bl,i

)
· hl (z (k))

Let θ̂i
(
θ, a·,i, b·,i

)
=

dyfuzzy(k)
dzi(k)

⏐⏐⏐
z(k)=z0

, where θ is the vector of

parameters of the consequences, and a·,i =
[
a1,i, . . . , aNr ,i

]
and

b·,i =
[
b1,i, . . . , bNr ,i

]
are the parameters of the ith premise of each

rule. Then (8) can be approximated by:

yapprox (k) =

ny+nu∑
i=1

{
θ̂i

(
θ, a·,i, b·,i

)
·
(
zi (k) − z0,i

)}
+ y (z0) (10)

To simplify the notation, let θ̂i = θ̂i
(
θ, a·,i, b·,i

)
. Then, (10) can

be rewritten as:

yapprox (k) =

ny+nu∑
i=1

{
θ̂i · zi (k)

}
+ ζ (z0) , (11)

where ζ (z0) = y (z0) −
∑ny+nu

i=1

{
θ̂i · z0,i

}
is a constant value

that depends on the value of z0. Note that (11) is a linear model
with a constant term (linear affine) [40]. Moreover, since ζ (z0)
is constant and independent of u (k) such term can be omit-
ted to compute the transfer function without affecting the result
obtained by the analysis of the Sylvester matrix. Then, a trans-
fer function (3) between yapprox (k) and u (k) can be computed
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from (11) by using the lag operator q−1 over the components
of zi (k), where q−1 is such that l (k − 1) satisfies l (k − 1) =

q−1l (k) and zi (k) is such that z (k) = [z1 (k) , . . . , zp (k)] =[
y (k − 1) , . . . , y

(
k − ny

)
, u (k − 1) , . . . , u (k − nu)

]T .
The Sylvester matrix criterion guarantees that the linearized

model at z0 is controllable if the Sylvester matrix associated with
the linearized model is non-singular. Thus, a heuristic criterion
for checking controllability of a discrete-time dynamical TS fuzzy
model is proposed here: it is said that the system is fuzzy control-
lable in a set of values of {zj}, if the linearized models at each zj is
controllable; otherwise, the model is said to be non-controllable
and the parameters and/or the structure of the model have to
be modified to guarantee its fuzzy controllability. This heuristic
method is motivated by the fact that the controllability of the
linearized model guarantees local controllability in continuous
time models.

The identification procedure to be presented in Section 4 will
use this criterion for enforcing fuzzy controllability, where the set
of linearization points is given by the training data points.

4. Fuzzy identification algorithm with controllability
constraints

The proposed methodology for the identification of Takagi &
Sugeno fuzzy models, considering the controllability conditions
analyzed in Section 3, is described here.

4.1. General Fuzzy identification methodology

In general terms, the identification algorithm is based on the
procedure shown in Fig. 1 [41]. Note that the contribution of
this work lies in the fourth step (Parameter Identification with
Controllability Constraints), precisely in the identification of the
parameters of the consequences.

All steps are introduced in general terms in this section,
whereas the procedure for identification of the consequence pa-
rameters considering the controllability condition will be pre-
sented in detail in Section 4.2.

The Identification Experiment Design consists in defining an
identification signal so that the oscillation modes of the plant in
the range of interest are excited [42,43]. Commonly, an amplitude
modulated pseudo random binary signal (APRBS) [44] is consid-
ered, and is also used here. The output of the experiment is an
input–output data-set that is divided into three subsets, namely,
training, test, and validation data-subsets, that are further used in
the selection of the model structure and in the computation of the
model parameters. These sets are used in the selection of variables
and the model structure, and posterior tests as is explained next.

The Variables Selection step consists in determining the re-
gressors of the input and output to be considered in the model.
Several approaches for this have been reported in the literature.
For example, a methodology based on a sensitivity analysis is
proposed in [41], heuristic methods are used in [45], and correla-
tion/autocorrelation studies are performed to define the candidate
variables in [42]. At the end of this step one obtains a set containing
themost relevant variables to represent the behavior of the system.

In this work, the regressors are obtained by evaluating the
corresponding fuzzymodels for a range of combinations of (ny, nu),
the maximum orders of the input and output regressors. More
precisely, they are evaluated for ny = 1, . . . , ny,max and nu =

1, . . . , ny − 1. For each regressor combination (i.e. each combina-
tion of (ny, nu)), a fuzzymodel is identifiedwith the training subset,
and the combination that provides the smallest prediction error for
the validation subset is chosen.

The Structural Optimization step consists in defining the opti-
mal number of rules Nr . For each different combination of (ny, nu),

Fig. 1. Proposed methodology of Fuzzy Identification.

different structures are considered systematically, i.e. Nr = 1, . . . ,
Nr,max, and for each structure the Parameter Identification step
proceeds, where the training subset is used to identify the param-
eters of the model. The number of rules that provides the smallest
prediction error for the validation subset is chosen.

For each combination of (ny, nu) and structure of the fuzzy
model, the Parameter Identification step attempts to find the pa-
rameters to minimize the squared error between the measured
value and the model output [46,47] for the training data-set. It is
noted that the clustering procedure is separated from the conse-
quences parameters identification because a better representation
of the operation conditions of the system can be obtained this
way [48].

The well-known Gustafson–Kessel algorithm (GK) [5] for fuzzy
clustering is selected for finding the membership functions (i.e.
premises and their parameters) due to its ability to detect clusters
with different shapes and orientation. However other methods for
obtaining fuzzy clusters can be also usedwithin the same proposed
framework presented for controllability of TS models.

Once the membership functions are defined, one must find
the parameters of the consequences. The least squared method is
usually used, where the consequence parameters are computed as
the solution of the following minimization problem:

min
θ

J (θ) =

m∑
k=1

(
y (k) − yfuzzy (k, θ)

)2 (12)

where θ is the vector of all consequences parameters, i.e., θ T
=[

θ T
1 , . . . , θ T

Nr

]
; y (k) is the process output at time k; yfuzzy (k, θ)

is the predicted output obtained by the fuzzy model; and m is
the number of measurements. One drawback of this method is
that the resulting model is not necessarily controllable. This is the
motivation of this work, which as amain contribution introduces a
modification of problem (12) in order to enforce controllability of
the resulting model. This new method will be presented in detail
in Section 4.2.

Asmentioned above, the obtainedmodels for each combination
of (ny, nu) and number of rules are assessed using the validation
data-subset in order to find the optimal settings. The most used
metrics are the root mean squared error (RMSE), and the compar-
ison of the response of both the real system and the model.



258 L. Gutiérrez et al. / Applied Soft Computing Journal 73 (2018) 254–262

Finally, the adequateness/usefulness of the identified models
for control is studied using the test data-subsets.

4.2. Consequence parameters identification to impose controllability

The optimization procedure to find the consequences param-
eters is described here. The parameters of the premises are not
modified here since changing these parameters might result in
rules that do not necessarily fit with the operating conditions of
the system.

To impose that the TS fuzzy model is controllable, the criterion
presented in Section 3 is included into the optimization procedure,
i.e. it is imposed that the Sylvester matrices associated with the
linearized models at each of the training data points are not singu-
lar. Accordingly, the minimization problem (12) is reformulated as
follows:

min
θ

J (θ) =

m∑
k=1

(
y (k) − yfuzzy (k, θ)

)2
+

m∑
k=1

ϕ
(
Sfuzzy (k, θ)

)
(13)

where

ϕ
(
Sfuzzy (k, θ)

)
=

{
λ if Sfuzzy (k, θ) is singular
0 if Sfuzzy (k, θ) is not singular (14)

where λ → ∞ penalize the case when the model is not con-
trollable; and Sfuzzy (k, θ) is the Sylvester matrix of the system
linearized around the point in the training data-subset at time k
given the parameters θ . The term

∑m
k=1 ϕ

(
Sfuzzy (k, θ)

)
guarantees

that Sfuzzy (k, θ) , k = 1, . . . ,m are not singular by making λ large
enough, thus the local systems obtained from the linearization
around the points in the training data-subset at time k given the
parameters θ are controllable. Thus, as discussed in Section 3, the
resulting TS fuzzymodel is said to be controllable. Recall that since
this is a heuristic procedure, the optimization guarantees that the
linearized models around each of the training points are control-
lable. Since the identification experiment should cover most of the
space where the process will operate, this is a good approximation
to actual controllability.

Some practical issues need to be addressed regarding the defi-
nition of the penalty term in (14). First, roundoff or observational
errors play a crucial role here. Since a condition for singularity
of a matrix A is det (A) = 0, it is clear to see an infinitesimal
change of a parameter –either due to roundoff or to an obser-
vational/identification error – can make the matrix become non-
singular and thus apparently controllable when it is not, or vice-
versa. Second, there are cases where the determinant of a matrix
may be close to zero when the matrix is not close to singular.
For instance, consider the case of an n × n diagonal matrix with
entries given by 10−1. Clearly the value of the determinant will
approach to zero as n becomes large, while thematrix is not singu-
lar. And third, it is desirable to use a criterion so that systems with
Sylvester matrices that are close to singular – and thus are close to
uncontrollable – will not appear as a solution of the problem. Such
a system (assuming the absence of numerical and observational
errors) may be technically controllable, but the time constant for
one state may be extremely slow to be practical. Based on all
these considerations, it is clear that an indicator of proximity of
singularity is needed, and that is not given by the determinant.
Thus, the condition number is considered, which for a matrix A,
it is given by

κ(A) =
maxx ∥Ax∥

∥x∥

minx
∥Ax∥
∥x∥

(15)

If κ(A) is large, then A is close to singular. In fact, it holds that
κ(A) = ∥A∥

A−1
 . As shown in [49], this condition for checking

proximity to singularity is robust to all the issuesmentioned above.

Thus, in order to penalize proximity to singularity, the penalty
function (14) is redefined as

ϕ
(
Sfuzzy (k, θ)

)
=

{
λ if κ

(
Sfuzzy (k, θ)

)
≥ M

0 else
(16)

for some large M > 0. If a local model has a condition number
great thanM it is regarded as close to non-controllable, and will be
rejected due to the penalization.

The optimization problem (13) with the penalty function (16)
is an unconstrained non-linear optimization problem due to the
penalty terms. The LS problem (12) on the other hand is quadratic;
in spite of its non-linear nature, yfuzzy (k, θ) is a linear function
of θ . In the examples below, the optimization problem (13) is
solved with the Nelder–Mead simplex search method of [50,51]
as implemented in the Optimization Toolbox of Matlab. This is
an optimization method for unconstrained optimization without
derivatives, and is based on the comparison of the function values
at the (n+1) vertices of a general simplex (where n is the number
of variables), followed by the replacement of the vertex with the
highest value by another point. It is particularly suitable for non-
continuous and non-smooth optimization problems.

A pseudocode of the proposed identification algorithm is pre-
sented next:

The complexity of the proposed algorithm is n2
y,maxNr,max

O(ny,max,Nr,max,N,m), where O(ny,max,Nr,max,N,m) is the com-
plexity of the optimization problem as a function of the maximum
considered order of the dynamic system ny,max, the maximum
considered number of rules of the model Nr,max, the number of
steps ahead in the optimizationN and the data of the training setm.
It is clear from Algorithm 1 that the main sources of computation
requirements come from evaluating all possible combinations of
(ny, nu,Nr ), and of course the complexity of problem (13).

Algorithm 1, as it is proposed here is not suitable for application
on real time as it requires the solution of optimization problem
(13), which includes the whole training set. The use of the pro-
posed algorithm for online application, by means of an iterative
implementation, is indeed relevant and will be the focus of future
research.

Since the contribution of this work lies in the fourth step, pre-
cisely in the identification of the parameters of the consequences
enforcing controllability, the proposed method can still be used
within fuzzy identification methodologies that choose different
procedures for the other steps. For instance, different clustering
or optimization methods could be used. Also, generalized TS fuzzy
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systems, that are able represent arbitrarily rotated rules, may be
considered with the proposed methodologies.

In the next section, the proposedmethod is implemented in two
case studies.

5. Case studies

Two case studies have been considered to analyze the proposed
identification method: a benchmark controllable nonlinear sys-
tem, and a continuous stirred tank reactor (CSTR) [52].

Considering both case studies, the proposed identification pro-
cedure with controllability constraints (CCID) is compared with
two other identification methods: the conventional least squares
identification (LSID); and a local identificationmethod (LLSID) [53].
In the latter method the parameters θ are found by minimizing:

min
θ

J(θ ) =

Nr∑
r=1

m∑
k=1

hr (z(k)) (y(k) − yr (k, θr ))2 (17)

With some further manipulation, this can be decomposed in
such a way that the parameters of each rule are determined sepa-
rately by means of local least squares identification.

For each system, the performance of the models and the rel-
evance of the imposition of controllability are evaluated through
their use in control. While LSID provides the global solution of
minimumprediction errors, LLSID provides better behavedmodels
in the sense that they learn the trend embedded in the input–
output observations better than LSID [53]. The comparison of CCID
with thesemethods is then performed to verify the relevance of the
imposition of controllability versus the model with the smallest
error (LSID) and the one that best learns the trend of the input–
output observations (LLSID).

Here, a Model Predictive Control (MPC) strategy is considered.
Since MPC considers a minimization of the performance over the
futureN steps, for the LSID and CCID cases the optimization aims at
minimizing the quadratic error of the N-steps-ahead predictions.
However, only theminimization the quadratic error of the 1-steps-
ahead predictions can be considered for LLSID due to the struc-
ture of the local identification: if an N-step-ahead minimization
is performed, the model will go through several rules, then the
minimization cannot be performed separately for each localmodel.

An amplitude modulated pseudo random signal (APRBS) has
been chosen as the input u (t) in order to generate an input/output
data set. This set is divided into the training (60%), validation (20%)
and test (20%) sets. The training data set is used for finding the
TS model parameters for all the considered settings of number of
clusters and structure of the model (maximum delay of the past
inputs and states). The validation data set is then used for choosing
the best structure and number of clusters of the model. For the
CCID procedure, the maximum allowed condition number is set to
M = 1010. Larger condition numbers are regarded as indicative of
the systembeing close to non-controllable and a penalty is applied.

As mentioned above, an MPC strategy has also been considered
for the assessment. The models obtained with the LSID, LLSID and
CCID methods are used to obtain the predictions of an MPC con-
troller that at each sample time solves the optimization problem
given by

min
u0,...,uN−1

N−1∑
k=0

(y(k + 1) − ref(k + 1))TQ (y(k + 1) − ref(k + 1))

+u(k)TRu(k)

s.t. y(k) = f
(
y(k − 1), . . . , y(k − ny),

u(k − 1), . . . , u(k − nu)) , k = 1, . . . ,N

(18)

where ref is the reference for the output, N = 10 is the predic-
tion horizon and f (z(k)) =

∑Nr
r=1 hr (z (k)) θ T

r z (k), with z(k) =(
y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu)

)
. According to

the receding horizon scheme, this optimization is solved at each
sampling time k and only the first element of sequence of control
actions, namely u(k), is applied to the system.

For both systems, the fuzzymodels are identified using ny,max =

6 and Nr,max = 5.

5.1. Controllable nonlinear system: benchmark system

The following state space nonlinear system will be considered
as a benchmark system to analyze the proposed identification
method:

ẋ1 (t) = x2 (t) − x1 (t) exp (x1 (t))
ẋ2 (t) = −x1 (t) − x2 (t) exp (x2 (t)) + u (t)

y (t) = h (x (t)) = x1 (t) .
(19)

Note that it can be rewritten as a time-varying linear system

ẋ(t) = A(t)x(t) + B(t)u(t),

with

A(t) =

[
− exp(x1(t)) 1
−1 − exp(x2(t))

]
, B(t) =

[
0
1

]
.

Continuous-time linear time-varying systems are controllable
if the controllability matrix C = [ζ1, . . . , ζn], where ζ1(t) =

B(t), ζi+1 = A(t)ζi(t) − ζ̇i(t), i = 1, . . . , n − 1 is full rank [54].
In this case, the controllability matrix is given by

C =

[
0 1
1 − exp (x2(t))

]
,

which is full rank, thus proving that the system is controllable.
The CCID method is compared with LSID and LLSID using the

controllable nonlinear benchmark system. The sampling time for
the discrete-time dynamical fuzzymodels and theMPC controllers
is Ts = 0.01[s].

Somegeneral results regarding the controllability and the struc-
ture of themodels obtainedwith the LSID, LLSID and CCIDmethods
are shown in Table 1. Fuzzy models with 4 rules are obtained for
LSID and CCID, but the optimal structures are different. LLSID has
an optimal fuzzy model with 5 rules. The worst-case (among the
different operation points given by the training data) condition
number of the Sylvestermatrix for CCID is just below the threshold.
These matrices are then invertible and the model is controllable in
all the operation points defined by the training points. On the other
hand, the worst case for the condition number of the Sylvester
matrix is above the defined threshold for themodels obtainedwith
LSID and LLSID. Then, the identified models are close to singular,
implying they are close to uncontrollable and are thus rejected. All
determinants are very close to zero, thus justifying the use of the
condition number.

Table 2 presents a comparison between the measured and the
output values provided by the fuzzy models for the three identifi-
cation procedures. The root mean squared error (RMSE) consider-
ing 1 and 10 step-ahead-predictions was used as a performance
index. As expected, the errors for 10-step-ahead predictions are
larger than for 1-steps-ahead predictions for all methods. Also,
the errors obtained with LSID are smaller than with CCID because
the former method does not constrain the condition number and
can find the unconstrained optimum. The errors found with LL-
SID are smaller than those obtained with CCID for 10-step-ahead
predictions, but larger than those found by LSID. Indeed, LSID is
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Table 1
Fuzzy Identification Results for the Benchmark System using the conventional (LSID), local (LLSID) or
proposed (CCID) methods.
Method/Set max

(
cond

(
Sfuzzy(k)

))
min

(
det

(
Sfuzzy(k)

))
(ny, nu) Number ofRules

LSID 2.4154e+15 5.8591e−38 (5,5) 4
LLSID 5.4276e+15 9.0710e−46 (6,5) 5
CCID 9.7036e+09 1.2965e−34 (6,2) 4

The second column informs the maximum value of the condition number of the Sylvester matrix
computed for every data point in the training sets. The third column informs the minimum value of
the Sylvester matrix computed for the same points. The fourth and fifth columns present the optimal
output and input orders (ny, nu) and number of rules, respectively.

Table 2
RMSE results for benchmark system.
Method/Steps
ahead

Training Validation Test

LSID
(1 step ahead)

1.3139e−05 1.7663e−05 1.3332e−05

LLSID
(1 step ahead)

1.3145e−05 1.5754e−05 1.2286e−05

CCID
(1 step ahead)

8.0931e−05 1.0094e−04 9.5322e−05

LSID
(10 steps ahead)

0.0022 0.0030 0.0023

LLSID
(10 step ahead)

0.0026 0.0032 0.0024

CCID
(10 steps ahead)

0.0038 0.0049 0.0047

Table 3
Closed-Loop Performance Results for the Benchmark System controlled with MPC
using themodel from conventional (LSID), local (LLSID) or proposed (CCID)methods.
Method/Set avg(Jcl) max(Jcl) min(Jcl) std(Jcl)

LSID 5.5395e+08 3.6325e+09 1.1257e+03 7.2789e+08
LLSID 6.1014e+08 3.8865e+09 1.1122e+03 7.9900e+08
CCID 4.6995e+08 3.8102e+09 168.1958 7.2806e+08

The table reports the avg, max, min values and the standard deviation of the
evaluation of Jcl over the different initial conditions and references for which MPC
with the LSID model is stable.

the global optimum. However, since LLSID learns better the trend
of the input–output dynamics, it generalizes better, and obtains
almost the same errors as LSID for the training data, but obtains
smaller errors for the validation and test data sets.

It is important to remark that the fuzzy models are of greater
order than the original system (five or six of the fuzzy models
versus two of the original system). Although this often generates
an over-fitting in the response of themodel, this happens naturally
in the identification procedure to capture all non-linear behaviors
introduced by the exponential functions present in the original
system (see Eq. (19)).

The application ofMPCwith the identifiedmodels is used to test
the relevance of the CCID method. The MPC parameters are Q =

108, R = 1 and N = 10. MPC is applied with the models obtained
with LSID (MPC-LSID), LLSID (MPC-LLSID) and CCID (MPC-CCID)
for 36 different initial conditions (all the crossed combinations of
x1 = 0, 0.2, 0.4, 0.6, 0.8, 1 and x2 = −1, −0.6, −0.2, 0.2, 0.6, 1
and 7 different references (ref = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2). The
closed-loop performance, which is recorded for each setting, is
given by Jcl =

∑K−1
k=0 (y(k+1)− ref)TQ (y(k+1)− ref)+u(k)TRu(k),

where K = 100 is the total simulation runtime.
The average and minimum performances of MPC-CCID are bet-

ter than that of MPC-LSID. Particularly, the average performance
of MPC-CCID is 15.16% smaller than that of MPC-LSID and 22.98%
smaller than that of MPC-LLSID.

Thus MPC-CCID consistently, in average and the best case,
yielded better performances than both LSID and LLSID. These

results validate the relevance of the controllability of the mod-
els, since better closed-loop performances can be obtained when
controllability is forced, in spite of the facts that the training
identification errors are smaller for LSID and LLSID and thatmodels
are smoother and correctly follow the output–input trend in LLSID.

5.2. Continuous stirred tank reactor

A continuous stirred tank reactor (CSTR) is also used to evaluate
the proposed identification method. The model of the CSTR is
described by the following equations [52]:

ẋ1 (t) = −x1 (t) + K1 (t) · (1 − x1 (t)) − K2 (t) x2 (t)
ẋ2 (t) = u (t) − x2 (t) + 5 [K1 (t) · (1 − x1 (t)) − K2 (t) x2 (t)]

K1 (t) = K10 exp
(

−
5000
x2 (t)

)
; K2 (t) = K20 exp

(
−

7500
x2 (t)

)
(20)

where x(t) = [x1 (t) , x2 (t)]T is the state of the system, with
x1 (t) the conversion and x2 (t) [◦K ] the temperature inside the
reactor. K10 = 3 · 105, K20 = 6 · 107 are the Arrhenius con-
stants of the reactions present in the reactor. The manipulated
variable u (t) [◦K ] corresponds to the temperature of the inlet flow
of cooling fluid and is limited to the interval [300, 490] [◦K ] .The
controllable variable, y (t), is the conversion rate, i.e., y(t) = x1 (t).

The sampling time for the discrete-time fuzzy dynamical mod-
els and the MPC controllers is Ts = 0.05[s]. Some general results
regarding the controllability and the structure of the models ob-
tainedwith the LSID, LLSID and CCIDmethods are shown in Table 4.
The worst-case (among the different operation points given by the
training data) condition number of the Sylvester matrix for CCID is
well below the threshold. These matrices are then invertible and
the model is controllable in all the operation points defined by the
training points. For LSID and LLSID, on the other hand, the worst
case for the condition number of the Sylvester matrix is above the
defined threshold. Then, the identifiedmodels are close to singular,
implying they are close to uncontrollable and are thus rejected.

Table 5 presents a comparison between the measured and the
output values provided by the fuzzy model for the three identi-
fication procedures. The RMSE considering 1 and 10 steps ahead
predictionswas used as a performance index. As expected, just like
for the SNLC, the errors for 10-step-ahead predictions are larger
than for 1-step-ahead predictions for all methods. Also, the errors
obtained with LSID are smaller than with CCID because the former
method does not constrain the condition number and can find the
unconstrained optimum. The errors found with LLSID are smaller
than those obtainedwith CCID, but larger than those found by LSID
for 10-step-ahead predictions. Indeed, LSID is the global optimum
for the N-step-ahead predictions. However, the errors are smaller
for LSSID for 1-step-ahead predictions because it generalizes better
than LSID.

The MPC controller parameters are Q = 1010, R = 1 and N =

10.MPC-LSID,MPC-LLSID andMPC-CCID are applied for 6 different
initial conditions (x1 = 0, 0.2, 0.4, 0.6, 0.8, 1, x2 = 351) and all
the combinations with the references ref = 0.4, 0.45, 0.5, 0.55,
0.6, 0.65. The closed-loop performance Jcl is recorded for each
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Table 4
Fuzzy Identification Results for the CSTR using the conventional (LSID), local (LLSID) or proposed (CCID)
methods.
Method/Set max

(
cond

(
Sfuzzy(k)

))
min

(
det

(
Sfuzzy(k)

))
(ny, nu) Number of Rules

LSID 2.2085e+15 4.0007e−42 (4,4) 4
LLSID 5.4276e+15 9.0710e−46 (6,5) 5
CCID 1.3848e+07 1.7608e−13 (2,1) 5

The second column informs the maximum value of the condition number of the Sylvester matrix
computed for every data point in the training sets. The third column informs the minimum value of
the Sylvester matrix computed for the same points. The fourth and fifth columns present the optimal
output and input orders (ny, nu) and number of rules, respectively.

Table 5
RMSE results for benchmark system.
Method/Steps
ahead

Training Validation Test

LSID
(1 step ahead)

8.4325e−05 8.5083e−05 8.1722e−05

LLSID
(1 step ahead)

7.9448e−05 8.0607e−05 7.6701e−05

CCID
(1 step ahead)

2.4790e−04 2.2314e−04 2.2554e−04

LSID
(10 steps ahead)

0.0044 0.0038 0.0037

LLSID
(10 step ahead)

0.0052 0.0052 0.0047

CCID
(10 steps ahead)

0.0075 0.0063 0.0067

Table 6
Closed-Loop Performance Results for the CSTR controlledwithMPC using themodel
from conventional (LSID), local (LLSID) or proposed (CCID) methods.
Method/Set avg(Jcl) max(Jcl) min(Jcl) std(Jcl)

LSID 1.6921e+10 5.9734e+10 5.8818e+08 1.4032e+10
LLSID 1.7661e+10 6.3513e+10 6.1223e+08 1.4657e+10
CCID 1.5406e+10 5.4524e+10 2.6907e+08 1.2800e+10

The avg,max,min and values and the standard deviation of the evaluation of Jcl over
the different initial conditions and references are reported.

initial condition and reference, with K = 120 (associated with a
simulation time of 6[s]).

The results for Jcl for both methods and all initial conditions
and references are reported in Table 6. The average, maximum
and minimum performances of MPC-CCID are better than that of
MPC-LSID and MPC-LLSID. Particularly, the average performance
of MPC-CCID is 8.95% smaller than that of MPC-LSID and 12.77%
smaller than that of MPC-LLSID. This happens in spite of the fact
that the identification error for training and validation subsets
are smaller for LSID and LLSID and that models are smoother and
correctly follow the output–input trend in LLSID. This validates the
relevance of controllability of the identified model just like in the
case of SNLC.

5.3. Discussion

LSID and LLSID, in both examples, obtain amaximumcondition-
ing number (among the training data set points) of around 1015

(see Tables 1 and 4), which is large compared to the maximum
allowed value of 1010. Though this value is arbitrary, it is useful for
illustrating the relevance of controllability of the identifiedmodels.
CCID obtainsmodels forwhich themaximumconditioning number
is less than 1010 (see Tables 1 and 4), and in order to satisfy this
constraint, it sacrifices predictive accuracy with respect to LSID
and LLSID (see Tables 2 and 5). This sacrifice is performed with
the goal of obtaining controllability, which is a desired property
in control, which allows that all states can be reached given a

feasible sequence of inputs. For this reason, the different methods
are tested in a setting that uses anMPC controllerwith the obtained
models. MPC is one of themost popular advanced control methods
based inmodels. It minimizes the performances of the system over
a prediction horizon, then applies the first control action of the
sequence, and then repeats the procedure the next instant.

LSID is the conventional global least squares minimization
based identification, which finds the global optimum for the pre-
diction errors. However by doing so may yield rules that by them-
selves do not appropriately approximate the dynamics of the
system in the vicinity of the center of the cluster associated to that
rule. On the other hand, LLSID is a local least squares minimization
method, which sacrifices prediction accuracy for ensuring that the
local models of each rule approximate the local dynamics of the
system. Due to this, it may compete in the errors for 1-step-ahead
predictions when the optimization is performed for 10-step-ahead
predictions. Additionally, from this property one could expect that
imposing controllability for the fuzzy model may not be needed.

However, simulation results show (see Tables 3 and 6) that the
models obtained with CCID consistently reach better closed loop
performances (as evaluated by the same performance metric used
in MPC) than those obtained with the other models. This shows
that both priorities (reaching the global optimum for the prediction
error and ensuring local models that resemble the real dynamics)
are overshadowed by the relevance of imposing controllability
when using the models for control, and confirms the relevance of
the inclusion of controllability in fuzzy identification of dynamical
systems for control. If the model is controllable, then the predicted
states in the optimization within the controller can reach the de-
sired operation points, whichwill then allow better quality control
inputs to be applied to the systems.

It is relevant to note that, as mentioned before, this work high-
lights the relevance of imposing controllability when the models
are used for control. However it does not claim that it is better than
other methods well established in the literature. Instead, it points
out a relevant aspect for the identification of fuzzy systems, which
can be included in different identification frameworks.

6. Conclusions

A new fuzzy identification methodology that imposes control-
lability on the fuzzy models has been proposed in this work. The
key step of the methodology is to include, in addition to the
classical cost measuring the error between the model estimation
and real data, a penalty term that heuristically penalizes models
that are not controllable. Two case studies were used for validating
the effectiveness of proposed method, and the simulation results
showed that the closed-loop responses, in terms of stability and of
quantifiable performance, are better when imposing controllabil-
ity. In particular, these results highlight the role of controllability in
predictive controllers design: controllability helps obtaining better
closed-loop performance. Future research will focus on develop-
ing improvements for computational complexity, such as defining
heuristics for finding the optimal regressors order and number
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of clusters, and the extension of the developed methodology for
online application by means of an iterative implementation.

Acknowledgments

This work has been partially supported by Solar Energy Re-
search Center (SERC) CONICYT/FONDAP/15110019, Complex Engi-
neering Systems Institute (CONICYT–PIA– FB0816), and FONDECYT-
CONICYT Postdoctorado N◦ 3170040.

References

[1] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to
modeling and control, IEEE Trans. Syst. Man Cybern. SMC-15 (1) (1985) 116–
132.

[2] H. Ying, General SISO Takagi-Sugeno fuzzy systems with linear rule conse-
quent are universal approximators, IEEE Trans. Fuzzy Syst. 6 (4) (1998) 582–
587.

[3] J.L. Castro, M. Delgado, Fuzzy systems with defuzzification are universal
approximators, IEEE Trans. Syst. Man Cybern. B 26 (1) (1996) 149–152.

[4] J. Zhao, V. Wertz, R. Gorez, A fuzzy clustering method for the identification
of fuzzy models for dynamic systems, in: Proceedings of the 1994 IEEE
International Symposium on Intelligent Control, 1994, pp. 172–177.

[5] D.E. Gustafson, W.C. Kessel, Fuzzy clustering with a fuzzy covariance matrix,
in: IEEE Conference on Decision and Control including the 17th Symposium
on Adaptive Processes, 1978, pp. 761–766.

[6] H.A.E. de Bruin, B. Roffel, A new identificationmethod for fuzzy linear models
of nonlinear dynamic systems, J. Process Control 6 (5) (1996) 277–293.

[7] C.T. Ayday, I. Eksin, Fuzzy identification of nonlinear systems, in: Proceedings
of the IECON ’93 International Conference on Industrial Electronics, Control,
and Instrumentation, vol. 1, 1993, pp. 289–292.

[8] J. Abonyi, R. Babuska, F. Szeifert, Modified gath-geva fuzzy clustering for
identification of takagi-sugeno fuzzy models, IEEE Trans. Syst. Man Cybern.
B 32 (5) (2002).

[9] D. Kukolj, E. Levi, Identification of complex systems based on neural and
Takagi-Sugeno fuzzy model, IEEE Trans. Syst. Man Cybern. B 34 (1) (2004).

[10] C. Li, J. Zhou, B. Fu, P. Kou, J. Xiao, T–S fuzzy model identification with
a gravitational search-based hyperplane clustering algorithm, IEEE Trans.
Fuzzy Syst. 20 (2) (2012) 305–317.

[11] A. Almaksour, E. Anquetil, Improving premise structure in evolving Takagi–
Sugeno neurofuzzy classifiers, Evol. Syst. 2 (1) (2011) 25–33.

[12] B. Rezaee,M.H. Zarandi, Data-driven fuzzymodeling for Takagi–Sugeno–Kang
fuzzy system, Inform. Sci. 180 (2) (2010) 241–255.

[13] E. Lughofer, S. Kindermann, SparseFIS: data-driven learning of fuzzy systems
with sparsity constraints, IEEE Trans. Fuzzy Syst. 18 (2) (2010) 396–411.

[14] B. Hartmann, O. Banfer, O. Nelles, A. Sodja, L. Teslic, I. Skrjanc, Supervised
hierarchical clustering in fuzzy model identification, IEEE Trans. Fuzzy Syst.
19 (6) (2011) 1163–1176.

[15] K.H. Quah, Chai Quek, FITSK: online local learning with generic fuzzy input
takagi-sugeno-kang fuzzy framework for nonlinear system estimation, IEEE
Trans. Syst. Man Cybern. B 36 (1) (2006) 166–178.

[16] E. Lughofer, Evolving Fuzzy Systems — Methodologies, Advanced Concepts
and Applications, Springer, Berlin Heidelberg, 2011.

[17] M. Soltani, T. Bessaoudi, A. Chaari, Affine Takagi-Sugeno fuzzy model iden-
tification based on a novel fuzzy c-regression model clustering and particle
swarm optimization, in: 2012 16th IEEEMediterranean Electrotechnical Con-
ference (MELECON), 2012, pp. 1067–1070.

[18] I. Skrjanc, S. Blazic, O. Agamennoni, Identification of dynamical systems with
a robust interval fuzzy model, Automatica 41 (2) (2005) 327–332.

[19] Lemos A., W. Caminhas, F. Gomide, Multivariable gaussian evolving fuzzy
modeling system, IEEE Trans. Fuzzy Syst. 19 (1) (2011) 91–104.

[20] E. Lughofer, C. Cernuda, S. Kindermann,M. Pratama, Generalized smart evolv-
ing fuzzy systems, Evol. Syst. 6 (4) (2015) 269–292.

[21] N.K. Kasabov, Q. Song, DENFIS: dynamic evolving neural-fuzzy inference
system and its application for time-series prediction, IEEE Trans. Fuzzy Syst.
10 (2) (2002) 144–154.

[22] P.P. Angelov, D.P. Filev, An approach to online identification of takagi-sugeno
fuzzy models, IEEE Trans. Syst. Man Cybern. B 34 (1) (2004) 484–498.

[23] M. Pratama, S.G. Anavatti, P.P. Angelov, E. Lughofer, PANFIS: A novel incre-
mental learning machine, IEEE Trans. Neural Netw. Learn. Syst. 25 (1) (2014)
55–68.

[24] D. Dovžan, V. Logar, I. Škrjanc, Implementation of an evolving fuzzy model
(eFuMo) in a monitoring system for a waste-water treatment process, IEEE
Trans. Fuzzy Syst. 23 (5) (2015) 1761–1776.

[25] X. Xie, Control synthesis of discrete-time T-S fuzzy systems: Reducing the
conservatism whilst alleviating the computational burden, IEEE Trans. Cy-
bern. 47 (9) (2017) 2480–2491.

[26] X. Xie, Relaxed fuzzy control synthesis of nonlinear networked systems under
unreliable communication links, Appl. Soft Comput. 41 (2016) 180–191.

[27] R. Babuska, Fuzzy Modeling for Control, Kluwer Academic Publishers, 1998.
[28] J. Abonyi, Fuzzy Model Identification for Control, Birkhauser, 2003.
[29] R.E. Kalman, Y.C. Ho, K.S. Narendra, Controllability of linear dynamical sys-

tems, Contrib. Diff. Equ. 1 (1963) 189–213.
[30] B. Friedland, Control SystemDesign: An Introduction to State-SpaceMethods,

Dover Publications, 1986.
[31] E. Bullock, Sylvester Matrix and Resultants, Math 499: Introduction to P-Adic

Numbers, Department of Mathematics, Rice University, 2007.
[32] H. Qin, On the controllability of a nonlinear control system, Comput. Math.

Appl. 10 (6) (1984) 441–451.
[33] J.A. Meda-Campaña, J. Rodríguez-Valdez, T. Hernández-Cortés, R. Tapia-

Herrera, V. Nosov, Analysis of the fuzzy controllability property and stabi-
lization for a class of TS fuzzy models, IEEE Trans. Fuzzy Syst. 23 (2) (2014)
291–301.

[34] P.T. Lin, C.H. Wang, T.T. Lee, Time-optimal control of T–S fuzzy models via Lie
algebra, IEEE Trans. Fuzzy Syst. 17 (4) (2009) 737–749.

[35] M. Biglarbegian, A. Sadeghian, W. Melek, On the accessibility/controllability
of fuzzy control systems, Inform. Sci. 202 (2012) 58–72.

[36] H. Nijmeijer, A.J. van der Schaft, Nonlinear Dynamic Control Systems,
Springer-Verlag, 1990.

[37] L. Gutiérrez, F. Valencia, D. Sáez, A. Márquez, New fuzzy model with second
order terms for the design of a predictive control strategy, in: 2014 IEEE
International Conference on Fuzzy Systems, FUZZ-IEEE, Beijing, China, 2014,
pp. 2025–2031.

[38] L.M. Silverman, H.E. Meadows, Controllability and observability in time-
variable linear systems, SIAM J. Control 5 (1) (1967) 64–73.

[39] J. Klamka, Controllability of nonlinear discrete systems, Int. J. Appl. Math.
Comput. Sci. 12 (2) (2002) 173–180.

[40] M. Norgaard, O. Ravn, N.K. Poulsen, L.K. Hansen, Neural Networks for Mod-
elling and Control of Dynamic Systems, Springer-Verlag, 2001.

[41] D. Sáez, R. Zúñiga, Cluster optimization for Takagi & Sugeno fuzzymodels and
its application to a combined cycle power plant boiler, in: Proceedings of the
2004 American Control Conference, vol. 2, 2004, pp. 1776–1781.

[42] L. Ljung, System Identification: Theory for the User, second ed., Prentice Hall,
1999.

[43] O. Nelles, Nonlinear System Identification: From Classical Approaches to
Neural Networks and Fuzzy Models, Springer, 2001.

[44] O. Nelles, R. Isermann, Identification of nonlinear dynamic systems - Classical
methods versus radial basis function networks, in: Proceedings of the 1995
American Control Conference, vol. 5, 1995, pp. 3786–3790.

[45] M. Sugeno, T. Yasukawa, A fuzzy logic based approach to qualitativemodeling,
IEEE Trans. Fuzzy Syst. 1 (1) (1993).

[46] S. Alimi, M. Chtourou, Stability analysis of fuzzy identification for nonlinear
discrete systems - Part I: Theoretical study, in: Second International Confer-
ence on Developments in eSystems Engineering (DESE), 2009, pp. 349–353.

[47] K.M. Pekpe, J.P. Cassar, S. Chenikher, Identification of MIMO Takagi-Sugeno
model of a bioreactor, in: IEEE International Fuzzy Systems Conference, FUZZ-
IEEE, 2007, pp. 1–6.

[48] LiangWang, R. Langari, A decomposition approach for fuzzy systems identifi-
cation, in: Proceedings of the 34th IEEE Conference on Decision and Control,
vol. 1, 1995, pp. 261–266.

[49] C. Moler, Numerical computing with MATLAB, in: Other Titles in Applied
Mathematics, SIAM, 2004.

[50] J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of
the Nelder–Mead simplex method in low dimensions, SIAM J. Optim. 9 (1)
(1998) 112–147.

[51] J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J.
7 (4) (1965) 308–313.

[52] S.C. Patwardhan, K.P. Madhavan, Nonlinear model predictive control using
second-order model approximation, Ind. Eng. Chem. Res. 32 (2) (1993) 334–
344.

[53] J. Yen, L. Wang, C.W. Gillespie, Improving the interpretability of tsk fuzzy
models by combining global learning and local learning, IEEE Trans. Fuzzy
Syst. 6 (4) (1998) 530–537.

[54] V.N. Afanas’ev, V.B. Kolmanovskii, V.R. Nosov,Mathematical Theory of Control
Systems Design, Springer Science & Business Media, 2013.

http://refhub.elsevier.com/S1568-4946(18)30483-6/sb1
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb1
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb1
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb1
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb1
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb2
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb2
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb2
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb2
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb2
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb3
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb3
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb3
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb6
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb6
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb6
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb8
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb8
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb8
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb8
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb8
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb9
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb9
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb9
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb10
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb10
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb10
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb10
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb10
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb11
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb11
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb11
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb12
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb12
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb12
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb13
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb13
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb13
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb14
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb14
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb14
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb14
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb14
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb15
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb15
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb15
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb15
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb15
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb16
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb16
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb16
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb18
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb18
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb18
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb19
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb19
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb19
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb20
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb20
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb20
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb21
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb21
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb21
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb21
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb21
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb22
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb22
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb22
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb23
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb23
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb23
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb23
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb23
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb24
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb24
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb24
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb24
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb24
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb25
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb25
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb25
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb25
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb25
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb26
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb26
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb26
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb27
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb28
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb29
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb29
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb29
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb30
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb30
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb30
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb31
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb31
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb31
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb32
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb32
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb32
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb33
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb33
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb33
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb33
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb33
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb33
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb33
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb34
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb34
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb34
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb35
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb35
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb35
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb36
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb36
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb36
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb38
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb38
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb38
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb39
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb39
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb39
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb40
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb40
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb40
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb42
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb42
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb42
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb43
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb43
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb43
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb45
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb45
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb45
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb49
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb49
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb49
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb50
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb50
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb50
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb50
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb50
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb51
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb51
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb51
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb52
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb52
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb52
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb52
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb52
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb53
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb53
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb53
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb53
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb53
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb54
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb54
http://refhub.elsevier.com/S1568-4946(18)30483-6/sb54

	A new method for identification of fuzzy models with controllability constraints
	Introduction
	Preliminaries
	Controllability of Non-linear Systems
	Controllability of Linear Systems
	Takagi & Sugeno Fuzzy models

	Controllability of Takagi & Sugeno Fuzzy models
	Fuzzy Identification Algorithm with ControllabilityConstraints 
	General Fuzzy Identification Methodology
	Consequence Parameters Identification to Impose Controllability

	CASE STUDIES
	Controllable Nonlinear System: Benchmark System
	Continuous Stirred Tank Reactor
	Discussion

	CONCLUSIONS
	Acknowledgments
	References


