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We perform an internal robustness analysis (iR) to a compilation of the most recent fσ8ðzÞ data, using
the framework of Ref. [1]. The method analyzes combinations of subsets in the data set in a Bayesian
model comparison way, potentially finding outliers, subsets of data affected by systematics or new physics.
In order to validate our analysis and assess its sensitivity we performed several cross-checks, for example
by removing some of the data or by adding artificially contaminated points, while we also generated mock
data sets in order to estimate confidence regions of the iR. Applying this methodology, we found no
anomalous behavior in the fσ8ðzÞ data set, thus validating its internal robustness.
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I. INTRODUCTION

During the last twenty years a plethora of observations
suggests that the Universe is undergoing a phase of
accelerated expansion at late times. In order to explain
this phenomenon, the concept of attractive gravity had
to be revised either by introducing a new form of matter
dubbed dark energy, see Ref. [2] for a review, or by
altering explicitly the laws of gravity [3]. However, the
simplest way to account for a phase of accelerated
expansion of the Universe within the framework of
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmol-
ogy is to simply introduce a cosmological constant (Λ).
While this model gives rise to severe coincidence and
fine-tuning problems, current cosmological observations
are still compatible with a Universe that is filled by a dark
energy component that has the same characteristics of the
cosmological constant [4].
Nonetheless, these cosmological observations are not

accurate enough at the moment to either constrain any
potential time evolution of the cosmological constant,
which might lead dark energy to cluster, or any modifica-
tions of gravity. Despite the fact that the two aforemen-
tioned classes of theories can in principle be arbitrarily
similar [5,6], it is still necessary to be able to discriminate
between the currently available models.
Future surveys such as Euclid [7], LSST [8], and DESI

[9], all of which will gather orders of magnitude more data
than current surveys, it would be interesting to constrain
the dynamical features of gravity and test our assumptions.

One way to do this is via the growth of matter density
perturbations δm ¼ δρm=ρm and its logarithmic derivative
the growth rate f ¼ d ln δm=d ln a. In practice, most of
the growth rate measurements are made via the peculiar
velocities obtained from redshift space distortions (RSD)
measurements [10] coming from galaxy redshift surveys.
In general, these surveys measure the perturbations of the
galaxy density δg, which can be related to (dark) matter
perturbations through the bias b via δg ¼ bδm. Thus, initial
growth rate measurements measured the growth rate f
divided by the bias factor b leading to the parameter
β≡ f=b. This parameter is very sensitive to the value of the
bias which can vary in the range b ∈ ½1; 3�, thus making
difficult to combine β from different surveys and as a result
leading to unreliable data sets of βðziÞ.
As a result, a more reliable parameter was sought and

this was found in the combination fðzÞσ8ðzÞ≡ fσ8ðzÞ,
which can be shown to be independent of the bias [11], and
can be measured either via weak lensing or RSD obser-
vations. Still, the current measurements of fσ8ðzÞ (pre-
sented in later sections) come from a plethora of different
surveys with different assumptions and systematics, thus an
approach to study the statistical properties and robustness
of the data is imperative.
One such approach would be to perform a tomographic

analysis, as was done in Ref. [12], where growth data from
different years and different redshifts were split into sub-
samples. Then, it was found that for the more recent data the
agreement with the Planck 15 best-fit ΛCDM cosmology is
much improved and is well within 1σ, due to the fact that
newer data are at higher redshifts and with higher errors.
This approach can clearly highlight inconsistencies in the
data, but care must be taken to avoid double-counting of
the data.
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Another approach to test the internal consistency of
low redshift probes was developed in Ref. [13], where the
KiDs data were examined for internal tensions, by perform-
ing cuts of the data and examining the cross-correlation
measurements of the correlation function that was pre-
sented in four tomographic redshift bins by the KiDs
collaboration. Then it was found that the KiDs data might
have internal tensions of ∼2.2–3.5σ significance.
In our paper we choose to follow a more direct approach

which is based on Bayesian analysis called “internal robust-
ness” method and was pioneered in Ref. [1], see also
Refs. [14,15] for applications of the method in supernovae
data. This is a fully Bayesian approach which is not only
sensitive to the localminimum like a standard χ2 comparison,
but also to the entire likelihood and can in principle detect the
presence of systematics in the data set. The main goal of this
approach is to identify systematic-contaminated data points,
which can then be further analyzed and potentially excluded
if they cannot be corrected.
In this paper we present an application of the internal

robustness approach to the currently available growth-rate
data in the form of fσ8ðzÞ with the aim to examine the data
set for systematics and outlier points in a fully automated
manner. The reason we specifically use these data is
twofold: first, the growth data are dynamic probes that
can in principle discriminate between modifications of
general relativity [16]; second, currently there is a tension
between low redshift probes, such as the growth data, and
the Planck 15 best fit cosmology. Therefore, it is imperative
to have a data set whose statistical properties have been
demonstrated to be robust before inferences about modified
gravity models are made or the tension with Planck could
be explained.
The layout of our manuscript is as follows: in Sec. II we

provide the basic elements of FLRW cosmology related to
our models, in Sec. III we briefly review the internal
robustness method and its application to the growth data,
while in Sec. IV we provide the compilation of growth data
used in our analysis and finally, we discuss our results in
Sec. V.

II. BASIC EQUATIONS

In this section we present the basic equations required in
our analysis. We begin with the Hubble parameter in a flat
ΛCDM universe (with a constant equation of state param-
eter for dark energy w ¼ −1), given by

HðaÞ2 ¼ H2
0½Ωm;0a−3 þ ð1 −Ωm;0Þ�; ð1Þ

where H0 is the Hubble constant, and Ωm;0 is the present
day value of the matter density parameter and a is the scale
factor. The matter density can then also be expressed as a
function of the scale factor:

ΩmðaÞ ¼
Ωm;0a−3

HðaÞ2=H2
0

: ð2Þ

Under the assumption of flat ΛCDM model, the angular
diameter distance takes an analytical expression, given by:
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where 2F1 is the hypergeometric function. The matter
density perturbations in Fourier space δmða; kÞ depend
on the underlying cosmological model; for the ΛCDM
scenario, the linear matter perturbations grow according to

δ00mðaÞ þ
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The equation above has an analytical solution for the
growing mode, given by [17–19]

δmðaÞ ¼ a · 2F1
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: ð5Þ

Note that the dependence on the wave number k disappears
because of the assumption of small scales approximation.
We define the growth rate f and the root mean square

(RMS) normalization of the matter power spectrum σ8 as:

fðaÞ ¼ d log δm
d loga

; ð6Þ

σ8ðaÞ ¼ σ8;0
δmðaÞ
δmð1Þ

; ð7Þ

σ28;0 ¼ hδðxÞ2i ¼ 1

2π2

Z
∞

0

PðkÞW2
RðkÞk2dk; ð8Þ

where WRðkÞ is the Fourier transform of a top-hat window
function. As already mentioned in Sec. I, a more robust and
reliable quantity that is measured by redshift surveys is the
combination of the growth rate fðaÞ and the RMS σ8ðaÞ:

fσ8ðaÞ ¼ a
δ0mðaÞ
δmð1Þ

σ8;0: ð9Þ

Equation (9) will be our key quantity, which will be tested
with the most recent data available in the following
sections.
Alternatively, fσ8ðaÞ can also be written as [20]

fσ8ðaÞ≡ σðvdÞ8 ðaÞ2
σðddÞ8 ðaÞ

; ð10Þ
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where σðddÞ8 ðaÞ is the usual σ8ðaÞ parameter as defined

above and σðvdÞ8 ðaÞ is the smoothed density-velocity corre-
lation defined in a similar manner, but using instead the
correlation power spectrum PvdðkÞ and v ¼ −∇vN=H
where vN is the peculiar velocity of the baryons and
dark matter in the Newtonian-gauge, while d is the total
matter density perturbation. Using linear theory for models
close to ΛCDM, it is easy to show that v ¼ −∇vN=H ¼
−ik vN

aH ¼ fðaÞδðk; aÞ, see Sec. IX.2 in Ref. [21] for a quick
derivation. However, the growth can also be written as
δðk; aÞ ¼ δkðkÞGðaÞ, where δk is an initial condition

determined from inflation and GðaÞ≡ δðaÞ
δð1Þ is the normal-

ized growth, see Eq. (7.8) in Ref. [21]. Then, using the
definitions of the σ parameters, we have

σðvdÞ8 ðaÞ2 ¼ hvðx; aÞδðx; aÞi
¼ fðaÞGðaÞ2hδðxÞ2i
¼ fðaÞGðaÞ2σ28;0; ð11Þ

and

σðddÞ8 ðaÞ2 ¼ hδðx; aÞδðx; aÞi
¼ GðaÞ2hδðxÞ2i
¼ GðaÞ2σ28;0: ð12Þ

Finally, using the definition of Ref. [20] we have

fσ8ðaÞ≡ σðvdÞ8 ðaÞ2
σðddÞ8 ðaÞ

¼ fðaÞGðaÞ2σ28;0
GðaÞσ8;0

¼ fðaÞGðaÞσ8;0; ð13Þ

which exactly agrees with our original definition of
Eq. (9).

III. FORMALISM

Here we report the basic equations that will be used to
perform our analysis and we refer to [1] for the details on
the derivation of the internal robustness. The statistical
definition of the Bayesian evidence is

EðxjMÞ ¼
Z

LðxjθMÞπðθMÞdθM; ð14Þ

where x ¼ ðx1; x2;…; xNÞ are the N random data, θM ¼
ðθ1; θ2;…; θnÞ are the n theoretical parameters of the
model M. The likelihood function is LðxjθMÞ, while the
prior probability of the parameters of the model is πðθMÞ.

By the help of the Bayes’ theorem we can find the
posterior probability PðMjxÞ of having a model M given
the data

PðMjxÞ ¼ EðxjMÞ πðMÞ
πðxÞ : ð15Þ

By using the last equation, we can compare two different
models by considering the ratio of their probabilities:

PðM1jxÞ
PðM2jxÞ

¼ B12

πðM1Þ
πðM2Þ

; ð16Þ

with the Bayes factor defined as

B12 ¼
EðxjM1Þ
EðxjM2Þ

: ð17Þ

If we assume that the prior probabilities of having two
different models are the same, then the Bayes factor alone
will help us to favor or disfavor a particular model. If
B12 > 1 then the data favors the model M1, if it is less
than 1, then M2 is favored.
However, the robustness test needs a further assumption,

that is: the data have to come from two different distribu-
tions. The reason is two fold: first the total evidence can be
factorized as the product of the two evidences and, second,
which is the underlying meaning of the robustness test,
we would like to prove that data are reliable. If the data is
partitioned into two subsets, say fx1;x2g and we assume
that they come from two models, say M1, M2, then the
Bayes factor becomes

B12 ¼
EðxjM1Þ

Eðx1jM1ÞEðx2jM2Þ
: ð18Þ

Finally, we can define the internal robustness as

iR12 ¼ logB12 ¼ log

�
EðxjM1Þ

Eðx1jM1ÞEðx2jM2Þ
�
: ð19Þ

This approach allows us to detect if a subset of the data
follows another cosmological model or if a specific survey
is affected by systematics and hence altering the measure-
ment itself.
However, the assumption of having two different

models is not strictly mandatory and we will choose
the same cosmological model for both subsets. In this
work we will set the cosmological model to be ΛCDM
and the parameters for both subsets to θ ¼ ðΩm;0; σ8;0Þ.
Hereinafter, we drop the M superscript and the 1,2
subscripts, since we only consider one cosmological
model.
Our analysis invokes priors on the parameters, for that

we choose a flat prior in the [0, 1] range forΩm;0 in order to
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allow for all physical values possible for the matter density.
On the other hand, the choice of a prior for σ8;0 is less
evident; since the prior directly affects the evidence value,
so we are going to consider three priors for σ8;0, to assess
the impact of the prior selection on the internal robustness.
We choose the following three cases:

(i) Narrow flat prior: this is a typical flat prior in the
range [0.3, 1.5].

(ii) Broad flat prior: this is a flat prior in the range
[0, 10], which allows for high values of σ8;0.

(iii) Gaussian prior: the third prior to consider is a
Gaussian distribution centered on 0.8150, with a
standard deviation of 0.0087, based on the Planck
2015 results (TT;TE;EEþ lowPþ lensing [4]).

It is clear that we only allow for positive values of σ8;0 in
order to remain physical.
The data considered are fσ8ðzÞ measurements (with z ¼

−1þ 1=a being the redshift of the measurement), and we
assume a Gaussian likelihood for the data with a covariance
matrix C. We represent the observed data in different
redshifts as m ¼ ðmðz1Þ;…; mðznÞÞ and its theoretical
prediction as μðθÞ ¼ ðμðz1Þ;…; μðznÞÞ, which depends
on the cosmological model and parameters. We also take
into account the redshift correction of [22], which features a
correction factor of

facðziÞ ¼ HðziÞdAðziÞ
Href;iðziÞdref;iA ðziÞ : ð20Þ

with the label ref, i stating that the cosmology considered is
the reference cosmology used on the corresponding data
point on redshift zi. Hence, the corrected theoretical
prediction is [23]

μic ¼
μi

facðziÞ : ð21Þ

We are now in the position to define the data vector with the
corresponding modification:

x ¼ m − μc: ð22Þ

Then, the chi-squared is

χ2 ¼ xTC−1x; ð23Þ

which is related to the likelihood via L ¼ e−χ
2=2=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞnjCjp

.
To speed up the computations, we note that the σ8;0

parameter can be marginalized theoretically [24,25]. We
rewrite the χ2:

χ2 ¼ mTC−1m − 2mTC−1μc þ μTcC−1μc: ð24Þ

The corrected theoretical prediction marginalized over
σ8;0 will be ν ¼ μc=σ8;0. Then, the χ2 can be rewritten as

χ2 ¼ ξmm − 2ξmνσ8;0 þ ξννσ
2
8;0; ð25Þ

where the single terms are

ξmm ¼ mTC−1m;

ξmν ¼ mTC−1ν;

ξνν ¼ νTC−1ν: ð26Þ
The posterior probability distribution marginalized over
σ8;0 is

PðΩm;0Þ ¼
Z

LðΩm;0; σ8;0ÞπðΩm;0; σ8;0Þdσ8;0: ð27Þ

We now consider two cases for the prior probability on σ8;0:
a flat prior between ½a; b� and a Gaussian prior with mean s
and variance ϵ2. Let us start by considering the flat prior
case. The integration of the posterior is

PfðΩm;0Þ ¼
1

ðb− aÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞnjCjp Z
b

a
e−χ

2=2dσ8;0

¼ 1

ðb− aÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞnjCjp exp

�
−
1

2

�
ξmm −

ξ2mν

ξνν

��
If;

ð28Þ

where the quantity If is

If ¼
Z

b

a
e−

ξνν
2
ðξmν=ξνν−σ8Þ2dσ8

¼
ffiffiffiffiffiffiffiffi
π

2ξνν

r
erf

�
ξmν − xξννffiffiffiffiffiffiffiffi

2ξνν
p

�����b
a
: ð29Þ

For the Gaussian prior case we find, by discarding negative
values:

πgðσ8;0Þ ¼
e−

1
2
ðs−σ8;0Þ2=ϵ2R∞

0 e−
1
2
ðs−σ8;0Þ2=ϵ2dσ8;0

¼ e−
1
2
ðs−σ8;0Þ2=ϵ2ffiffiffiffiffiffiffiffiffiffiffiffi

πϵ2=2
p

½1þ erfðs=
ffiffiffiffiffiffiffi
2ϵ2

p
ÞÞ�

¼ Age−
1
2
ðs−σ8;0Þ2=ϵ2 ; ð30Þ

where we implicitly defined the normalization constant Ag.
The posterior probability distribution function then

reads:

PgðΩm;0Þ ¼
Agffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞnjCjp Z

∞

0

e−½χ2þðs−σ8;0Þ2=ϵ2�=2dσ8;0

¼ Agffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞnjCjp exp

�
−
1

2

�
ξmm −

ξ2mν

ξνν

��
Ig; ð31Þ
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where Ig is equal to:

Ig ¼
Z

∞

0

e−
ξνν
2
ðξmν=ξνν−σ8Þ2e−1

2
ðs−σ8;0Þ2=ϵ2dσ8

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πϵ2

2ðϵ2ξνν þ 1Þ

s
exp

�
−

ðξmν − ξννsÞ2
2ξννðϵ2ξνν þ 1Þ

�

×

�
1þ erf

�
ξmνϵ

2 þ s

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðϵ2ξνν þ 1Þ

p ��
; ð32Þ

which is the multiplication of the exponentials of two
Gaussians, which is also the exponential part of a Gaussian
distribution.

IV. DATA CONSIDERATIONS

A. The data set

The growth rate data set is based on the Gold-2017
compilation from [22], consisting of 18 independent
measurements of fσ8ðzÞ, obtained from redshift space
distortion measurements from a variety of surveys.
Among these surveys, it is important to note that the three
WiggleZ [26] measurements are correlated, and their
covariance matrix is

CWiggleZ ¼ 10−3

0
B@

6.400 2.570 0.000

2.570 3.969 2.540

0.000 2.540 5.184

1
CA: ð33Þ

In addition to the Gold-2017 compilation, we update it with
4 recent measurements from [27]. These points have a
covariance matrix given by

CSDSS-IV ¼ 10−2

0
BBB@

3.098 0.892 0.329 −0.021
0.892 0.980 0.436 0.076

0.329 0.436 0.490 0.350

−0.021 0.076 0.350 1.124

1
CCCA:

ð34Þ

Our final data set will be constituted of N ¼ 22 data points,
shown in Table I, the possible combinations of subsets from
them is 2N−1 − 1 ¼ 2097151, and we analyze all of the
subsets.1 The analysis is possible thanks primarily to the
marginalization over σ8;0, as shown in Sec. III.
We do not use the data set of Ref. [16], even though some

data points are at high redshifts, as these are measurements
of the growth-rate fðaÞ, which is affected by the bias b, and
not of the combination fσ8 which has been shown to be
bias free [11].

B. Mock data

An important feature of this work is the comparison of
confidence regions for the probability distributions of the
internal robustness (iR-PDF). To obtain the confidence
regions, we generate mock data sets based on the form

fσmock
8 ðziÞ ¼ fσ8ðzijθbestfitÞ þN random; ð35Þ

meaning that the mock growth rate data is generated from
the best fit parameters θbestfit, which are obtained using the
complete data set and minimizing the posterior probability
(which takes the prior into account). The N random term is
evaluated by assuming a Gaussian noise with zero mean
and standard deviation equal to those given by the data
σfσ8ðziÞ.
The main reason of comparing the results obtained by

using the data and the mock catalogues is to compare
directly the iR-PDF to the confidence regions. If the
iR-PDF from the data falls off the confidence regions, then
we can state that either the data set is not internally robust,
meaning that the data set could be affected by systematics,
or that a better physical model is required in order to better
describe the data. In other words, the mock data confidence
regions portrait acceptable offset levels from the best fit
cosmology obtained from the complete data set.
For each choice of the prior on σ8;0, we generate 1000

mock data sets. Then, we sample each one of these data sets
into 14000 subset combinations, distributed as follows:

TABLE I. Compilation of the fσ8ðzÞmeasurements used in this
analysis along with the reference matter density parameter Ωm0

(needed for the growth correction) and related references.

z fσ8ðzÞ σfσ8ðzÞ Ωref
m;0 Ref.

0.02 0.428 0.0465 0.3 [28]
0.02 0.398 0.065 0.3 [29,30]
0.02 0.314 0.048 0.266 [31,30]
0.10 0.370 0.130 0.3 [32]
0.15 0.490 0.145 0.31 [33]
0.17 0.510 0.060 0.3 [11]
0.18 0.360 0.090 0.27 [34]
0.38 0.440 0.060 0.27 [34]
0.25 0.3512 0.0583 0.25 [35]
0.37 0.4602 0.0378 0.25 [35]
0.32 0.384 0.095 0.274 [36]
0.59 0.488 0.060 0.307115 [37]
0.44 0.413 0.080 0.27 [26]
0.60 0.390 0.063 0.27 [26]
0.73 0.437 0.072 0.27 [26]
0.60 0.550 0.120 0.3 [38]
0.86 0.400 0.110 0.3 [38]
1.40 0.482 0.116 0.27 [39]
0.978 0.379 0.176 0.31 [27]
1.23 0.385 0.099 0.31 [27]
1.526 0.342 0.070 0.31 [27]
1.944 0.364 0.106 0.31 [27]

1Note that we do not count the combination of the full data set
with the empty set ∅.
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2000 samples for subsets in which the smaller subset size
(hereinafter SSS) is 11, another 2000 for subsets with
SSS ¼ 10, and so on, until SSS ¼ 4. We stop at SSS ¼ 4
because the number of samples would be larger than the
available combinations. As mentioned, the goal is to
explore different subset sizes in an equal manner, with
the further consideration that, for larger SSS value, we have
more possible combinations.
As an ultimate test, we produced mock data sets based on

the Planck 2015 best fit parameters [4], for which the
parameters are Ωm;0 ¼ 0.3121 and σ8;0 ¼ 0.815. The idea
behind this is to check whether the tension on measure-
ments of σ8;0 between cosmic microwave background
(CMB) surveys like Planck and galaxy clustering surveys,
see Refs. [22,40–47], could be due to inconsistencies in the
data themselves.

C. Cross checks

In order to ensure that the method is stable and sensitive
to the data set, we decided to opt for two extra cross-checks
on our analysis. In brief, the cross-checks have been done
using the narrow flat prior only, where we expect the

method to be more sensitive to the final results. The cross-
checks are

(i) Data removal: we select one of the combinations
with lowest internal robustness and SSS. Then, we
remove the data points corresponding to the smaller
subset, and evaluate again the complete internal
robustness analysis with the new data set. Clearly
this procedure forces us to generate a new mock data
set with its own best fit. The SSS value will now
range from SSS ¼ 4 to the maximum SSS possible.
In order to be consistent with the number of points,
each SSS will be constituted of 2000 sample subsets.

(ii) Data contamination: we deliberately choose to
contaminate the first data point of the data set in
order to have a worse iR-PDF. This contamination
has been implemented by moving the data point by
5σ away from its actual value. In other words, the
new first point is constructed as

fσcont8 ðz1Þ ¼ fσ8ðz1Þ þ 5σfσ8ðz1Þ: ð36Þ

By moving one of the point by 5σ away from its
actual position, we expect the iR-PDF to be affected

FIG. 1. Violin plots of the internal robustness distributions, for each of the smaller subset sizes of each partition. We employed the
narrow flat prior (upper panel), broad flat prior (medium panel), and Gaussian prior (lower panel). The white dots are the mean value of
the internal robustness, the bold black line is the 1σ region, and the thinner black line is the 2σ region.

SAGREDO, NESSERIS, and SAPONE PHYS. REV. D 98, 083543 (2018)

083543-6



and fall off the confidence regions, clearly the mean
iR has to decrease.

V. RESULTS AND DISCUSSION

The first results are the complete inspection of the data
set, comprising all the possible subset combinations. In
Fig. 1 we show the iR-PDF in the form of violin plots,
arranged by the smaller subset size (SSS) of each subset
combination. The three figures differ by the prior used.
From Fig. 1 we can see that the internal robustness

increases with the SSS. This results was somehow expected

as a larger data subsets are less prone to manifest outliers, if
the data is free of systematic effects. We also see that the
broad prior (middle panel in Fig. 1) has much larger iR than
the narrow prior (upper panel in Fig. 1). The difference in
the iR value is of the order two regardless of the SSS
considered. However, the shape of the distributions changes
for SSS < 3. We can also see that for the Gaussian prior, the
distributions are more stretched for small SSS (SSS < 3)
and more clumped up for medium and larger SSS.
In Fig. 2 we show the confidence regions of the mock

data sets, as reported in Sec. IV, along with the iR-PDF
of the corresponding prior. The data set black lines were

FIG. 2. Internal robustness PDF and confidence regions from
mock data based on the best fit cosmology, using each prior. They
are: narrow flat prior (upper panel), broad flat prior (medium
panel), and Gaussian prior (lower panel).

FIG. 3. Same as Fig. 2, but the base parameters for the mock
data are from Planck 2015. Priors used: narrow flat prior (upper
panel), broad flat prior (medium panel), and Gaussian prior
(lower panel).

INTERNAL ROBUSTNESS OF GROWTH RATE DATA PHYS. REV. D 98, 083543 (2018)

083543-7



obtained from samples that were equal in size in each SSS
as the mock data. We observe that, with the 3 types of prior,
the data iR-PDF is within the confidence levels obtained in

all the ranges of the internal robustness. This validates the
data set, discarding systematic contamination and any other
irregularities detectable within the iR formalism.
In Fig. 3 we have plot the confidence regions with the

Planck-based cosmology. We see that the confidence
regions are nearly identical to those of Fig. 2, with the
exception of the Gaussian prior case, where the iR-PDF
gets closer to the 1σ region with the Planck-based cosmol-
ogy mock data. We recall that the Gaussian prior was also
chosen based on the Planck 2015 results, so this result is not
controversial, although it was not automatically expected,
unless we consider the prior to be more constraining than
the likelihood alone.

A. Cross-checks results

As mentioned in the previous section, we decided to
make a cross-check analysis to ensure that both method and
data set gave sensible results. The first check consisted of
removing data points from the subset that gave the lowest
robustness. In our analysis we found that the lowest SSS
that gave a negative lowest robustness was constituted of 2
points (hence SSS ¼ 2) and the data points falling into this
subset were the second and sixth data in the Table I. We
decided to name this subset “r26.”
Our second cross-check was to take the first data point2

and move 5σs away from its actual position. The new
dataset is denominated “c1.” In Fig. 4 we show the iR-PDFs
for the cross-check data sets. We can see from the figure
that, for the “r26” data set, the iR for SSS > 6 has a higher
minimum but the maximum iR is lower, as well as the mean

FIG. 4. Same as Fig. 1, but considering the “r26” data set (upper panel) and the “c1” data set (lower panel), both with a narrow flat prior.

FIG. 5. Same as Fig. 2, but considering the “r26” data set (upper
panel) and the “s1” data set (lower panel), both with a narrow flat
prior. The mock data used to generate the confidence regions
from the upper panel come from the best fit of the “r26” data set,
while the ones for the lower panel are from the original data set.

2There is no particular reason of choosing the first point. Since
the data set is statistically robust, we are allowed to take randomly
any point on the list.
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iR values are smaller with respect to the full data set. This is
probably due to, when improving a data set by adding
robust points, the iR is expected to increase. On the other
hand, the improvement in the minimum iR indeed comes
from choosing to remove the points with lower iR on the
original data set.
For the second cross-check, i.e., the contamination of

one data point, we can see immediately that the internal
robustness method detects the inconsistency caused by the
contaminated data point, by exhibiting a bimodal shape and
a decrease of the iR value when we increase the SSS. These
are two features that are not proper of a robust data set.
Finally, in Fig. 5 we show the confidence regions for the

cross-check data sets. We can see that the confidence
regions for the removal cross-check do not fully contain the
iR-PDF. The reason is that, by removing some of the data
points, the iR for lower SSS is more affected than those
with a higher SSS. This is clear if we consider that the effect
of dropping data points are more significant for a small data
set rather than a large one, assuming they have the similar
weights. The anomaly in the iR-PDF for low SSS can be
interpreted as the result of an artificial forcing to avoid
small iR values.
For the “c1” data set we clearly see that the deviation

from the confidence regions from the mock data confirms
the efficacy of the methodology presented.

VI. CONCLUSIONS

In this paper we implemented the “internal robustness”
of Ref. [1] to the currently available growth-rate data in the
form of fσ8ðzÞ shown in Table I, with the aim to examine
the data set for systematics and outlier points in a fully
automated manner. The internal robustness is a fully
Bayesian approach which is not only sensitive to the local
minimum like a standard χ2 comparison, but also to the
entire likelihood and can in principle detect the presence of
systematics in the data set. The method works by analyzing
combinations of subsets in the data set in a Bayesian model
comparison way, potentially finding groups of outliers, data

affected by systematics or groups that might follow differ-
ent physics.
The main goal of our approach was to identify

systematic-contaminated data points, which can then be
further analyzed and potentially excluded if they cannot be
corrected. Furthermore, in order to validate our analysis
and assess its sensitivity we also performed several cross-
checks, for example by removing some of the data points or
by artificially contaminating some points, while we also
generated mock data sets in order to estimate confidence
regions of the iR.
We found that, in the first case, when removing the two

points with the least robustness the iR for SSS > 6 has a
higher minimum but the maximum iR is lower, as well as
the mean iR values are smaller with respect to the full data
set. In the second case, by adding an artificially contami-
nated point which was ∼5σ away from its actual value, we
found that the internal robustness method indeed detected
the inconsistency caused by the contaminated data point.
In conclusion, implementing the iR methodology we

found that the fσ8ðzÞ data set, used in our analysis and
shown in Table I, is internally robust showing no anoma-
lous behavior, thus ensuring its internal robustness. This is
interesting when discussing the tension of the Planck
15 CMB data and the low redshift measurements coming
from galaxy surveys, as we can make sure that the
discrepancy does not originate from inconsistencies in
the data.
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