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A B S T R A C T

This article presents a holistic framework for the design, implementation and experimental validation of Battery
Management Systems (BMS) in rotatory-wing Unmanned Aerial Vehicles (UAVs) that allows to accurately (i)
estimate the State of Charge (SOC), and (ii) predict the End of Discharge (EOD) time of lithium-polymer batteries
in small-size multirotors by using a model-based prognosis architecture that is efficient and feasible to imple-
ment in low-cost hardware. The proposed framework includes a simplified battery model that incorporates the
electric load dependence, temperature dependence and SOC dependence by using the concept of Artificial
Evolution to estimate some of its parameters, along with a novel Outer Feedback Correction Loop (OFCL) during
the estimation stage which adjusts the variance of the process noise to diminish bias in Bayesian state estimation
and helps to compensate problems associated with incorrect initial conditions in a non-observable dynamic
system. Also, it provides an aerodynamic-based characterization of future power consumption profiles. A
quadrotor has been used as validation platform. The results of this work will allow making decisions about the
flight plan and having enough confidence in those decisions so that the mission objectives can be optimally
achieved.

1. Introduction

UAVs have received much attention in recent years due to their
wide range of military and civilian applications. Fixed-wing UAVs and
rotary-wing UAVs are being used for surveillance, reconnaissance,
mapping, cartography, border patrol, inspection, homeland security,
search and rescue, fire detection, agricultural imaging, traffic mon-
itoring, to name just a few application domains. Multicopters (a type of
rotary-wing aircraft) have recently emerged as the platform of choice
for a variety of uses. They can hover in place and take off and land
vertically, unlike their fixed-wing counterparts [1]. In general, they are
highly maneuverable and enable safe and low-cost experimentation in
mapping, navigation, and control algorithms in three dimensions.

UAVs are ideally suited for long endurance applications and the
flight endurance is in direct relationship to the total weight of the craft.
Therefore, Lithium Polymer (Li–Po) batteries in electric UAVs are

usually used as power source on account of their high density energy
[2]. Nevertheless, electric UAVs experience problems and risks asso-
ciated with the use of batteries as primary power source, such as tem-
perature dependence, electric load dependence or aging dependence,
and flight times are generally short [3].

The intensive use of Li–Po batteries in the electric vehicle industry
has popularized the concept of Battery Management Systems (BMS).
These systems are mainly aimed at using in a better way the energy
stored in the batteries and provide real-time diagnosis information for
the benefit of craft operator. To accomplish these tasks, BMS must use
information about the battery’s SOC and its Remaining Useful Life
(RUL) [4]. The knowledge of these state variables is not only necessary
to verify if the mission goal(s) can be accomplished but also important
to aid in online decision-making activities such as fault mitigation and
mission replanning.

SOC estimation and prognostic strategies are fundamental for the
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characterization of the EOD time. However, as in many other state es-
timation problems, the SOC is not observable, namely, it can not be
directly measured and it has to be inferred from indirect but partially
correlated measurements (e.g., the battery voltage, discharge current,
or temperature) [4]. Because real value of SOC is not known with
complete certainty, battery-powered electric UAVs suffer from un-
certainties in estimating the remaining charge. Therefore most flight
plans are highly conservative in nature, which means flight times are
even shorter than what the battery capacity could support.

The development of BMS for battery-powered electric UAVs has
focused on Bayesian-based methods [5–10] because they have provided
decent results in estimation and prognosis problems. Among these
methods are those based on Extended Kalman Filter (EKF) [11–13],
Unscented Kalman Filter (UKF) [14–16], and Particle Filter (PF)
[4,17,18]. Unlike other methods, Bayesian-based methods can adjust
the SOC in real time for different load conditions [19] and they are able
to assess the estimate’s confidence by a Probability Density Function
(PDF) [20]. Using the concept of artificial evolution in conjunction with
Bayesian methods provides the mechanism for generating new para-
meter (e.g., the battery internal resistance) values at each time step by
adding additional random disturbances to sampled state vectors, which
has proved to be efficient because it incorporates the effect of en-
vironmental factors (e.g., temperature, or battery degradation and age).
This concept is implemented by extending the dimension of the state
vector of the system model [21,22]. For applications with a longer
prediction horizon, a framework based on the combination of partial
least squares (PLS) and Takagi-Sugeno (TS) fuzzy systems have been
recently reported in [23] to produce real forecast models with a longer
prediction horizon which would allow predicting voltage of batteries in
a few hours based on current process values trends.

To use Bayesian estimation methods, the relationship between SOC
and other measurable units, such as voltage, current or temperature,
should be first established. Namely, a battery model as a function of
SOC should be used, where usually the current is considered as an
input. Although several battery state models have been reported with
different levels of granularity and abstraction, they are typically com-
plex and need to identify several parameters which is impractical in real
time applications. Performance show that higher granularity and lower
levels of abstraction might generally give more accurate predictions,
but they also result in larger parameter sets which may not have good
convergence properties if included in the state vector [5].

In [24], a model for battery prognostics based on the underlying
physics is presented. Using equations based on electrochemistry, they
developed a model that is both accurate and efficient, unlike previous
electrochemistry-based models which are often computationally in-
efficient. As a result, prognostics results for EOD prediction were shown
to be very accurate, with the uncertainty associated with the model
remaining very small. Nevertheless, this approach requires a large
number of parameters (27 parameters) to be estimated off-line. These
could be difficult to optimally find considering the constraints imposed
by the model. In [4], an equivalent circuit battery model is introduced,
namely, an empirical model that allows the implementation of Bayesian
filtering methods that efficiently and effectively estimate the SOC in
real-time and only requires the estimation off-line of 7 parameters.
However, its parameterization for the Open Circuit Voltage (OCV)
curve is insufficient for batteries of more than one cell.

In addition, a proper future load profile characterization leads to
End of Discharge (EOD) predictions that are more accurate and more
stable as well [7]. Future load profile can be inferred from the flight
plan, namely, length and speed of each flight phase, for example, climb,
hover, forward flight, etc. The other major factors that affect perfor-
mance and power consumption are density altitude (air density relative
to altitude, pressure and temperature), weight, and, wind direction and
velocity [25]. As the air becomes thinner with altitude and heat, this
greatly decreases the propeller’s ability to generate lift.

The future load profile characterization has been addressed by

establishing a mean current for each flight maneuver based on either
historical data of typical flights [5] or aerodynamic models [8]. Then, a
PDF is defined around the current mean in order to characterize the
uncertainty associated with unmodeled phenomena (e.g., temperature)
[6,7]. However, while aforementioned studies are aimed at fixed-wing
aircraft (with the exception of de Souza Candido et al. [9] which is
aimed at rotary-wing aircraft, although it is limited to numerical si-
mulations and hover flight) little work has been done regarding to BMS
for rotary-wing UAVs. Because rotary-wing and fixed-wing aero-
dynamics are different, their performances and power consumptions in
each flight maneuver are different as well. Therefore, BMS for rotary-
wing UAVs must consider a characterization of the power consumption
in rotary-wing aircraft in order to properly define the future load pro-
files used in prognostic.

UAVs usually have weight, size and cost constraints. Therefore,
there is a need to accurately (i) estimate the State of Charge (SOC), and
(ii) predict the End of Discharge (EOD) time of Li–Po batteries in small-
size multirotors that can operate in constrained environments.

To reduce computational resources without losing accuracy, this
paper proposes a simplified equivalent circuit battery model that takes
advantage of artificial evolution to estimate some of its parameters,
along with an Outer Feedback Correction Loop (OFCL) during the es-
timation stage which adjusts the variance of the process noise to di-
minish the bias in Bayesian state estimation. In addition, an aero-
dynamic-based model of the power required is proposed instead of
using a large amount of flight data or flight simulations to define future
power consumption profiles. A small quadrotor is used as validation
platform.

This paper is organized as follows. Section 2 describes the model-
based prognostics architecture. Section 3 presents the suggested state-
space model for batteries and its validation. Section 4 describes a novel
OFCL. Section 5 deals with the problem of characterizing future power
profiles using an aerodynamic-based model. In Section 6, the proposed
solution is evaluated in terms of effectiveness and efficiency, and the
results are presented and discussed. Section 7 ends with conclusions.

2. Prognostics architecture

We adopt a model-based prognostics architecture [26] where there
is a system being monitored, and one develops a model describing how
the system evolves in time in response to its inputs [27]. We assume the
system model may be generally defined as

+ =x k f k x k k u k v k( 1) ( , ( ), ( ), ( ), ( )), (1)

=y k h k x k k u k n k( ) ( , ( ), ( ), ( ), ( )), (2)

where k is the discrete time variable, x k( ) nx is the state vector,
k( ) n is the unknown parameter vector, u k( ) nu is the input

vector, v k( ) nv is the process noise vector, f is the state equation,
y k( ) ny is the output vector, is the measurement noise vector, and h
is the output equation.

In prognostics, we are interested in predicting the occurrence of
some event E that is defined with respect to the states, parameters, and
inputs of the system. We define the event as the earliest instant that
some event threshold TE is reached. For batteries, we are interested in
predicting the EOD, defined by a voltage threshold VEOD. In this case, TE
is defined by V < VEOD, that is, when the battery voltage is less than
the cutoff voltage, EOD is reached.

That model is used as the basis of two sequential problems, (i) the
estimation problem, which requires determining a joint state-parameter
estimate p(x(k),θ(k)|y(k0:k)) based on the history of observations up to
time k, y(k0:k), and (ii) the prediction problem, which determines at kP,
using p(x(k),θ(k)|y(k0:k)), a probability distribution p(kE(kP)|y(k0:kP)).
The distribution for ΔkE can be computed from p(kE(kP)|y(k0:kP)) by
subtracting kP. The prognostics architecture is shown in Fig. 1. In dis-
crete time k, the system is provided with inputs uk and provides
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measured outputs yk. The estimation module uses this information,
along with the system model, to compute an estimate p(x(k),θ(k)|y
(k0:k)). The prediction module uses the joint state-parameter distribu-
tion and the system model, along with hypothesized future inputs, to
compute the probability distribution p(kE(kP)|y(k0:kP)) at given pre-
diction times kP.

In addition, this study includes an OFCL during the estimation stage
and also provides an aerodynamic-based characterization of the future

power consumption profiles during the prediction stage as shown in
Fig. 2. The following sections describe the details of the framework
proposed.

3. State-space model for state-of-charge estimation in batteries

The proposed empirical state-space model is inspired by electric
equivalent circuits for a battery cell. Previous research efforts have also
used a state-space representation to describe the SOC evolution in time
[4], although the parameterization that is proposed for the Open Circuit

Fig. 1. Model-based prognostics conceptual architecture.

Fig. 2. Framework outline

Fig. 3. Off-line estimation of the model parameters. Curve fitting for a variable
current.

Table 1
Equivalent circuit model parameters for a 3S 5100 mAh Li–Po battery.

Parameter Symbol Value

Battery model parameter β 8.482
Battery model parameter γ 3.355
Battery model parameter λ 0.046
Battery model parameter μ 2.759
Battery model parameter vL 11.148
Initial total energy (J) Ecrit(k0) 202, 426.858
Initial Internal resistance (Ω) Rint(k0) 0.027
Sample time (s) Δt 1
Process noise covariance matrix Rww 1.2·10 0 0

0 1.163·10 0
0 0 176.3

7
7

Observation noise covariance Rvv 1. 1 3

Fig. 4. Model validation. Measured and predicted 1C, 3C and 4C rate discharge
curves.

1: if t > tmin then
2: eacum= eacum+ |eobs|
3: if eacum≤ ethr then
4: std(wi(t)) = max(pi · std(wi(t)), stdi)
5: else
6: eacum= 0
7: std(wi(t)) = qi · std(wi(t))
8: end if
9: end if

Algorithm 1. Outer feedback correction loop (OFCL) by Tampier et al. [29].

1: eavg = eavg ·
(
1− 1

2n

)
+ |eobs| · 1

2n

2: if eavg ≤ ethr then
3: std(wi(k)) = max(pi · std(wi(k)), stdmini )
4: else
5: std(wi(k)) = min(qi · std(wi(k)), stdmaxi )
6: end if

Algorithm 2. Novel outer feedback correction loop (OFCL).
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Voltage (OCV) curve is insufficient for batteries of more than one cell.
On the other hand, battery performance is strongly determined by

characteristics such as temperature or current discharge rate, which
affect battery internal resistance and the total energy that the battery is
able to deliver. In addition, battery internal resistance varies as a
function of the State of Charge (SOC) [28]. Therefore, in order to in-
corporate the current load dependence, temperature dependence and
SOC dependence; the proposed model uses the concept of artificial
evolution [21,22] to estimate the absolute value of the battery internal

Fig. 5. Exemplification of the dynamics of the new OFCL for different values of
n. (a) Absolute value of the current observation error and average observation
error. (b) Wider view of the absolute value of the current observation error and
average observation error. (c) Evolution of the standard deviation of the process
noise over time.

Fig. 6. Multi-rotor platform used for validation. 3DR IRIS+ Quadcopter.

Table 2
Multi-rotor parameters.

Parameter Symbol Value Units

Number of rotors n 4
Propeller diameter Dp 0.2413 m
Total disc actuator area At 0.1829 m2

Empty mass m0 1.357 kg
Maximum payload mass mpmax 0.3 kg
Empty weight W0 13.2986 N
Maximum payload weight Wpmax 2.94 N
Air density ρ 1.15 kg/m3

Table 3
Parameters of fitted curves.

i ai bi ci di

0 0.07842 0.5 0.5493 0.5591
1 1.189 0.02347 0.01917 0.1106
2 0.06359 0.4004 1.127 0.03985
3 0.004595 0.0136 0.02208 2.577

Fig. 7. Power required in climb.

Fig. 8. Power required in descent.

G. Sierra, et al. Reliability Engineering and System Safety 182 (2019) 166–178

169



resistance and the total energy delivered by the battery. Artificial
evolution provides the mechanism for generating new parameter values
at each time step by adding additional random disturbances to sampled
state vectors. Its implementation is made by extending the dimension of
the state vector and associating its first component with the value of
this time-varying parameter.

The model (Eqs. (3)–(6)) assumes a discrete characterization of the
dynamics of the battery, and the availability (in real time) of voltage
and current measurements. The model structure provides a modifica-
tion to the observation equation that incorporates most of the non-
linearities found in OCV discharge curves, while simultaneously en-
abling the implementation of reliable off-line estimation procedures for
the estimation of its parameters.

State transition model:

+ = +R k R k w k( 1) ( ) ( )int int 1 (3)

+ = +SOC k SOC k P k t E k w k( 1) ( ) ( )· · ( ) ( )crit
1

2 (4)

+ = +E k E k w k( 1) ( ) ( )crit crit 3 (5)

Measurement equation:

= +V k v k i k R k k( ) ( ) ( )· ( ) ( )oc int (6)

Where:

= +v k v e µ e( ) · ·oc L
SOC k SOC k· ( ) ( ) (7)

=i k
v k v k R k P k

R k
( )

( ) ( ) 4· ( )· ( )
2· ( )

oc oc int

int

2

(8)

The power P(k) (measured in Watts), and the sample time Δt
(measured in seconds) are input variables (i.e., the input vector, u(k)),
and the battery voltage V(k) (measured in Volts) is the system output
(i.e.,the output vector, y(k)). voc is the OCV (measured in Volts) and i(k)
is the discharge current (measured in Amps), which is calculated by
solving the quadratic equation:

=i k P k
v k i k R k

( ) ( )
( ) ( )· ( )oc int (9)

= +R k i k v k i k P k0 ( )· ( ) ( )· ( ) ( )int oc
2 (10)

The parameters are defined as Rint(k), the internal resistance, and
Ecrit(k), the expected total energy delivered by the battery (i.e., the
unknown parameter vector, θ(k)). The only state, SOC(k), the State of
Charge, is defined as the remaining battery energy normalized by Ecrit
(i.e., the state vector, x(k)). Process (w1, w2 and w3) and measurement
(η) noises (i.e., the process noise vector v(k) and measurement noise
vector n(k)) are assumed Gaussian. It is important to mention that
process noise w2 is correlated with η, the measurement noise because
the evolution in time of state SOC(k) depends on voltage measurements.
The quantities vL, λ, γ, β, and μ are model parameters to be estimated
off-line. The initial SOC, SOC(k0), is suggested to be estimated before
starting the discharge by measuring the OCV and computing the inverse
of the Eq. (7). The initial internal resistance, Rint(k0), and the initial
total energy, Ecrit(k0), can also be estimated off-line assuming they are
constants. It should be mentioned that these latter parameters are
considered constant only during the off-line procedure to estimate the
parameters, but during the estimation process, artificial evolution
generates new values for these parameters at each time step.

The procedure to estimate the parameters is basically a curve fitting
between the measured voltage during a discharge at variable current
and the voltage obtained with the model, as shown in Fig. 3. Since the
internal resistance is assumed to be constant without considering SOC
dependence, the curve fitting at the beginning of the discharge cycle
(when the internal resistance should be larger) is less accurate.
Nevertheless, the value estimated off-line provides an average value of
the internal resistance for different values of load current. The

Fig. 9. Rotary-wing aircraft in forward flight.

Fig. 10. Angle-of-attack in horizontal flight.

Fig. 11. Efficiency factor in horizontal flight.

Fig. 12. Power required in horizontal flight.
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parameters found are shown in Table 1 which correspond to a 3S
5100mAh Li–Po battery. The model is validated for 1C, 3C and 4C rate
discharges as shown in Fig. 4.

4. Outer feedback correction loop

Artificial evolution provides the mechanism for generating new
parameter values at each time step by adding random disturbances
(process noise) to sampled state vectors, and thus it allows in-
corporating effects on the battery performance that are not directly
included in the model. However, the process noise must be large en-
ough to ensure convergence, but small enough to ensure precise
tracking. Nevertheless, as process noise increases, the uncertainty on
the state/parameter estimate increases as well, which affects the pre-
diction results. Therefore, an Outer Feedback Correction Loop (OFCL) is
proposed to increase the process noise when detecting inconsistencies
between measurements and estimations of the output (i.e., observation
error) so that it is possible to ensure convergence, and to decrease the
process noise when convergence has been reached and there are no
significant inconsistencies between measurements and estimations of
the output.

The voltage in the battery does not have considerable variations in
small intervals of time (less than 30 s) during almost all the discharge
cycle. Even more, the typical voltage drop that the battery undergoes
during small time intervals, due to changes in the SOC, is comparable to
the observation noise. In this regard, short-term predictions are not
enough to evaluate the performance of the model. Therefore, the OFCL
by Tampier et al. [29] (Algorithm 1) uses the accumulated observation
error to take into account the error in the previous time horizons.

However, this OFCL results in unnecessary increases of the standard
deviation of the process noise. The accumulated observation error fre-
quently reaches the threshold, causing an increase in the standard de-
viation of the process noise, even when the observation error remains at
acceptable values. In addition, the standard deviation of the process
noise is increased only at the instant when accumulated error reaches
the threshold. When this happens, the accumulated error is set to zero
again, which means that in the next time step the accumulated error
could be less than the threshold and the standard deviation could
quickly decline again. Consequently, the effective increase of the de-
viation may not be sufficient.

Therefore, the proposed OFCL here is based on long-term results,
but instead of using the accumulated error, it uses a metric inspired by

congestion control and Active Queue Management (AQM) techniques
for IP networks, i.e., communication networks that use Internet
Protocol (IP). Similar to the problem we are dealing with here, it is not
convenient in IP networks to make decisions about packet drop (i.e.,
discard incoming packets to the queue in the server) based on short-
term behaviour of the queue size in the server, because the queue size is
fluctuating and is subject to several sources of uncertainties, such as the
occurrence of packet arrivals to the queue, the number of traffic
sources, the type of traffic (continuous or burst), among other. In par-
ticular, this new OFCL uses the metric defined in [30] for Cisco Systems
equipment as shown in Algorithm 2, where n is the exponential weight
factor, a user-configurable value. For high values of n, the previous
average becomes more important. If the value of n gets too high, the
OFCL will not react to large observation errors. The standard deviation
of the process noise will be affected only in decreasing order. For low
values of n, the average error closely tracks the current observation
error. If the value of n gets too low, the OFCL will overreact to large
instantaneous observation errors and unnecessarily will increase the
standard deviation of the process noise. In other words, this algorithm
implements a basic digital filter on the observation error. See Fig. 5.

eobs is the observation error (the difference between the acquired
measurement for the output and the one expected by the estimation
algorithm), eavg is a weighted average of the previous observation er-
rors, with initial value of zero, ethr is the decision threshold to modify
the process noise. If average error is lower than the threshold, the
standard deviation of the process noise is reduced, but if it is larger than
the threshold, it increases. Also pi are constants with values between 0
and 1 for the ith state/parameter, while qi are constants bigger than 1.
Finally, stdmini are the lower bounds which indicate the minimum
standard deviation value accepted, and stdmaxi are the upper bounds
which indicate the maximum standard deviation value accepted.
Finally, with the proposed OFCL, the decision threshold intuitively can
be defined as a value equal to or less than the standard deviation of the
observation noise.

5. Approximate power consumption model for rotary-wing
aircraft

The ideal power consumption is characterised through a rough
model based on aerodynamic equations for each flight maneuver
(climb, hover, horizontal flight and descent). The aerodynamic-based
model determined in this work is based on momentum theory [31],
which uses the simplest model of thrust generation. Therefore, it is an
approximate model that provides a practical way to calculate the ideal
power consumption for a flight plan previously known, as a function of
the weight, disc actuator area, air density, translational speed and the
type of manoeuvre. The temperature effects are indirectly included in
the air density, the humidity effects are not considered, and also it is
assumed that the wind speed is moderate.

According to Stepniewski [31], the ideal power required by a ro-
tary-wing aircraft with single rotor (helicopter) in hovering, is given by:

Table 4
Flight Plan No. 1.

No. Maneuver Payload (kg) Translational speed (m/s) Duration (s)

1 Take off & Climb (to 120 m) 0.3 1.5 80
2 Horizontal flight 0.3 6.0 210
3 Descent & land 0.3 0.5 240
4 Delivering payload 0.3 0.0 60
5 Take off & Climb (to 120 m) 0.0 1.5 80
6 Horizontal flight 0.0 6.0 210
7 Descent & land 0.0 0.5 240
8 Fully deplete battery – – Until reaching

the voltage threshold

Table 5
OFCL parameters

Parameter Value

n 3
ethr 0.0329
p [0.995 0.99 0.995]
q [1.025 1.01 1.025]
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Fig. 13. Equivalent Circuit Model, SOC estimation with PF and EOD prediction
with MC. Fig. 14. Equivalent Circuit Model, SOC estimation with PF+OFCL and EOD

prediction with MC.
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=P W
A2

,id
3/2

h
(11)

where ρ is air density, W is the total weight of the aircraft equal to the
empty-operative weight W0 plus the payload weight Wp, A is the total
disc actuator area; namely, πR2, where R is the rotor or slipstream ra-
dius. The parameter values for the multi-rotor platform used for vali-
dation, namely, a 3DR IRIS+ quadcopter (Fig. 6) are summarized in the
Table 2.

To extend the Eq. (11) to n-rotors, Gatti et al. [3] assumes that the
total weight is equally distributed on n-rotors, and that At is the sum of
the n-disc actuator areas. Taking the preceding assumptions, and based
on the equations in [31], this work here proposes the following equa-
tions for the power required by rotary-wing aircraft with n-rotors, in
hovering Ph, climb Pc, and descent Pd:

=P W
A· 2

,h
h t

3/2

(12)

= + +P W
V

V V W
A( ) 2 4 2

,c
c c

c c

t

2

(13)

= + +P W
V

V V W
A( ) 2 4 2

,d
d d

d d

t

2

(14)

where Vc is the vertical climb speed, Vd is the vertical descent speed,
and η is the efficiency factor of the propulsion system (electric speed
controller (ESC), motors, propellers), which slowly varies as a function
of the rotor thrust, among other factors. This work defines ηc, the effi-
ciency factor in climb, and ηd, the efficiency factor in descent, as
functions of the climb speed and descent speed respectively. The fol-
lowing curves for the efficiency factors are proposed:

= + +V c c V c c V c( ) ·cos( · ) ·sin( · )c c c c0 1 2 3 2 (15)

= +V d V d d V d( ) ·exp( · ) ·exp( · )d d d d0 1 2 3 (16)

The parameters of the above curves (see Table 3) are computed by a
curve fitting with the power consumed in climb and descent by the
quadcopter without payload ( =m 0p g) at different speeds. Then,
Eqs. (12)–(14) are validated for =m 100p g and =m 200p g as shown in
Figs. 7 and 8. Note that the mass of the quadcopter without payload,
m0, is 1.357 kg, so that the total mass with a payload of 100 g is
1.457 kg, and 1.557 kg with a payload of 200 g.

For the horizontal flight case, another assumption is made for
simplification: The rotor tilt, av, required in steady flight at low velo-
cities is assumed to be negligible such that av≈0 and T≈W (See
Fig. 9). The average maximum speed of a small-size multirotor is about
15 m/s, and several applications just need speeds up 5 m/s. For ex-
ample, in land surveys, the usual speed in forward flight is set to 3 m/s
so that the aerial photo taken are not blurry. With this in mind, the
assumptions above are sufficient.

Since T≈W, the power required in horizontal flight, Phor, where
=a a 0,v for a rotary-wing aircraft moving in the gravitational co-

ordinate system at velocity of flight Vhor, is roughly given by:

= +P W
V

V a V v
( )

( sin( ( )) ),hor
hor hor

hor v hor hor
(17)

where vhor, the induced velocity in horizontal flight, is given by:

= + +v V V W
A2 4 2hor

hor hor

t

2 4 2

(18)

The angle-of-attack, av, and the efficiency factor in horizontal flight,
ηhor, are proposed to be modelled as a function of the translational
speed as described by Eqs. (19) and (20), respectively. The parameters
of the curves proposed (see Table 3) for horizontal flight are estimated
by a curve fitting (Figs. 10 and 11) using the measured angle-of-attack
and the measured values of the power consumed by the quadcopter
without payload at different speeds. Then, Eq. (17) is validated for

=m 100p g and =m 200p g as shown in Fig. 12.

= + + +a V a a V a V a V( ) · · ·v hor hor hor hor0 1 2
2

3
3 (19)

= + +V b b V b b V b( ) ·cos( · ) ·sin( · )hor hor hor hor0 1 2 3 2 (20)

6. Results & discussion

The discharge cycle data used in this study corresponds to a delivery
mission performed by a 3DR IRIS+ quadcopter whose flight plan is
composed of the phases in Table 4. Phase 8 consists in discharge of the
battery at a similar power to that observed during phase 6 to safely
obtain an approximate measurement for the amount of flight time that
would have been supported by the battery if the multicopter had con-
tinued to be flown at the approximately same speed as it was going in
phase 6. This measurement allows comparison between battery EOD
predictions made at various points over the sample mission, and the
EOD time observed experimentally, which is 1274 s for a voltage
threshold (VEOD) equal to 10.3 volts.

Performance indicators for prognostics used in this analysis in-
corporate information from EOD expectations, which correspond to the
instant k when the expectation of the battery voltage reaches the
threshold, the Just-In-Time Point value which incorporates the concept
of risk, specifying the cycle of operation where the probability of failure
reaches a specified threshold γ (JITPγ%) [32], and the perfor-
mance with the β criterion [33,34]:

=EOD E k E V k V^ { | { ( )} },EOD (21)

=JITP Pr EOD eodargmin( { } %),
eod

%
(22)

=
+

+

r k x[ ( )]| ( ),
(23)

where r(k) is the probability distribution of the predicted RUL at time
index k, ϕ is the non-parameterized probability distribution, and π is
the total probability mass within +[ , ], being = RUL* (1 ),

= ++ RUL* (1 ) and RUL* the ground truth RUL. RUL distribution
satisfies β criterion when

+
r k[ ( )]| .

A Particle Filter (PF) with 100 particles is used as estimation

Table 6
Average prediction results of 50 realizations

Equivalent Circuit Model, PF estimator and MC
predictor

Equivalent Circuit Model, PF+OFCL estimator and
MC predictor

Electrochemistry-based Model, PF estimator and MC
predictor

SOC EOD^ JITP5% +r k[ ( )]| EOD^ JITP5% +r k[ ( )]| EOD^ JITP5% +r k[ ( )]|

75% ( =t 267 s) 1271.301 s 1242.380 s 100.00% 1276.178 s 1248.960 s 100.00% 1302.814 s 1238.160 s 99.78%
50% ( =t 598 s) 1262.072 s 1247.560 s 100.00% 1270.857 s 1255.960 s 100.00% 1306.470 s 1254.740 s 94.80%
25% ( =t 959 s) 1245.874 s 1229.580 s 60.00% 1263.704 s 1256.800 s 100.00% 1316.338 s 1281.600 s 22.84%
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algorithm and Monte Carlo (MC) with 100 samples is used as prediction
algorithm. The number of particles and samples have been chosen to
keep an efficient but accurate approach. There is evidence in [35]
which indicates that for energy storage devices, there is no further
benefit from the point of view of the effectiveness of the algorithm if the
number of particles and samples are increased to 200 or more. In order
to insulate the sources of uncertainty from the uncertainty associated to
the future inputs, the actual power profile was used as future input
during the prediction stage.

Having established the above, this analysis is divided into three
parts. Firstly, to evaluate the effectiveness of the OFCL, SOC estimation
and EOD prediction without and with the OFCL proposed were per-
formed. The OFCL parameters used are summarized in Table 5. The
results of SOC estimation and EOD prediction without and with OFCL
are shown in Figs. 13 and 14 correspondingly, and the average results
of 50 realizations in terms of the above metrics are summarized in
Table 6.

EOD estimates presented in Table 6, show that the EOD expectation
is, indeed, a random variable. Furthermore, it may happen that some
realisations of this random variable underestimate (or overestimate) the
ground truth EOD. Nevertheless, the obtained estimates when the
equivalent circuit model is used, are sufficiently accurate. More im-
portantly, they tend to underestimate the EOD, thus minimising the
probability of unexpected failure (conservative approach).

The maximum error in the expected EOD time value is 28 s for the
first case without OFCL, and 19 for the second case with OFCL, when
the prediction horizon was 315 s. Considering the length of the long-

Fig. 15. Electrochemistry-based model, SOC estimation with PF and EOD pre-
diction with MC.

Table 7
Average estimation processing time per iteration.

Algorithm Equivalent Circuit Model Electrochemistry-based Model

UKF e1.309 3 s e1.993 3 s
PF ( =N 100) e6.508 4 s e2.450 3 s

Table 8
MC average processing time for a time windows of 1274 s.

Samples Equivalent Circuit Model Electrochemistry-based Model

10 0.464 s 0.811 s
50 0.483 s 1.570 s
100 0.496 s 2.510 s
500 0.637 s 10.155 s
1000 0.821 s 18.656 s
5000 1.994 s 42.208 s
10,000 3.279 s 67.313 s
50,000 16.584 s 306.517 s
100,000 32.558 s 609.249 s

Fig. 16. MC processing time for a time windows of 1274 second.
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term prediction windows, the maximum error between the ground truth
and the expected EOD correspond to only 8.88% and 6.3% respectively.
Regarding Just-In-Time Point estimates, the values obtained for the
JITP5% when the equivalent circuit model is used are always smaller
than the ground truth EOD, thus ensuring a safe utilisation of the asset.
In terms of the performance, the average of the probability mass,
π, is 86.6% for the first case, while in the second case it is 100%.

In general, reasonable results were obtained in the first scenario
without OFCL, and improved results in the second case with the pro-
posed OFCL that implements a digital filter on observation error instead
of using the accumulated error. This supports the idea that an OFCL
helps to diminish the bias in Bayesian state estimation, which results in
more accurate prediction results since the states/parameters estimated
correspond to the initial states/parameters of the prediction stage.

Secondly, it is of interest to evaluate the proposed solution in terms
of effectiveness and efficiency. To achieve it, SOC estimation and EOD
predictions are also performed using a high fidelity battery model. The
prediction results are compared using the above metrics to evaluate the
effectiveness while the processing time during estimation and predic-
tion processes are measured in order to evaluate the efficiency. The
model used is a Electrochemistry-based model [24] of lithium-ion
batteries that capture the significant electrochemical processes.

For implementation, models and algorithms of the Prognostics
Model Library [36] and the Prognostics Algorithm Library [27] by
NASA Ames Research Center were used for the development of this
study. MATLAB R2015b running on a Intel Core i7-2860QM CPU @
2.50Ghz with 8GB of RAM was used to measure the processing times,
making sure no other application was running at the same time.

The results of SOC estimation and EOD prediction using the
Electrochemistry-based model are shown in Fig. 15, and the average
results of 50 realizations are summarized in Table 6. The average es-
timation processing time per iteration was measured for both models
using Unscented Kalman Filter (UKF) and Particle Filter (PF) as esti-
mation algorithms. See Table 7. Similarly, the prediction processing
time for a time window prediction of 1274 s using both models and MC
as prediction algorithm was measured for different number of samples.
The results are summarized in Table 8 and Fig. 16.

Results with the electrochemistry-based model tend to slightly
overestimate the EOD as reported by Daigle and Kulkarni [24] for
variable loading discharges. In this case, the maximum error in ex-
pected EOD time value is 42 s, that occurs when the prediction horizon
is 315 s. Considering the length of the long-term prediction window, the
maximum error between the ground truth and the expected EOD cor-
respond to 13.3%. Regarding Just-In-Time Point estimates, the values
obtained for the JITP5% are not always smaller than the ground truth
EOD, which does not provide a safe utilisation of the asset because the
actual EOD time may be before end of mission. In terms of the
performance, the average of the probability mass, π, is 72.47%.

The use of the electrochemistry-based model results in reasonable
but less accurate results compared to the results obtained using the
equivalent circuit model, despite electrochemistry-based model pro-
viding a more detailed characterization of the underlying battery

Table 9
Flight Plan No. 2.

No. Maneuver Payload (kg) Translational-speed (m/s) Duration (s)

1 Take off & Climb (to 120 m) 0.3 2.5 48
2 Horizontal flight 0.3 12.0 360
3 Descent & land 0.3 1.5 80
4 Delivering payload – 0.0 60
5 Take off & Climb (to 120 m) 0.0 2.5 48
6 Horizontal flight 0.0 12.0 360
7 Descent & land 0.0 1.5 80
8 Fully deplete battery – – Until reaching

the voltage threshold

Fig. 17. Equivalent circuit battery model, estimation with PF+OFCL and pre-
diction with MC and future inputs for flight plan No. 1 defined by the hover
equation plus ± 20%.
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phenomena. This is attributed to the difficulty associated with proper
estimation of model parameters that meet the constraints of the model.
In particular, the electrochemical-based model requires 27 parameters
that must be estimated through several stages using different dis-
charges. In contrast, the equivalent circuit model requires only 7
parameters which are estimated through a single stage using a single
discharge.

The estimation processing time per iteration (see Table 7) using the
equivalent circuit model is 65% of the time per iteration using the
electrochemistry-based model when UKF is used as estimation algo-
rithm, and it is 26.5% of the time per iteration using the electro-
chemistry-based model when PF with 100 particles is used as estima-
tion algorithm. Considering that PF is shown to be more accurate than

UKF [17], the possibility of using PF without increasing the processing
times constitutes an advantage when one deals with constrained pro-
cessing power, which may be encountered on small UAVs.

The prediction processing times are also shown significantly lower
when the equivalent circuit model is used, in particular when the
number of samples increases. As can be seen in Table 8 and Fig. 16, the
prediction processing times with 102 and 105 samples using the
equivalent circuit model is 19.76% and 5.34%, respectively, of the
prediction processing time using the electrochemistry-based model.
This could be attributed to the number of states of the model. The
equivalent circuit model has 3 states in contrast to the electrochemistry-
based model that has 7 states. Also, the electrochemistry-based model
contains complex mathematical operations, such as logarithmic and

Fig. 19. Equivalent circuit battery model, estimation with PF+OFCL and pre-
diction with MC and future inputs for flight plan No. 2 defined by the hover
equation plus ± 20%.

Fig. 18. Equivalent circuit battery model, estimation with PF+OFCL and pre-
diction with MC and future inputs for flight plan No. 1 defined by the power
consumption model plus ± 20%.
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inverse hyperbolic functions, that require higher computational re-
sources.

Finally, instead of using the actual future inputs, the proposed
power consumption model is used to evaluate its effects on prediction
results.

An analytical framework for addressing the flight time estimation of
rotary-wing aircraft is proposed in [3] through an analysis of the balance
between available and required power. This latter is described by
Eq. (12) and assumes that the aircraft is in hovering flight condition
during the entire flight, which is inaccurate and might cause a bias in the
estimation of the flight time. By using the power consumption model
proposed in the work described herein (Eqs. (12), (13), (14) and (17)) it
is expected to get more accurate EOD prediction given a flight plan.

To validate this, SOC estimation and EOD predictions have been
performed for two flight plans described in Tables 4 and 9, firstly only
using Ph ± 20% as future inputs, and secondly, using Ph, c, d, hor ±
20% as future inputs as shown in Figs. 17 and 18 for the first flight
plan, and in Figs. 19 and 20 for the second flight plan.

As shown in Figs. 17–20, when the aerodynamic-based model is
used to define the future inputs, the prediction results are more accu-
rate and stable. In addition, the bias in the expected EOD is lower and
the confidence intervals are narrower, which causes the perfor-
mance values to improve relative to the prediction results obtained
when only the hover equation is implemented. Depending on the flight
plan, using only the hover equation to define the future inputs might
cause underestimates of the EOD as seen for flight plan No. 1, or
overestimates of the EOD as seen for flight plan No. 2.

7. Conclusions

This work addresses a gap in BHM systems for rotatory-wing UAVs
that have constraints associated with weight, size, and cost. To reduce
computational resources without losing accuracy, this study presents a
model-based prognostic framework for batteries in small-size multi-
rotors that uses a simplified battery model, a novel OFCL during the
estimation stage, and an aerodynamic-based characterization of the
future power consumption profiles used during the prediction stage.
Results show that the proposed framework is able to track the voltage
well and provides very accurate EOD predictions while being compu-
tationally efficient. While the current framework uses a uniform dis-
tribution to characterize the uncertainty on the future power con-
sumption, future work should include a more detailed characterization
of the uncertainty on the future inputs associated with wind speed and
wind direction since wind conditions affect aircraft performance and
power consumption.
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