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Abstract—In this paper, a model predictive control (MPC)
strategy to drive an induction machine (IM) using a three-level
neutral point-clamped (3L-NPC) converter is investigated. The
proposed strategy is a space vector modulation based MPC
which controls the torque and flux of the IM by using a cost
function focusing on the average tracking error of the stator
flux linkage vector. Simulation results show an improved steady-
state performance maintaining the fast dynamic response of the
standard finite control set MPC. The control strategy works
appropriately with a relatively low sampling frequency of 1 kHz,
and it exhibits zero average tracking error in the controlled
variables.

Index Terms—model predictive control, space vector modula-
tion, multilevel converter.

I. INTRODUCTION

Control schemes for power converters and drives have been
constantly evolving according with the development of new
semiconductor devices and the introduction of new control
platforms. Nowadays, with the development of more powerful
microprocessors, new control schemes have been proposed for
power converters and drives. Among these new controllers,
predictive control seems to be an useful alternative due to its
ability to include non linearities, its fast transient response,
and ease inclusion of constraints [1].

In the context of power electronics, one of the most
attractive predictive control strategies is the so-called finite
control set MPC (FCS-MPC) [2]. This control strategy uses
the discrete nature of power converters to define a finite set of
switching actions. To obtain the optimal one, the variables to
be controlled are predicted and a cost function is evaluated for
every feasible converter switching state. The optimal switching
action, which minimized the cost function, is applied during
the whole next sampling period. Consequently, modulation
stages are not required. As evidenced in the literature [2,
3], FCS-MPC has proved to be an interesting alternative for
controlling power converters since it is relatively simple to
include nonlinearities, constraints, and variable of different
nature in the cost function. Nevertheless, FCS-MPC operates
with variable switching frequency, generating a dispersed
harmonic spectrum. This operating feature leads, in general,
to more significant ripple than techniques that include mod-
ulation stages at similar switching frequencies [4]. Moreover,

FCS-MPC controller produces, in general, a nonzero average
steady-state tracking error [3, 5].

To overcome these difficulties, the Multistep FCS-MPC (or
FCS-MPC with long horizons) for power electronics has been
recently presented in [6, 7] for multilevel topologies. To find
efficiently the optimal switching sequence, the optimization
problem is reformulated in terms of the unconstrained solution
to apply the sphere decoding algorithm. Under this predic-
tive strategy, the steady-state performance has been certainly
improved. However, the maximum number of nodes to be
evaluated in each sampling period for this algorithm has not a
deterministic upper bound that guarantees its execution during
the available processing time.

On the other hand, to improve the performance of the FCS-
MPC, recently, the space vector modulation (SVM) has been
integrated into several predictive control algorithms [8–11].
In [9], the method is named as Modulated-MPC and, it is
able to operate with fixed switching frequency without losing
the advantages of standard FCS-MPC strategy. However, the
duty-cycles are obtained using a heuristic procedure which,
in general, may lead to an undesirable performance of the
converter. A similar strategy is used in [12] to control a grid-
connected 3L-NPC converter. Here, the predictive control is
designed to regulate the current supplied to the grid using
a single-objective cost function while the capacitor voltage
balancing is achieved by utilizing the redundancy states of
the converter [13]. Moreover, in [10], a control scheme is
presented for a two-level converter driving permanent-magnet
motors. In this strategy, the pair of active vectors are selected
by performing some geometrical considerations, and their
duty-cycles are computed by using a linear combination of
the prediction errors produced by them and the zero vector.
The resulting voltage vector is restricted to the linear range of
the modulator; and hence, the control technique may lead to
suboptimal solutions, especially in the transient operation.

This paper proposes a generic strategy for calculating the
duty-cycles when a SVM strategy is added into the FCS-
MPC algorithm. The controller is applied to a medium-voltage
high-power induction machine (IM), and it is focused on
minimizing the average stator flux tracking error when the 3L-
NPC converter applies a seven-segment switching sequence.
The controller computes a locally optimal solution for all



sections in which the control region is divided and the optimal
section with its corresponding duty-cycles are obtained by
using an enumeration algorithm. In addition, a saturation
scheme dealing with the system constraints is also proposed.
The performance of the technique is evaluated with simulation
results in a high-power induction machine fed by a medium-
voltage 3L-NPC converter.

II. DESCRIPTION OF THE DRIVE

A. Model of the Converter
The circuit diagram of a typical 3L-NPC converter is shown

in Fig. 1(a). The converter is composed of four switches
and two clamped diodes per leg which produce 27 three-
phase switching valid states uabc∈{−1, 0, 1}3. As shown in
Fig. 1(b), these switching states generate 19 non-redundant and
8 redundant switching vectors in the stationary αβ by using
the transformation uαβ=T uabc, with
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The small vectors [red dots in Fig. 1(b)] play a significant
role in balancing the capacitor voltages since, for each of
them, its single-redundancy produces the same line-to-line
voltage with a NP-current of the same amplitude but oppo-
site direction. This principle allows balancing the capacitor
voltages without sacrificing the quality of the output currents
by redistributing the dwell times of the small switching vectors
[12, 13].

To satisfy the minimum switching transition principle, direct
switching between the states +1 and -1 in each leg is prohibited
[13]. Thereby, as shown Fig. 1(b), the whole control region in
the stationary αβ frame is typically divided into six sectors,
each of which is subdivided into four regions, forming 24
convex sets named as R ∈ S�{R1, . . . ,R24}. These convex
sets are defined by any convex combination of the three nearest
switching vectors accomplishing the minimum switching prin-
ciple. The order in which the converter applies these vectors
within a sampling cycle is known as switching sequence (SSq).

Taking into account the influence of small vectors in the
capacitor voltages balancing problem, it is desirable to begin
the switching sub-cycle period with a small vector, us, and to
end it with its single-redundancy u′s [13]. The seven-segment
SSq can be defined accordingly for all regions R∈S as:

S:=
{
us[d1],u2[d2],u3[d3],u

′
s[d4], · · ·

u′s[d4],u3[d3],u2[d2],us[d1]
}

(2)

with dj the normalized dwell-time in which the jth switching
vector is applied by the converter. In consequence, the aim of
the proposed controller is to define both the optimal switching
sequence and its corresponding duty-cycles.

B. Model Predictive Stator-Flux Control (MP-SFC)
The stator flux linkage vector ψs is adopted in this work

to accomplish torque and flux control of an IM. The electro-
magnetic torque is given by [14]

Te = kT‖ψs‖‖ψr‖ sin(θs−θr), (3)

Fig. 1. 3L-NPC converter: (a) topology; (b) space of vectors.

with kT = 3
2p

Lm

σLsLr
, and θs(r) the stator(rotor) flux angle

measured from a common reference frame. A fast torque
control can be achieved by manipulating θs while the mag-
nitudes of the stator and rotor flux vectors are kept constant.
Notice that thanks to the large rotor time constant, both the
magnitude and the angular position of the rotor flux vector can
be considered constant during the transient process in which
the torque expression is evaluated. Thus, by assuming that the
magnitude of the stator flux Ψs=‖ψs‖ is controlled around its
nominal value Ψ∗s , for a given torque reference T ∗e , the desired
angular position of the stator flux can be determined as:

θ∗s = θr + arcsin

(
T ∗e

kTΨ∗s‖ψr‖
)

(4)

Therefore, the control target is accomplished if the stator flux
vector is manipulated according to

ψ∗s = Ψ∗s

[
cos θ∗s
sin θ∗s

]
(5)

The overall control scheme is depicted in Fig. 2. Here, the
torque reference T ∗e is provided by the speed controller and
the rotor flux ψr is estimated from the dynamic model of
the IM by using both the stator current vector and speed
measurement ω. Using ψr, T

∗
e and Ψ∗s , the reference generator

block computes the desired stator flux vector by evaluating (4)
and (5). Then, the reference and the predictions of the stator
flux are somehow compared by using a proper cost function
from which the optimal SSq with its corresponding duty-cycle
is obtained. The proposed control strategy is further discussed
in the following section.

III. SWITCHING-SEQUENCE SET MPC

Typically in FCS-MPC strategies, the optimal control action
is derived from the minimization of a cost function that
compares the reference and the prediction of the variables to
be controlled at the end of the sampling period. In a different
manner, this paper proposes using the prediction of the average
stator flux trajectory over the next switching cycle when the
converter applies a SSq as (2) to the IM.

For this purpose, let us consider the stator winding dynamic
equation in stationary coordinates,

dψs
dt

= vs −Rsis, (6)



Fig. 2. Predictive stator flux controller to drive an IM.

where vs=[vsα vsβ ]
ᵀ and is=[isα isβ ]

ᵀ are the stator voltage
and current vectors, respectively. For high-power IMs, the
stator resistance, Rs, can be neglected in (6); and consequently,
the evolution of the stator flux during a switching period can
be expressed as a piecewise linear function of the time, as
illustrated in Fig. 3 for a seven-segment SSq (2). In this regard,
and considering the symmetrical nature of the seven-segment
SSq, it can be proved that the average trajectory over the whole
switching cycle corresponds to the instantaneous value of the
stator flux at the end of the sub-cycle, i.e., ψs[k+1]=ψs4
as depicted in Fig. 3. Thereby, when the converter applies a
seven-segment SSq to the IM, the average stator flux over the
next switching cycle can be predicted as

ψs[k+1]=ψs[k]+Δψs1d1+Δψs2d2+Δψs3d3+Δψs4d4
(7)

being Δψsj=T0vj , the incremental trajectory of the stator
flux when the converter applies the jth voltage vector during
the whole sub-cycle interval T0 = Ts/2.

Assuming the capacitor voltages are balanced, the effect of
each small vector and its redundancy over the stator flux is
the same, i.e., Δψs1 = Δψs4, leading to

ψs[k+1] = ψs[k] +
Vdc
2
T0U [k]d[k] (8)

with d=
[
d0 d2 d3

]ᵀ∈[0, 1]3, the system input to be
computed by the controller, where d0=d1+d4, and
U=

[
us u2 u3

]∈R2×3, a matrix composed by the switching
vectors that define each convex set of the control region [see
Fig. 1(b)].

To obtain the optimal duty-cycle, the following quadratic
cost function is introduced

J(d[k]) =
∥∥ψs[k+1]−ψ∗s[k+1]

∥∥2

2
+ λu

∥∥u[k]−u[k−1]∥∥2

2
(9)

which is a suitable choice to trade stator flux tracking error
versus control input effort, where

u[k] = U [k]d[k] (10)

is the average switching vector for a given switching cycle. In
consequence, the scalar parameter λu ≥ 0 is used to provide
more robustness to the system by penalizing the size of the
increments of the control input.

Fig. 3. Predicted stator flux trajectory for a seven-segment SSq.

Finally, for each SSq, the admissible duty-cycles are those
that must be non-negative and sum one. Therefore, to ob-
tain the optimal duty-cycle, the following simplex-constrained
least-square problem (SCLS) must be solved

min
d

∥∥γUd− e[k]∥∥2

2
+ λu

∥∥Ud− u[k−1]∥∥2

2
(11a)

s. t. ᵀd = 1 (11b)

dj ≥ 0 (11c)

with e[k]=ψ∗s[k+1]−ψs[k] the tracking error at the beginning
of the sampling period and γ = Vdc

2 T0 a positive scalar.

A. Relaxed solution

To efficiently solve the SCLS problem (11), in this work
it is proposed first to compute the solution of the relaxed
problem and then, to apply a simple and suitable method to
fulfil the constraint (11c). In the relaxed problem, the non-
negative constraints over the duty-cycles (inequality dj≥0) are
ignored. In consequence, the relaxed solution, denoted as dr,
is the one that solves the following bi-objective constrained
least-square (CLS) problem [15],

min
d

∥∥γUd− e[k]∥∥2

2
+ λu

∥∥Ud− u[k−1]∥∥2

2
(12)

s. t. ᵀd = 1,

Thereby, using the Lagrange method, dr can be obtained by
solving the following linear system of 4 equations:[

(γ2+λu)U
ᵀU

ᵀ 0

] [
dr

ν

]
=

[
Uᵀ(γe[k]+λuu[k−1])

1

]
,

(13)
whose unique solution is guaranteed since the stacked matrix
[Uᵀ ]ᵀ has linearly independent columns for all regions.
Thus, the CLS is directly solved by using the inverse of the
left-hand square matrix in (13). In this regard, the relaxed
solution is given by:⎡
⎢⎣
dr0

dr2

dr3

⎤
⎥⎦= 1

Θ

⎡
⎢⎣
b1(u2β−u3β)+b2(u3α−u2α) + u2αu3β−u2βu3α
b1(u3β−u0β)+b2(u0α−u3α) + u3αu0β−u3βu0α
b1(u0β−u2β)+b2(u2α−u0α) + u0αu2β−u0βu2α

⎤
⎥⎦

(14)
where

Θ = u0×u2 + u3×u0 + u2×u3, (15)[
b1

b2

]
=

1

γ2 + λu
Uᵀ(γe[k]+λuu[k−1]) (16)

and ux×uy = uxαuyβ−uxβuyα denotes the cross product.



Fig. 4. Graphical representation of the two saturation schemes.

B. Handling non-negative constraints

Accordingly to the above, for each switching sequence
Sj , a local relaxed solution drj is obtained by evaluating
(14). This solution meets ᵀdr=1 but all its components not
necessarily are non-negative. It follows that relaxed solution
can be mapped onto the αβ-plane wit the following affine
combination

urj = Ujdrj , (17)

Thereby, the global optimal solution defines a unique point in
the αβ-plane, denoted as u∗r .

Under the assumption that u∗r falls within the control region
[hexagon shown in Fig. 1(b)], there exists just one region
R∗ able to generate u� through a convex combination of
their switching vectors. This means that only one among all
the local solutions has non-negative duty-cycles; and hence,
it will be the global solution to the problem. As illustrated
in Fig. 4(b), the only region able to produce u∗1 through a
convex combination is R14. In consequence, the optimal duty-
cycle d∗ is directly obtained by evaluating the non-negativity
condition for the three components of each relaxed solution.
Under this perspective, the cost function evaluation for all
regions is avoided in this work.

If conversely, u∗r falls out of the hexagon, there is no local
solution with all its duty-cycles non-negative. To deal with
this problem, two saturation schemes are introduced in this
paper. In the first saturation scheme, the aim is to find a vector
on the hexagon’s frontier, uap, as close as possible to the
relaxed solution. For this purpose, only the pair of switching
vectors with the minimal distance to the relaxed solution u∗r
are considered. Then, the duty-cycle associated to the small
vector must be zero, i.e., d0=0 and the duty-cycles of the large
and medium vectors are respectively computed as

d2 = mid

{
0,

Δuᵀ
rΔuf

‖Δuf‖2 , 1
}

; d3=1−d2 (18)

with Δur=u
∗
r−u3, Δuf=u2−u3 and mid{·}, the operator

used for giving feasibility to the solution. Thereby, the result-
ing voltage vector uap is given by the orthogonal projection of
the relaxed solution to the hexagon’s frontier. An illustrative
example is shown in Fig. 4, in which the relaxed solution ur2

is projected to border of the hexagon resulting in the red-
line vector uap1. In this particular case Δuf=u13−u7, and
Δur=u

∗
r−u7.

TABLE I
PARAMETERS OF THE SIMULATION.

Parameter Description Value
fs Sampling frequency 1 kHz
Rs Stator resistance 57.61 mΩ
Rr Rotor resistance 48.89 mΩ
Lls Stator leakage inductance 2.544 mH
Llr Rotor leakage inductance 1.881 mH
Lm Main inductance 40.01 mH
p Number of pole pairs 5

Vdc dc-link voltage 5.2 kV
λu0 Weighting factor 0.2

The second saturation scheme scales the relaxed solution in
order to put it on the inscribed circle of the outer hexagon of
Fig. 4. Thus, the angular position of u∗r is maintained leading
to

uap = u∗r
Vmax

‖u∗r‖
=

√
3

3
Vdc

u∗r
‖u∗r‖

(19)

from which the duty-cycles are obtained considering the volt-
second balancing as[

d2 d3
]
=

[
u2 u3

]−1
uap (20)

In consequence, this saturation method applies the green-line
vector, uap2, for the relaxed solution ur2 in Fig. 4.

IV. SIMULATION RESULTS

To validate the proposed controller both steady-state and
dynamic operating conditions are analysed. Simulations are
carried out using PLECS software. For all cases, to balance the
capacitor voltages, a methodology similar to the one presented
in [12] is utilized where the duty cycles of the small vectors
within a sequence a redistributed in order to balance vC1 and
vC2 since the redundant vector have an opposite effect in
the current injected to the middle point of the DC-link. The
parameters of the system are summarized in Table I.

A. Steady-state performance
In this section, the following performance indexes are

considered to evaluate the behaviour of the IM driven by
the proposed controller: average torque tracking error, total
demand distortion (TDD) of the torque defined by

TTDD =
1

TR

√∑
h �=0

T̂ 2
h , (21)

and the average flux error over a fundamental cycle

Eψ=
1√
2ΨR

√√√√ N∑
k=1

(
ψ∗s[k]−

1

Ts

∫ (k+1)Ts

kTs

ψs(t) dt

)2

, (22)

which is representative of the cost value obtained under the
proposed control strategy. Finally, the harmonic spectrum of
the stator currents is analysed for several speed references.

Fig. 5 shows the average tracking error and the TDD of
the torque for a sampling frequency of 1 kHz. Both indexes
are shown for the whole speed range considering two methods
for predicting the stator flux: at the end of the switching cycle
(2T0), or at the end of the sub-cycle (T0), as it is proposed



Fig. 5. Average torque error and TTDD for the whole speed range considering
no- and full-load operation.

in this work. As it can be seen, at full-load, the average
torque tracking error is lesser for the whole speed range when
the predictions are made at the end of the sub-cycle, thus
controlling the average trajectory of the stator flux. Focusing
on the torque TDD, the proposed prediction method leads to a
slightly lower TTDD for speed references above 0.55 p.u. and
also for the rated speed. Notice that the resulting torque TDD,
as defined in (21), is always below to 5%.

The waveforms of the αβ components are shown for a
speed reference of ω∗=0.55 pu, which according to Fig 7(a)
corresponds to the speed for which the minimal value of Eψ
is achieved. Considering the resulting Eψ for the whole speed
range shown in Fig 7(a), it can be concluded that the controller
regulates very well the average trajectory of ψs.

The stator current harmonic spectrum is shown in Fig. 9 for
several speed references considering no- and full-load. As it
can be seen, the proposed MPC strategy shapes the harmonic
spectrum. In addition, for all cases, the low order harmonics
are below to 1.3% of the fundamental current at fs=1 kHz.

Fig. 6. Stator currents (iabc), stator flux linkage components (ψsα, ψsβ ) with
their references, and torque using the saturation I (a) and saturation II (b).

Fig. 7. Steady-state performance: (a) Average tracking error and stator flux
waveforms without (b) and rated load (c) at ω∗ = 0.55[pu].

B. Dynamic performance

Fig. 6 compares the dynamic behaviour of the two saturation
schemes analysed in this work when a rated torque load impact
at rated speed is applied to the IM. As depicted in the torque
waveforms of Fig. 6, the settling time of the proposed method
is about 25% of the one obtained with the standard saturation
method. As shown in Fig. 8, during this demanding transient
condition, the proposed method uses the full available control
region while the second method maintains the angular position
of ur but limits its amplitude to the inscribed circle [see
Fig. 8(b)].

C. Influence of the weighting factor λu

Fig. 10 compares the dynamic behaviour for two different
weighting factors when a step down ω∗=0.5 → 0.25 pu. at
rated torque is applied. As it can be seen, lower values of λu
produce an oscillatory response, increasing both the current
and torque ripple, which degrades the controller performance.

Fig. 8. Stator voltage trajectory using saturation I (a) and saturation II (b).



Fig. 9. Stator current harmonic spectrum at no- and rated-load for several
speed references: (a) ω∗=0.25, (b) ω∗=0.5, (c) ω∗=0.75, (d) ω∗=1 pu.

V. CONCLUSIONS

This paper proposes and validates a predictive stator flux
controller to drive an induction machine using a 3L-NPC
converter. The proposed control strategy reduces the average
tracking and shapes the spectrum harmonic of the output
voltage producing also a fixed switching frequency, which are
the main disadvantages of standard FCS-MPC. In addition,
a fast dynamic response is achieved. This strategy has been
tested by simulation using a sampling frequency of 1 kHz.

The two saturation schemes discussed in this work al-
lows giving feasibility to the relaxed solution. However, the
suboptimal control action is only applied during transient
operating conditions, such as load impact and changes on the
speed reference. Therefore, the relaxed solution is the optimal
solution during steady-state condition.

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledge financial support pro-
vided by Fondecyt Chile under Grant 1180879 and by
Basal Project FB0008 “Advanced Center for Electrical and
Electronic Engineering”. The work of A. Mora was sup-
ported by the Conicyt grants CONICYT-PCHA/Doctorado
Nacional/2013-21130042 for Ph.D. studies.
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