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The Navier–Stokes transport coefficients for a model of a confined quasi-two-dimensional granular
gas of smooth inelastic hard spheres are derived from the Enskog kinetic equation. A normal solution
to this kinetic equation is obtained via the Chapman–Enskog method for states close to the local
homogeneous state. The analysis is performed to first order in spatial gradients, allowing the
identification of the Navier–Stokes transport coefficients associated with the heat and momentum
fluxes. The transport coefficients are determined from the solution to a set of coupled linear integral
equations analogous to those for elastic collisions. These integral equations are solved by using the
leading terms in a Sonine polynomial expansion. The results are particularized to the relevant state
with stationary temperature, where explicit expressions for the Navier–Stokes transport coefficients
are given in terms of the coefficient of restitution and the solid volume fraction. The present work
extends to moderate densities previous results [Brey et al. Phys. Rev. E 91, 052201 (2015)] derived
for low-density granular gases.

PACS numbers: 05.20.Dd, 45.70.Mg, 51.10.+y, 47.50.+d

I. INTRODUCTION

When granular media is externally excited (rapid flow
conditions), the motion of grains is quite similar to the
random motion of atoms or molecules of an ordinary
fluid. Under these conditions, granular media flow like
a fluid and kinetic theory can be employed to describe
their dynamics. In contrast to ordinary fluids, the colli-
sions between grains are inelastic and hence one has to
inject energy into the system to sustain it under rapid
flow conditions. In this context, granular fluids can be
considered as complex systems that inherently are out
of equilibrium [1, 2]. Their properties depend both on
the dissipative collisions and also on the external energy
mechanism used to drive the system.
The energy injection can be done either by driving

through the boundaries, for example, shearing the sys-
tem or vibrating its walls [3], or alternatively by bulk
driving, as in air-fluidized beds [4, 5]. Nevertheless, one
of the main problems in this sort of injection is that in
most of the cases strong spatial gradients are generated in
the system. This means that the theoretical description
of these situations lies beyond the conventional Navier–
Stokes domain (namely, when fluxes are linear functions
of the spatial gradients). Thus, to avoid these difficulties,
it is quite usual in theoretical and computational studies
to heat the system by means of external driving forces [6].
In this driven case, the energy injected by the external
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force compensates on average the energy lost by collisions
so that the system achieves a stationary nonequilibrium
state. However, as expected, these forces do not play
a neutral role in transport and hence, the Navier–Stokes
transport coefficients obtained in the absence of them [7–
11] are different from those derived in the presence of the
external forces [12–15].

On the other hand, an alternative to the use of ex-
ternal forces has gained interest in the past few years
[16–24]. The idea is to use a particular geometry (quasi-
two-dimensional geometry) where the energy is placed
into the bulk region and generates homogeneous states.
In this geometry the granular gas is confined in a box
that is very large in the horizontal directions but its ver-
tical length is smaller than two particle diameters. Under
these conditions, since grains cannot be on top one each
other, the system can be seen as a monolayer. When
the box is vertically vibrated, energy is injected into the
vertical degrees of freedom of particles via the collisions
of grains with the top and bottom plates. This energy
gained by collisions with the walls is then transferred to
the horizontal degrees of freedom by collisions between
grains. When the system is observed from above, it is
fluidized and can remain homogeneous in a wide range
of parameters [17, 19].

A model accounting for the transfer of energy from the
vertical to horizontal degrees of freedom in the quasi-
two-dimensional geometry has been recently proposed
by Brito et al. [25]. As in the case of the conventional
smooth inelastic hard sphere (IHS) model, the inelastic-
ity of collisions is characterized by a constant (positive)
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coefficient of normal restitution α ≤ 1. In addition, an
extra velocity ∆ is added to the relative motion of collid-
ing particles so that the magnitude of the normal compo-
nent of the relative velocity is increased by a factor 2∆ in
the collision. This term models the energy transfer from
the vertical degrees of freedom to the horizontal degrees
of freedom.

The above simple extension of the IHS model presents
several properties that makes it relevant to describe the
experiments and useful as a theoretical model. The most
important is that, as it is the case for experiments, the
energy transfer occurs only at collisions, conserving hor-
izontal momentum. Hence, at the macroscopic level, a
hydrodynamic description is expected, where only the en-
ergy equation is modified by the addition of a sink/source
term [25]. The system can be placed arbitrarily close to
equilibrium by taking simultaneously the limits ∆ → 0
and α → 1, allowing to make perturbation analysis and,
also, far from equilibrium conditions can be studied when
small values of α are used. Quite generally, homogeneous
stable states are possible to generate for this collisional
model, allowing to test the predictions of kinetic theory
and to compare with experiments for homogeneous sys-
tems in all ranges of α. The magnitude of ∆ is related to
the intensity of the vertical vibrations. Although the en-
ergy transfer depends on several factors, like the impact
parameter in the vertical collisions, or the total energy
stored in the z-direction, we assume, for simplicity, a
constant value of ∆, which scales with the velocity of the
vibrating walls. This election has the advantage of in-
troducing only a single additional parameter to the IHS
model and additionally, the system remains homogeneous
for all densities [25].

There are other collision rules that model the vertical-
to-horizontal energy transfer. For instance, Ref. [26] con-
siders an stochastic coefficient of restitution, that can
take values larger or smaller than 1. However, it lacks an
energy scale, and therefore it is not a suitable model for
a vertically vibrated case. Recently, it has been proposed
a more realistic model, where the ∆ parameter depends
on the local density [27]. Such model gives rise to a
van der Waals loop and a phase separation, in agreement
with experiments [19]. However, this collisional model is
much more involved to derive the hydrodynamic equa-
tions as an additional field is needed. It is also possible
to envisage other extensions, for example, for frictional
grains with rotational degrees of freedom, the tangential
relative velocity can also be increased at collisions.

The collisional model with constant ∆ (referred to as
the Delta-model) has been widely studied by Brey and
co-workers in several papers: the study includes the ho-
mogeneous state [28–30] as well as the determination
of the Navier–Stokes transport coefficients for a low-
density granular gas [31]. An independent calculation
for the shear viscosity of a dilute granular gas was carried
out by Soto et al. [32] together with computer simula-
tions. Comparison between them shows good quantita-
tive agreement for strong values of inelasticity (say for

instance, α . 0.8).

The objective of this paper is to extend the previous
efforts made for the Delta-model [31, 32] to the revised
Enskog theory (RET) for a description of hydrodynam-
ics and transport for higher densities. It is known that
the RET for elastic collisions [33] gives an accurate ki-
netic theory over the entire fluid domain. In the case
of inelastic collisions, theoretical results [8, 34] derived
from the RET have shown to be in good agreement with
molecular dynamics (MD) simulations [35–37] and even
with real experiments [3]. This confirms the reliability
of the RET for describing granular flows in conditions of
practical interest.

As for the IHS model, the Chapman–Enskog method
[38] conveniently adapted for dissipative dynamics will
be employed to solve the Enskog kinetic equation and
obtain the Navier–Stokes hydrodynamics and the asso-
ciated transport coefficients. As expected, the analysis
here provides formally exact results for the Navier–Stokes
transport coefficients in terms of the solutions to linear
integral equations. These equations are approximately
solved by considering the leading terms in a Sonine poly-
nomial expansion. However, given the technical difficul-
ties embodied in the calculation of the transport coeffi-
cients in the time-dependent problem, here the relevant
state of a confined granular fluid at the state with station-
ary temperature is mainly considered. This allows us to
express the (scaled) transport coefficients in terms of the
coefficient of restitution and the solid volume fraction.

There are several motivations to extend previous works
[30, 32] to moderately dense gases. First, by extend-
ing the Boltzmann analysis to high densities comparison
with MD simulations becomes practical. For instance, a
comparison of the dependence of both density and coeffi-
cient of restitution on the theoretical shear viscosity with
that from MD could determine the validity of the kinetic
theory of the Delta-model. Second, accurate predictions
from the RET could be also compared against experimen-
tal data performed for the quasi-two-dimensional geom-
etry mentions before. Therefore, the results reported in
this paper provide the basis for practical quantitative ap-
plications of the Delta-model. Finally, the Delta-model
can be considered also as a thermostated granular model
that can be easily implemented, for which it is relevant
to understand its properties in the full range of densities.

The plan of the paper is as follows. The Delta-model
is introduced first in Sec. II, summarizing its main prop-
erties. Then, the Enskog kinetic equation for the model
is displayed, and the exact balance equations for the den-
sities of mass, momentum, and energy are derived from
it. This allows us to express the cooling rate and the ki-
netic and collisional transfer contributions to the fluxes
in terms of the velocity distribution function. Section
III deals with the application of the Chapman–Enskog
method to the Enskog equation. The results for the mo-
mentum and heat fluxes to first order in the spatial gra-
dients are provided, with some details of the calculation
appearing in two Appendices. The Navier–Stokes trans-
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port coefficients are formally obtained in Sec. IV as the
solutions of a set of coupled linear inhomogeneous inte-
gral equations. These integral equations are explicitly
solved at the stationary temperature state in Sec. V by
assuming for simplicity a Gaussian distribution for the
zeroth-order approximation. The explicit expressions of
the relevant (scaled) transport coefficients are displayed
in Table I for a two-dimensional system as functions of
the density and the coefficient of restitution. The paper
is closed in Sec. VI with a brief discussion of the results.

II. ENSKOG KINETIC EQUATION. THE

COLLISIONAL MODEL

A. Collisional model

We consider a granular fluid modeled as a gas of
smooth inelastic hard spheres of mass m and diameter
σ. Let (v1,v2) denote the pre-collisional velocities of
two spherical particles. The collision rule for the post-
collisional velocities (v′

1,v
′

2) reads [25]

v′

1 = v1 −
1

2
(1 + α) (σ̂ · g)σ̂ −∆σ̂, (1)

v′

2 = v2 +
1

2
(1 + α) (σ̂ · g)σ̂ +∆σ̂, (2)

where g = v1 − v2 is the relative velocity, σ̂ is the unit
collision vector joining the centers of the two colliding
spheres and pointing from particle 1 to particle 2, and
particles are approaching if σ̂ · g > 0. In Eqs. (1) and
(2), α is the (constant) coefficient of normal restitution
defined in the interval 0 < α ≤ 1, and ∆ is an extra
velocity added to the relative motion. This extra velocity
points outward in the normal direction σ̂, as required by
the conservation of angular momentum [39]. The relative
velocity after collision is

g′ = v′

1 − v′

2 = g − (1 + α)(σ̂ · g)σ̂ − 2∆σ̂, (3)

so that

(σ̂ · g′) = −α(σ̂ · g)− 2∆. (4)

With the set of collision rules (1) and (2), momentum
is conserved but energy is not. The change in kinetic
energy upon collision is

∆E ≡ m

2

(
v

′2
1 + v

′2
2 − v21 − v22

)

= m

[
∆2 + α∆(σ̂ · g)− 1− α2

4
(σ̂ · g)2

]
. (5)

The right-hand side of Eq. (5) vanishes for elastic col-
lisions (α = 1) and ∆ = 0. Moreover, it appears that
energy can be gained or lost in a collision depending on
whether σ̂ · g is smaller than or larger than 2∆/(1− α).

For practical purposes, it is also convenient to con-
sider the restituting collision (v′′

1 ,v
′′

2 ) → (v1,v2) with
the same collision vector σ̂:

v′′

1 = v1 −
1

2

(
1 + α−1

)
(σ̂ · g)σ̂ − α−1∆σ̂, (6)

v′′

2 = v2 +
1

2

(
1 + α−1

)
(σ̂ · g)σ̂ + α−1∆σ̂. (7)

The volume transformation in velocity space for a direct
collision is dv′

1dv
′

2 = αdv1dv2, and for the restituting
collision is dv′′

1dv
′′

2 = α−1dv1dv2.

B. Enskog kinetic equation

At a kinetic level, all the relevant information on the
state of the system is provided by the one-particle ve-
locity distribution function f(r,v, t). For moderate den-
sities, in the absence of external forces, the distribution
f(r,v, t) of the collisional model obeys the Enskog kinetic
equation [28]

∂

∂t
f(r,v, t) + v · ∇f(r,v, t) = JE[r,v|f, f ], (8)

where the Enskog collision operator JE of the model reads

JE[r,v1|f, f ] ≡ σd−1

∫
dv2

∫
dσ̂Θ(−σ̂ · g− 2∆)

×(−σ̂ · g − 2∆)α−2χ(r, r+ σ)f(r,v′′

1 , t)

×f(r+ σ,v′′

2 , t)− σd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g)

×(σ̂ · g)χ(r, r+ σ)f(r,v1, t)f(r+ σ,v2, t). (9)

Like the Boltzmann equation, the Enskog equation ne-
glects velocity correlations among particles that are
about to collide, but it accounts for excluded volume
effects and spatial correlations via the pair distribution
function at contact χ(r, r + σ). In Eq. (9), Θ(x) is the
Heaviside step function and d is the dimensionality of
the system. Note that although the system considered
is two-dimensional, the calculations worked out here will
be performed for an arbitrary number of dimensions d.
An important property of the integrals involving the

Enskog collision operator is [28, 32]

Iψ ≡
∫

dv1 ψ(v1)JE[r,v1|f, f ]

= σd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

× χ(r, r+ σ)f(r,v1, t)f(r+ σ,v2, t) [ψ(v
′

1)− ψ(v1)] ,

(10)

where v′

1 is defined by Eq. (1). This is the same result
as for the IHS model [40]. A consequence of the rela-
tion (10) is that the balance equations of the densities
of mass, momentum and energy can be derived by fol-
lowing similar mathematical steps as those made for the
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IHS model and adopt the standard form for rapid gran-
ular flows [8, 10, 11]. They are given by

Dtn+ n∇ ·U = 0, (11)

ρDtUi + ∂jPij = 0, (12)

DtT +
2

dn
(∂iqi + Pij∂jUi) = −ζT, (13)

where ρ = mn is the mass density, U is the velocity field,
and T is the granular temperature:

n(r, t) =

∫
dvf(r,v, t), (14)

U(r, t) =
1

n(r, t)

∫
dvvf(r,v, t), (15)

d

2
n(r, t)T (r, t) =

∫
dv
m

2
V2f(r,v, t), (16)

V = v − U being the peculiar velocity. In addition,
Dt ≡ ∂t +U · ∇ is the material derivative. The cooling
rate ζ is due to dissipative collisions, but contrary to the
IHS model where it is always positive, it can take negative
values for small temperatures [see Eq. (22) below]. This
property allows the system to reach stable steady states.
The pressure tensor P(r, t) and the heat flux q(r, t) have
both kinetic and collisional transfer contributions, i.e.,
P = Pk + Pc and q = qk + qc. The kinetic contributions
are given as usual by

Pk(r, t) =

∫
dvmVVf(r,v, t), (17)

qk(r, t) =

∫
dv
m

2
V 2Vf(r,v, t). (18)

The collisional transfer contributions are (see the Ap-
pendix A for details)

Pc =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

× σ̂σ̂

[
(σ̂ · g) + 2∆

1 + α

]

×
∫ 1

0

dλf2 [r− λσ, r+ (1 − λ)σ,v1,v2, t] ,

(19)

qc =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)2

× (σ̂ ·G)σ̂

∫ 1

0

dλf2 [r− λσ, r+ (1− λ)σ,v1,v2, t]

− ∆
mσd

4

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂

× [∆ + α(σ̂ · g)− 2(σ̂ ·G)]

×
∫ 1

0

dλf2 [r− λσ, r+ (1− λ)σ,v1,v2, t] . (20)

Here, G = 1
2 (V1 + V2) is the velocity of the center of

mass and f2 is defined as

f2(r1, r2,v1,v2, t) ≡ χ(r1, r2)f(r1,v1, t)f(r2,v2, t).
(21)

Finally, the cooling rate is given by

ζ = − m

dnT
σd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

×
[
∆2 + α∆(σ̂ · g)− 1− α2

4
(σ̂ · g)2

]

× f2(r, r+ σ,v1,v2, t). (22)

The macroscopic balance equations (11)–(13) provide
the basis for developing a hydrodynamic description of
the confined granular fluid. Since those equations are
not a closed set of equations for the hydrodynamic fields,
one has to express P, q, and ζ as explicit functionals of
the hydrodynamic fields n, U, and T and their spatial
gradients. This task can be accomplished by solving the
Enskog equation (1) by means of the Chapman–Enskog
method [38] conveniently adapted to account for the dis-
sipative dynamics.

III. CHAPMAN–ENSKOG METHOD.

FIRST-ORDER DISTRIBUTION FUNCTION

The Chapman–Enskog method assumes the existence
of a normal or hydrodynamic solution where all space
and time dependence of the one-particle distribution
function f(r,v, t) only occurs through its functional de-
pendence on the hydrodynamic fields. This means that

f(r,v, t) = f [v|n(r, t),U(r, t), T (r, t)]. (23)

Note that, although energy is not conserved and the tem-
perature is not strictly a slow field in the Delta-model, it
has been shown in Ref. [31] that after a short transient
the distribution function does adopt a normal solution.
A similar behavior is expected here for dense granular
fluids. The functional dependence (23) can be made lo-
cal in space by means of an expansion in spatial gradients
of the hydrodynamic fields. To generate it, f is written
as a series expansion in a formal parameter ǫ measuring
the nonuniformity of the system,

f = f (0) + ǫf (1) + ǫ2f (2) + · · · , (24)

where each factor of ǫ means an implicit gradient of
a hydrodynamic field. The uniformity parameter ǫ is
related to the Knudsen number defined by the length
scale for variation of the hydrodynamic fields. Under
some conditions, for the IHS and other undriven granular
models, there is an intrinsic relation between collisional
dissipation and some hydrodynamic gradients (e.g., in
steady states such as the simple shear flow [2, 41]), which
limits the application of the Chapman–Enskog expan-
sion to regimes with small gradients (low Knudsen num-
ber). However, homogeneous states are stable in the
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Delta-model for any inelasticity [25, 42] and, hence, the
strength of the gradients can be controlled by the initial
or the boundary conditions as it happens for elastic me-
dia. Thus, although our results will apply to sufficiently
small gradients (low Knudsen number), they will not be
restricted a priori to small degree of dissipation.
According to the expansion (24) for the distribution

function, the Enskog collision operator and time deriva-
tive are also expanded in powers of ǫ:

JE = J
(0)
E + ǫJ

(1)
E + · · · , ∂t = ∂

(0)
t + ǫ∂

(1)
t + · · · . (25)

The coefficients in the time derivative expansion are iden-
tified by a representation of the fluxes and the cooling
rate in the macroscopic balance equations as a similar
series through their definitions as functionals of f . The
expansion (24) yields similar expansions for the momen-
tum and heat fluxes, and the cooling rate when substi-
tuted into their definitions (17)–(20) and (22), respec-
tively,

Pij = P
(0)
ij + ǫP

(1)
ij + · · · , q = q(0) + ǫq(1) + · · · ,

(26)

ζ = ζ(0) + ǫζ(1) + · · · . (27)

In this paper we shall restrict our calculations to the
first order in the uniformity parameter, which gives the
Navier–Stokes transport coefficients.

A. Zeroth-order approximation

To zeroth-order in the expansion, f (0) verifies the ki-
netic equation

∂
(0)
t f (0) = J

(0)
E [f (0), f (0)], (28)

where

J
(0)
E [f (0), f (0)] = σd−1χ

∫
dv2

∫
dσ̂Θ(−σ̂ · g− 2∆)

×(−σ̂ · g − 2∆)α−2f (0)(v′′

1 )f
(0)(v′′

2 )− σd−1χ

×
∫

dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)f (0)(v1)f

(0)(v2). (29)

Here, χ refers to the the pair correlation evaluated with
all density fields at the local point r. The collision op-
erator (29) can be recognized as the Boltzmann collision
operator for the collisional model multiplied by this fac-
tor χ. The macroscopic balance equations to this order
read

∂
(0)
t n = ∂

(0)
t Ui = 0, ∂

(0)
t T = −Tζ(0). (30)

Since f (0) qualifies as a normal solution, then

∂
(0)
t f (0) = −ζ(0)T∂T f (0) (31)

and Eq. (28) reads

− ζ(0)T∂T f
(0) = J

(0)
E [f (0), f (0)]. (32)

The solution to Eq. (31) has been widely studied in Refs.
[28–30] where it has been shown that it adopts the scaled
form

f (0)(r,v, t) = n(r, t)v0(r, t)
−dϕ(c,∆∗), (33)

where v0 =
√
2T/m, c ≡ v/v0, and ∆∗ ≡ ∆/v0. Thus,

in contrast to the freely cooling IHS model, the unknown
scaled distribution ϕ depends on the granular tempera-
ture T not only through the scaled velocity c but also
through the dimensionless parameter ∆∗(t) ∝ T (t)−1/2.
Then

T∂T f
(0) = −1

2

∂

∂V
·
(
Vf (0)

)
− 1

2
∆∗

∂f (0)

∂∆∗
. (34)

An exact solution to Eq. (32) has not been found so
far. However, a very good approximation can be obtained
from an expansion in Sonine polynomials. In particular,
the kurtosis

a2 =
4

d(d+ 2)

∫
dc c4ϕ(c)− 1 (35)

of the scaled distribution ϕ has been estimated in
Ref. [28]. In all of the following it is presumed that the
distribution f (0) is known. Since the distribution func-
tion is isotropic, the zeroth order pressure tensor and
heat flux are found from Eqs. (17)–(20) to be

P
(0)
ij = pδij , q(0) = 0, (36)

where the hydrostatic pressure can be written as p =
nTp∗ where

p∗ = 1 + 2d−2χφ(1 + α) +
2d−1Γ

(
d
2

)
√
πΓ

(
d+1
2

)χφ∆∗

×
∫

dc1

∫
dc2g

∗ϕ(c1)ϕ(c2). (37)

Here,

φ =
πd/2

2d−1dΓ(d/2)
nσd (38)

is the solid volume fraction and g∗ ≡ g/v0. Note that,
besides the standard ideal gas and excluded volume con-
tributions to the pressure, there is a new term propor-
tional to ∆, which is due to the additional momentum
transfer at collisions.
Finally, the zeroth-order contribution to the cooling

rate is

ζ(0) = −2

d
nσd−1v0χ

∫
dc1

∫
dc2ϕ(c1)ϕ(c2)

×
(
B1g

∗∆∗2 +B2αg
∗2∆∗ − 1− α2

4
B3g

∗3

)
,

(39)

where we have introduced the quantities [43]

Bk ≡
∫

dσ̂Θ(σ̂ · g)(σ̂ · ĝ)k = π(d−1)/2Γ
(
k+1
2

)

Γ
(
k+d
2

) (40)

for positive integers k.
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B. First-order approximation

The first-order distribution f (1) can be obtained by
following similar steps as those made before for the freely
cooling IHS model. The main new feature of the first-
order solution is that there are new terms coming from
the additional time-dependence of f (0) through ∆∗. The
first-order velocity distribution function f (1) is given by

f (1) = A (V) · ∇ lnT +B (V) · ∇ lnn

+Cij (V)
1

2

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)

+D (V)∇ ·U. (41)

The quantities A, B, Cij and D are the solutions of the
following linear integral equations:

−ζ(0)T ∂A
∂T

−AT
∂ζ(0)

∂T
+ LA = A, (42)

−ζ(0)T ∂B
∂T

+ LB = B+ ζ(0)
(
1 + φ

∂

∂φ
lnχ

)
A, (43)

−ζ(0)T ∂Cij
∂T

+ LCij = Cij , (44)

−ζ(0)T ∂D
∂T

+ LD = D. (45)

In Eqs. (42)–(45), the linear operator L is given by

LX = −
(
J
(0)
E [f (0), X ] + J

(0)
E [X, f (0)]

)
, (46)

while the inhomogeneous terms, which depend on f (0),
are defined by

A (V) =−VT
∂f (0)

∂T
− p

ρ

∂f (0)

∂V
−K

[
T
∂f (0)

∂T

]
, (47)

B (V) =−Vf (0) − p

ρ

(
1 + φ

∂

∂φ
ln p∗

)
∂f (0)

∂V

−
(
1 +

1

2
φ
∂

∂φ
lnχ

)
K

[
f (0)

]
, (48)

Cij (V) =Vi
∂f (0)

∂Vj
+Ki

[
∂f (0)

∂Vj

]
, (49)

D (V) =
1

d

∂

∂V
·
(
Vf (0)

)
+

(
ζU +

2

d
p∗
)
T
∂f (0)

∂T

+
1

d
Ki

[
∂f (0)

∂Vi

]
. (50)

The operator Ki is

Ki[X ] = −σdχ
∫

dv2

∫
dσ̂Θ(−σ̂ · g − 2∆)

×(−σ̂ · g − 2∆)σ̂iα
−2f (0)(v′′

1 )X(v′′

2 )

+σdχ

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂i

×f (0)(v1)X(v2).

(51)

In Eq. (50), ζU is defined through the expression

ζ = ζ(0) + ζU∇ ·U, (52)

where ζ(0) is given by Eq. (39).
In the low-density limit (φ = 0), p∗ = 1, Ki → 0,

and the integral equations (42)–(45) are consistent with
those obtained in Ref. [31]. In addition, even for dilute
granular gases there is a first-order contribution to the
cooling rate. This is because in this limit (φ → 0) the
quantity D becomes

D = ζUT
∂f (0)

∂T
− 1

d
∆∗

∂f (0)

∂∆∗
, (53)

and hence, the integral equation (45) has a nonzero so-
lution. Note that ζU 6= 0 when φ 6= 0 for the IHS
model [8, 10].
The next step is to obtain the explicit expressions of

the Navier–Stokes transport coefficients. These coeffi-
cients are given in terms of the solutions of the linear
integral equations (42)–(45).

IV. NAVIER–STOKES TRANSPORT

COEFFICIENTS

A. Pressure tensor

To first order in the spatial gradients, the pressure ten-
sor is given by

P
(1)
ij = −η

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
−γ∇·Uδij , (54)

where η is the shear viscosity and γ is the bulk viscosity.
These coefficients have kinetic and collisional contribu-
tions, i.e., η = ηk + ηc and γ = γc since γk = 0. The
collisional contributions (obtained in Appendix B) are
given by

ηc = nσdχ

[
B2

d+ 2
(1 + α) +

B1

d+ 1
∆∗Iη

]
ηk +

d

d+ 2
γ,

(55)

γ = n2σd+1mχv0

[
B3

d+ 1

4d2
(1 + α)Iγ +

B2

2d
∆∗

]
, (56)

where the dimensionless integrals in Eqs. (55) and (56),
after applying the approximation (B7), are

Iη =

∫
dc1

∫
dc2 g

∗−1g∗2x g
∗2
y ϕM(c1)ϕ(c2), (57)

Iγ =

∫
dc1

∫
dc2 g

∗ ϕ(c1)ϕ(c2), (58)

with ϕM(c) = π−d/2e−c
2

.
The kinetic contribution ηk to the shear viscosity is

defined as

ηk = − 1

(d− 1)(d+ 2)

∫
dv Dij(V) Cij(V), (59)
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where Dij(V) is the traceless tensor

Dij(V) = m

(
ViVj −

1

d
δijV

2

)
. (60)

The expression of ηk can be obtained by multiplying both
sides of Eq. (44) byDij and integrating over velocity. The
result is

(
−ζ(0)T∂T + νη

)
ηk = −

∫
dV Dij(V)Cij(V)

(d− 1)(d+ 2)
, (61)

where

νη =

∫
dvDij(V)LCij(V)∫
dvDij(V)Cij(V)

. (62)

The kinetic coefficient ηk can be written as ηk(T ) =
η0(T )η

∗

k(∆
∗), where

η0(T ) =
d+ 2

8
Γ

(
d

2

)
π−

d−1

2 σ1−d
√
mT (63)

is the low density value of the shear viscosity in the elastic
limit. Thus,

T∂Tηk =
1

2
ηk −

1

2
ηk∆

∗
∂ ln η∗k
∂∆∗

, (64)

and Eq. (61) reads

1

2
ζ(0)ηk∆

∗
∂ ln η∗k
∂∆∗

+

(
νη −

1

2
ζ(0)

)
ηk = nT

− 1

(d− 1)(d+ 2)

∫
dvDij(V)Ki

[
∂f (0)

∂Vj

]
, (65)

where use has been made of the explicit form of Cij .
As expected [31], in contrast to the conventional IHS
model, ηk is given as the solution of an intricate first-
order differential equation. The integral appearing in
the right-hand side of Eq. (65) has been computed in

Appendix C with the result

∫
dvDij(V)Ki

[
∂f (0)

∂Vj

]
=

2d−2(d− 1)χφ(1 + α)(1 − 3α)nT

+ 2d(d− 1)χφ∆∗nT

[
Γ
(
d
2

)
√
πΓ

(
d+1
2

)I ′η −∆∗

]
, (66)

where

I ′η =

∫
dc1

∫
dc2ϕ(c1)ϕ(c2)

[
g∗−1(g∗ · c1)− 2(1 + α)g∗

]
.

(67)

B. Heat flux

The constitutive form for the heat flux in the Navier–
Stokes approximation is

q(1) = −κ∇T − µ∇n, (68)
where κ is the thermal conductivity and µ is the diffu-
sive heat conductivity coefficient. The coefficient µ is an
additional transport coefficient not present in the elastic
case. Both transport coefficients κ and µ have kinetic
and collisional contributions.
The collisional contributions κc and µc have been de-

termined in Appendix B. They can be written as

κc =nσ
dχ

[
3

2

B2

d+ 2
(1 + α) +

8B1

d(d+ 1)(d+ 2)
∆∗I ′κ

]
κk

+
mσd+1

8dT
χn2v30 [B3(1 + α)Iκ + 2B2∆

∗I ′′κ ] , (69)

µc =nσ
dχ

[
3

2

B2

d+ 2
(1 + α) +

8B1

d(d+ 1)(d+ 2)
∆∗I ′κ

]
µk,

(70)

where, after applying the approximations (B13), the di-
mensionless integrals Iκ, I

′

κ, and I
′′

κ are given by

Iκ =

∫
dc1

∫
dc2 ϕ(c1)ϕ(c2)

[
g∗−1(g∗ ·G∗)2 + g∗G∗2 +

3

2
g∗(g∗ ·G∗) +

1

4
g∗3

]
, (71)

I ′κ =

∫
dc1

∫
dc2 ϕM(c1)ϕ(c2)g

∗−1
[
(g∗ · S∗)(g∗ ·G∗) + g∗2(G∗ · S∗)

]
, (72)

I ′′κ =
d

2
+ ∆∗

∫
dc1

∫
dc2 ϕ(c1)

∂ϕ(c2)

∂∆∗
(g∗ ·G∗), (73)

where G∗ ≡ G/v0 and

S∗(c1) =

(
c21 −

d+ 2

2

)
c1. (74)

The kinetic parts κk and µk are defined as

κk = − 1

dT

∫
dvS(V) ·A(V), (75)

µk = − 1

dn

∫
dvS(V) · B(V), (76)
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where

S(V) =

(
m

2
V 2 − d+ 2

2
T

)
V. (77)

The kinetic part of the thermal conductivity is ob-
tained by multiplication of Eq. (47) by S(V) and inte-
gration over the velocity. The result is

1

2
ζ(0)κk∆

∗
∂ lnκ∗k
∂∆∗

+

(
νκ +

1

2
ζ(0)∆∗

∂ ln ζ∗0
∂∆∗

−2ζ(0)
)
κk = − 1

dT

∫
dvS(V) ·A(V), (78)

where ζ∗0 ≡ ζ(0)/ν0, ν0 = nT/η0, κ
∗

k ≡ κk/κ0 and

νκ =

∫
dvS(V) · LA(V)∫
dvS(V) ·A(V)

. (79)

Here,

κ0 =
d(d+ 2)

2(d− 1)

η0
m

(80)

is the low density value of the thermal conductivity of
an elastic gas. The right-hand side of Eq. (78) can be
written more explicitly as

− 1

dT

∫
dvS(V) ·A(V) =

d+ 2

2m
nT

(
1 + 2a2 −

1

2
∆∗

∂a2
∂∆∗

)
− 1

2dT

∫
dvS(V) ·K

[
∂

∂V
·
(
Vf (0)

)]

− 1

2dT
∆∗

∂

∂∆∗

∫
dvS(V) ·K

[
f (0)

]
, (81)

where a2 is defined by Eq. (35). The last two integrals of the right hand side of Eq. (81) have been evaluated in
Appendix C by assuming a2 = 0 for the sake of simplicity.
To determine µk, Eq. (48) is multiplied by S(V) and integrated over the velocity to get

1

2
ζ(0)µk∆

∗
∂ lnµ∗

k

∂∆∗
+

(
νµ − 3

2
ζ(0)

)
µk =

d+ 2

2

T 2

m
a2 +

Tζ(0)

n
(1 + φ∂φ lnχ)κk +

(
1 +

1

2
φ∂φ lnχ

)

× 1

dn

∫
dvS(V) ·K

[
f (0)

]
, (82)

where µ∗

k ≡ (n/Tκ0)µk and

νµ =

∫
dvS(V) · LB(V)∫
dvS(V) ·B(V)

. (83)

In summary, the results obtained in this section pro-
vide the collisional transfer contributions to the Navier–
Stokes transport coefficients in terms of integrals involv-
ing the scaled distribution ϕ [see Eqs. (57), (58), (67),
(71), (72), and (74)] while their kinetic contributions are
given in terms of the numerical solutions of the differen-
tial equations (64), (78), and (82). A detailed study of
the dependence of η∗k, κ

∗

k, and µ
∗

k on both α and ∆∗ has
been carried out in Ref. [31] for a low-density gas.

V. TRANSPORT COEFFICIENTS AT THE

STATIONARY TEMPERATURE.

TWO-DIMENSIONAL CASE

As mentioned before, the explicit dependence of the
(reduced) Navier-Stokes transport coefficients on the
solid volume fraction and the coefficient of restitution

requires knowledge of the quantities ζ(0), a2, νη, νκ, and
νµ, the dimensionless integrals

{
Iη, Iγ , I

′

η, Iκ, I
′

κ, I
′′

κ

}
, and

two integrals involving the operator K. All these quan-
tities are given in terms of the zeroth-order scaled distri-
bution ϕ and the solutions A, B, and Cij to the linear
integral equations (65), (78), and (82).
Determination of ϕ was discussed in Refs. [29, 31]. A

good approximation to the zeroth-order solution is pro-
vided by the so-called first Sonine approximation

ϕ(c,∆∗) ≈ ϕM(c)

{
1 + a2(∆

∗)

[
c4

2
− d+ 2

2
c2

+
d(d+ 2)

8

]}
, (84)

where the Sonine coefficient a2 is defined in Eq. (35).
The dependence of the coefficient a2 on ∆∗ has been ex-
tensively studied in Ref. [29]. When the quadratic terms
in a2 are neglected, it is shown that a2 obeys a differen-
tial equation where the coefficients of this equation are
nonlinear functions of both α and ∆∗. This equation has
been numerically solved for different initial conditions in
order to identify the common hydrodynamic solution (see
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Fig. 1 of Ref. [29]). In particular, the evaluation of a2 can
be performed in a quite accurate way in the relevant state
with stationary temperature. In the vicinity of the steady
state, |∂a2/∂∆∗| ≪ 1 and hence an explicit expression of
a2 can be displayed [29]. The explicit dependence of a2
on α in the steady state can be easily derived by impos-

ing locally ∂
(0)
t T = 0. According to the last identity in

Eq. (30), this implies that ζ(0) = 0. The zeroth-order
contribution to the cooling rate can be estimated from
Eq. (39) by replacing ϕ→ ϕM for the sake of simplicity.

The result is

ζ(0) =

√
π

2
nσv0χ

(
1− α2 − 2∆∗2

s −
√
2πα∆∗

s

)
, (85)

where ∆∗

s refers to the steady value of ∆∗. The condi-
tion ζ(0) = 0 yields a quadratic equation in ∆∗

s , whose
physical solution (i.e., ∆∗

s = 0 when α = 1) is

∆∗

s (α) =
1

2

√
π

2
α

[√
1 +

4(1− α2)

πα2
− 1

]
. (86)

Once the α-dependence of ∆∗

s (α) is known, the explicit
form of a2 near the steady state can be obtained [29]. In
particular, for a two-dimensional (d = 2) granular gas,
the kurtosis a2,s can be written as

a2,s = −16
2α4 + 3

√
2π∆∗

sα
3 + 3(4∆∗2

s − 1)α2 +
√
2π∆∗

s (4∆
∗2
s − 3)α+ 2∆∗2

s (2∆∗2
s − 3) + 1

30α4 + 24
√
2π∆∗

sα
3 + (36∆∗2

s − 5)α2 − 8(4 + 5
√
2π∆∗

s )α−∆∗

s

(
4∆∗3

s + 162∆∗

s + 16
√
2π

)
− 57

, (87)

where ∆∗

s is given by Eq. (86). Dependence of a2,s on
α is plotted in Fig 1 for d = 2. As shown in the fig-
ure, the coefficient a2,s is always negative and its mag-
nitude never exceeds 0.103. Thus, in the steady state,
contributions to the transport coefficients coming from
the terms proportional to a2,s are negligible as compared
with the remaining contributions (see, however, Sect. VI
for a further discussion). As a consequence, given that
a theory incorporating these non-Gaussian corrections is
not needed in practice for computing the Navier–Stokes
transport coefficients of the confined granular gas, hence-
forth the integrals involving the scaled distribution ϕ will
be computed by replacing it by its Maxwellian form ϕM.

Although our theory applies for an arbitrary number
of dimensions d, we are mainly interested in a two-
dimensional confined system. For this reason all the re-
sults provided in this section will be restricted to d = 2.
In particular, the dimensionless integrals Iη, Iγ , I

′

η, Iκ,
I ′κ, and I

′′

κ are given by

Iη =
3

8

√
π

2
, Iγ =

√
π

2
, I ′η = −

√
2π

(
3

4
+ α

)
, (88)

Iκ =
3

4

√
2π, I ′κ =

9

16

√
π

2
, I ′′κ = 1. (89)

Finally, to evaluate the kinetic parts of the transport
coefficients, one still needs to know the explicit forms
of the collision frequencies νη, νκ and νµ as well as the
integrals involving the operator K[X ]. In the case of the
collision frequencies, one takes the approximations (B7)
for Cij(V) and (B13) for A and B. These integrals have
been performed in Ref. [31] for a d-dimensional system.

0.0 0.2 0.4 0.6 0.8 1.0
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

 

 

a 2,
st

FIG. 1. Dependence of the Sonine coefficient a2,s on the coef-
ficient of restitution α for a two-dimensional (d = 2) granular
gas at the stationary temperature.

In the case d = 2, one gets

ν∗η =
3

8
χ

[(
7

3
− α

)
(1 + α) +

2
√
2π

3
(1− α)∆∗ − 2

3
∆∗2

]
,

(90)

ν∗κ = ν∗µ =
1 + α

2
χ

[
1

2
+

15

8
(1 − α)

]

−∆∗

16
χ
[√

2π(5α− 1) + 10∆∗

]
, (91)

where ν∗η ≡ νη/ν0, ν
∗

κ ≡ νκ/ν0, and ν
∗

µ ≡ νµ/ν0. More-
over, the expressions derived in Appendix C for d = 2
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TABLE I. Summary of the main results of the paper at the stationary temperature. Two-dimensional granular gas (d = 2).

η∗ =
[

1 + 1
2
φχ

(

1 + α+
√

2
π
∆∗

s

)]

η∗
k + 1

2
γ∗,

η∗
k = ν

∗−1
η

{

1− 1
4
φχ

[

(1 + α)(1− 3α) − 2
√

2
π
(3 + 4α)∆∗

s − 4∆∗2
s

]}

,

γ∗ = 8
π
φ2χ

(

1 + α+
√

π
2
∆∗

s

)

,

κ∗ =
[

1 + 3
4
φχ

(

1 + α+
√

2
π
∆∗

s

)]

κ∗
k + 2

π
φ2χ

(

1 + α+
√

π
2
∆∗

s

)

,

κ∗
k = 1

2ν∗

κ

{

1 + 3
8
φχ(1 + α)2(2α− 1)−

∆∗

s√
2π

φχ
[

7
4
+ 2(1 + α)

(

1− 3
4

√

2π∆∗
s

)

− 3(1 + α)2 −∆∗2
s

]

}

,

µ∗ =
[

1 + 3
4
φχ

(

1 + α+
√

2
π
∆∗

s

)]

µ∗
k,

µ∗
k = −

1
ν∗

κ

φχ
(

1 + 1
2
φ∂φ lnχ

)

{

3
8
α(1− α2)−

∆∗

s√
2π

φχ
[

2(∆∗2
s + α2)− 1

2
+ 3

2

√

2πα∆∗
s

]

}

,

ν∗
η = 3

8
χ
[

(

7
3
− α

)

(1 + α) + 2
√

2π
3

(1− α)∆∗
s −

2
3
∆∗2

s

]

,

ν∗
κ = ν∗

µ = 1+α
2

χ
[

1
2
+ 15

8
(1− α)

]

−
∆∗

s

16
χ
[√

2π(5α− 1) + 10∆∗
s

]

,

∆∗
s (α) =

1
2

√

π
2
α

[

√

1 + 4(1−α2)

πα2 − 1

]

,

p∗ = 1 + φχ(1 + α) + 2
√

2
π
∆∗

s ,

χ =
1− 7

16
φ

(1−φ)2
.

read

∫
dVDij(V)Ki

[
∂f (0)

∂Vj

]
=φχnT

[
(1 + α)(1 − 3α)− 2

√
2

π
(3 + 4α)∆∗ − 4∆∗2

]
, (92)

∫
dVS(V) ·K

[
∂

∂V
·
(
Vf (0)

)]
=8φχ

nT 2

m

{
3

8
(1 + α)2(1− 2α) +

∆∗

√
2π

[
7

4
+ 2(1 + α)

(
1− 3

4

√
2π∆∗

)

− 3(1 + α)2 −∆∗2

]}
, (93)

∫
dvS(V) ·K

[
f (0)

]
=− 8φχ

nT 2

m

{
3

8
α(1 − α2)− ∆∗

√
2π

[
2(∆∗2 + α2)− 1

2
+

3

2

√
2πα∆∗

]}
. (94)

It is possible now to obtain the transport coefficients
for any value of φ, α, and ∆∗ as numerical solutions of
the differential equations (64), (78), and (82). However,
as the temperature reaches (on a time scale given by
the dissipative collisions) local stationary values that de-
pend on the inelasticity, it is more instructive to evaluate
the transport coefficients under this condition. The re-
sulting transport coefficients describe the dynamics close
to the stationary state. As said before, in the steady
state, ζ(0) = 0 and ∆∗ → ∆∗

s . With this result, all the
(scaled) Navier–Stokes transport coefficients can be ex-
plicitly written in terms of the volume fraction φ and the
coefficient of restitution α. The results are summarized

in Table I. The transport coefficients have been reduced
by η0 and κ0, namely,

η∗ ≡ η/η0, γ∗ ≡ γ/η0, (95)

κ∗ ≡ κ/κ0, µ∗ ≡ nµ/Tκ0. (96)

Also shown in this table is the approximation for χ as a
function of φ for disks [44]. It is easy to check that all
results presented in Table I reduce to the previous ones
recently obtained for the ∆-model in Refs. [31, 32] in the
dilute regime (φ = 0).
Figure 2 shows the dependence of the (scaled) shear

viscosity coefficient η∗(α)/η∗(1) versus the coefficient of
restitution α for two values of the solid volume fraction φ:
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FIG. 2. Plot of the (scaled) shear viscosity coefficient
η∗(α)/η∗(1) as a function of the coefficient of restitution α
for d = 2 and two values of the solid volume fraction φ: φ = 0
(a) and φ = 0.2 (dashed line). The lines (b) and (c) corre-
spond to the results obtained in the conventional IHS model
for φ = 0 (b) and φ = 0.2 (c). The lines (d) and (e) corre-
spond to the results obtained in the stochastic heated model
for φ = 0 (d) and φ = 0.2 (e).
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FIG. 3. Plot of the (scaled) shear viscosity coefficient
η∗(α)/η∗(1) as a function of the coefficient of restitution α
for d = 2 and three values of the solid volume fraction φ:
φ = 0 (a), φ = 0.2 (b), and φ = 0.4 (c).

φ = 0 (dilute gas) and φ = 0.2 (moderately dense gas).
The corresponding results obtained for this coefficient in
the conventional IHS model [8, 10] and the stochastic
heated model [45] are also plotted for the sake of com-
parison. It is quite apparent first that the scaled shear
viscosity coefficient exhibits a weak dependence on the
density in the Delta-model in comparison with the den-
sity dependence found in the other models. This is quite
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FIG. 4. Plot of the (scaled) thermal conductivity coefficient
κ∗(α)/κ∗(1) as a function of the coefficient of restitution α for
d = 2 and three values of the solid volume fraction φ: φ = 0
(a), φ = 0.2 (b), and φ = 0.4 (c).
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FIG. 5. Plot of the (scaled) diffusive heat conductivity coeffi-
cient µ∗(α)/κ∗(1) as a function of the coefficient of restitution
α for d = 2 and three values of the solid volume fraction φ:
φ = 0 (a), φ = 0.2 (b), and φ = 0.4 (c). Here, in contrast
to the previous transport coefficients, the curves have been
obtained from Table I by adding the pure dilute contribu-
tion a2,s/2ν

∗
κ. The inclusion of this term leads to a nonzero

diffusive heat conductivity coefficient when φ = 0.

an unexpected result since there are new contributions
to the shear viscosity coming from density effects not ac-
counted for in the previous results [31] obtained for a
dilute gas (φ = 0). To show more clearly the density ef-
fects on η∗, the ratio η∗(α)/η∗(1) is plotted in Fig. 3 as a
function of α for three different values of the solid volume
fraction. We observe that, except from extreme values of
dissipation, the shear viscosity (scaled with respect to its
elastic value) increases with density. On the other hand,
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the opposite behavior is found for the (scaled) thermal
conductivity κ∗(α)/κ∗(1). This is illustrated in Fig. 4
where it is also quite apparent that the effect of dissipa-
tion on the thermal conductivity is more significant that
the one observed for the shear viscosity.
Finally, the dependence of the heat diffusive coefficient

µ∗ on α is shown in Fig. 5 for three different densities.
Note that the coefficient µ∗ vanishes in the low-density
regime (φ = 0) when one neglects the contribution of the
kurtosis a2,s since µ∗ ∝ a2,s in this regime [31]. Thus,
in order to compare the kinetic contribution to µ∗ when
φ = 0 with the collisional contributions to this coefficient
for dense gases (φ 6= 0), the three curves considered in
Fig. 5 have been obtained from the results displayed in
Table I but including the pure dilute contribution to µ∗

coming from a2,s. This (new) contribution is given by
a2,s/2ν

∗

κ for d = 2 [31]. Note also that the collision inte-
gral (94) appearing in the expression of µ∗ has been still
computed by assuming a2,s = 0 for the sake of simplic-
ity. It is quite apparent that the impact of density on µ∗

is quite significant since while this coefficient is always
negative for moderately dense gases (φ . 0.3), it can be
positive at higher densities for α . α0 where the value
of α0 depends on the volume fraction φ. The value of
α0 increases with density: for instance, α0 ≃ 0.33 for
φ = 0.4. Moreover, as expected, the magnitude of µ∗ is
quite small for any density. This means that, for prac-
tical purposes, one can neglect the contribution to the
heat flux coming from the term proportional to the den-
sity gradient, namely, the heat flux obeys Fourier’s law
q(1) = −κ∇T . This conclusion contrasts with the re-
sults obtained for undriven granular fluids [8] where the
(reduced) heat diffusive coefficient µ∗ is clearly different
from zero for strong collisional dissipation.

VI. DISCUSSION

In this paper we have derived the expressions for trans-
port coefficients for the so-called Delta-model. This
model is an extension of the usual IHS one, where in
every particle collision, an amount ∆ is added to the ve-
locity of the colliding particles in the normal direction
[see Eqs. (3) and (4)]. As a consequence, there is an en-
ergy input into the system and a steady state with homo-
geneous temperature and density is reached, as opposite
to the IHS model. In this sense, the Delta-model can be
seen as a thermostated system by the energy injection via
the ∆ parameter. The stationary temperature depends
on α and ∆, but it is almost independent of the density,
due to the fact that both dissipation and energy injection
act via interparticle collisions.
We take as starting point the Enskog kinetic equa-

tion for the single particle distribution function, that is
solved perturbatively by a Chapman–Enskog expansion
in the spatial gradients of the hydrodynamic fields. With
such scheme, it is possible to calculate the Navier–Stokes
transport coefficients: η (shear viscosity that appears in

the stress tensor) and κ, µ [thermal and diffusive heat
conductivities, that enter in the heat flux, Eq. (68)].

Results for the scaled shear viscosity η∗, reported in
Fig. 3, show a weak dependence with the density, smaller
than 3% for any value of the coefficient of restitution
α. This is a relatively surprising result since, accord-
ing to the results displayed in Table I, there are new
contributions to η∗ accounting for density corrections to
the momentum transport. These corrections were not
of course evaluated in the previous work for dilute gases
[31]. On the other hand, given the intricacies associ-
ated with the evaluation of the shear viscosity from the
Chapman–Enskog solution, it is difficult to provide an
intuitive physical explanation for this weak dependence
of η∗ on density in confined granular systems. There-
fore, according to the previous finding, the main depen-
dence of η∗ on the density is via the elastic dimension-
less viscosity, η∗(α = 1). This weak dependence is con-
sistent with the results of numerical simulations, where
the scaled shear viscosities are also similar between di-
lute [32] and dense (φ = 0.314) [25] systems. Similar
conclusions can be drawn for the thermal conductivity,
κ∗(α), which is again rather density independent when
it is divided by κ∗(α = 1) (see Fig. 4). Finally, in Fig. 5
we represent the diffusive heat conductivity coefficient,
µ∗(α), divided by the thermal conductivity for an elas-
tic system, κ∗(α = 1), as the coefficient µ(α) vanishes
at α = 1. Here, in contrast to the previous plots and
in order to assess the impact of density on µ∗, the pure
dilute contribution (d− 1/d)(a2,s/ν

∗

κ) has been also con-
sidered in the expression of µ∗. This yields µ∗ 6= 0 in
the low-density limit (φ = 0). We observe that µ∗ is
the most sensitive with respect to the density, probably
because it vanishes for elastic fluids, where there is no
heat transport associated with density inhomogeneities.
In addition, given that the magnitude of the (scaled) dif-
fusive heat conductivity µ∗ is much smaller than that
of the (scaled) thermal conductivity κ∗, one can neglect
the term proportional to the density gradient in the heat
flux. Therefore, for practical purposes and analogously
to ordinary (elastic) gases, one can assume that the heat
flux verifies Fourier’s law q(1) = −κ∇T .
As it has been mentioned through the paper, the cal-

culations of the Navier–Stokes transport coefficients have
been obtained by considering the leading terms in a So-
nine expansion. In addition, non-Gaussian corrections
to the zeroth order distribution function f (0) have been
neglected for the sake of simplicity. To discuss the va-
lidity of the latter approximation, we can use the results
of Ref. [32] for dilute gases, where the cumulants ai of
the scaled stationary distribution ϕ were measured by
computer simulations. For the whole range of inelastic-
ities, a2 . 0.10, a3 . 0.07, and a4 . 0.03, values which
are similar or even smaller than other models, in par-
ticular than those reported for IHS [47]. In the above
work [32], the shear viscosity was determined by keeping
both higher order Sonine polynomials in the stationary
distribution and also in the trial function used to eval-
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uate the shear viscosity. Their conclusion is that one
has to keep Sonine corrections to the same order in both
places to obtain a quantitative agreement with simula-
tions. Otherwise, the predictions for the shear viscosity
fail in about 15%. Therefore the calculations presented
here, that neglect both Sonine corrections, are expected
to give the qualitative density dependence of transport
coefficients, but may fail when predicting quantitative
results by the aforementioned 15%. Expressions for the
transport coefficients including additional contributions
of Sonine polynomials are cumbersome and will be pre-
sented elsewhere. As Chapman–Enskog method gives
very good predictions for moderate densities in other
models, like elastic fluids or IHS, we expect that it will
be the case fo the Delta-model when proper Sonine cor-
rections are retained in Chapman–Enskog solution.

A possible application of the results derived in this
paper might be the study of the stability of the homo-
geneous steady state. The stability of this state depends
on the stationary transport coefficients obtained here and
also on the dynamics of these coefficients in the vicinity
of the steady state. The linear hydrodynamic stability
of the present confined model has been recently analyzed
in the dilute regime [42]. The stability analysis carried
out around the time-dependent homogeneous state shows
that in some cases the linear analysis is not sufficient to
achieve a conclusion on the stability. On the other hand,
MD simulations have confirmed the stability of the time-
dependent homogeneous state of the Delta-model [42].
In the dense regime under study here, the steady state
is expected to be also stable. First, the compressibil-
ity, derived from the expression of the pressure, is always
positive [25] and no van der Waals instability takes place.
Second, the linear dynamics around the steady state is
governed by the hydrodynamic matrix (see Eq. (10) in
Ref. [25]). Using the transport coefficients computed in
this article, one obtains that the hydrodynamic matrix
remains positive definite for all densities and inelastici-
ties. We plan to perform in the near future a more careful
study on this stability.
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Appendix A: Balance equations. Collisional transfer

contributions

In this Appendix we provide some technical details on
the derivation of the expressions of the cooling rate and
the collisional transfer contributions to the pressure ten-
sor and the heat flux. Using Eq. (21), the identity (10)
of the Enskog collision integral can be expressed as

Iψ ≡
∫

dv1ψ(v1)JE[r,v1|f, f ]

= σd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

× [ψ(v′

1)− ψ(v1)] f2(r,v1, r+ σ,v2, t), (A1)

where ψ(v) is an arbitrary function of velocity. Equation
(A1) can be written in an equivalent form by interchang-
ing v1 and v2 and changing σ̂ → −σ̂ to give

Iψ = σd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

× [ψ(v′

2)− ψ(v2)] f2(r,v2, r− σ,v1, t). (A2)

Combination of Eqs. (A1) and (A2) leads to the identity

Iψ =
1

2
σd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

×{[ψ(v′

1)− ψ(v1)] f2(r,v1, r+ σ,v2, t)

+ [ψ(v′

2)− ψ(v2)] f2(r,v2, r− σ,v1, t)} . (A3)

To simplify Eq. (A3), note first the relation

f2(r,v2, r− σ,v1, t) = f2(r− σ,v1, r,v2, t) (A4)

and then arrange terms to achieve the result

Iψ =
1

2
σd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g) {[ψ(v′

1) + ψ(v′

2)− ψ(v1)− ψ(v2)] f2(r,v1, r+ σ,v2, t)

+ [ψ(v′

1)− ψ(v1)] [f2(r,v1, r+ σ,v2, t)− f2(r− σ,v1, r,v2, t)]} . (A5)
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The second term, which vanishes for dilute gases due to the spatial difference of the colliding pair, can be written as
a divergence through the identity

F (r, r+ σ)− F (r− σ, r) = −
∫ 1

0

dλ
∂

∂λ
F [r− λσ, r+ (1− λ)σ]

=
∂

∂r
· σ

∫ 1

0

dλ F [r− λσ, r+ (1 − λ)σ],

(A6)

for any function F . Using this identity, Eq. (A5) can be rewritten as

Iψ =
1

2
σd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g) {[ψ(v′

1) + ψ(v′

2)− ψ(v1)− ψ(v2)] f2(r,v1, r+ σ,v2, t)

+ ∇ · σ [ψ(v′

1)− ψ(v1)]

∫ 1

0

dλf2 [r− λσ,v1, r+ (1 − λ)σ,v2, t)]

}
.

(A7)

The first term in Eq. (A7), which also appears in the case of a dilute gas, represents a collisional effect due to scattering
with a change in the velocities. The second term provides the collisional transfer contributions to the momentum and
heat fluxes.
Equation (A7) is general since it applies to any scattering model. We consider now the collisional model defined

by the collision rules (1) and (2). For ψ = m, Im vanishes identically. In the case ψ(v) = mv, the first term in the
integrand (A7) vanishes since the momentum is conserved in all pair collisions, i.e., v′

1 + v′

2 = v1 + v2. Thus, Eq.
(A7) for ψ(v) = mv reduces to

Imv = −∇ · 1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂σ̂

[
(σ̂ · g) + 2∆

1 + α

]

×
∫ 1

0

dλ f2 [r− λσ,v1, r+ (1− λ)σ,v2, t)] . (A8)

According to the momentum balance equation (12), the divergence of the collisional transfer part Pc is defined by

Imv = −∇ · Pc. (A9)

The explicit form (19) for Pc may be easily identified after comparing Eqs. (A7) and (A9).
The case of kinetic energy ψ = 1

2mv
2 can be analyzed in a similar way except that energy is not conserved in

collisions. This means that the first term on the right side of Eq. (C5) does not vanish. As before, the second term
on the right side of Eq. (C6) gives the collisional transfer contribution to the heat flux. After a simple algebra, one
obtains

Im

2
v2 =

m

2
σd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

[
∆2 + α∆(σ̂ · g)− 1− α2

4
(σ̂ · g)2

]
f2(r,v1, r+ σ,v2, t)

−∇ ·mσd 1 + α

4

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)2σ̂

[
1− α

4
(σ̂ · g) + σ̂ ·G+ σ̂ ·U

]

×
∫ 1

0

dλ f2 [r− λσ,v1, r+ (1 − λ)σ,v2, t)] ,

+∇ · m
4
σd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂

[
∆2 + (1 + α)(σ̂ · g)∆− 2∆(σ̂ ·V1)− 2∆(σ̂ ·U)

]

×
∫ 1

0

dλ f2 [r− λσ,v1, r+ (1 − λ)σ,v2, t)] , (A10)

where we recall that G = (V1 +V2)/2 and V = v−U. Upon deriving Eq. (A10), use has been made of the relation

v21 − v
′2
1 =

1− α2

4
(σ̂ · g)2 + (1 + α)(σ̂ · g) [(σ̂ ·G) + (σ̂ ·U)]

−∆2 + 2∆(σ̂ ·V1) + 2∆(σ̂ ·U)− (1 + α)(σ̂ · g)∆. (A11)
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Moreover, notice that the first contribution in the second term on the right-hand side of Eq. (A10) vanishes by
symmetry. The balance energy equation yields

∫
dv
m

2
(v −U)2JE[r,v|f, f ] = −∇ · qc − Pc : ∇U− d

2
nTζ, (A12)

where qc is the collisional contribution to the heat flux and ζ is the cooling rate. Comparing Eqs. (A10) and (A12)
and taking into account Eq. (A9), one obtains the expressions (20) and (22) for qc and ζ, respectively.

Appendix B: Navier–Stokes collisional transfer contributions to the pressure tensor and heat flux

The collisional transfer contributions to the pressure tensor and heat flux are determined from Eqs. (19) and (20),
respectively. To first order in gradients, the collisional pressure tensor is

Pij,c =
1 + α

4
mσdχ

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂σ̂

[
(σ̂ · g) + 2∆

1 + α

]

×
[
f (1)(V1)f

(0)(V2) + f (1)(V2)f
(0)(V1)−

1

2
f (0)(V2)σ · ∇f (0)(V1) +

1

2
f (0)(V1)σ · ∇f (0)(V2)

]

=
1 + α

2
mσdχ

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂σ̂

[
(σ̂ · g) + 2∆

1 + α

]

×
[
f (1)(V1)f

(0)(V2) +
1

2
f (0)(V1)σ · ∇f (0)(V2)

]

≡ P
(I)
ij,c + P

(II)
ij,c , (B1)

where P
(I)
ij,c denotes the contribution to Pij,c computed in the conventional IHS model and P

(II)
ij,c refers to the part

involving terms proportional to the velocity parameter ∆.
To perform the angular integrals, we need the results [43]

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)kσ̂i = Bk+1g

k−1gi, (B2)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)kσ̂iσ̂j =

Bk
k + d

gk−2
(
kgigj + g2δij

)
, (B3)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)kσ̂iσ̂j σ̂ℓ =

Bk+1

k + 1 + d
gk−3

[
(k − 1)gigjgℓ + g2 (giδjℓ + gjδiℓ + gℓδij)

]
. (B4)

The quantity P
(I)
ij,c is [8, 10, 46]

P
(I)
ij,c = − B2

d+ 2
(1 + α)nσdχηk

(
∂jUi + ∂iUj −

2

d
δij∇ ·U

)

− B3
d+ 1

4d2
mn2σd+1(1 + α)χv0

(∫
dc1

∫
dc2ϕ(c1)ϕ(c2)g

∗

)[
d

d+ 2

(
∂jUi + ∂iUj −

2

d
δij∇ ·U

)
+ δij∇ ·U

]
,

(B5)

where ηk is the kinetic shear viscosity and the coefficients Bk are defined in Eq. (40). The term P
(II)
ij,c is given by

P
(II)
ij,c =

B1

d+ 1
mσdχ∆

∫
dv1

∫
dv2 g

−1
(
gigj + g2δij

)
f (1)(V1)f

(0)(V2)

− B2

2(d+ 2)
mσd+1χ∆∂ℓUk

∫
dv1

∫
dv2 (giδjℓ + gjδiℓ + gℓδij) f

(0)(V1)
∂f0(V2)

∂V2k
. (B6)

The first term of the right hand side of Eq. (B6) involves the first-order distribution f (1). This distribution is given

by Eq. (41). By symmetry reasons, the contributions to P
(II)
ij,c coming from f (1) only involve the terms proportional to

the unknowns Cij ∝ ηk and D ∝ ζU , where ηk is the kinetic shear viscosity. Since ζU is expected to be very small [31],

the coupling between P
(II)
ij and D will be neglected here. Moreover, in the leading Sonine approximation,

Cij(V) → − ηk
nT 2

Dij(V)fM(V), (B7)
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where fM(V) is the Maxwellian distribution. Thus, the quantity P
(II)
ij,c can be explicitly evaluated by considering the

approximation (B7) with the result

P
(II)
ij,c = − B1

d+ 1
nσdχ∆∗

(∫
dc1

∫
dc2g

∗−1g∗2x g
∗2
y ϕM(c1)ϕ(c2)

)
ηk

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)

− B2

2(d+ 2)
n2σd+1mχv0∆

∗

[(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
+
d+ 2

d
δij∇ ·U

]
. (B8)

The collisional transfer contributions to the shear viscosity η and the bulk viscosity γ can be easily identified from
Eqs. (B5) and (B8).
The collisional transfer contribution to the heat flux to first order in the gradients can be obtained in a similar way.

It can be written as

qi,c ≡ q
(I)
i,c + q

(II)
i,c , (B9)

where q
(I)
i,c has been determined in previous papers [8, 10, 46] while the quantity q

(II)
i,c is proportional to ∆. The first

contribution q
(I)
i,c is

q
(I)
i,c = −3

2

B2

d+ 2
nσd(1 + α)χ (κk∂iT + µk∂in)− ∂iT

B3

8d

mσd+1

T
χ(1 + α)n2v30

×
(∫

dc1

∫
dc2ϕ(c1)ϕ(c2)

[
g∗−1(g∗ ·G∗)2 + g∗G∗2 +

3

2
g∗(g∗ ·G∗) +

1

4
g∗3

])
, (B10)

where κk and µk are the kinetic contributions to the thermal conductivity κ and the µ coefficient, respectively. The

second contribution q
(II)
i,c is given by

q
(II)
i,c = −∆

mσd

4

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂ [∆ + α(σ̂ · g)− 2(σ̂ ·G)]

×
[
f (1)(V1)f

(0)(V2) + f (1)(V2)f
(0)(V1)−

1

2
f (0)(V2)σ · ∇f (0)(V1) +

1

2
f (0)(V1)σ · ∇f (0)(V2)

]
. (B11)

Note that if one changes σ̂ → −σ̂ and interchanges the role of particles 1 and 2, then the term proportional to the

combination ∆+ α(σ̂ · g) in Eq. (B11) vanishes by symmetry. Thus, the quantity q
(II)
i,c reads

q
(II)
i,c = ∆

B1

d+ 1
mσdχ

∫
dv1

∫
dv2 g

−1
[
gi(g ·G) + g2Gi

]
f (1)(V1)f

(0)(V2)

+∂iT ∆ B2
mσd+1

2d
χ

∫
dv1

∫
dv2 (g ·G)f (0)(V1)

∂f (0)(V2)

∂T
. (B12)

As in the case of the pressure tensor, the evaluation of the first term on the right hand side of Eq. (B12) requires the

knowledge of the first-order distribution f (1). By symmetry, the terms of f (1) contributing to q
(II)
i,c are A and B. In

the leading Sonine approximation, these terms are [8, 10]

A(V) → − 2

d+ 2

m

nT 2
κkfM(V)S(V), B(V) → − 2

d+ 2

m

T 3
µkfM(V)S(V). (B13)

With this result, the quantity q
(II)
i,c can be finally written as

q
(II)
i,c = − 8B1

d(d+ 1)(d+ 2)
nσdχ∆∗ (κk∂iT + µk∂in)

(∫
dc1

∫
dc2ϕM(c1)ϕ(c2)g

∗−1 [(g∗ · S∗)(g∗ ·G∗)

+g∗2(G∗ · S∗)
] )

− ∂iT ∆∗
mσd+1

4dT
B2χn

2v30

(∫
dc1

∫
dc2 ϕ(c1)

∂

∂c2
· (c2ϕ(c2))

+∆∗

∫
dc1

∫
dc2 ϕ(c1)

∂ϕ(c2)

∂∆∗
(g∗ ·G∗)

)

= − 8B1

d(d+ 1)(d+ 2)
nσdχ∆∗ (κk∂iT + µk∂in)

(∫
dc1

∫
dc2ϕM(c1)ϕ(c2)g

∗−1 [(g∗ · S∗)(g∗ ·G∗)

+g∗2(G∗ · S∗)
])

− ∂iT ∆∗
mσd+1

4dT
B2χn

2v30

(
d

2
+ ∆∗

∫
dc1

∫
dc2 ϕ(c1)

∂ϕ(c2)

∂∆∗
(g∗ ·G∗)

)
, (B14)

where S∗(c1) is defined by Eq. (74) and use has been
made of the result∫

dc1

∫
dc2ϕ(c1)ϕ(c2)c

2
2 =

d

2
. (B15)

In addition, upon deriving Eq. (B14), the relation (34)
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has been also employed. The collisional contributions to
κ and µ can be easily identified from Eqs. (B10) and
(B14).

Appendix C: Collision integrals

In this Appendix, the collision integrals (92)–(94) in-
volving the operator K defined by Eq. (51) are evaluated
for an arbitrary d-dimensional system. To perform these
integrals, it is first convenient to write the first term in
Eq. (51) in a different form by changing σ̂ → −σ̂ and
∆ → −∆. In this case, the operator K becomes

Ki[X ] = σdχ

∫
dv2

∫
dσ̂Θ(σ̂ · g + 2∆)

×(σ̂ · g + 2∆)σ̂iα
−2f (0)(V′′

1 )X(V′′

2 )

+σdχ

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂i

×f (0)(V1)X(V2),

(C1)

where the velocities (V′′

1 ,V
′′

2 ) are given by Eqs. (6) and
(7). Note that the above changes do not alter the rela-
tionship between (V′′

1 ,V
′′

2 ) and (V1,V2).

Let us consider the integral

IΨ ≡
∫

dv1Ψ(V1)Ki[X(V2)], (C2)

where Ψ(V1) is an arbitrary function of velocity. Ac-

cording to Eq. (C1), the integral IΨ is given by

IΨ = σdχ

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g + 2∆)

×(σ̂ · g+ 2∆)σ̂iΨ(V1)α
−2f (0)(V′′

1 )X(V′′

2 )

+σdχ

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂iΨ(V1)

×f (0)(V1)X(V2).

(C3)

Now we change variables to integrate over V′′

1 and V′′

2

instead of V1 and V2 in the first term of Eq. (C3). The
Jacobian of the transformation is α, σ̂·g = −ασ̂·g′′−2∆,
and hence the first term of (C3) can be recast into the
form

σdχ

∫
dv′′

1

∫
dv′′

2

∫
dσ̂Θ(−σ̂ · g′′)

× (−σ̂ · g′′)σ̂iΨ(V1)f
(0)(V′′

1 )X(V′′

2 )

= −σdχ
∫

dv′′

1

∫
dv′′

2

∫
dσ̂Θ(σ̂ · g′′)

× (σ̂ · g′′)σ̂iΨ(V1)f
(0)(V′′

1 )X(V′′

2 ), (C4)

where we have performed again the change of variables
σ̂ → −σ̂ and ∆ → −∆ in the second line of Eq.
(C4). Equation (C4) contains the pre-collisional veloci-
ties (V′′

1 ,V
′′

2 ) and the post-collisional velocities (V1,V2).
Since the transformation (V′′

1 ,V
′′

2 ) → (V1,V2) is equiv-
alent to (V1,V2) → (V′

1,V
′

2), we can use the dummy
variables (V1,V2) in (C4) and hence, V1(V

′′

1 ,V
′′

2 ) must
be relabeled to V′

1(V1,V2) where V′

1 is defined by Eq.
(1), namely,

V′

1 = V1 −
1

2
(1 + α) (σ̂ · g)σ̂ −∆σ̂. (C5)

Consequently, the integral IΨ can be rewritten as

IΨ = −σdχ
∫

dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)

×(σ̂ · g)σ̂if (0)(V1)X(V2) [Ψ(V′

1)−Ψ(V1)] .

(C6)

Let us evaluate first the integral

Kη ≡
∫

dVDij(V)Ki
[
∂f (0)

∂Vj

]
. (C7)

By using the identity (C6), the integral Kη becomes

Kη = −χσd
∫

dV1

∫
dV2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂i f (0)(V1)

∂f (0)(V2)

∂V2j
[Dij(V

′

1)−Dij(V1)] . (C8)

The scattering rule (C5) gives

Dij(V
′

1)−Dij(V1) = −m∆

{
V1iσ̂j + V1j σ̂i −

2

d
(σ̂ ·V1)δij − [(1 + α)(σ̂ · g) + ∆]

(
σ̂iσ̂j −

1

d
δij

)}
+ · · · , (C9)
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where the terms independent of ∆ have been omitted on the right hand side of Eq. (C9) for the sake of concreteness.
Thus, the integral Kη can be split in two parts; one of them already computed [8, 10, 46] for ∆ = 0 (conventional
IHS model) and the other part involving terms proportional to the parameter ∆. In this case, the integral Kη can be
written as

Kη = K(0)
η +K(1)

η , (C10)

where

K(0)
η = 2d−2(d− 1)χφnT (1 + α)(1 − 3α), (C11)

K(1)
η = mχσd∆

∫
dV1

∫
dV2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g) f (0)(V1)

∂f (0)(V2)

∂V2j

{
d− 2

d
(σ̂ ·V1)σ̂j + V1j

−d− 1

d
[(1 + α)(σ̂ · g) + ∆] σ̂j

}
. (C12)

Let us compute now the integral K(1)
η . Integrating by parts, one gets

K(1)
η =

d− 1

d
mχσd∆

∫
dV1

∫
dV2 f

(0)(V1)f
(0)(V2)

∫
dσ̂Θ(σ̂ · g) [2(σ̂ ·V1)− 2(1 + α)(σ̂ · g)−∆]

=
d− 1

d
mχσd∆

∫
dV1

∫
dV2 f

(0)(V1)f
(0)(V2)

[
B1g

−1(g ·V1)− 2B1(1 + α)g −B0∆
]
, (C13)

where use has been made of the relations (B2)–(B4) in the last result. The integral K
(1)
η can be rewritten as

K(1)
η = 2

d− 1

d
B1χnσ

d∆∗nTI ′η − 2d(d− 1)χφ∆∗2nT, (C14)

where the dimensionless integral I ′η is defined by Eq. (64). This integral can be explicitly estimated by replacing ϕ

by its Gaussian form ϕM = π−d/2e−c
2

with the result

I ′η = − 1√
2

Γ
(
d+1
2

)

Γ
(
d
2

) (3 + 4α). (C15)

Using of this in Eq. (C14) gives the result

K(1)
η = −2d(d− 1)φχ∆∗nT

(
3 + 4α√

2π
+∆∗

)
. (C16)

The expression of Kη can be finally written as

Kη = 2d(d− 1)φχnT

[
1

4
(1 + α)(1 − 3α)−∆∗

(
3 + 4α√

2π
+∆∗

)]
. (C17)

We consider now the collision integral

Kκ ≡
∫

dVS(V) ·K
[
∂

∂Vi

(
Vif

(0)
)]

= −χσd
∫

dV1

∫
dV2f

(0)(V1)
∂

∂V2i

(
V2if

(0)(V2)
)

×
∫

dσ̂Θ(σ̂ · g)(σ̂ · g)σ̂j [Sj(V
′

1)− Sj(V1)] . (C18)

As in the previous calculation for Kη, Kκ can be divided in two parts, i.e., Kκ = K(0)
κ +K(1)

κ . The integral K(0)
κ was

evaluated in the case ∆ = 0 with the result [8, 10, 46]

K(0)
κ = −3

8
2dd

nT 2

m
φχ(1 + α)2 (2α− 1) , (C19)
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where we have neglected the contribution coming from the kurtosis a2. The other contribution K(1)
κ comes from the

terms proportional to ∆. In particular, the contributions to the combination σ̂j [Sj(V
′

1)− Sj(V1)] proportional to
∆ in Eq. (C18) are given by

σ̂j [Sj(V
′

1)− Sj(V1)] → −m
2
∆

[
V 2
1 + 2(σ̂ ·V1)

2 − 2(1 + α)(σ̂ · g)(σ̂ ·V1) +
1

2
(1 + α)2(σ̂ · g)2

−3∆(σ̂ ·V1) +
3

2
(1 + α)∆(σ̂ · g) + ∆2 − d+ 2

m
T

]
. (C20)

The integral K(1)
κ can be written more explicitly when one takes into account the relation (C20). The result is

K(1)
κ =

m

2
χσd∆

∫
dV1

∫
dV2f

(0)(V1)f
(0)(V2)

∫
dσ̂Θ(σ̂ · g)(σ̂ ·V2)

×
[
V 2
1 + 2(σ̂ ·V1)

2 − 4(1 + α)(σ̂ · g)(σ̂ ·V1) +
3

2
(1 + α)2(σ̂ · g)2 − 3∆(σ̂ ·V1)

+3(1 + α)∆(σ̂ · g) + ∆2 − d+ 2

m
T

]

=
m

2
χσd∆

∫
dV1

∫
dV2f

(0)(V1)f
(0)(V2)

{
B1g

−1(g ·V2)V
2
1

+
2B1

d+ 1
g−3

[
−(g ·V1)

2(g ·V2) + g2
(
2(V1 ·V2)(g ·V1) + V 2

1 (g ·V2)
)]

−4(1 + α)
B1

d+ 1
g−1

[
(g ·V1)(g ·V2) + g2(V1 ·V2)

]
+

3

2
(1 + α)2B3g(g ·V2)

+3(1 + α)∆B2(g ·V2) + ∆2B1g
−1(g ·V2)−

d+ 2

m
TB1g

−1(g ·V2)

}
. (C21)

As before, this integral is now estimated by replacing f (0)(V) by its Gaussian form fM(V) = nv
−d/2
0 π−d/2e−c

2

. The
result is

K(1)
κ =

2d−1/2d√
π

nT 2

m
φχ∆∗

[
3 + 2d

4
+ 2(1 + α)

(
1− 3

4

√
2π∆∗

)
− 3(1 + α)2 −∆∗2

]
. (C22)

With this result Kκ can be written as

Kκ = 2dd
nT 2

m
φχ

{
3

8
(1 + α)2(1 − 2α) +

1√
2π

∆∗

[
3 + 2d

4
+ 2(1 + α)

(
1− 3

4

√
2π∆∗

)
− 3(1 + α)2 −∆∗2

]}
. (C23)

The last integral needed to evaluate the transport coefficient µ is

Kµ ≡
∫

dVS(V) ·K
[
f (0)

]
= K(0)

µ +K(1)
µ , (C24)

where K(0)
µ is [8, 10, 46]

K(0)
µ = −3

8
2dd

nT 2

m
φχα(1 − α2), (C25)

and

K(1)
µ =

m

2
χσd∆

∫
dV1

∫
dV2f

(0)(V1)f
(0)(V2)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

×
[
V 2
1 + 2(σ̂ ·V1)

2 − 2(1 + α)(σ̂ · g)(σ̂ ·V1) +
1

2
(1 + α)2(σ̂ · g)2 − 3∆(σ̂ ·V1)

+
3

2
(1 + α)∆(σ̂ · g) + ∆2 − d+ 2

m
T

]
. (C26)

The evaluation of K(1)
µ follows similar steps as those made before for K

(1)
κ . After a tedious algebra, the expression of

K(1)
µ can be written as

K(1)
µ =

2d−1/2d√
π

nT 2

m
φχ∆∗

[
2
(
∆∗2 + α2

)
− 1

2
+

3

2

√
2πα∆∗

]
. (C27)
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With this expression, the integral Kµ is

Kµ = −2dd
nT 2

m
φχ

{
3

8
α(1 − α2)− 1√

2π
∆∗

[
2
(
∆∗2 + α2

)
− 1

2
+

3

2

√
2πα∆∗

]}
. (C28)
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[36] P. P. Mitrano, V. Garzó, A. M. Hilger, C. J. Ewasko, and

C. M. Hrenya, Phys. Rev. E 85, 041303 (2012).
[37] P. P. Mitrano, V. Garzó, and C. M. Hrenya, Phys. Rev.

E 89, 020201 (R) (2014).
[38] S. Chapman and T. G. Cowling, The Mathematical The-

ory of Nonuniform Gases (Cambridge University Press,
Cambridge, 1970).

[39] J. F. Lutsko, J. Chem. Phys. 120, 6325 (2004).
[40] N. V. Brilliantov and T. Pöschel, Kinetic Theory of Gran-
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[41] A. Santos, V. Garzó, and J. W. Dufty, Phys. Rev. E 69,

061303 (2004).
[42] J.J. Brey, V. Buzón, M.I. Garćıa de Soria, and P. Maynar,
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