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a b s t r a c t 

In this paper we formulate an integer programming model for the Location and Routing Problem with 

Pickup and Delivery. We propose a column generation scheme and implement, for the subproblem, a 

label-setting algorithm for the shortest path with pickup and delivery and time windows problem. We 

also propose a set of heuristics to speed up this process. To validate the model, we implement the column 

generation scheme and test it on different instances developed in this paper. We also provide an analysis 

of how the costs of opening depots and the fixed cost of routes affect the optimal solution. 
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. Introduction 

Distribution costs make up a large fraction of the total cost of

upply chains. Because of that, the design of logistics systems has

eceived very significant attention in recent years ( Ghiani, Laporte,

 Musmanno, 2013 ). A good logistic design has to efficiently pro-

ide solutions at multiple levels of decision making for the follow-

ng two primary issues: the location of facilities (depots), which act

s bases for vehicles, and the assignment and routing of vehicles. 

Several authors in the past have considered solving simultane-

usly facility location and routing problems in so-called location-

outing problems (LRPs), because solving independently depot lo-

ation and routing problems leads to suboptimal solutions. 

Most of the LRP literature deals with a routing scheme that in-

olves only deliveries at customer locations or pickups at such lo-

ations, but not both. In the present paper, we consider the case

here each service request involves picking up some items from

 given origin and delivering them to a specified destination. This

roblem can be defined as an LRP with pickup and delivery (LRP-

DP). 
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The main objective of this paper is to formulate a model that

ntegrates the PDP and optimum depot location (LRP-PDP). In ad-

ition, an efficient solution method is proposed based on a column

eneration scheme within a B&P framework. Our approach is based

n the work of Berger, Coullard, and Daskin (2007) , but the pricing

ubproblem is modified to incorporate the specifics of the PDP. 

One embedded difficulty of this integrated methodology is the

xact algorithm required to solve the PDP-TW specified at the sub-

roblem level, in which precedence constraints are very difficult

o handle efficiently, considering, in addition, that in the present

pplication we are solving the PDP in the context of a LRP. An im-

ortant contribution of this paper is therefore to propose for the

rst time an exact formulation for the LRP-PDP, in which the PDP

s defined in the way that Savelsbergh and Sol (1995b) do, consid-

ring explicitly the precedence constraints on related pickups and

eliveries. 

The B&P includes an important preprocessing stage, a proper

ricing implementation, and a dedicated branching strategy. These

ranching rules allow the proposed B&P to tackle instances of re-

listic size, as shown through our computational experiments. 

The structure of this article is as follows. Section 2 presents re-

ated literature, while Section 3 discusses the column generation

cheme for the LRP-PDP, presenting both the master problem and

he subproblem; it also provides details on the preprocessing step

nd the branching strategy. Section 4 presents the label-setting

lgorithm for the pricing subproblem. Section 5 discusses the
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computational results of the proposed approach. Section 6 con-

cludes the paper. 

2. Related work 

To the best of our knowledge, Webb (1968) and Christofides and

Eilon (1969) were the first authors that considered explicitly the

routing costs in the context of location problems. The usual prac-

tice at that time was to consider the cost of delivery as a weighted

sum of the radial distances to destinations, as would be the re-

sult of direct routes from depot to customers. Webb (1968) showed

that the optimum location considering the total distances in a set

of routes serving several customers can differ greatly from the op-

timum location when delivery cost is estimated by radial distances

from depot to customers. Christofides and Eilon (1969) studied

more closely the relationship between the total distances traveled

on routes to serve a set of customers and the simplification based

on the radial distances. 

2.1. Location routing problems 

The LRP takes its origin in the roundtrip location problem that

considers vehicles that deliver goods directly from one customer to

another, although each vehicle is limited to a single pickup and a

single delivery only ( Chan & Hearn, 1977; Drezner & Wesolowsky,

1982; Kolen, 1985 ). Several authors have followed up. Laporte,

Nobert, and Taillefer (1988) provide a survey of the early litera-

ture on the topic, while Prodhon and Prins (2014) and Drexl and

Schneider (2015) review the LRP literature up to 2014. 

Few authors have developed exact methods to deal with LRP

as the combination of location and routing decisions is challeng-

ing. Some recent works have proposed lower bounds and ex-

act methods for such problems. Barreto (2004) proposed a lower

bound based on a cutting plane approach for the CLRP. Berger

et al. (2007) formulated a set-partitioning model of an uncapac-

itated LRP with distance constraints that was solved through a

branch-and-price (B&P) algorithm. This algorithm yielded optimal

solutions with reasonable computational time for problems with

10 candidate facilities and 100 customers with different distance

constraints. Belenguer, Benavent, Prins, Prodhon, and Wolfler-Calvo

(2011) developed a branch-and-cut algorithm based on several

families of valid inequalities for the LRP with capacity constraints

on both the depots and the vehicles. Their method is able to

solve optimally instances with up to 40 or 50 customers. Baldacci,

Mingozzi, and Wolfler Calvo (2011b) proposed a branch-and-cut-

and-price algorithm to solve a capacitated LRP based on set par-

titioning, decomposing the problem into a limited set of multi-

depot vehicle routing problems (MDVRP). Contardo, Cordeau, and

Gendron (2013) developed a branch-and-cut-and price algorithm

to solve an LRP formulation, with instances of about 50 customers

and 5–10 depots. These are the paper that are the most related to

our approach. 

As expected, most of the LRP literature has focused on the

development of approximate algorithms, including constructive

heuristics ( Boudahri, Aggoune-Mtalaa, Bennekrouf, & Sari, 2013;

Manzour-al Ajdad, Torabi, & Salhi, 2012 ) and metaheuristics

( Contardo, Cordeau, & Gendron, 2014; Derbel, Jarboui, Hanafi, &

Chabchoub, 2010; 2012; Hemmelmayr, Cordeau, & Crainic, 2012 ). 

Some extensions of traditional LRPs are classified in Drexl and

Schneider (2015) , the most relevant being the Generalized LRP, the

Prize-Collecting LRP, the Split delivery LRP ( Archetti & Speranza,

2008 ), Stochastic LRPs ( Ahmadi-Javid & Seddighi, 2013 ), and the

LRP with simultaneous pickup and delivery LRP-SPD ( Karaoglan,

Altiparmak, Kara, & Dengiz, 2011; 2012 ), which is briefly discussed

at the end of the next subsection in the context of pickup and de-

livery models. 
Many-to-many location-routing problem (MMLRP) investigates

ocating hubs to facilitate transshipment from several customers

o several customers. Routing aspects are involved, but in general

oods do not travel from a customer straight to another customer.

apers on this topic include, among others, ( Çetiner, Sepil, & Süral,

010; Nagy & Salhi, 2007; Wasner & Zäpfel, 2004 ). A recent ref-

rence for many-to-many location routing problems is the paper

y Rieck, Ehrenberg, and Zimmermann (2014) . In that work, and

thers on MMLRP, the location of hubs is considered in a multi-

chelon network. There is actually the possibility of direct ship-

ing between nodes other than hubs, but here hubs (the nodes

hat should be located) act more like consolidation nodes or trans-

er points than depots as in the model developed in this paper. 

.2. Pickup and delivery problems 

We aim to investigate LRP models where vehicle routes fol-

ow a pickup and delivery organization and satisfy time window

onstraints (PDP-TW). Formally, the formulated PDP is a generic

roblem for companies that transport passengers or freight and

ave a fixed fleet of m vehicles that each have fixed capacity Q

 Savelsbergh & Sol, 1995a ). In the PDP, each customer request i has

n origin location i + and a destination location i −. The objective of

he PDP is to find a feasible set of minimum cost routes serving all

ustomer requests. 

In general, PDP problems are classified into three groups

ccording to origin-destination relation: many-to-many, one-to-

any-to-one and one-to-one ( Berbeglia, Cordeau, Gribkovskaia, &

aporte, 2007 ). PDP-TW problems are also divided into two cate-

ories: 1-PDPTW (single-vehicle) and m-PDPTW (multi-vehicle), as

ointed out by Dridi, Kammarti, Borne, and Ksouri (2011) . PDPs can

lso be classified depending on their level of dynamism ( Berbeglia,

ordeau, & Laporte, 2010 ): in static approaches, all requests are

nown in advance, typically one day before the service; in dynamic

pproaches, not all information is available in advance, but is re-

ealed during the execution of the planned operations, noting that

ehicle prepositioning decisions can be made in anticipation of fu-

ure arrivals ( Chou, Chen, & Chen, 2014 ), in order to generate high-

uality solutions ( Vonolfen & Affenzeller, 2016 ). 

Examples of PDP-type services include special buses for elderly

nd handicapped individuals in which passengers are picked up

nd assisted during their trip. These services are known in the

iterature as Paratransit or Dial-a-Ride ( Cordeau & Laporte, 2003;

007 ). Another well-known example of PDP is the delivery of ex-

ress courier ( Mitrovi ́c-Mini ́c & Laporte, 2004 ). The literature on

DPs is extensive ( Parragh, Doerner, & Hartl, 2008 ). 

There are diverse PDP variants, including time window con-

traints at the origin or destination. Desrosiers, Dumas, and Soumis

1986) solved the single-vehicle problem using dynamic program-

ing. Later, Dumas, Desrosiers, and Soumis (1991) solved the

ultiple-vehicle problem by proposing an exact algorithm through

 column generation scheme. More recently, Ropke and Cordeau

2009) proposed a Branch-and-cut-and-price algorithm that con-

iders two subproblems (whether the routes are elementary or

ot) for the column generation algorithm. Lower bounds are dy-

amically added, which improves the performance of the column

eneration scheme. Baldacci, Bartolini, and Mingozzi (2011a) pre-

ented an algorithm based on a set partitioning formulation,

hich, with effective bounds, can be used to solve real size in-

tances under a branch-and-cut-and-price framework. 

As far as we know, the LRP problem with PDP routing has not

et been formulated or solved under an integrated scheme using

n exact solution algorithm. However, Karaoglan et al. (2011) and

araoglan, Altiparmak, Kara, and Dengiz (2012) introduce the si-

ultaneous pickup and delivery (LRP-SPD) problem, which at

 certain level integrates location decisions with pickups and
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eliveries. However, in the LRP-SPD, depot location decisions are

ade together with the routing of simultaneous pickups and deliv-

ries that have no correspondence, i.e., all deliveries originate from

he depots and pickups must be brought back to a depot. While

his last problem could look somehow connected to ours, it is in

act substantially different, because in LRP-SPD pickups and deliv-

ries are not linked together. 

. Model and solution approach 

This section presents a mathematical formulation of the LRP-

DP as well as a B&P algorithm that can address it. We also fur-

her discuss the branching strategy deployed as well as some im-

lementation details. 

.1. Formulation of the LRP-PDP 

The LRP-PDP is an extension of the LRP, and our approach is

ased on the formulation introduced by Berger et al. (2007) . This

ormulation aims at selecting a set of depots and building routes

ssociated with these depots such that the total cost incurred,

hich includes both fixed costs for opening depots and routing

osts for serving customers, is minimized. In the PDP case, cus-

omer request i refers to picking up quantity q i at pickup location

 

+ and dropping this quantity off at delivery location i −. It should 

e noted that the pickup and the delivery have to be performed by

he same vehicle (i.e., we do not allow transfers between vehicles).

The master problem for the LRP, which is based on Berger et al.

2007 , Section 1) is formulated as follows: 

Formulation LRPPD 

in α
∑ 

j∈ J 
f j X j + 

∑ 

j∈ J 

∑ 

k ∈ P j 
c jk Y jk (1) 

.t. : 
∑ 

j∈ J 

∑ 

k ∈ P j 
a i jk Y jk = 1 ∀ i ∈ I (2) 

 j −
∑ 

k ∈ P j 
a i jk Y jk ≥ 0 ∀ i ∈ I, ∀ j ∈ J (3) 

 j ∈ { 0 , 1 } ∀ j ∈ J (4) 

 jk ∈ { 0 , 1 } ∀ j ∈ J, ∀ k ∈ P j (5) 

here J is the set of potential depot locations; f j , j ∈ J , is the fixed

ost of opening depot j ; X j , j ∈ J , is a binary decision variable in-

icating whether or not depot j is open; P j is the set of feasible

outes associated with depot j ; c jk , j ∈ J , k ∈ P j , is the cost of route

 of depot j ; Y jk , j ∈ J , k ∈ P j is a binary decision variable indicat-

ng whether or not route k from depot j is selected; I is the set of

ustomer requests; a ijk , i ∈ I , j ∈ J , k ∈ P j , takes value one if route k

rom depot j serves request i ; and α is a weight parameter for the

xed cost portion of the objective. 

Unlike the formulation of Berger et al. (2007) , the routes asso-

iated with depots in our formulation satisfy the constraints of the

DP-TW, although this is not directly reflected in the formulation

f the LRP-PDP master problem but rather in the construction of

he routes themselves. For each route k ∈ P j , the following condi-

ions are satisfied: 

• Route k starts and ends at depot j . 
• If request i is served by route k , then the precedence is re-

spected: i + (pickup) appears before i − (delivery) on the route. 
• If request i is served by route k , then its time windows at i + 

and i − are respected. 
• The total vehicle load anywhere along the route is always lower

or equal to its capacity ( Q ). 

Let us consider P = { i + : i ∈ I} as the set of pickups and D = { i − :

 ∈ I} as the set of deliveries. For each node l ∈ P ∪ D , its time win-

ow is denoted as [ a l , b l ] and the transportation demand in each

ode is denoted as q l , with q i + = q i , q i − = −q i . The travel time from

ertex l to vertex m is denoted t lm 

. 

It should be noted that the set of constraints 3 can be replaced

y 

 j − Y jk ≥ 0 , ∀ j ∈ J, k ∈ P j . ( 3 

′ )

owever, Berger remark that the aggregate form of the constraints

3) yields a tighter relaxation than the disaggregate form ( 3 ′ ). 
The LRP-PDP formulation contains an exponential number of

ariables ( Y jk ). Therefore, a complete enumeration of routes is not

ossible for most instances of practical size. In the following sec-

ion, we describe a B&P framework to solve this type of problem. 

.2. B&P algorithm for the LRP-PDP 

The proposed B&P algorithm is based on the formulation of the

aster problem presented in the previous section and an adapta-

ion of the subproblem in Ropke and Cordeau (2009) . 

Thus, the master problem is defined by (1) –(5) , and the linear

elaxation of this master problem is denoted LPM. The set of routes

 j for each depot is not known, and in the B&P scheme, a restric-

ion of LPM is solved with a set P ′ 
j 
⊂ P j for each depot j . Each of

he sets P ′ 
j 

is generated independently. 

The LPM restriction will be referred to as RPM, where only a

ubset of the route variables is considered. Let us remember that

ll the location variables X j are always considered in the RPM. The

pdating of route sets P ′ 
j 

is performed by solving the so-called pric-

ng subproblem. 

.3. Formulation of the pricing subproblem 

For the B&P scheme, it is necessary to identify the subproblems

ssociated with the master problem LRP-PDP presented in (1) –(5) .

n this case, for each depot j ∈ J , we solve an independent subprob-

em. Each of these problems aims at identifying routes that should

e added to the set P ′ 
j 
. Each of these subproblems is a PDP-TW

ith capacity constraints, which are similar to the problem pre-

ented in Dumas et al. (1991) . 

To formulate the pricing problem, duality theory for linear pro-

ramming is used to obtain the reduced cost of a route k associ-

ted with depot j as follows: 

ˆ 
 jk := c jk −

∑ 

i ∈ I 
a i jk (πi − μi j ) (6) 

here π is the vector of dual variables associated with constraints

2) and the dual variables μij are associated with constraints (3) . 

The subproblem used to determine routes that depart from

epot j is then formulated as an Elementary Shortest Path with

ickup and Delivery and Time Windows Constraints (ESPPDTWC;

ee Ropke & Cordeau, 2009 ). For each depot j , we build a graph

 j = (V j , A j ) that contains depot j itself and all the customer lo-

ations. Assuming that | P | = | D | = N, the set of vertices V j = P ∪
 ∪ { 0 , 2 N + 1 } where node 0 represents depot j as the starting

oint, and node 2 N + 1 also represents depot j as the arrival point

f each route. The set of arcs A j = [ { 0 } × P ] ∪ [(P ∪ D ) × (P ∪ D )] ∪
 D ∪ { 2 N + 1 } ] . In the following, we use the convention that the

ickup node of request i is denoted i (instead of i + ) and its de-

ivery node N + i (instead of i −). Therefore, P = { 1 , . . . , N} and D =
 N + 1 , . . . , 2 N} . 
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It is necessary to transfer the information of the dual variables

to the arcs such that the cost of a path in this auxiliary network

represents the reduced cost (6) of the corresponding route. 

Thus, we define the cost of an arc ( l , m ) in the subproblem net-

work as follows: 

ˆ d lm 

:= 

{
d l,m 

− πm 

+ μm, j if l ∈ V j , m ∈ P 

d l,m 

if l ∈ V j , m ∈ D ∪ { 2 N + 1 } (7)

Since the subproblems are independent, an auxiliary network is

built for each depot j . Each subproblem is solved as a resource con-

strained shortest-path problem by a label-setting algorithm, which

is described in Section 3 . 

3.3.1. Preprocessing 

In the literature, a variety of preprocessing rules have been sug-

gested for the subproblem network. The present work considers

the rules corresponding to extensions of the heuristics proposed

in Dumas et al. (1991) and Desrochers, Desrosiers, and Solomon

(1992) . 

The first step consists in adjusting the time windows using

the partial paths 0 → i → N + i and i → N + i → 2 N + 1 so that

they are feasible for all of the values T i ∈ [ a i , b i ] and T N+ i ∈
[ a N+ i , b N+ i ] . The time windows are successively redefined as fol-

lows (see Dumas et al. (1991 , Section 2.4)): 

b N+ i = min { b N+ i , b 2 N+1 − t i, 2 N+1 } 
b i = min { b i , b N+ i − t i,N+ i } 
a i = max { a i , a 0 + t 0 ,i } 

a N+ i = max { a N+ i , a i + t i,N+ i } 
Subsequently, rules number 2 and 3 from Desrochers et al.

(1992 , Section 6.1) are applied for each k ∈ { 1 , . . . , 2 N} : 

a k = max 

{
a k , min 

{
b k , min 

(k, j) ∈ E 
{ a j − t k, j } 

}}

b k = min 

{
b k , max 

{
a k , max 

(i,k ) ∈ E 
{ b i + t i,k } 

}}
Because of the time windows and precedence constraints, sev-

eral arcs can be removed since they cannot belong to a feasible

solution to the problem. Following Dumas et al. (1991) , the con-

straints of the problem are used to remove the following arcs: 

• [Precedence] The following arcs are removed because they

cannot belong to any feasible solution: (0 , N + i ) ; (N + i, i ) ;

(2 N + 1 , 0) ; (2 N + 1 , i ) ; (i, 2 N + 1) ; and (2 N + 1 , N + i ) for i =
1 , . . . , N. 

• [Capacity] The vehicle capacity can never be exceeded; thus,

if q i + q j > Q, i, j ∈ { 1 , . . . , N} , i 
 = j the following arcs are re-

moved: ( i , j ); ( j , i ); (i, N + j) ; ( j, N + i ) ; (N + i, N + j) ; and

(N + j, N + i ) . 
• [Time windows] Each node must be reachable within its respec-

tive time window; thus, if a i + t i j > b j , i, j ∈ { 1 , . . . , 2 N} , then

arc ( i , j ) is removed. 
• [Time windows together with precedence] If travel times satisfy

the triangular inequality, arcs can be removed if they cannot be

part of any path that includes both the pickup as well as the

delivery for some customers: 

– Arc (i, N + j) is removed if path j → i → N + j → N + i is not

feasible for t j = a j . 

– Arc (N + i, j) is removed if path i → N + i → j → N + j is not

feasible for t i = a i . 

– Arc ( i , j ) is removed if path i → j → N + i → N + j is not fea-

sible for t i = a i . 

– Arc (N + i, N + j) is removed if paths i → j → N + i → N +
j and j → i → N + i → N + j are not feasible for t i = a i and
t j = a j , respectively. i  
.4. Branching strategy 

An optimum LPM solution can contain variables with non-

nteger values. It is important to create an adequate branching

trategy that is compatible with the pricing problem. For this,

erger et al. (2007) used a strategy where the shortest route struc-

ure is maintained in the pricing problem. The fundamental strat-

gy consists of four branching rules for the two types of variables. 

First, branching is performed on the location variables X j . For

hese variables, the conventional dichotomous branching is ade-

uate. Fixing X j = 1 enforces the use of depot j and solving the

ricing problem for depot j . Fixing X j = 0 is achieved by imposing

 value of Y jk = 0 for all of the routes k ∈ P ′ 
j 

in the RPM and no

onger solving the pricing subproblem for depot j . 

Second, we follow Ropke and Cordeau (2009) and branch on

he total number of vehicles used in the solution, if this number is

ractional. In one branch, we force the fleet size to be larger than

he rounded up value and in the other one, we limit the fleet size

o the rounded down value. Note that using this branching rule in-

olves adding two constraints on the size of the fleet in the mas-

er program. Dual variables for these constraints thus need to be

dded to the reduced cost of routes generated by the subproblem

o ensure a proper stopping criterion. 

Third, in a similar manner, we branch on the number of vehi-

les leaving a depot. We select the depot for which the fractional

art of the total outflow is closest to 0.5. 

Finally, we branch on variables related to specific routing deci-

ions. We formalize the strategy proposed by Dumas et al. (1991) .

rder variables O ij are defined for i, j ∈ P ∪ { 0 , 2 N + 1 } : 
O i j = 1 indicates that if i and j are on the route, the first pickup

node visited after i is j . 

O i j = 0 indicates that the first pickup node visited after i cannot

be j . 

For a route k that serves n k customer requests, let (i 0 =
 , i 1 , i 2 , . . . , i n k , i n k +1 = 2 N + 1) be its sequence of pickup and depot

odes. Then, (n k + 2) branch-and-bound nodes B l , l = 0 , . . . , n k + 1 ,

re created. Node B l , l = 0 , . . . , n k is defined by the constraints 
 

l−1 ∧ 

m =0 

O i m i m +1 
= 1 

) ∧ (
O i l i l+1 

= 0 

)
. (8)

he final node B n k +1 corresponds to the constraints 
n k ∧ 

m =0 

O i m i m +1 
= 1 .

xample 3.1 (from Dumas et al., 1991 ) . If there is a route variable

 r that is not integer-valued, with the corresponding route given by

 → 1 → 2 → N + 2 → N + 1 → 2 N + 1 . The four branches created

re the following: 

 0 : O 01 = 0 ; 

 1 : O 01 = 1 , O 12 = 0 ; 

 2 : O 01 = O 12 = 1 , O 2 , 2 N+1 = 0 ; 

 3 : O 01 = O 12 = O 2 , 2 N+1 = 1 . 

The branching constraints can be transferred to subproblems by

dding an additional component in the labels that represents the

ast visited pickup node. In the case of several fractional routes, we

elect one route among the shortest ones. 

.5. Implementation 

The enumeration tree is explored according to a depth-first

earch (DFS) strategy, and the list of open problems is imple-

ented as a stack. 

As previously mentioned, if the solution at a node is not

nteger-valued and the node is not pruned, branching is performed



T. Capelle et al. / European Journal of Operational Research 272 (2019) 121–131 125 

t  

b  

0  

t

 

t  

q  

o  

i  

q  

l

 

t  

i  

c

 

b

4

 

s  

m  

s  

p  

t  

o  

D  

t  

g  

e

 

t  

w  

c  

v

 

c  

e  

(  

o  

c  

d

 

c  

p  

b  

t  

L  

e  

b  

i

 

 

 

 

e

 

c  

c  

e  

c  

p  

g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W  

t  

n  

i  

w

5

5

 

m  

i  

a  

t

 

l  

u  

v

 

t  

4  

F  

U

 

d  

e  

b

 

d  

t  

t  

r  

r  

a  

s  

b

 

a  
o create new problems. If there is a fractional location variable,

ranching is performed on the variable with the value closest to

.5. The next problem considers the branch of zero value, in which

he corresponding depot is not present. 

When all of the location variables have integer values, if the to-

al number of vehicles is fractional, branching is performed on this

uantity. If the total number of vehicles is integer, but the number

f routes departing from any of the depots is fractional, branch-

ng is performed on this number for one of the depots where this

uantity is closest to 0.5. In both of these cases, the next subprob-

em to be solved corresponds to the rounding up branch. 

When neither of the previous branching rules applies, one of

he shortest routes with fractional value is chosen. Then, branch-

ng as explained above is performed for this route. The problems

reated are added to the stack in the order B n k +1 to B 0 . 

The B&P procedure is stopped when the gap between the

ounds is below 0.5%. 

. Label-setting algorithm for the pricing subproblems 

Shortest path problems are common in column generation

chemes for VRPs. In general, these problems are solved through

odified versions of the classical algorithms, such as those of Dijk-

tra or Bellman ( Bellman, 1958; Dijkstra, 1959 ). The general princi-

le involves associating a label to each partial route and extending

he label to indicate the feasibility of the resources (time, freight

n the vehicle, etc.) until the best possible path has been found.

ominance rules are used to compare the partial routes that arrive

o the same node and exclude certain routes. For each node of the

raph, a significant amount of labels must be maintained because

ach comparison considers the consumed resources. 

It is common to avoid calculating the set of optimal routes and

o prematurely end the solution procedure when a set of columns

ith negative reduced costs is determined. Finding the minimum

ost path is only necessary in the last iteration of the algorithm to

erify that there are no routes with negative reduced cost. 

In this work, we have implemented an elementary resource-

onstrained shortest path algorithm, which is quite close to the el-

mentary shortest path algorithm described in Ropke and Cordeau

2009) . We refer the reader to this paper for a detailed description

f this procedure. In the following, we will focus on the modifi-

ations that we had to make to implement the branching strategy

escribed in Section 2.4. 

The first modification is the addition to the labels of an extra

omponent, which indicates the last pickup node of the current

artial route (as mentioned in Section 2 ). The addition of this la-

el component forces a change in the label extension rules. To ex-

end a label L to a node j , the last pickup, say i , performed by label

 must be checked. If j ∈ D , meaning that j is a delivery, then the

xtension is performed normally. If j ∈ P ∪ { 2 N + 1 } , then all of the

ranching rules ending in j must be verified, including the follow-

ng three cases: 

• If O i j = 1 is included in the branching constraints, the label can

be extended and the last pickup node is now j . 
• If O m j = 1 for some m 
 = i , verify if m has already been visited

in the route. If it does, the label cannot be extended; otherwise,

extend the label. 
• If O i j = 0 , then the extension to j is not allowed. 

Furthermore, if there are no rules ending in j that prevents label

xtension, then the extension should be performed. 

The subproblems do not have to be solved to optimality be-

ause we only need to identify some routes with negative reduced

osts at each iteration of the column generation scheme. In gen-

ral, the label-setting algorithm finds routes with negative reduced

ost before finishing the comparison of all routes. The heuristics
resented in the following paragraphs truncate the label-setting al-

orithm in different ways. 

H1 Restricting the label-setting algorithm to a reduced-size net-

work is a common practice. Constructing networks with 30%

or 50% of the nodes according to the best arcs with respect

to cost was proposed in Dumas et al. (1991) . A variant of this

restriction consists of defining a network, where each node

is connected to a subset of its neighbors. For our problem,

we build for each depot an auxiliary network D m 

, in which

we keep only the m best arcs with respect to d ij out of

each node i . Once this has been applied to each node of the

graph, the set of arcs is completed with arcs (0, i ), (i, i + N) ,

and (N + i, 2 N + 1) . Based on the results presented in Ropke

and Cordeau (2009) , we consider m = 5 and m = 10 . If it is

not possible to determine negative reduced cost routes in

D 5 , the process is continued with D 10 . 

H2 We limit the number of unprocessed labels throughout the

label setting heuristic. We consider different values for the

maximum number of these labels λ. At first λ is set to 500;

this value increases to 10 0 0 and 150 0 in later stages of the

algorithm. If this limit is not reached, the subproblem has

been solved exactly. These values of λ were shown to work

well on a variety of instances by Baldacci et al. (2011a) , as

well as by Ropke and Cordeau (2009) . 

At each pricing stage, we solve a subproblem for each depot.

e first apply H1 and if no negative reduced cost column is found,

hen we apply H2 limiting the total number of labels to λ = 500 . If

o route is found, then λ is increased, as indicated above, and H2

s run again for each depot subproblem. If not route is found this

ay, we then solve the exact subproblem. 

. Computational experiments 

.1. Instances description 

The instances that were used for our computational experi-

ents were created in a manner similar to the one used for the

nstances proposed by Ropke and Cordeau (2009) for the pickup

nd delivery problem, which were, in turn, based on a modifica-

ion of the generator of Savelsbergh and Sol (1995a) . 

The nodes of the network, including depots and customers, are

ocated at the vertices of a 50 × 50 square grid. The demands are

niformly chosen integers in the interval [5, Q ], where Q is the

ehicle capacity. In our case, Q = 15 for all instances. 

The complete planning horizon has T = 10 0 0 time units. The

ime window for pickup i is randomly generated with a i ∼ U (0,

50) and b i = a i + W, with W fixed for all customers to 30 units.

or the delivery i + N, the time window is defined by a i + N ∼ a i +
(20 , 380) and b i + N = a i + N + W . 

For all instances, seven potential locations are defined for the

epots, with one of these in the center of the square and the oth-

rs randomly generated in the square according to uniform distri-

utions. The same seven locations are used for all instances. 

To determine the locations for customer requests, we arbitrarily

efined three non-overlapping rectangles over the square grid. A

hird of the customer requests was assigned to each rectangle and

he coordinates for both the pickup and the delivery points were

andomly generated according to uniform distributions within the

ectangle. By proceeding in this fashion, we were thus able to cre-

te six instances with clustered demands. Among the generated in-

tances, we retained one, which seemed the most challenging, to

ecome the base instance . 

From this base instance, we built other instances by contracting

nd expanding distances within each cluster. More precisely, the
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Fig. 1. Location of depots (black nodes) and pickup (light grey) and delivery (dark grey) nodes for configurations 1, 2 (base) and 6. 
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distance to the center of the corresponding rectangle was multi-

plied by an inflation factor β for all customer locations. 

The following values of β were used: 1.2, 1 (base), 0.87, 0.77,

0.7, 0.55. We tried to generate configurations with larger infla-

tion factors, but we realized that, because of the boundaries of the

problem area, those became distorted and did not yield any inter-

esting computational result. 

Fig. 1 shows instance 1, which corresponds to the least clus-

tered case (instance 1, factor 1.2); base case (instance 2); and the

most clustered case (instance 6; factor 0.55). 

Because they were interested in keeping the number of routes

to a minimum, Ropke and Cordeau (2009) set a relatively high

fixed cost of 10,0 0 0 for each route (the routing costs were about 10

times lower than this value). Since, unlike the aforementioned au-

thors, we are interested in the interaction between location costs

and routing costs, the fixed costs cannot be arbitrarily high. We

considered five different values for the fixed cost for routes: 1, 10,

50, 100, and 200. Similarly, six different values for the depot fixed

cost f j were tested: 0.1, 1, 10, 50, 10 0, and 20 0. For each of the

six configurations, 30 instances were created by taking all combi-

nations of route and depot fixed costs, thus yielding a total of 180

instances. In the remainder of the paper, we refer to instances by

indicating the configuration and the fixed costs as follows: “config-

uration number-route cost-depot cost”. For instance, “3-100-50” is

the instance that combines configuration 3 with fixed route cost of

100 and depot cost of 50. 

The instances described in the previous subsection cover a wide

scope of situations, from instances with highly clustered demand
 t
e.g., instances 5-XX and 6-XX) to other instances with sparse de-

and (e.g., instances 1-XX). 

We also constructed some examples based on the smallest in-

tances described in Ropke and Cordeau (2009) . Specifically, we

se the location and demands of the instances of classes AA, BB,

C, and DD with 30, 35, and 40 requests and added the same set

f depots constructed for our instances. We reduced the original

ime windows from 60 to 30 units by increasing the lower limits

f all time windows by 30 units. 

.2. Computational results 

The branch-and-price algorithm was implemented in Python

.7 by using IBM ILOG CPLEX 12.5. The pricing procedures were

mplemented in C++ and integrated with the main algorithm as

 built-in module of Python. The C/C++ implementation of these

omponents utilizes an interface constructed in C, interacting by

eans of a wrapper. This wrapper encapsulates the C++ objects

hat perform the different pricing procedures. All experiments

ere performed on an Intel i7-5930K computer (3.5 gigahertz)

ith 16 gigabytes RAM running Ubuntu 14.04. 

Computational results are reported in three parts. First, we pro-

ide detailed results for 24 selected instances. Aggregated results

egarding the performance of the algorithm on the 180 generated

nstances are reported following that. All generated instances were

olved within a gap of 0.6% in a maximum time of 1 hour. Addi-

ional results are reported in Section 5.3 . 
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Table 1 

Features of instances with depot cost f j = 10 and fixed route cost r = 1 . 

Configuration z IP LB Gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes 

1 1019.29 1017.43 0.184 1160 18 2276 4052 2811 1241 4 20 

2 910.39 910.39 0.0 0 0 0 17 17 2832 2832 0 4 20 

3 828.90 828.90 0.0 0 0 0 18 19 2864 2864 0 4 20 

4 785.98 783.96 0.257 1255 32 1787 3684 2898 786 3 20 

5 737.43 737.43 0.0 0 0 0 27 27 2907 2907 0 3 19 

6 662.28 662.28 0.0 0 0 0 25 25 2910 2910 0 3 19 

Table 2 

Features of instances with depot cost f j = 10 and fixed route cost r = 10 . 

Configuration z IP LB Gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes 

1 1199.55 1197.65 0.159 959 35 2369 4292 2839 1453 4 19 

2 1083.51 1080.93 0.238 367 28 637 3213 2855 358 4 19 

3 1002.51 1001.57 0.093 950 52 2016 3123 2867 256 4 19 

4 963.40 958.17 0.545 1035 39 2305 5220 2914 2306 3 19 

5 841.15 837.20 0.472 4 288 532 4144 4132 12 4 15 

6 831.28 831.28 0.0 0 0 0 33 33 2914 2914 0 3 18 

Table 3 

Features of instances with depot cost f j = 10 and fixed route cost r = 50 . 

Configuration z IP LB Gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes 

1 1928.58 1900.73 1.465 763 82 2004 4232 2885 1347 4 16 

2 1807.58 1789.03 1.037 1389 84 2798 4330 2937 1393 3 16 

3 1709.16 1688.61 1.217 697 75 905 2989 2931 58 4 16 

4 1654.19 1632.36 1.337 850 67 1563 3519 2965 554 3 16 

5 1576.18 1576.18 0.0 0 0 0 71 71 2993 2993 0 3 16 

6 1502.00 1502.00 0.0 0 0 0 87 87 2976 2976 0 3 16 

Table 4 

Features of instances with depot cost f j = 10 and fixed route cost r = 200 . 

Configuration z IP LB Gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes 

1 4325.72 4287.92 0.882 1250 89 3034 4815 2943 1872 4 16 

2 4204.46 4187.46 0.406 754 89 2011 4546 2948 1598 4 16 

3 4106.49 4088.61 0.437 845 83 1180 3242 2982 260 4 16 

4 4054.19 4032.36 0.541 665 98 1613 3910 3019 891 3 16 

5 3924.25 3924.25 0.0 0 0 0 111 111 3066 3066 0 3 15 

6 3852.04 3852.04 0.0 0 0 0 136 136 3044 3044 0 3 15 

Table 5 

Features of instances with depot cost f j = 200 and fixed route cost r = 100 . 

Configuration z IP LB Gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes 

1 3114.26 3106.38 0.254 11 112 976 4594 3002 1592 1 16 

2 2995.19 2978.23 0.569 428 119 2280 5252 3039 2213 1 16 

3 2896.73 2883.38 0.463 304 119 828 4016 3068 948 1 16 

4 2847.47 2837.31 0.358 163 118 445 3416 3109 307 1 16 

5 2785.98 2777.53 0.304 2 141 209 3190 3134 56 1 15 

6 2702.96 2690.92 0.447 2 160 203 3161 3141 20 1 15 
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Tables 1 –4 report the detailed results for instances with depot

xed cost equal to 10 and route fixed cost equal to 1, 10, 50, and

00. In addition, in Table 5 we show statistics for some cases with

epot cost equal to 200 and route cost equal to 100 (both high),

ecause the algorithm generates columns beyond the root node

or all maps, even in the most clustered instances. Usually, such

nstances seem to be easier for the algorithm, as we can see in

he results for other cost combinations. In these tables, the first

olumn indicates the configuration of the instances. Columns “z IP ”,

LB” and “gap” indicate, respectively, the values of the best integer

olution, best lower bound and relative gap between these values.

olumn “Nodes B&P” displays the number of nodes that were cre-

ted during the branch-and-price process in addition to the root

ode corresponding to the initial linear relaxation. The two next

olumns report the execution times (in seconds) for the root node

“Root time”) and the complete algorithm (“Total time”). The fol-
owing four columns describe the total number of route variables

dded to the master problem (“Columns”), the number of variables

hat were added to solve the initial linear relaxation (“Cols. Root”),

he number of variables in the initial restricted master problem

nd the number of additional routes generated after branching

“Cols. tree”). The last two columns report the number of open de-

ots (“Depots”) and the number of selected routes (“Routes”) in the

ptimal solutions. 

From these detailed results, we can can see that the algorithm

s working properly, generating in most cases columns in both

hases, at the root node first and beyond that as shown in the ta-

les. Most of the instances with low route cost ( r = 1 as in Table 1 )

re solved at the root, since in such cases routes tend to be short

s they are cheap. Differently, when route costs became higher

 Tables 3 and 4 ) the B&P framework is intensely used, generat-

ng many columns beyond the root, as appreciated mainly in more
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Table 6 

Total number of columns generated after the root node. Averages computed along the different con- 

figurations. 

Route fixed cost 

1 10 50 100 200 Average 

Depot fixed cost 0.1 124.17 512.00 614.83 821.17 1079.17 630.27 

1 252.67 441.00 909.83 655.00 757.83 603.27 

10 337.83 730.83 558.67 420.67 770.17 563.63 

50 368.00 498.00 363.83 333.83 647.50 442.23 

100 399.50 733.83 988.83 1087.17 829.50 807.77 

200 241.00 643.00 566.83 856.00 775.50 616.47 

Average 287.19 593.11 667.14 695.64 809.94 610.61 

Table 7 

Total number of nodes in the enumeration tree. Averages computed along the different configura- 

tions. 

Route fixed cost 

1 10 50 100 200 Average 

Depot fixed cost 0.1 305.00 610.67 566.50 647.67 633.33 552.63 

1 339.00 550.33 667.00 661.17 604.83 564.47 

10 402.50 552.50 616.50 515.00 585.67 534.43 

50 528.00 574.00 489.33 410.50 599.33 520.23 

100 124.17 308.33 694.33 386.33 389.50 380.53 

200 144.17 174.67 183.83 151.67 133.00 157.47 

Average 307.14 461.75 536.25 462.06 490.94 451.63 

Table 8 

Total execution time in seconds. Averages computed along the different configurations. 

Route fixed cost 

1 10 50 100 200 Average 

Depot fixed cost 0.1 482.00 1269.00 1219.50 1468.17 1626.00 1212.93 

1 578.17 1167.67 1482.67 1340.17 1428.83 1199.50 

10 691.83 1315.33 1238.00 1021.67 1347.50 1122.87 

50 865.50 1198.50 950.17 873.33 1333.00 1044.10 

100 421.00 1102.17 1636.50 1272.67 1165.33 1119.53 

200 402.67 946.83 598.33 823.50 761.67 706.60 

Average 573.53 1166.58 1187.53 1133.25 1277.06 1067.59 

Table 9 

Total execution time in seconds. Averages computed along the different depot fixed costs. 

Route fixed cost 

1 10 50 100 200 Average 

Configuration 1 1407.17 1445.33 1085.67 1107.33 1697.00 1348.50 

2 27.17 683.50 2037.50 1826.17 2521.83 1419.23 

3 24.50 2015.83 1630.33 1368.33 1175.67 1242.93 

4 1903.00 1942.17 2185.17 2238.50 1992.33 2052.23 

5 40.17 865.00 93.83 130.67 137.17 253.37 

6 39.17 47.67 92.67 128.50 138.33 89.27 

Average 573.53 1166.58 1187.53 1133.25 1277.06 1067.59 
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dispersed configurations (maps 1 and 2). The cases presented in

Table 5 are the hardest for the algorithm, generating columns be-

yond the root in instances 5 and 6, which does not happen in any

other case. 

Regarding aggregated computational results, on average 3613

variables were generated in total, from which 610 (on average)

were generated after the root node. Out of the 3613 routes, 740

were initially included in the set of available routes. These corre-

spond to feasible routes serving one or two customer requests. 

We first examine the total number of variables that were gen-

erated by the B&P procedure in the tree (beyond the root node) to

solve instances depending on the fixed cost of depots and routes.

Average values are reported in Table 6 . 

When examining more closely Table 6 , we cannot identify a

consistent pattern regarding the relationship between the num-

ber of variables after the root and the fixed cost of depots. To
he opposite, there is a clear relationship between the num-

er of variables and the fixed cost of routes; problems with

igher route fixed cost require significantly more variables af-

er the root, while in cases of low route cost ( r = 1 for ex-

mple), all the instances require much less treatment after the

oot. 

Turning to the relationship between the B&B nodes and fixed

osts as reported in Table 7 , we notice very significant variations

n the number of B&B nodes required to solve an instance and

he fixed costs. Instances with low route fixed cost are solved very

uickly, although most of them perform branching. The situation

s quite different with problems with route fixed cost equal to 50,

0 0 and 20 0, which require more around 500 B&B nodes on aver-

ge. 

As for the depot fixed cost, problems with larger fixed cost are

uch easier to solve than those with low fixed cost. Indeed, the
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Table 10 

Instances from Ropke–Cordeau solved to optimality. 

Instance Requests TW width z IP LB gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes 

AA30 30 30 1294.59 1289.77 0.37 22 200 274 26685 24476 2209 1 4 

AA35 35 30 1489.36 1459.29 2.06 241 225 3840 61280 41269 20011 2 4 

BB30 30 30 1770.59 1763.45 0.40 54 60 684 6106 5728 378 3 11 

BB30 30 45 1818.37 1729.28 5.15 223 92 3834 41050 8479 32571 5 10 

BB30 30 60 1707.57 1702.83 0.23 2 105 122 10196 10195 1 6 10 

Table 11 

Instances from Ropke–Cordeau with no feasible solution. 

Instance Requests TW width LB Nodes B&P Root time Total time Columns Cols. Root Cols. Tree 

CC30 30 30 1241.72 70 1739 5430 164677 57616 107061 

DD30 30 30 1555.13 259 212 3877 56610 30121 26489 

AA40 40 30 1667.60 177 270 3885 83822 58942 24880 

AA30 30 45 1295.70 370 152 3755 41546 33240 8306 

AA35 35 60 1451.01 60 328 3958 88120 58871 29249 

Fig. 2. Scatter plot of the total time vs. the number of nodes in the enumeration 

tree. 
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Fig. 3. Scatter plot of the total time vs. the number of routes generated in the tree. 
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ardest instances are in most cases the one with 0.1 and 1 fixed

ost values. 

With respect to the connection between the number of B&B

odes and the total number of variables, it seems that in instances

ith high route fixed cost, the number of columns generated per

&B node is significantly higher. One reason of that is the fact that

olutions of instances with high route fixed cost should include

ong routes as they are expensive, and in those case, we know that

he B&P procedure becomes hard as the subproblem turns out to

e very complicated. 

Examining overall solution times, which are reported in Table 8 ,

hey vary in a similar fashion as the number of B&B nodes.

he higher the route cost is, the more time is required to solve

he B&P procedure. The pattern with respect to depot fixed

ost is not as clear as the route fixed cost pattern. In Table 9 ,

e report total execution times but now contrasting by fixed

oute cost and the different maps, which allows us to identify

 special feature of map 4 that makes particularly difficult to

olve. 

Fig. 2 clearly demonstrates the linear relationship between the

olution times of instances and the number of B&B nodes that they

equire. Fig. 3 displays also a similar relationship between the total

xecution time and the number of routes generated beyond the

oot. 
Let us now turn to the analysis of the solutions obtained. In

ll of the instances that we reported upon, the optimal number

f open depots ranged from 1 to 5, except one case in which 6

epots are opened. Fig. 4 summarizes the results for the various

xed costs and configurations. As could be expected, solutions for

nstances in which the fixed costs are high use only 1–2 depots. To

he opposite, solutions of most of the instances with depot fixed

ost equal to 10 or less use 4 or 5 depots. Regarding these in-

tances, it must be emphasized that the impact on the objective

alue of the depot fixed cost is almost insignificant; this explains

hy in some cases one would have 4 open depots while in oth-

rs, there are 5 or 6 open depots. With respect to the number of

outes in the optimal solutions, it varies from 15 to 20. In gen-

ral, the number of routes is sensitive to the fixed costs, however

he limit of 200 was set as results became not interesting beyond

his value. We performed additional experiments with higher fixed

ost for both routes and depots. In all cases, the solutions obtained

ere identical to the ones obtained for a fixed cost of 200. 

.3. Benchmark instances 

As mentioned in the description of instances, we also mod-

fied some of the instances proposed in Ropke and Cordeau

2009) (classes AA, BB, CC, and DD with 30, 35, and 40 re-

uests) by adding the same set of depots constructed for our in-

tances. In addition, we reduced the original time windows from
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Fig. 4. Number of open depot for instances with different fixed costs and configurations 
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60 to 30 units by increasing the lower limits of all time windows

by 30 units. We were able to solve a subset of such instances

to optimality in our integrated scheme (see Table 10 ). In some

cases, we were not able to find a feasible solution, although the

algorithm was able to explore the root and tree generating many

columns (see Table 11 ). From these benchmarks, we can determine

that our method is working properly, generating many columns

and using all the power of the B&P in cases where we know that

the instances are difficult for the PDP itself. 

6. Conclusions 

In this paper, we have formulated an integer programming

model that integrates the PDP-TW and optimum depot location

decisions (LRP-PDP). We have also proposed an efficient solution

method based on column generation within a B&P framework. The

solution technique used to solve the pricing subproblem that gen-

erates columns has been based on an elementary shortest path

procedure as in similar approaches proposed in the literature. This

procedure was, however, modified to accommodate the branching

strategy of Dumas et al. (1991) . The use of this branching strategy

in this context is also a contribution of this paper. Computational

results on a wide range of instances with different fixed cost val-
es and customer configurations confirm the effectiveness of our

roposed solution approach. 

Solving much larger instances of the LRP-PDP would probably

e difficult with an exact solution scheme, as the one proposed

n this paper. To handle such instances, one would have to con-

emplate defining solution approaches based on metaheuristics or

atheuristics ideas. 

An interesting extension of the LRP-PDP problem tackled in

his paper would involve considering stochastic information on key

roblem parameters: location of customers, customer demands,

xed cost values, both for depots and routes, and possibly travel

imes. Obviously, including one or the other of those stochastic di-

ensions would make the problem much more difficult. Defining

 proper mathematical formulation and suitable solution methods

ould certainly prove to be a significant challenge. 

Future work should involve considering how stochastic informa-

ion could affect both the transportation cost and depot placement.

n case of transportation cost, the decisions are mostly operational;

herefore, stochastic issues could arise, for example, in the compu-

ation of travel costs from uncertainty in traffic conditions, or from

ncertainty in demand for pickup and delivery loads. In case of

epot placement, the investment decisions are strategic, and there-

ore uncertainty should be analyzed at a different temporal frame-

ork, considering issues such as land cost, rent and accessibility. 
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