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We evaluate linear stochastic discount factor models using an ex-post portfolio metric: the realized
out-of-sample Sharpe ratio of mean–variance portfolios backed by alternative linear factor models.
Using a sample of monthly US portfolio returns spanning the period 1968–2016, we find evidence
that multifactor linear models have better empirical properties than the CAPM, not only when the
cross-section of expected returns is evaluated in-sample, but also when they are used to inform one-
month ahead portfolio selection. When we compare portfolios associated to multifactor models with
mean–variance decisions implied by the single-factor CAPM, we document statistically significant
differences in Sharpe ratios of up to 10 percent. Linear multifactor models that provide the best
in-sample fit also yield the highest realized Sharpe ratios.

Keywords: Linear asset pricing models; Stochastic discount factor; Portfolio selection; Out-of-sample
performance

JEL Classification: G11, G12

1. Introduction

Linear factor asset pricing models are well established in fi-
nance. The CAPM model of Sharpe (1964) and Lintner (1965),
the three-factor model of Fama and French (F.F, 1993) and the
four-factor model of Carhart (1997) are now extensively used
by researchers and practitioners to compute the cost of capital
and risk-adjusted returns. Previous empirical evidence evaluat-
ing the ability of linear factor models to fit the cross-section of
asset returns has generally favoured multi-factor models over
the single-factor CAPM. Carhart’s four-factor model, for ex-
ample, has been particularly successful in accounting for most
of the anomalies challenging the efficient market hypothesis
(see Schwert 2003). However, in this literature, models are usu-
ally evaluated by comparing measures of in-sample, statistical
goodness-of-fit, such as the R2 of cross-sectional regressions
of mean excess returns on a set of factor mimicking returns, or
by in-sample pricing accuracy statistics.¶ Much less is known
about the actual out-of-sample (henceforth, OOS) relative per-
formance of alternative linear asset pricing models, both in a
statistical sense (e.g. their OOS predictive R2s) and especially
in an economic perspective, i.e. whether or not commonly used

∗Corresponding author. Email: ehansen@fen.uchile.cl
¶See, for example, Kan et al. (2013) for a recent application.

linear pricing models may better support financial decisions by
investors when compared to standard benchmarks that often
lack of any asset pricing foundations. To fill this gap, our
paper evaluates and compares linear factor models in a OOS
economic perspective. In particular, we study the OOS realized
performance of mean–variance efficient portfolios, when the
test assets are the predicted excess returns generated by a range
of linear factor models.

The main contribution of our work consists in investigating
the (differential) power of alternative linear stochastic dis-
count factor (SDF)-based models to yield economic value over
and beyond improving the in- and out-of-sample statistical
performance at explaining the cross-section of asset returns.
Equivalently, we not only care for statistical fit (albeit of a
OOS type), but also for portfolio performance. We attack this
issue by adopting a fairly simple and yet commonly used mean–
variance (henceforth, MV) portfolio perspective. In a way, this
represents a further contribution of our study because, even
though in theory it is well understood that linear pricing mod-
els are intrinsically connected to MV efficient portfolios (see
the discussion in Cochrane 2009), it is customary for applied
portfolio choice papers to ignore asset pricing models in the

© 2018 Informa UK Limited, trading as Taylor & Francis Group
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estimation of optimal weights.† On the contrary, it has become
normal to assume a functional form for the joint, multivariate
distribution of returns, to use some historical samples to esti-
mate the parameters of interest, and to then proceed to compute
weights, often assessing ex-post their realized performance. In
the absence of solid grounding in asset pricing theory (and
unless specific constraints have been imposed, as in Brandt
1999), such MV asset allocations may even end up becoming
empirical models that admit arbitrage opportunities, which
may be thought of as unrealistic in most applications.

In our paper, we build instead MV portfolios that are ex-
clusively grounded in asset pricing theory for which the SDF
has a linear specification. Moreover, we use a natural link
between the SDF and MV-efficient portfolios first discussed by
Chamberlain and Rothschild (1983), to construct an alternative
evaluation metric to be used in the empirical asset pricing
literature. Our intuition is that different views about the sources
of risk must affect the portfolio allocation of MV investors
and therefore imposing such views may have economically
relevant effects that we exploit to study the OOS realized per-
formance of a set of linear factor models. Moreover, we also in-
vestigate whether a superior in-sample fit at the cross-sectional
level is associated with a superior OOS realized performance.
It is important to emphasize that as far as we know, neither
questions admit a trivial answer. In general, it is perfectly
plausible (even though unwelcome) that models performing
well in-sample may show a poor performance OOS, or the
other way around.

In practice, our empirical strategy consists of two steps.
In the first step, we estimate linear factor models using the
SDF/GMM method described by Cochrane (2009). There are
two reasons to prefer the SDF/GMM method over the more
standard beta method. First, the SDF representation is more
general, and we want to keep our model as general as pos-
sible. Second, Jagannathan and Wang (2002) show that the
SDF form is comparable to the beta form in terms of the
efficiency in the estimation of risk premia and in terms of the
power of the specification tests. More recently, Lozano and
Rubio (2011) show that multifactor models estimated using
the SDF method, in particular, the first stage GMM estima-
tor, produce lower pricing errors than the beta method does.
Because we are interested in using as reliable measures of in-
sample goodness of fit as possible, this property of the SDF
method is particularly appealing to us. In the second step, we
estimate MV efficient portfolios using the predicted excess
returns from the linear factor models. Theoretically, we use the
connection between the SDF and the MV frontier established
by Hansen and Richard (1987): we estimate the structure of the
MV efficient portfolio using the concept of mean-representing
portfolio introduced by Chamberlain and Rothschild (1983)‡;

†See Brandt (2010) for a description of the plug-in method and the
references therein. Of course, at face value only our benchmark, the
CAPM, is (under some assumptions) the equilibrium asset pricing
model derived from MV efficient portfolio choice; to the contrary, the
other multi-factor models investigated in the paper are not necessarily
consistent with static mean–variance optimizing behaviour at the
investor-level, in spite of the connections between all linear SDF
models and MV efficiency studied since Chamberlain and Rothschild
(1983) and recently emphasized by Cochrane (2009).
‡We impose short sale constraints on portfolio weights estimation
throughout. Jagannathan and Ma (2003) argue that a trade-off exists

as shown by Peñaranda and Sentana (2011, 2012), the MV
frontier can then be consistently estimated by GMM using
a set of moment conditions implied by the definition of the
mean-representing portfolio. Finally, we compare the OOS
performance of the resulting MV efficient portfolios associated
with linear factor models using the bootstrap proposed by
Ledoit and Wolf (2008) to perform tests of the significance
of differences in Sharpe ratios.

We conduct our empirical tests using a monthly sample of US
equity portfolio returns spanning the period 1968–2016. The
portfolios are both industry-sorted portfolios and the classical
Fama and French’s (henceforth, F.F) size- and value-sorted
portfolios. The key results of the paper are summarized in
figure 1, where we plot the in-sample root mean squared error
(RMSE) against the OOS Sharpe ratio of a number of linear fac-
tor models.§ Each dot represents a particular test asset/model
pair and the number written nearby indicates the number of fac-
tors in the model. The figure implies two differences between
its horizontal vs. vertical coordinates. On the vertical axis, we
report one in-sample, statistical measure of fit, the RMSE. The
vertical axis is deemed to represent the standard criterion used
in the literature, where the pricing performance of alternative
models is assessed on the basis of their quantitative cross-
sectional fit. On the horizontal axis, we plot instead the values
for one OOS economic index of performance, i.e. the realized
Sharpe ratios of the portfolios constructed on the basis of the
forecasts derived from alternative factor models.¶ If both our
conjectures held, then we would expect that the dots should
cluster by model along some imaginary minus 45-degree up-
ward sloping line, possibly offering one clear winner, located
in the rightmost lower portion of the plot, where the highest
OOS Sharpe ratios are found along with the lowest RMSE. As
a matter of fact, two results emerge from figure 1. First, the
estimated negative slope of the linear fit in the plot reveals that
the best performing models in-sample are, at the same time, the
best OOS performing models according to our portfolio metric.
Second, multifactor models (numbered 3, 4 and 5) outperform
the CAPM. The cloud of points of multifactor models is located
in the lower right corner, whilst the cloud of points generated
by the CAPM is located in the upper left region in the plot.
This result is well known from an in-sample perspective but is
new in a OOS portfolio perspective.

In more detail, we find that the best performing models in-
sample (i.e. commanding the highest GLS R2s and/or the low-
est RMSEs) are also those that yield the highest realized one-
month ahead Sharpe ratios. Multifactor models consistently
achieve higher OOS Sharpe ratios than the CAPM does. The
estimated difference in Sharpe ratios may reach values as high
as 10% and are often statistically significant. These results
are valid for alternative asset menus, one-side and two-step
GMM estimators and centred and uncentred versions of the
SDF. Moreover, we study the ability of the four-factor model

between specification error and estimation error when short sales
constraints are imposed.
§As explained in section 2, in this paper, models will be
distinguishable according to the numbers of factors included, the type
of GMM estimator used, and the normalization of the SDF considered.
¶Of course, collapsing two dimensions of performance in one
Cartesian plot has its limitations, even though it offers the advantage
of immediacy.
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Figure 1. Scatter plot of RMSE vs. out-of-sample Sharpe ratios. Y = 0.33
(0.03)
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X Each dot represents a particular model and the number

attached to it indicates the number of factors included in that model.

that includes the liquidity risk factor of Pastor and Stambaugh
(2003) to explain the cross-section of expected returns and
yielding useful MV portfolio prescriptions: even though the
liquidity factor model is outperformed by Carhart’s model in-
sample, it is also able to outperform the other models, in terms
of OOS Sharpe ratios.

Our paper contributes to two strands of literature. First, we
bring new evidence to the literature evaluating the empiri-
cal performance of linear factor models, see Jagannathan and
Wang (2002), Shanken and Zhou (2007), Lewellen et al. (2010)
and Lozano and Rubio (2011), Kan et al. (2013), among others.
This literature has developed a pure in-sample econometric
approach to the assessment of the performance of alternative
linear factor models. We aim to contribute to this literature by
also documenting the empirical, realized OOS performance of
the same models when they are used to support portfolio deci-
sions. Second, we contribute to a less-developed literature that
studies how asset pricing models can provide useful insights in
portfolio choice problem (see for example Brandt 1999; Pas-
tor and Stambaugh 2000, MacKinlay and Pastor 2000, Pástor
2000, Chevrier and McCulloch 2008, Connor and Korajczyk
2010).† In this perspective, we aim at proposing a simple and

†Pastor and Stambaugh (2000) and Pástor (2000) have used risk-
based and characteristic-based asset pricing models to centre the
prior beliefs of a Bayesian investor solving a MV problem. Because
we adopt a frequentist GMM approach, our paper is mute on the
role played by priors on the models, although we follow the spirit
of Pástor (2000). Also adopting a Bayesian framework, Chevrier
and McCulloch (2008) have studied how economically motivated
priors may help building portfolios that outperform the equally
weighted portfolio (1/N ). They use linear factor models as one
of their sets of economically grounded priors. Although our goals
are different, we also uncover evidence that standard asset pricing
models may push realized performance over the hurdle represented by
the equal weighting benchmark. Mackinlay and Pastor (2000) study
the implications of assuming that asset returns have an exact factor
structure on the estimation of the expected returns of MV portfolios.
They conclude that in a model with one unobserved factor, the
covariance matrix of returns collapses to the identity matrix, and the
associated MV portfolio outperforms many benchmarks in terms of

yet robust methodology that combines the estimation of linear
factor models using the SDF method and the estimation of MV
efficient portfolios using a consistent GMM estimator. In fact,
we show that the portfolios implied by multifactor models may
often yield risk-adjusted returns that outperform the simple
1/N strategy of De Miguel et al. (2009), indicating that these
models may potentially become a worthy tool in the hands of
investors.

The paper is organized as follows. In section 2, we describe
our methodology. The first subsection is devoted to GMM es-
timation of linear pricing models; in the second subsection, we
introduce the concept of mean-representing portfolio and we
describe the GMM estimator to compute the portfolio weights;
in the third subsection, we explain how to test for differences in
Sharpe ratios using a block bootstrap. In section 3, we describe
our data. Estimation results and key findings are reported and
discussed in section 4. Section 5 concludes.

2. Methodology

In order to estimate MV efficient portfolios backed by alter-
native linear factor asset pricing models, we proceed in two
stages. In the first stage, we estimate by GMM linear asset
pricing models written in their SDF form, following Cochrane
(2009); in the second stage, we use again GMM to compute MV

OOS returns. Behr et al. (2012) study how industry momentum can be
use to improved the performance of minimum variance portfolios with
a parametric portfolio policy.Among several benchmark models, they
study the performance of minimum variance portfolios estimated with
a covariance matrix associated to linear factor models (CAPM, F.F 3-
factor model, and Carhart’s model). These portfolios—the ones linked
to linear factor models—yield higher Sharpe ratios than most of the
other portfolios under analysis. Kirby and Ostdiek (2012) employ the
F.F three-factor and Carhart’s models to estimate conditional expected
returns. More recently, Tu and Zhou (2011) have shown that among
the theoretical-motivated portfolios that they analyse, Mackinlay and
Pastor’s model is the only one exhibiting a solid performance in terms
of Sharpe ratios and certainty equivalent.
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efficient portfolios following Peñaranda and Sentana (2011,
2012). Resulting portfolio performances are then compared
using bootstrapped tests of differences in Sharpe ratios first
proposed by Ledoit and Wolf (2008).

2.1. GMM, SDF-based estimation of linear asset pricing
models

For the case of excess returns, the fundamental pricing equation
is

0 = Et [mt+1rt+1] , (1)

where 0 is an N × 1 vector of zeros, Et [·] is the expectation
operator conditional on the information up to time t , mt+1 is
the stochastic discount factor valid between t and t + 1 and
rt+1 is the N × 1 vector of excess returns in period t + 1.
This expression indicates that the conditional expected excess
returns of any asset, after being discounted to the present time
by the stochastic discount factor mt+1, are zero. The stochastic
discount factor, mt+1, represents the realization of any random
variable satisfying (1) between t and t +1. As customary, a few
additional assumptions need to be imposed in order for mt+1
be uniquely defined and positive.†

In particular, in this paper, we assume that mt+1 is charac-
terized by the following linear functional form:

mt+1 = a − b′ ft+1, (2)

where b is a K ×1 vector of parameters to be estimated and ft+1
are the realizations of K risk factors at time t + 1. As it has
been noted in previous empirical work (see Burnside 2016),
additional assumptions on the constant term a are required to
identify the parameters of interest, b. The intuition of the lack
of identification is as follows. Suppose that m̂ is the estimated
SDF. Therefore, from equation (1), it holds that E[m̂r ] = 0.
Now, for any constant c, the SDF m̃ = cm̂ also satisfies
(1), i.e. E [m̃r ] = 0. From this example, it is clear that an
infinite number of SDFs exist to satisfy (1) simultaneously.
This problem is solved by normalizing the value of the constant
a in (2). As pointed out by Cochrane (2009), the choice of
this normalization only depends on convenience. The first and
simplest normalization consists of imposing a = 1. In this case,
we say that the SDF is uncentered. The second normalization is
a = 1+b′E( f ), which corresponds to the centered SDF case.‡
After imposing a normalization on a, the set of parameters
b is estimated by GMM using the pricing errors from (1) as
ingredients to selected moment conditions, which we describe
in the next section.

2.2. Mean-representing portfolio and its estimation by GMM

In this section, we introduce the concept of mean-representing
portfolio and how we can use it to estimate a unique (up to an

†As far as uniqueness is concerned, the assumption of complete
markets is necessary.As for positiviness, both the absence of arbitrage
and the law of one price are required. See chapter 4 in Cochrane (2009)
for further details.
‡The properties of SDF-based asset pricing models under both
normalizations have been studied by Burnside (2016) and Lozano
and Rubio (2011).

scalar) MV efficient portfolio for each linear factor model. Ap-
plying Riesz’s representation theorem, Chamberlain and Roth-
schild (1983) have proven the existence of a unique portfolio
(called the mean-representing portfolio, p0) in the set of all pos-
sible portfolios formed for a particular vector of returns of a set
of test assets, whose weights are proportional to the weights of
the MV efficient portfolio. As a consequence, these two portfo-
lios have the same Sharpe ratio. We use this property to estimate
the Sharpe ratio of the MV efficient portfolio that we use to
compare economically alternative linear asset pricing models.

2.2.1. Mean-representing portfolio. Consider a set of N
risky assets and one risk-free asset. Define r = (r1, . . . , rN )′
to be the set of returns in excess of the risk-free rate for the
N risky assets. The pay-offs are defined over an underlying
probability space �. The first uncentred moment is E(r), and
the second uncentred moment, that we assume to be finite,
is given by E(rr ′). Let p = w′r be the pay-off of a portfolio
with fixed weights w = (w1, . . . , wN )′. The set of all possible
portfolios built starting from the excess returns in r is denoted
by P . More formally, P is the linear span of r . The mean value
of any portfolio p ∈ P is given by E(p) = w′E(r), and its
cost by C(p) = w′C(r). For the case of excess returns, the
cost of the pay-offs is zero, C(r) = 0, and as a consequence,
the cost of the portfolio p is also zero.§

In addition, the set P is a linear subspace of L2(P), which
is the collection of all random variables with finite variance,
defined on the underlying probability space of P. It is well
known that the set L2(P) is a Hilbert space under the mean-
square inner product: (p, q) ≡ E(pq) for any p, q ∈ P,

with the associated norm ‖p‖ = √
E(p2). Since E(·) is a

continuous function in L2(P), Chamberlain and Rothschild
(1983), invoking Riesz’s representation theorem, to prove that
there is a unique portfolio in P , p0, representing the mean
value of any portfolio in P . Thus, the (uncentered) mean-
representing portfolio p0 is such that

E(p) = E(p0 p) ∀p ∈ P . (3)

Under this topology, the mean representing portfolio is defined
as:

p0 = E(r ′)E(rr ′)−1r = φ0r. (4)
From this expression, we observe that the weights of the mean
representing portfolio are given by the vector φ0 ≡ E(r ′)
E(rr ′)−1. A useful property of this construction methodology
is that there exists a one-to-one mapping between p0 and any
portfolio on the MV efficient frontier, r MV , as described by

r MV = μ
1

E(p0)
p0 (5)

V
[
r MV (μ)

]
=

[
1 − E(p0)

E(p0)

]
μ2, (6)

where μ ∈ R is the expected return and V
[
r MV (μ)

]
is the

variance of the optimal MV portfolio.† In this framework, the

§In a more general set-up, when C(r) �= 0, it is any way possible to
define a costly representing portfolio that in addition to the mean
representing portfolio, characterizes the efficient mean–variance
frontier.
†Taking expectations in (5), we have E(r MV ) = μ. The expression

of the variance in (6) uses the fact that E(p0) = E
(

p0 p0
)

in (3).
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Sharpe ratio of all portfolios on the MV frontier is the same
for all values of μ, and equal to the Sharpe ratio of p0.‡

From (5), note that the weights of the MV portfolio, r MV ,
are simply proportional to the weights of the unique mean-
representing portfolio, p0. Hence, after estimating the weights
of p0, it is straightforward to estimate the weights of r MV , and
then to compute the ex-post realized Sharpe ratio of any MV
portfolio.

2.2.2. Portfolio estimation by GMM. The portfolio
weights,φ0, are estimated using GMM. In particular, Peñaranda
and Sentana (2011, 2012), propose to use the following system
of N + 1 moment conditions to estimate the weights of the
mean-representing portfolio:

E

[
rr ′φ0 − r
rφ0 − μ0

]
= 0(N+1×1). (7)

Here, the first N moment equations comes directly from the
definition in (3), valid for each of N test assets in the investment
menu. The last moment condition identifies the expected return
of the mean representing portfolio, μ0. Peñaranda and Sentana
(2011) show, that under some regularity conditions, the GMM
estimates of the coefficients, θ = (φ0, μ0), are consistent.

Peñaranda and Sentana (2011) propose to incorporate linear
factor models in estimation of the MV frontier, expanding (7)
to the additional moment conditions, E [(1 − b f )r ] = 0, and
estimating the model in one step. We use instead a two-step
approach in which, in a first stage, linear factor models are
estimated and fitted excess returns are obtained, and then, in
the second step, the efficient MV portfolio is estimated by
GMM using (7).§ We opted in favour of using this two-step
approach considering the fact that in preliminary experiments,
the estimated weights turned out to be more stable under this
approach than adopting a one-step method. We consider this
advantage to be prevalent over the increase in estimation error
implied by our two-step set up.

2.3. Portfolio performance evaluation

We evaluate the ex-post realized performance of the portfolios
computed in the manners described in the previous section,
by testing whether there are statistically significant differences
between their OOS, realized Sharpe ratios. In particular, we
perform pairwise tests for all possible combination of models.
We use the robust bootstrapped test of differences in Sharpe

‡If r MV = ap0, where a is a constant defined as μ/E(p0), then

S R(r MV ) = aE(p0)√
a2V (p0)

= E(p0)

σ (p0)
= S R(p0) for any μ ∈ R.

.
§For the case of excess returns (r), we have that the pricing equation
under the SDF form is given by E(rt+1mt+1) = 0 where mt is
the stochastic discount factor. For linear asset pricing models, under
a proper normalization, we can assume that mt = 1 − b′ ft . Thus,
we have E[rt+1(1 − b′ ft )] = 0. In this context, pricing errors are
defined as π = E(rt+1) − b′E(rt b′ f t+1). The second term in this
expression is the fitted returns. After estimating b, and considering
different factors in the model ( ft ), we can estimate them. A similar
approach is followed by Jagannathan and Wuang (2002).

ratios proposed by Ledoit and Wolf (2008).¶ This test uses
the circular-block bootstrap of Politis and Romano (1992) to
build a two-sided confidence interval for the null hypothesis
H0 : � = 0, where � ≡ S R1−S R2 is the difference in Sharpe
ratios between any two portfolios. This test is suitable for our
exercise as it explicitly accommodates non-normality and time
dependence in excess returns data through resampling.

Additionally, to increase the accuracy of our performance
analysis, a small sample bias correction is applied to the es-
timated Sharpe ratios before testing. In particular, Opdyke
(2007) proves that, in the case of small samples, the expected
value of the estimated Sharpe ratio is

E
(
Ŝ R

) = S R

⎡
⎣1 + 1

4

(
μ̂4
σ̂ 4 − 1

)
T

⎤
⎦ , (8)

where μ̂4/σ̂
4 is simply the sample kurtosis of excess returns.

Regardless of the assumption made on the distribution of port-
folio returns, this result is valid asymptotically.

We report a measure of portfolio turnover to quantify the
amount of trading required to implement each of the evaluated
portfolios. Higher turnover implies higher transaction costs,
therefore, the final portfolio profitability is reduced. As is De
Miguel et al. (2009), portfolio turnover is defined as the average
sum of the trades across the N assets in the portfolio as follows:

T urnover = 1

T − 1

T∑
t=1

N∑
i=1

(∣∣φ̂K ,i,t+1 − φ̂K ,i,t+
∣∣) ,

where φ̂k, j,t+1 is the optimal portfolio weight in asset i at time
t + 1 for model K , and φ̂K , j,t+ is the portfolio weight before
rebalancing at t + 1. Note that φ̂K , j,t+ is different than the
optimal portfolio weight at time t, φ̂k, j,t , in most of the cases
because of changes in the prices of the assets in the portfolio.

Finally, note that reported OOS Sharpe ratios are built using
portfolio returns net of transaction costs. Following De Miguel
et al. (2009), we incorporate proportional transaction costs by
computing portfolio net returns as:

Rp,t+1 =
N∑

i=1

φ̂i,t Ri,t+1 − c
N∑

i=1

∣∣φ̂i,t − φ̂i,t−1+
∣∣

where c is the proportional transaction cost of each trade in the
process of rebalancing the portfolio. We assume c equals 50
basis points.

3. Data

Our data consist of monthly, value-weighted, US portfolio
excess returns (over the risk-free rate), from January 1968
to December 2016. ‖ The data are collected from alternative
sources. Fama and French factors and the Momentum factor
are retrieved from Kenneth French’s online data library. Pastor
and Stambaugh (2003)’s liquidity factor comes from Lubos

¶This test has been used in portfolio applications by De Miguel et al.
(2009, 2014), among others.
‖The sample period is defined by the availability of data of the whole
set of tested models and test assets. Both, the liquidity factor of
Pastor and Stambaugh (2003) and the factors in Hou et al. (2015)
are available from 1968:01 onwards.
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Pastor’s website. Finally, the data of the four-factor model of
Hou et al. (2015) were kindly provided by Professor Hou. The
set of test assets considered in our main results are 10 and 17
industry portfolios, plus the 25 double-sorted size and book-
to-market portfolios.† We consider a 49 industry portfolio and
a 25 double-sorted size and momentum portfolio in additional
exercises. All the test asset returns are collected from Kenneth
French’s library as well.

The set of factors considered in the analysis includes the
excess return on the market portfolio over the risk-free rate
as proxied by 1-month T-bill returns (MKT), the size portfolio
(SMB- small minus big), the value portfolio (HML- high minus
low), the momentum portfolio (MOM), the liquidity factor
(LIQ) of Pastor and Stambaugh (2003) and the profitability
portfolio (RMW - robust minus weak) and the investment
portfolio (CMA - conservative minus aggressive) incorporated
in Fama and French (2015). Hou et al. (2015) also propose to
consider a profitability factor and an investment factor that we
use when required. The first four factors have been extensively
used in the empirical finance literature. Therefore, we refer
the reader to Fama and French (1993) and Carhart (1997) for
details of how they are built. The liquidity factor corresponds
to the value-weighted return on the 10-1 portfolio from a sort
on historical liquidity betas.‡ The profitability and investment
factors introduced by Fama and French (2015) are double-
sorted portfolios on size and operating profitability§ and size
and investment, measured as the change in total assets, respec-
tively. Hou et al. (2015) uses ROE as profitability measure and
the change in total assets as investment measure as well. Our
final sample (1968:01–2016:12) contains 588 months.

In summary, we study six linear factor models: the CAPM
(K = 1), the three-factor model (K = 3) of Fama and French
(1993), the four-factor model (K = 4M) of Carhart (1997), the
four-factor liquidity model (K = 4L) of Pastor and Stambaugh
(2003), the four-factor model (K = 4H) of Hou et al. (2015)
and finally, the five-factor model (K = 5) of Fama and French
(2015).

4. Empirical results

In this section, we describe and analyse our empirical results.

4.1. Empirical set-up

Our empirical strategy relies on a five-year moving rolling
window set up.¶ Our first assessment window starts in January

†Abhakron et al. (2013) also use 25 size & value portfolios and 10
industries portfolios to evaluate the value added by Fama–French
factors to the C–CAPM.
‡In Pastor and Stambaugh (2003), the liquidity factor was built sorting
the portfolios on predicted betas instead of historical liquidity betas.
However, the use the last series as it is the one available in Lubos
Pastor’s webpage.
§Operating profitability is measured as revenues minus cost of goods
sold, minus selling, general and administrative expenses, minus
interest expense all divided by book equity.
¶De Miguel et al. (2009) use a similar rolling window framework
in applied analysis of realized portfolio performances. We have
performed robustness checks and repeated our tests for alternative
window lengths in the rolling estimation set-up finding essentially
unchanged results that remain available from Author(s) upon request.

1968 and ends in December 1972. For this window, we estimate
the set of linear asset pricing models under examination and
the associated MV efficient portfolios. Then, using the excess
returns actually observed in January 1973, we compute the
realized ex-post portfolio return on the basis of the weights
computed as of the end of December 1972. Next, we move the
estimation window one period forward, covering now the sam-
ple February 1968–January 1972. We re-estimate the models,
the implied MV portfolio weights, and compute realized ex-
post portfolio return realized during February 1973. We repeat
this process for the 528 windows that can be built from our data.
The time series of realized ex-post portfolio returns

{
r p
w

}528
w=1

is used to compute the OOS Sharpe ratio as μ(r p
w)/σ(r p

w). Fi-
nally, we apply the small-sample bias correction using (8) and
compare the portfolio performances generated by alternative
SDFs using the test of Sharpe ratios differences by Ledoit and
Wolf (2008).

We use five sets of test assets: 10 industries, 17 industries and
the 25 size-value portfolios for our main results, and 25 size-
momentum and 49 industries for additional results. Thus, we
report and comment five different sets of results (tables), one
for each asset menu. Each table contains four panels proving
results for first- and second-stage GMM estimators, and un-
centred and centred SDF models. Following Jagannathan and
Ma (2003), we impose short-sale constraints in the estimation
of our portfolios as a way to increase the robustness of MV
portfolios and protect them against excessive variation induced
by sampling error afflicting the sample moments that represent
their ingredients.‖

In each panel, we report in-sample measures of fit (GLS
R2, the p-value of the J-Test and the RMSE), the OOS Sharpe
ratio accounting for transaction costs, a measure of portfolio
turnover, and finally, the p-value of the test of differences in
Sharpe ratios for pairs of models. The GLS R2 is the General-
ized Least Squared cross-sectional R2 of linear factor models.
Lewellen et al. (2010) suggest reporting this measure, instead
of the standard OLS R2 for example, to evaluate alternative
asset pricing models. The higher the GLS R2, the better the
in-sample fit of the models, which in this particular case can
be interpreted as the maximum Sharpe ratio obtainable from
the set of test assets. The J-test(p-val) statistic is the p-value of
the chi-squared J-test of over-identifying restrictions in GMM
estimation. The null hypothesis of the test is that the mo-
ment conditions included in GMM estimation are valid. We
also report the in-sample root mean square error (RMSE).††
As a measure of performance of the portfolios, we discuss
the ex-post realized OOS Sharpe ratio (OOS-SRT C ), which
is commonly used by academics and practitioners alike for
performance evaluation purposes (e.g. see De Miguel et al.
2009). The subscript T C refers to the fact portfolio returns
are adjusted by transaction costs. Following De Miguel et al.
(2009), we assume proportional transaction costs of 50 basis

‖In robustness checks, we have studied the role of imposing short
sales constraint on the portfolio optimization problem. We find that
short sale constraints help to increase the out-of-sample Sharpe ratio
of the portfolios by reducing sampling variability and estimation error
in the portfolio problem. Detailed results are available from Author(s)
upon request.
††Similar results are obtained using the Mean Absolute Error (MAE).
We do not report those results to save space.
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Table 1. In-sample asset pricing model evaluation and out-of-sample portfolio performance (Test Assets: 10 Industries).

First stage estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRT C Turnover SR Diff. Test (p-value)

1 0.14 0.38 0.36 0.026 7.63
3 0.38 0.49 0.23 0.127 0.67 0.17
4M 0.58 0.66 0.16 0.156 0.50 0.03** 0.18
4L 0.58 0.57 0.18 0.158 0.49 0.03** 0.15 0.99
4H 0.53 0.64 0.17 0.132 0.54 0.08* 0.63 0.25 0.22
5 0.57 0.56 0.17 0.116 0.62 0.29 0.46 0.02** 0.06* 0.20

Centered SDF (a = 1 − λ′E( f ))

1 0.14 0.38 0.37 0.019 13.57
3 0.38 0.49 0.24 0.131 0.70 0.00***
4M 0.58 0.65 0.18 0.140 0.52 0.00*** 0.60
4L 0.58 0.58 0.18 0.158 0.53 0.01*** 0.43 0.60
4H 0.54 0.62 0.19 0.118 0.57 0.00*** 0.86 0.71 0.39
5 0.57 0.57 0.17 0.110 0.64 0.00*** 0.58 0.32 0.17 0.32

Second-stage estimators

Uncentered SDF (a = 1)

1 0.14 0.35 0.43 0.046 4.88
3 0.38 0.50 0.34 0.141 0.69 0.23
4M 0.58 0.67 0.27 0.148 0.62 0.11 0.77
4L 0.58 0.57 0.29 0.162 0.50 0.10* 0.59 0.70
4H 0.54 0.64 0.27 0.111 0.57 0.55 0.33 0.13 0.21
5 0.57 0.56 0.28 0.071 0.75 0.73 0.15 0.15 0.15 0.63

Centered SDF (a = 1 − λ′E( f ))

1 0.14 0.38 0.42 -0.012 6.04
3 0.38 0.49 0.34 0.135 0.77 0.00***
4M 0.58 0.65 0.29 0.153 0.63 0.00*** 0.61
4L 0.58 0.58 0.29 0.174 0.53 0.01*** 0.43 0.65
4H 0.54 0.52 0.30 0.133 0.67 0.00*** 0.84 0.72 0.41
5 0.57 0.57 0.29 0.115 0.61 0.01*** 0.57 0.32 0.17 0.31

Benchmarks

1/N MV MinV
OOS SR 0.136 0.109 0.136

The table reports In-sample measures of goodness of fit for a set of linear asset pricing models and Out-of-Sample portfolio performance backed by the same set
of models. The models consider are the CAPM (K = 1), the three-factor (K = 3) model of Fama–French (1993), the four-factor (K = 4M) model of Carhart
(1997), the four-factor (K = 4L) model of Pastor and Stambaugh (2003), the four-factor (K = 4H) model of Hou et al. (2015) and the five-factor (K = 5)

model of Fama and French (2015). The in-sample measures reported are the R2 of the estimated linear factor model by Generalized Least Squares under its beta
representation (see Lewellen et al. 2010), the p-value of the GMM’s overidentification test (J-test) and the root mean squared error (RMSE). The out-of-sample
portfolio performance measures are the Sharpe Ratio, taking into account transaction costs, and portfolio turnover. Finally, we report a matrix containing
pairwise p-values for the test of difference in Sharpe ratios of Ledoit and Wolf (2008). * significant at 90%, ** significant at 95% and *** significant at 99%.
1/N is the equally weighted portfolio, MV is the historical mean–variance tangent portfolio and MinV is the historical global minimum variance portfolio. The
OOS-SR of the benchmark models are also computed within a rolling window Set-up for comparability purposes. First- and second-stage estimators refer to
weighted matrix used in the GMM estimation. Uncentred and centred SDF differ in the normalization imposes on the constant term in the linear SDF model.

points for each trade during portfolio rebalancing. We also
report a portfolio turnover measure defined as the average sum
of the trades across the assets in the portfolio.

The p-values of the test of difference in Sharpe ratios are
reported in a triangular matrix in the last columns of each panel.
The first column reports the p-values comparing the CAPM
with the other models, the second column reports the p-values
comparing the FF3 factor model with the other models, etc.
The null hypothesis of the test is H0 : S R1 − S R2 = 0, and
the alternative hypothesis is H1 : S R1 − S R2 �= 0 for any
two portfolios. Finally, at the bottom of each table, we report
OOS-SR for three benchmark models: the equally weighted
portfolio (1/N ), the mean–variance tangency portfolio (MV)
and the global minimum variance portfolio (MinV). The last
two models are computed using historical returns.†

† The weights of the mean–variance tangency portfolio are given by
wT = 	̂−1μ̂/(ı ′	̂−1μ̂) and the weights of the global minimum

4.2. Main results

In table 1, we report estimates for the case of 10 industry
portfolios. Looking at the in-sample performance measures in
the first panel, we observe that, in general, multifactor models
outperform the CAPM, as the four-factor Liquidity model is the
model producing the best fit. For instance, the CAPM implies
a GLS R2 of 0.14 to be contrasted with 0.58 for both the four-
factor liquidity model and the four-factor momentum model,
and 0.57 for the five-factor model. This result is consistent with
the bulk of the asset pricing literature. The results concerning
the OOS performance measures are however more intriguing.
In the case of the 10 industry portfolios, we observe a similar

variance portfolio are given by wG MV P = 	̂−1ı/(ı ′	̂−1μ̂), where
	̂ is the sample (N × N ) covariance matrix of excess returns, μ̂ is
the N -vector of sample mean excess returns and ı is a N -vector of
ones.
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Table 2. In-sample asset pricing model evaluation and out-of-sample portfolio performance (Test Assets: 17 Industries).

First stage estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRT C Turnover SR Diff.Test (p-value)

1 0.07 0.33 0.44 0.033 6.82
3 0.22 0.38 0.32 0.131 0.73 0.05**
4M 0.36 0.52 0.23 0.125 0.68 0.03** 0.59
4L 0.32 0.44 0.27 0.105 0.66 0.23 0.40 0.29
4H 0.32 0.55 0.23 0.130 0.56 0.06* 0.99 0.59 0.43
5 0.34 0.52 0.23 0.108 0.52 0.21 0.40 0.25 0.95 0.38

Centered SDF (a = 1 − λ′E( f ))

1 0.07 0.32 0.45 0.022 3.66
3 0.22 0.37 0.32 0.126 0.76 0.28
4M 0.36 0.51 0.25 0.115 0.68 0.33 0.69
4L 0.32 0.44 0.27 0.109 0.62 0.06* 0.19 0.36
4H 0.32 0.50 0.26 0.114 0.60 0.02** 0.14 0.20 0.81
5 0.34 0.49 0.24 0.102 0.59 0.05** 0.21 0.35 0.92 0.66

Second-Stage Estimators

Uncentered SDF (a = 1)

1 0.07 0.33 0.67 0.049 1.99
3 0.22 0.38 0.57 0.159 0.52 0.08*
4M 0.36 0.52 0.46 0.120 0.59 0.20 0.30
4L 0.32 0.44 0.49 0.170 0.52 0.03** 0.68 0.09*
4H 0.32 0.55 0.46 0.056 0.81 0.57 0.39 0.32 0.09*
5 0.34 0.52 0.47 0.130 0.44 0.26 0.39 0.98 0.05** 0.41

Centered SDF (a = 1 − λ′E( f ))

1 0.07 0.32 0.53 0.028 18.31
3 0.22 0.37 0.51 0.036 0.89 0.28
4M 0.36 0.51 0.44 0.106 0.66 0.34 0.67
4L 0.32 0.44 0.45 0.144 0.59 0.07* 0.18 0.36
4H 0.32 0.50 0.48 0.157 0.70 0.04** 0.15 0.17 0.78
5 0.34 0.49 0.43 0.139 0.55 0.07* 0.22 0.38 0.90 0.66

Benchmarks

1/N MV MinV
OOS SR 0.142 0.122 0.141

See notes in table 1.

pattern as for the in-sample performance measures: multifactor
models outperform the CAPM by producing higher realized
OOS Sharpe ratios. In the first panel, the estimated OOS-SR
are 0.030, 0.127, 0.156, 0.158, 0.132 and 0.116 for the CAPM,
the FF3 model, the Carhart model, the liquidity model, the
HXZ model and the five-factor model, respectively. The esti-
mated differences between the CAPM and the Sharpe ratios of
the multifactor models are about 12significant. The difference
between the three-factor and the four-factor models does not
appear to be statistically significant, though. The five-factor
model is dominated in terms of OOS-SR by both the four-factor
liquidity model and the four-factor momentum model. When
the performance of the models is compared with the benchmark
portfolios, we observe that most of the multifactor models
produces an OOS-SR higher than the 1/N portfolio (0.115),
the historical tangency MVportfolios (0.097) and the minimum
variance portfolio (0.13). This evidence supports the idea that
in some cases, formally incorporating linear factor models for
the SDF in the asset allocation problem—hence enforcing from
the start the absence of arbitrage opportunities—produces a
better performance than traditional portfolio models. Across
the remaining three panels in table 1, we find results similar to

the ones found in the first panel. Hence, we conclude that our
results are robust to the use of first- and second-stage GMM
estimators and uncentred and centred SDF normalizations.

In table 2, we report estimates for the case of the 17 industry
portfolios. These results are qualitatively the same as those
obtained in the case of 10 industry portfolios.We note again that
multifactor models outperform the CAPM, both in sample and
OOS. For example, in the first panel, the GLS R2 are 0.07, 0.27,
0.36, 0.32, 0.32 and 0.34 for the CAPM, the FF3 model, the
four-factor momentum model, the four-factor liquidity model
and the five-factor model, respectively. The OOS-SR are 0.033,
0.131, 0.125, 0.105, 0.130 and 0.108, respectively. Again, the
differences between multifactor models and the CAPM are
positive (around 9 percent) and significant in most of the cases.
As before, we do not find statistical significant differences
between the multifactor models at standard confidence levels.
When we examine the remaining three panels, we find similar
results. However, it is worth mentioning that in the case of
the uncentred SDF applied to two-stage estimators in panel
three, we find some significant differences between multifactor
models: the four-factor liquidity model outperforms both the
four-factor momentum model and the five-factor FF model.
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Table 3. In-sample asset pricing model evaluation and out-of-sample portfolio performance (Test Assets: 25 Size/Boolk-to-Market).

First stage estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRT C Turnover SR Diff.Test (p-value)

1 0.04 0.01 0.41 0.005 8.12
3 0.12 0.06 0.22 0.103 0.66 0.10*
4M 0.16 0.10 0.19 0.127 0.53 0.11 0.91
4L 0.16 0.07 0.20 0.094 0.46 0.19 0.25 0.29
4H 0.16 0.06 0.18 0.127 0.44 0.09* 0.97 0.94 0.25
5 0.21 0.07 0.16 0.137 0.41 0.08* 0.77 0.68 0.16 0.55

Centered SDF (a = 1 − λ′E( f ))

1 0.04 0.01 0.42 0.033 4.36
3 0.12 0.05 0.23 0.097 0.62 0.24
4M 0.16 0.07 0.21 0.096 0.53 0.14 0.45
4L 0.16 0.06 0.22 0.070 0.55 0.22 0.68 0.74
4H 0.16 0.06 0.22 0.120 0.56 0.27 0.93 0.57 0.73
5 0.21 0.08 0.18 0.149 0.44 0.18 0.33 0.88 0.68 0.44

Second-stage estimators

Uncentered SDF (a = 1)

1 0.04 0.01 1.31 0.056 1.34
3 0.12 0.06 1.05 0.059 0.29 0.74
4M 0.16 0.10 0.85 0.093 0.41 0.26 0.20
4L 0.16 0.07 0.95 0.043 0.44 0.81 0.62 0.18
4H 0.16 0.06 0.68 0.135 0.59 0.06* 0.01*** 0.16 0.11
5 0.21 0.07 0.75 0.069 0.43 0.32 0.10* 0.73 0.30 0.09*

Centered SDF (a = 1 − λ′E( f ))

1 0.04 0.01 1.18 -0.003 1.69
3 0.12 0.05 0.93 0.042 0.39 0.27
4M 0.16 0.07 0.91 0.056 0.60 0.14 0.43
4L 0.16 0.06 0.82 0.049 0.62 0.22 0.71 0.70
4H 0.16 0.06 0.78 0.041 0.62 0.26 0.95 0.54 0.67
5 0.21 0.08 0.79 0.062 0.65 0.17 0.33 0.88 0.64 0.43

Benchmarks

1/N MV MinV
OOS SR 0.142 0.122 0.142

See notes in table 1.

The latter also produces a higher OOS-SR than the four-factor
model of Hou et al. (2015). Therefore, how finely the CRSP
universe stock return data are disaggregated in terms of indus-
tries does not seem to affect the superior ability of relatively
rich linear SDF recommended in the asset pricing literature to
yield portfolio weights that outperform either the CAPM or
classical benchmarks that have shaker rooting in no-arbitrage
pricing models.

In table 3, we report estimates for the case of the 25 size- and
value- (double) sorted portfolios. The results become slightly
weaker in terms of the OOS-SR point estimates and signif-
icance across models. However, the pattern remains qualita-
tively the same in the sense that multifactor models outperform
the CAPM both in-sample and OOS. For example, in the first
panel, the GLS R2 are now only 0.04, 0.12, 0.16, 0.16, 0.16
and 0.21, whereas the OOS-SR are 0.005, 0.103, 0.127, 0.094,
0.127 and 0.137 for the CAMP, FF3 model, four-factor models
and the five-factor model of Fama and French (2015). Just
to mention them at least once, the RMSEs are 0.41, 0.22,
0.19, 0.20, 0.18, and 0.16 and they clearly decline as one
increases the number of factors K to include also SMB, HML,
momentum, RMW and CMA as additional factors in the SDF.

When we use the level of turnover to evaluate how costly the
implementation of the portfolios is for different factor models,
we find a similar pattern than the one given by the OOS-SR
across test assets: the level of turnover for the CAPM is consid-
erable higher than the one of multifactor models. This implies
that not only the multifactor models outperform the CAPM
by delivering higher risk-adjusted out-of-sample returns, but
also by involving much less trades triggered by portfolio re-
balancing. Less clear is the comparison among multifactor
models where turnover estimates are of similar magnitude.
Overall, it seems that the higher is the number of factors in
the model, the lower is the portfolio turnover. In comparison
with Benchmarks models, for this set of test assets, we find that
only in one case, the five-factor model in the second panel, the
performance of the portfolio backed by a linear factor model
is superior to the 1/N portfolio (0.149 vs. 0.142).

4.3. Additional results for alternative test assets

When studying the relationship between the in-sample and
the out-of-sample performance of the portfolios backed by
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Table 4. In-sample asset pricing model evaluation and out-of-sample portfolio performance (Test Assets: 49 Industries).

First stage estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRT C Turnover SR Diff. Test (p-value)

1 0.01 0.00 0.63 -0.004 2.73
3 0.03 0.00 0.49 0.011 1.19 0.60
4M 0.06 0.00 0.41 0.065 0.68 0.20 0.34
4L 0.05 0.00 0.46 0.104 0.74 0.15 0.30 0.54
4H 0.05 0.00 0.41 0.050 0.77 0.40 0.55 0.37 0.13
5 0.06 0.00 0.41 0.067 0.61 0.27 0.39 0.59 0.26 0.45

Centered SDF (a = 1 − λ′E( f ))

1 0.01 0.00 0.64 -0.011 2.55
3 0.03 0.00 0.49 0.112 0.97 0.04**
4M 0.05 0.00 0.45 0.053 0.75 0.26 0.06
4L 0.05 0.00 0.46 0.103 0.73 0.46 0.11 0.55
4H 0.05 0.00 0.46 0.029 1.10 0.23 0.40 0.78 0.50
5 0.06 0.00 0.43 0.072 0.66 0.17 0.43 0.63 0.36 0.83

Second-stage estimators

Uncentered SDF (a = 1)

1 0.01 0.00 3.31 0.021 2.27
3 0.03 0.00 1.94 0.055 0.54 0.54
4M 0.06 0.00 1.64 0.043 0.57 0.90 0.43
4L 0.05 0.00 1.87 0.092 0.42 0.26 0.32 0.14
4H 0.05 0.00 1.37 0.037 0.64 0.86 0.65 0.93 0.27
5 0.06 0.00 1.58 0.053 0.58 0.46 0.90 0.42 0.33 0.58

Centered SDF (a = 1 − λ′E( f ))

1 0.01 0.00 3.04 0.090 2.32
3 0.03 0.00 1.66 0.022 0.84 0.04**
4M 0.06 0.00 1.55 0.066 0.83 0.23 0.05**
4L 0.05 0.00 1.51 0.085 0.74 0.45 0.12 0.61
4H 0.05 0.00 1.53 0.057 0.85 0.24 0.37 0.75 0.51
5 0.06 0.00 1.40 0.048 1.15 0.17 0.41 0.61 0.36 0.88

Benchmarks

1/N MV MinV
OOS SR 0.126 0.106 0.124

See notes in table 1.

the models, one concern is whether the analysed linear factor
models are good asset pricing models in the first place or
not. In other words, whether the CAPM and the multifactor
models are able to reasonable explain the cross-section of stock
returns. In this regard, the results presented so far show that
the vast majority of the analysed models are valid in fitting the
cross-section of stock returns, when the 10 and 17 industries
portfolios and the 25 size-book-to-market portfolios are used as
test assets. According to the GMM´s J-test of over-identifying
restrictions, most of the models are valid at the 5results so far
are conditional to using a valid model, at least under this metric.

What happens if the considered linear asset pricing model is
not valid then? Would they still be able to produce portfolios
exploiting potential differences among models? To address this
concern, we estimate the models considering two additional
test assets: 49 industries portfolios and 25 double-sorted size
and momentum portfolios. We select these two additional test
assets because it is well known that standard linear factor asset
pricing models show limited ability to fit large dimensional
(industry) portfolios and portfolios capturing momentum.†

†We thank a referee for suggesting this analysis.

In table 4, we report our estimates considering as test asset
49 industries portfolios, and in table 5, we report our estimates
considering as test assets 25 size–momentum portfolios. Con-
sistent with prior literature studying the in-sample fit of linear
asset pricing model, we find that the considered models show
a poor fit as compared with the previous results. For the case
of 49 industries portfolios, the J-Test’s null hypothesis of valid
moment conditions is rejected in all the cases; whereas for the
case of 25 double-sorted size and momentum portfolios only
the four-factor liquidity model and the five-factor model are
marginally valid as the null hypothesis is not rejected at the
5 percent of significance. When we look at the OOS-SR per-
formance of the models, the documented differences between
the CAPM and multifactor models are reduced significantly
or they disappear. Thus, this evidence seems to be consistent
with the idea that the use of linear factor asset pricing models
to build portfolios delivering significant risk-adjusted returns
is conditional to the ability of the model to fit the cross-section
of returns reasonably well in a first stage.
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Table 5. In-sample asset pricing model evaluation and out-of-sample portfolio performance (Test Assets: 25 Size/Momentum).

First stage estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRT C Turnover SR Diff.Test (p-value)

1 0.03 0.00 0.49 0.112 0.85
3 0.11 0.01 0.32 0.121 0.62 0.47
4M 0.15 0.03 0.24 0.126 0.42 0.48 0.97
4L 0.14 0.07 0.29 0.066 0.57 0.78 0.14 0.17
4H 0.13 0.03 0.23 0.128 0.40 0.42 0.95 0.87 0.17
5 0.19 0.15 0.20 0.104 0.44 0.63 0.37 0.39 0.25 0.27

Centered SDF (a = 1 − λ′E( f ))

1 0.03 0.00 0.50 0.109 0.85
3 0.11 0.01 0.33 0.134 0.65 0.87
4M 0.15 0.02 0.26 0.118 0.38 0.36 0.04**
4L 0.13 0.07 0.30 0.072 0.60 0.75 0.80 0.04**
4H 0.13 0.02 0.27 0.099 0.52 0.60 0.27 0.58 0.19
5 0.19 0.08 0.25 0.064 0.49 0.94 0.92 0.44 0.84 0.62

Second-stage estimators

Uncentered SDF (a = 1)

1 0.03 0.00 1.69 0.016 4.33
3 0.11 0.01 1.12 0.060 0.44 0.72
4M 0.15 0.03 0.98 0.062 0.54 0.58 0.80
4L 0.14 0.07 0.99 0.049 0.57 0.83 0.67 0.63
4H 0.13 0.03 0.85 0.068 0.49 0.25 0.23 0.35 0.21
5 0.19 0.15 0.77 0.062 0.56 0.66 0.81 0.89 0.55 0.34

Centered SDF (a = 1 − λ′E( f ))
K R2 GLS J-Test RMSE OOS SRT C Turnover SR Diff.Test (p-value)
1 0.03 0.00 1.47 0.036 1.70
3 0.11 0.01 1.01 0.075 0.55 0.85
4M 0.15 0.02 1.04 0.047 0.77 0.37 0.04**
4L 0.13 0.07 0.84 0.079 0.85 0.75 0.79 0.05**
4H 0.13 0.02 1.04 0.056 0.72 0.62 0.27 0.57 0.23
5 0.19 0.08 0.85 0.069 0.69 0.93 0.92 0.41 0.85 0.63

Benchmarks

1/N MV MinV
OOS SR 0.129 0.104 0.128

See notes in table 1.

5. Conclusions

This paper evaluates linear stochastic discount factor models
based on the out-of-sample realized performance of MV ef-
ficient portfolios backed by the models. In particular, we test
whether the well-documented superior ability of multifactor
models to fit the cross-section of expected returns in sample
over the CAPM survives the test of well-crafted OOS tests
based on a commonly employed portfolio metric. Moreover,
we test whether there is any connection or even correlation
between the in-sample statistical performance of the SDF lin-
ear factor models and their OOS portfolio performance. Our
methodology consists of two steps. In the first stage, the linear
factor models are estimated under their SDF representation
by GMM, as described by Cochrane (2009). In the second
step, we use the predicted excess returns from the estimated
models to compute MV efficient portfolios using the concept
of mean-representing portfolio introduced by Chamberlain and
Rothschild (1983). As it is shown by Peñaranda and Sentana
(2011, 2012), the mean-representing portfolio delivers a set
of moments that allow us to consistently estimate by GMM a
(no arbitrage) MV frontier. Finally, we compute realized OOS

Sharpe ratios based on the recursive portfolio weights obtained
from each model.

Using several samples of test assets consisting of monthly
US portfolio equity returns spanning the period 1968–2016,
we provide evidence that multifactor linear models have better
empirical properties than the CAPM, not only when the cross-
section of expected returns is evaluated in-sample, but also
when a portfolio metric is used OOS. Besides, we document
that there is an empirical link between the in-sample statistical
performance and the OOS performance of linear factor SDF
models: the models exhibiting the best in-sample performance
are also the models with the best OOS one. This result is
consistent with the idea that asset pricing models provide useful
information to an investor solving a MV problem and that
the standard in-sample fit recorded in the literature contains
reliable information on the underlying DGP driving the SDF.
We also report that multifactor models outperform the CAPM
yielding monthly OOS Sharpe ratios that are higher by as much
as 10 per cent. These results are robust to extending the exercise
to alternative asset menus, to adopting first- vs. two-step GMM
estimators and to centred and uncentred SDF specifications.
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We left for future research to explore the economic forces
driving the documented connection between the in-sample and
the OOS performance of linear factor models. In this regard,
Morana (2014) provides an interesting insight by showing that
the SMB, HML, MOM and LIQ factors reflect compensation
for macroeconomic and financial risk. Thus, the link between
factors and macroeconomic conditions may potentially ac-
count for the documented correlation between in-sample and
OOS performance measures. Additionally, our key result may
be considered natural when the subspace of returns spanned
by the multi-factor models generates more efficient mean–
variance portfolios than the returns on the market alone, which
is the subspace generated by the CAPM, and this fact gets in
principle stronger, the larger the number of factors driving the
dynamics of cross section of returns not spanned by the market
portfolio, that multi-factor models correctly capture. When in
the paper we have expanded the size of the test asset menus,
the evidence has failed to reveal that as the number of factors
grow, the OOS performances of richer SDF models improves.
It is not clear why this may occur, even though one cannot rule
out that the samples may still be too short to reveal the true data
generating process governing the SDF and/or that the true but
unknown SDF governing the cross section of US equity returns
may be of a nonlinear type, for instance as in Dittmar 2002).
Therefore, it would be interesting to explicitly map our results,
say a notion of a “ratio” between in-sample RMSE and OOS
Sharpe ratios improvements vs. the CAPM to formal spanning
tests, along the lines of Peñaranda and Sentana (2012).
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