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Abstract

This paper is concerned with the qualitative properties of the so-
lutions of mixed integro-differential equation

{
(−∆)αxu+ (−∆)yu+ u = f(u) in RN × RM ,

u > 0 in RN × RM , lim|(x,y)|→+∞ u(x, y) = 0,
(0.1)

with N ≥ 1, M ≥ 1 and α ∈ (0, 1). We study decay and symmetry
properties of the solutions to this equation. Difficulties arise due to the
mixed character of the integro-differential operators. Here, a crucial
role is played by a version of the Hopf’s Lemma we prove in our
setting. In studying the decay, we construct appropriate super and sub
solutions and we use the moving planes method to prove the symmetry
properties.
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1 Introduction

The study of qualitative properties of positive solutions to semi-linear elliptic
equations in RN has been the concern of numerous authors along the last
several decades. The asymptotic behavior of the solution at infinity, the
actual rate of decay and symmetry properties have been the most studied
qualitative properties for these equations. It was the seminal work by Gidas,
Ni and Nirenberg [19] that settled these two main qualitative properties for
the semi-linear elliptic equation

{
−∆u + u = f(u) in RM ,

u > 0 in RM , lim|y|→+∞ u(y) = 0,
(1.1)

1

http://arxiv.org/abs/1710.03413v1


when the non-linearity is merely Lipschitz continuous, super-linear at the
zero, in the sense that

f(s) = O(sp) as s→ 0, (1.2)

for some p > 1, and M ≥ 3. Gidas, Ni and Nirenberg proved that the
solutions of (1.1) are radially symmetric and they satisfy the precise decay
estimate

lim
|y|→+∞

u(y)e|y||y|M−1
2 = c, (1.3)

for certain constant c > 0. After this work, many authors extended the re-
sults in various directions, generalizing the non-linearity, the elliptic operator
or the hypotheses on the solutions. Out of the very many contributions in
this direction we mention here only a few: Berestycki and Lions [5], Beresty-
cki and Nirenberg [6], Brock [7], Busca and Felmer [8], Cortázar, Elgueta and
Felmer [13], Da Lio and Sirakov [14], Dolbeault and Felmer [16], Gui [20],
Kwong [21], Li and Ni [24] and Pacella and Ramaswamy [26].

Recently, much attention has been given to the study of elliptic equations
of fractional order. In this direction, Felmer, Quaas and Tan in [17] studied
the problem {

(−∆)αu+ u = f(u) in RN ,

u > 0 in RN , lim|x|→+∞ u(x) = 0.
(1.4)

They proved existence and regularity of positive solutions, and also decay
and symmetry results. Precisely, it was proved that the solutions u of (1.4)
satisfy

c−1

|x|N+2α
≤ u(x) ≤ c

|x|N+2α
, |x| ≥ 1, (1.5)

for some c > 1, when f is superlinear at 0 in the sense that

lim
s→0

f(s)

s
= 0.

The radial symmetry of the solutions of (1.4) is derived by using the moving
planes method in integral form developed in [11, 25], assuming further that
f ∈ C1(R), it is increasing and there exists τ > 0 such that

lim
s→0

f ′(s)

sτ
= 0. (1.6)

This symmetry result was generalized by the authors in [18], using an appro-
priate truncation argument together with the moving planes method with
ideas developed in [23]. We refer to some other papers with more discussions
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on qualitative properties of solutions to fractional elliptic problems as Cabré
and Sire [9], Caffarelli and Silvestre [10], Chen, Li and Ou [11], Barles, Chas-
seigne, Ciomaga and Imbert [12], Dipierro Palatucci, Valdinoci [15], Li [25],
Quaas and Xia [28], Ros-Oton and Serra [29] and Sire and Valdinoci [32].

Both operators, the laplacian and the fractional laplacian, are particular
cases of a general class of elliptic operators connected to backward stochastic
differential equations associated to Brownian and Levy-Itô processes, see for
example Barles, Buckdahn and Pardoux [1], Benth, Karlsen and Reikvam
[4] and Pham [27]. Recently, Barles, Chasseigne, Ciomaga and Imbert in
[2, 3] and Ciomaga in [12] considered the existence and regularity of solutions
for equations involving mixed integro-differential operators belonging to the
general class of backward stochastic differential equations mentioned above.
A particular case of elliptic integro-differential operator of mixed type is
the one considering the laplacian in some of the variables and the fractional
laplacian in the others, modeling diffusion sensible to the direction. In view
of (1.1) and (1.4) we may write similarly

{
(−∆)αxu+ (−∆)yu+ u = f(u), (x, y) ∈ RN × RM ,

u > 0 in RN × RM , lim|(x,y)|→+∞ u(x, y) = 0,
(1.7)

where N ≥ 1, M ≥ 1. The operator (−∆)y denotes the usual laplacian
with respect to y, while (−∆)αx denotes the fractional laplacian of exponent
α ∈ (0, 1) with respect to x, i.e.

(−∆)αxu(x, y) =

∫

RN

u(x, y)− u(z, y)

|x− z|N+2α
dz, (1.8)

for all (x, y) ∈ RN × RM . Here the integral is understood in the principal
value sense.

In view of the known results on decay and symmetry for solutions of
equations (1.1) and (1.4) just described above, it is interesting to ask if
these results still hold for solutions of the equation of mixed type (1.7),
where the elliptic operator represents diffusion depending on the direction in
space. Regarding the asymptotic decay of solution at infinity, the question
is interesting since a proper mix of the two variables should be obtained for
the decay estimates. The natural way to estimate the decay is through the
construction of super and sub solutions involving the fundamental solution
of the elliptic operator, which in this case is singular in RN ×{0}. Moreover,
the solution of (1.7) cannot be radially symmetric, so this property cannot be
used to estimate the decay. On the other hand, regarding radial symmetry,
we may still have symmetry in x and y, but the moving planes method would
require an adequate version of the Hopf’s Lemma, that we prove here.
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Our first theorem concerns the decay of solutions for (1.7) with general
nonlinearity and it states as follows.

Theorem 1.1 Let α ∈ (0, 1), N,M ∈ N, N ≥ 1 and M ≥ 1 and let us
assume that the function f : (0,+∞) → R is continuous and it satisfies

−∞ < B := lim inf
v→0+

f(v)

v
≤ A := lim sup

v→0+

f(v)

v
< 1. (1.9)

Let u be a positive classical solution of problem (1.7), then for any ǫ > 0
small, there exists Cǫ > 1 such that for any (x, y) ∈ RN × RM ,

C−1
ǫ (1 + |x|)−N−2αe−θ2|y| ≤ u(x, y) ≤ Cǫ(1 + |x|)−N−2αe−θ1|y|, (1.10)

where
θ1 =

√
1− A− ǫ and θ2 =

√
1− B + ǫ. (1.11)

When we compare estimate (1.10) with (1.3) for N = 0, we first observe
that in ours an exponential decay is obtained, but with a constant Cǫ de-
pending on ǫ, which is a parameter controlling the rate of exponential decay.
This is more clear when A = B = 0. On the other hand we are making
much more general assumptions on f and, in particular, we are not making
any assumption on the radial symmetry of the solution, which is crucial in
proving (1.3). We do not know of a decay estimate better than

C−1
ǫ e−θ2|y| ≤ u(y) ≤ Cǫe

−θ1|y|, y ∈ RM , (1.12)

for solutions of (1.1) under assumption (1.9) for f , and where radial symmetry
of the solutions is not available, like in a case where f may depend on y. On
the other hand, when M = 0, we recover (1.5) from (1.10). For the proof of
the decay estimate (1.10) we construct suitable super and sub solutions and
we use comparison principle with a version of Hopf’s lemma.

When we assume further hypothesis we can get sharper estimates for the
decay of the solutions of equation (1.7). Precisely, we have the following
result:

Theorem 1.2 Assume that α ∈ (0, 1), N ≥ 1, M ≥ 5 and the non-linearity
f : (0,+∞) → R is non-negative and it satisfies (1.2). Let u be a positive
classical solution of (1.7), then there exists a constant c > 1 such that for all
(x, y) ∈ RN × RM ,

1

c
ρ(x, y) ≤ u(x, y) ≤ cρ(x, y)(1 + |y|) 1

2 , (1.13)

where the function ρ is defined as

ρ(x, y) = min{ 1

(1 + |x|)N+2α
, e−|y||y|− N

2α
−M

2 ,
e−|y||y|1−M

2

(1 + |x|)N+2α
}. (1.14)
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We notice that this theorem gives the expected exponential decay for
positive solutions, as suggested by (1.3), assuming the dimension of the space
satisfies M ≥ 5. Moreover, it gives the expected polynomial correction for
the lower bound with a gap in the power for the upper bound. This theorem
is proved under the assumption (1.2) on the non-linearity, constructing super
and sub solutions devised upon the fundamental solution of (−∆)αx+(−∆)y+
id. In our argument, a crucial role is played by the estimate already obtained
in Theorem 1.1. Since the fundamental solution of (−∆)αx + (−∆)y + id has
RN ×{0} as singular set, we cannot use the method in [19] in order to derive
our estimate. Moreover, some other arguments in [19] cannot be used either
because the solutions of (1.7) are not radial, since the differential operator
is not radially invariant and there are no solutions depending only on one of
the x or y variables, as can be seen from (1.13),

Even though solutions of (1.7) are not radially symmetric, we can prove
partial symmetry in each of the variables x and y and this is the content of
our third theorem.

Theorem 1.3 Assume that α ∈ (0, 1), N ≥ 1, M ≥ 1 and the function
f : (0,+∞) → R is locally Lipschitz and it satisfies (1.9). Moreover, we
assume that f also satisfies

(F ) there exist u0 > 0, γ > N
N+M

· 2α
N+2α

and c̄ > 0 such that

f(v)− f(u)

v − u
≤ c̄vγ for all 0 < u < v < u0. (1.15)

Then, every positive classical solution u of equation (1.7) satisfies

u(x, y) = u(r, s)

and u(r, s) is strictly decreasing in r and s, where r = |x| and s = |y|.

When N = 0, we see that assumption (F ) implies γ > 0 and (1.15) coin-
cides with the assumption considered in [23]. When M = 0, assumption (F )
implies that γ > 2α

N+2α
and it coincides with the assumption considered in

[18], when the solutions is assumed to decay as a power N + 2α at infinity.
We remark that the operator (−∆)αx +(−∆)y is a combination of two opera-
tors with different differential orders in x−variable and y−variable, and this
produced a combined polynomial-exponential decay and does not allow for
radial symmetry, but only partial symmetry as stated in Theorem 1.3.

The proof of Theorem 1.3 is based on the moving planes method as de-
veloped in [18, 23]. In these arguments, the strong maximum principle plays
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a crucial role and it is available for the laplacian and for the fractional lapla-
cian. However, in the case of our mixed integro-differential operator some
difficulties arise and we overcome them with a version of the Hopf’s Lemma.

The rest of the paper is organized as follows. In Section §2, we introduce
a version of the Hopf’s Lemma and a strong maximum principle. In Section
§3, we prove the decay of solutions as in Theorem 1.1 and Theorem 1.2 by
constructing suitable super and sub solutions. Section §4 is devoted to prove
symmetry results presented in Theorem 1.3.

2 Preliminaries

This section is devoted to study the Strong Maximum Principle for mixed
integro-differential operators as in equation (1.7). To this end, we prove first
a suitable form of the Hopf’s Lemma.

However, before to go to this, we recall some basic properties of the
Sobolev embeddings. If we denote the Sobolev spaces

H(RN+M) = {w ∈ L2(RN+M)|
∫

RM

∫

RN

(|ξ1|2α+|ξ2|2+1)|ŵ(ξ1, ξ2)|2dξ1dξ2 <∞}

and

Hα(RN+M) = {w ∈ L2(RN+M) |
∫

RN+M

(|ξ|2α + 1)|ŵ(ξ)|2dξ <∞},

with norms

‖w‖H = (

∫

RM

∫

RN

(|ξ1|2α + |ξ2|2 + 1)|ŵ(ξ1, ξ2)|2dξ1dξ2)
1
2

and

‖w‖Hα = (

∫

RN+M

(|ξ|2α + 1)|ŵ(ξ)|2dξ) 1
2 ,

respectively, then it is not difficult to see that the following proposition holds.

Proposition 2.1 For α ∈ (0, 1), we have that

H(RN+M) ⊂ Hα(RN+M) ⊂ Lp(RN+M),

where the first inclusion is continuous and the second inclusion is continuous
if 1 ≤ p ≤ 2(N+M)

N+M−2α
. Moreover,

H(RN+M) ⊂ Lp
loc(R

N+M)

is compact if 1 ≤ p < 2(N+M)
N+M−2α

.
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We devote the rest of this section to prove the Strong Maximum Principle
in our context and to this end, we start with versions of the Maximum
Principle and the Hopf’s Lemma. In what follows, given Ω an open subset
in RN × RM , we define its closed cylindrical extension in the direction x as

Ω̃ = {(x, y) ∈ RN × RM : ∃ x′ ∈ RN s.t. (x′, y) ∈ Ω̄}.
Given a function h defined in an appropriate domain, we consider the mixed
integro-differential operator

Lw(x, y) = (−∆)αxw(x, y) + (−∆)yw(x, y) + h(x, y)w(x, y).

Lemma 2.1 Assume that Ω is an open domain of RN×RM and the function
h : Ω → R satisfies h ≥ 0 in Ω. If the function w ∈ C(Ω̄) ∩ L∞(Ω̃) satisfies

{
Lw ≥ 0 in Ω, w ≥ 0 in Ω̃ \ Ω,
lim inf(x,y)∈Ω,|(x,y)|→∞w(x, y) ≥ 0

(2.1)

then w ≥ 0 in Ω̃.

Proof. If not, we may assume that there exists some (x0, y0) ∈ Ω such that

w(x0, y0) = min
(x,y)∈Ω̃

w(x, y) < 0.

Then

(−∆)αxw(x0, y0) =

∫

RN

w(x0, y0)− w(z, y0)

|x0 − z|N+2α
dz < 0

and
(−∆)yw(x0, y0) ≤ 0

and then, since h is non-negative we have Lw(x0, y0) < 0, which contradicts
(2.1), completing the proof. �

It what follows we prove a version of the Hopf’s Lemma and for this
purpose we need to give some conditions to the boundary of the domain
where the function is defined. We say that the domain Ω ⊂ RN × RM

satisfies interior cylinder condition at (x0, y0) ∈ ∂Ω if there exist r > 0 and
ỹ ∈ RM such that Or = BN

r (x0)× BM
r (ỹ) satisfies

Or ⊂ Ω and (x0, y0) ∈ ∂Or, (2.2)

where BN
r (x0) = {x ∈ RN : |x−x0| < r} and BM

r (ỹ) = {y ∈ RM : |y−ỹ| < r}
and, obviously |ỹ − y0| = r. We define also

D = {(x, y) ∈ Or : |x− x0| <
r

2
, |y − ỹ| > r

2
}. (2.3)
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Lemma 2.2 [Hopf’s Lemma] Let Ω be an open set satisfying interior cylin-
der condition at (x0, y0) ∈ ∂Ω. Assume that h ∈ L∞(D) and w ∈ C(Ω̄) ∩
 L∞(Ω̃) satisfies

Lw ≥ 0 in Ω

and
0 = w(x0, y0) < w(x, y), ∀(x, y) ∈ Ω.

Further assume that for r > 0 be given in (2.3) and for any (x, y) ∈ D we
have ∫

RN\BN
r (x0)

w(z, y)

|x− z|N+2α
dz ≥ 0. (2.4)

Then

lim sup
s→0+

w(x0, y0)− w(x0, y0 + sỹ)

s
< 0, (2.5)

moreover, if the limit exists, then

∂w

∂n
(x0, y0) < 0, (2.6)

where n is the unit exterior normal vector of Ω at the point (x0, y0).

Proof. Let us define

ϕM(y) = e−β|y−ỹ|2 − e−βr2 , y ∈ B̄M
r (ỹ), (2.7)

where β > 0 will be chosen later. By direct computation, we have that

−∆ϕM (y) = (2Mβ − 4β2|y − ỹ|2)e−β|y−ỹ|2 . (2.8)

Next we consider the function

v(x, y) = ϕN(x)ϕM(y), (x, y) ∈ Õr,

where ϕN is the first eigenfunction of Dirichlet problem
{
(−∆)αϕN(x) = λ1ϕN(x), x ∈ BN

r/2(x0),

ϕN(x) = 0, x ∈ RN \BN
r/2(x0),

(2.9)

where ϕN is positive and bounded in BN
r/2(x0) and the first eigenvalue λ1, is

positive, see Propositions 9 and 4 in [30] and [31], respectively.
For (x, y) ∈ D, by (2.8) and (2.9), we obtain that

Lv(x, y) = ϕM(y)(−∆)αϕN(x) + ϕN(x)(−∆ϕM (y)) + h(x, y)ϕN(x)ϕM(y)

= ϕN (x)[λ1ϕM(y) + (2Mβ − 4β2|y − ỹ|2)e−β|y−ỹ|2 + h(x, y)ϕM(y)]

≤ ϕN (x)e
−β|y−ỹ|2(λ1 + 2Mβ − β2r2 + ‖h‖L∞(D)),
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where the last inequality holds by the fact that 0 ≤ ϕM(y) < e−β|y−ỹ|2 and
|y − ỹ| > r/2 in D. Let us choose β > 0 big enough such that

Lv ≤ 0 in D. (2.10)

On the other hand, since ϕN(x) = 0 for |x − x0| ≥ r/2 and ϕM(y) = 0 for
|y − ỹ| = r, it is obvious that v = 0 in A1 ∪ A2 where A1 = {(x, y) ∈ D̃ :
|x − x0| ≥ r/2} and A2 = {(x, y) ∈ D̄ : |y − ỹ| = r}. If we define the set
A3 := {(x, y) ∈ D̄ : |y − ỹ| = r/2}, we see that D̃ \D = A1 ∪ A2 ∪ A3. We
also observe that v is a bounded function in Õr.

Next we prove (2.5) assuming h ≥ 0. Defining

W (x, y) =

{
w(x, y), (x, y) ∈ Ōr,

0, (x, y) ∈ Õr \ Ōr

(2.11)

and using (2.4), we have that for any (x, y) ∈ D,

LW (x, y) = Lw(x, y) +
∫

RN\BN
r (x0)

w(z, y)

|x− z|N+2α
dz ≥ 0.

Combining with (2.10), we have that, for every ǫ > 0

L(W − ǫv) ≥ 0 in D. (2.12)

Since v is bounded in Õr, the set A3 is a compact subset of Or and w > 0 in
Or, then there exists ǫ > 0 small such that

W = w ≥ ǫv in A3.

Since v = 0 in A1 ∪ A2, w ≥ 0 in Ōr and (2.11), we have W ≥ 0 = ǫv in
A1 ∪ A2. Consequently,

W − ǫv ≥ 0 in D̃ \D.

Then we can use Lemma 2.1, recalling that h ≥ 0 to obtain that

W − ǫv ≥ 0 in D.

In view of the definition of W , since D ⊂ Ōr, we find that w − ǫv ≥ 0 in D
and noticing that w(x0, y0) = v(x0, y0) = 0 we obtain that

w(x0, y0)− w(x0, y0 + sỹ)

s
≤ ǫ

v(x0, y0)− v(x0, y0 + sỹ)

s
,
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for all s ∈ (0, r/2). Thus, we have

lim sup
s→0+

w(x0, y0)− w(x0, y0 + sỹ)

s
≤ ǫ lim

s→0+

v(x0, y0)− v(x0, y0 + sỹ)

s

= ǫϕN (x0) lim
s→0+

ϕM(y0)− ϕM(y0 + sỹ)

s

= −2ǫβr2e−βr2ϕN(x0) < 0,

completing the proof of (2.5).
The case for general h can be done simply by replacing h by h+. In fact,

since w > 0 in Ω, we have

(−∆)αxw(x, y) + (−∆)yw(x, y) + h+(x, y)w(x, y) ≥ 0, (x, y) ∈ Ω

and similarly we obtain that

(−∆)αxv(x, y) + (−∆)yv(x, y) + h+(x, y)v(x, y) ≤ 0, (x, y) ∈ D,

so we may proceed as before to get (2.5) and the proof is complete. �

In order to state the Strong Maximum Principle to be used in our moving
planes procedure, it is convenient to consider property (P ):

(P ) We say that a function w : Ω̃ → R satisfies property (P ) if whenever
(x0, y0) ∈ Ω such that

0 = w(x0, y0) = inf
(x,y)∈Ω

w(x, y),

then
w(x, y0) ≡ 0, ∀x ∈ RN .

The following lemma is in preparation of the strong maximum principle.

Lemma 2.3 Let Ω be an open set in RN × RM and w have property (P ).
We denote

Ω0 = {(x, y) ∈ Ω : w(x, y) = inf
Ω
w = 0}. (2.13)

If Ø 6= Ω0 $ Ω, then Ω \Ω0 satisfies interior cylinder condition at any point
(x0, y0) ∈ ∂Ω0 ∩ Ω.

Proof. Since Ø 6= Ω0 $ Ω, we have that Ø 6= ∂Ω0 ∩Ω ⊂ ∂(Ω \Ω0). For any
(x0, y0) ∈ ∂Ω0 ∩Ω, let us denote r = 1

4
dist((x0, y0), ∂Ω) and let ỹ ∈ RM such

that (x0, ỹ) ∈ Ω \Ω0 and |ỹ− y0| = r. Since w has property (P ), then w = 0
in Ω̃0, where Ω̃0 is the extension of Ω0 in x-direction and as Ω \ Ω0 is open,
we have that BN

r (x0)× BM
r (ỹ) ⊂ Ω \ Ω0. Therefore, Ω \ Ω0 satisfies interior

cylinder condition at (x0, y0) ∈ ∂Ω0 ∩ Ω. �
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Theorem 2.1 [Strong Maximum Principle] Let Ω be an open set of RN ×
RM , the function h ∈ L∞

loc(Ω) and w ∈ C(Ω̄) ∩ L∞(Ω̃) has the property (P )
satisfying

Lw ≥ 0 in Ω and w ≥ 0 in Ω. (2.14)

Assume that Ω0 6= Ø defined by (2.13) and there exists some (x0, y0) ∈
∂Ω0 ∩ Ω such that (2.4) holds in corresponding D.

Then w must be 0 in Ω̃.

Proof. Assume that Ω0 6= Ω. By Lemma 2.3, Ω\Ω0 satisfies interior cylinder
condition at (x0, y0) ∈ ∂Ω0 ∩Ω and then w(x0, y0) = 0 by w ∈ C(Ω̄) and the
definition of Ω0. Furthermore, we observe that D̄ is compact in Ω and then
h ∈ L∞(D̄). Using Lemma 2.2, we obtain (2.5), which is impossible by the
fact of w(x0, y0) = infΩ w = 0. Therefore, Ω0 = Ω, i.e. w ≡ 0 in Ω. Since w
has property (P ), then w ≡ 0 in Ω̃. �

3 Decay estimate

3.1 Proof of Theorem 1.1

In this subsection, we prove Theorem 1.1 on decay estimates for positive clas-
sical solutions of equation (1.7). The main work is to construct appropriate
super and sub solutions and then the decay estimate is derived by Lemma
2.1.

Before proving Theorem 1.1, we introduce some computations gathered
in the next proposition. For α ∈ (0, 1) and µ > 0, we define the function
ψµ : RN → R as follows

ψµ(x) =

{
µ−N−2α, |x| < µ,

|x|−N−2α, |x| ≥ µ.
(3.1)

Proposition 3.1 For any µ > 0, there exists R0 > 3µ and c > 0, indepen-
dent of µ, such that

−cµ−2αψµ(x) ≤ (−∆)αψµ(x) ≤ −c−1µ−2αψµ(x), x ∈ Bc
R0
. (3.2)

Proof. We consider along the proof that µ > 0 and x ∈ RN satisfies |x| > 3µ.
We define

A(µ, x, z) =
ψµ(x+ z) + ψµ(x− z)− 2ψµ(x)

|z|N+2α
, z ∈ RN

11



and we observe that

(−∆)αψµ(x) = −1

2

∫

RN

A(µ, x, z)dz. (3.3)

Now we compute the integral above by decomposing the domain in various
pieces. First we consider the integral over B |x|

3
(0). We observe that |x±z| ≥ µ

for all z ∈ B |x|
3

(0), then by (3.1) we obtain

|
∫

B |x|
3

(0)

A(µ, x, z)dz| = |
∫

B |x|
3

(0)

|x+ z|−N−2α + |x− z|−N−2α − 2|x|−N−2α

|z|N+2α
dz|

= |x|−N−4α|
∫

B 1
3
(0)

|z + ex|−N−2α + |z − ex|−N−2α − 2

|z|N+2α
dz|

≤ c1|x|−N−4α

∫

B 1
3
(0)

|z|2
|z|N+2α

dz ≤ c2|x|−N−4α, (3.4)

where ex = x
|x|

and c1, c2 > 0 are independent of µ. Next we consider the

integral over B |x|
3
(x) \Bµ(x). We observe that for all z ∈ B |x|

3
(x) \Bµ(x) we

have |x+ z| ≥ |x− z| ≥ µ and then we obtain

∫

B |x|
3

(x)\Bµ(x)

A(µ, x, z)dz

=

∫

B |x|
3

(x)\Bµ(x)

|x+ z|−N−2α + |x− z|−N−2α − 2|x|−N−2α

|z|N+2α
dz

= |x|−N−4α

∫

B 1
3
(ex)\B µ

|x|
(ex)

|z + ex|−N−2α + |z − ex|−N−2α − 2

|z|N+2α
dz

≤ c3|x|−N−4α

∫

B 1
3
(ex)\B µ

|x|
(ex)

|z − ex|−N−2αdz ≤ c4µ
−2α|x|−N−2α,

where the first inequality holds since |z+ex| ≥ |z−ex| for z ∈ B 1
3
(ex)\B µ

|x|
(ex)

and |z| ≥ 2
3
for z ∈ B 1

3
(ex). For the inequality on the other side, we obtain

∫

B |x|
3

(x)\Bµ(x)

A(µ, x, z)dz

= |x|−N−4α

∫

B 1
3
(ex)\B µ

|x|
(ex)

|z + ex|−N−2α + |z − ex|−N−2α − 2

|z|N+2α
dz

12



≥ |x|−N−4α(

∫

B 1
3
(ex)\B µ

|x|
(ex)

|z − ex|−N−2α

|z|N+2α
dz −

∫

B 1
3
(ex)

2

|z|N+2α
dz)

≥ c5|x|−N−4α

∫

B 1
3
(ex)\B µ

|x|
(ex)

|z − ex|−N−2αdz − c6|x|−N−4α

≥ c7µ
−2α|x|−N−2α − c8|x|−N−4α,

where the second inequality holds by |z| ≤ 4
3
for z ∈ B 1

3
(ex). Consequently,

c7µ
−2α|x|−N−2α − c8|x|−N−4α ≤

∫

B |x|
3

(x)\Bµ(x)

A(µ, x, z)dz ≤ c4µ
−2α|x|−N−2α,

(3.5)
where the constants c4, c7, c8 > 0 are independent of µ. The estimate for the
integral over B |x|

3

(−x) \Bµ(−x) is similar.

Next we consider the integral over Bµ(x). We observe that, for z ∈ Bµ(x)

we have since |x+ z| > µ > |x− z| and |z| ≥ |x| − µ ≥ 2|x|
3
, thus

∫

Bµ(x)

A(µ, x, z)dz =

∫

Bµ(x)

|x+ z|−N−2α + µ−N−2α − 2|x|−N−2α

|z|N+2α
dz

≤ 2

∫

Bµ(x)

µ−N−2α

|z|N+2α
dz ≤ c9µ

−2α(|x| − µ)−N−2α ≤ c10µ
−2α|x|−N−2α

and, for the other inequality
∫

Bµ(x)

A(µ, x, z)dz ≥
∫

Bµ(x)

−2|x|−N−2α

|z|N+2α
dz

≥ −c11µN |x|−N−2α(|x| − µ)−N−2α ≥ −c12|x|−N−4α,

where c9, c10, c11 and c12 are positive constant independent of µ. Therefore,

−c12|x|−N−4α ≤
∫

Bµ(x)

A(µ, x, z)dz ≤ c10µ
−2α|x|−N−2α. (3.6)

The integral over Bµ(−x) is exactly the same. Finally, we consider the com-
plementary integral over D(x) = RN \ (B |x|

3
(0) ∪ B |x|

3
(x) ∪ B |x|

3
(−x)). For

|x| > 3µ and z ∈ D(x), we have that |x± z| ≥ |x|
3
, thus

|
∫

D(x)

A(µ, x, z)dz| ≤
∫

D(x)

|x+ z|−N−2α + |x− z|−N−2α + 2|x|−N−2α

|z|N+2α
dz

≤ c13|x|−N−2α

∫

RN\B |x|
3

(0)

1

|z|N+2α
dz

≤ c14|x|−N−4α, (3.7)
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where c13 > 0 and c14 > 0 are independent of µ. Therefore, by (3.4)-(3.7),
there exist c15, c16 > 1 independent of µ such that

c−1
15 µ

−2α|x|−N−2α − c15|x|−N−4α ≤
∫

RN

A(µ, x, z)dz

≤ c16µ
−2α|x|−N−2α + c16|x|−N−4α ≤ c15µ

−2α|x|−N−2α,

where we used that |x| > 3µ. Choosing R0 > 3µ such that c−1
15 µ

−2α −
c15|x|−2α ≥ 1

2
c−1
15 µ

−2α for |x| ≥ R0, together with (3.3), we obtain (3.2). �

In what follows we provide a proof of our first theorem on the decay of
the positive solutions of our equation.
Proof of Theorem 1.1. By definition of A and B in (1.9), for any ǫ > 0,
there exits δǫ > 0 such that

(B − ǫ2)t ≤ f(t) ≤ (A+ ǫ2)t, ∀ t ∈ (0, δǫ). (3.8)

Since u is a positive solution of (1.7) vanishing at infinity, there exists Rǫ > 0
such that 0 < u(x, y) < δǫ for any (x, y) ∈ Bc

Rǫ
. Therefore,

(−∆)αxu+ (−∆)yu+ (1−A− ǫ2)u ≤ 0 in Bc
Rǫ

(3.9)

and
(−∆)αxu+ (−∆)yu+ (1− B + ǫ2)u ≥ 0 in Bc

Rǫ
. (3.10)

Next we define the function φν : RM → R as φν(y) = e−ν|y|, where ν > 0 and
we find that for y ∈ RM \ {0},

−∆φν(y) = ν

(
M − 1

|y| − ν

)
φν(y). (3.11)

Step 1. There exists C(ǫ) > 1 such that

u(x, y) ≤ C(ǫ)e−θ1|y|, (x, y) ∈ RN × RM . (3.12)

To prove (3.12) we let U1(x, y) = φθ1(y), for (x, y) ∈ RN ×RM and then, by
(3.11), we have

(−∆)αxU1 + (−∆)yU1 + (1− A− ǫ2)U1

=

[
θ1

(
M − 1

|y| − θ1

)
+ 1− A− ǫ2

]
U1 ≥ 0, (3.13)

if ǫ ≤
√
1− A. By definition of U1 and φθ1 we have that U1 = 1 in RN ×{0}

and U1 ≥ e−θ1Rǫ in B̄Rǫ
and, since u is bounded, there exists ρ1 > 0 depending

on ǫ, such that

W1 = ρ1U1 − u ≥ 0 in B̄Rǫ
∪ (RN × {0}).

14



Combining (3.9) with (3.13), we obtain

(−∆)αxW1 + (−∆)yW1 + (1−A− ǫ2)W1 ≥ 0 in B̄c
Rǫ

∩ (RN × {0})c.

By Lemma 2.1, this implies that W1 ≥ 0 in RN × RM and then

u(x, y) ≤ ρ1U1(x, y) = ρ1φθ1(y) = ρ1e
−θ1|y|, (x, y) ∈ RN × RM . (3.14)

Step 2. There exists C(ǫ) > 1 such that

u(x, y) ≤ C(ǫ)|x|−N−2α, (x, y) ∈ RN × RM . (3.15)

Let c and R0 be as in Proposition 3.1 µ = (c/(2ǫ
√
(1− A)− 2ǫ2))

1
2α and

consider the function U2(x, y) = ψµ(x), for (x, y) ∈ RN ×RM . Then, by (3.2),
we have for all (x, y) ∈ (BN

R0
(0))c × RM that

(−∆)αxU2 + (−∆)yU2 + (1− A− ǫ2)U2

≥ (−cµ−2α + 1− A− ǫ2)U2 ≥ 0 (3.16)

for 0 < ǫ <
√
1− A. Let us denote W2 = ρ2U2−u, where ρ2 > 0 is such that

W2 ≥ ρ2(R0 +Rǫ)
−N−2α − u ≥ 0 in B̄Rǫ

∪ (BN
R0
(0)× RM).

Combining (3.9) with (3.16), we obtain that

(−∆)αxW2 + (−∆)yW2 + (1− A− ǫ2)W2 ≥ 0 in B̄c
Rǫ

∩ (BN
R0
(0)× RM)c.

By Lemma 2.1, we have that W2 = ρ2U2 − u ≥ 0 in RN × RM and then, for
all (x, y) ∈ RN × RM ,

u(x, y) ≤ ρ2U2(x, y) = ρ2ψµ(x) ≤ ρ2|x|−N−2α.

Step 3. There exists C(ǫ) > 1 such that

u(x, y) ≤ C(ǫ)|x|−N−2αe−θ1|y|, (x, y) ∈ RN × RM . (3.17)

Let us consider the function V (x, y) = ψµ(x)φθ1(y), for (x, y) ∈ RN × RM ,
with µ as defined above. From (3.2) and (3.11), we have that

(−∆)αxV + (−∆)yV + (1− A− ǫ2)V

≥
[
−cµ−2α + θ1

(
M − 1

|y| − θ1

)
+ 1−A− ǫ2

]
V ≥ 0, (3.18)

for (x, y) ∈ (BN
R0
(0))c×(RM \{0}) and assuming that 0 < ǫ <

√
1−A. Since

u, V are bounded in B̄Rǫ
and V is positive, there is ρ̄1 > 0 large such that

ρ̄1V − u ≥ 0 in B̄Rǫ
.
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By (3.12) and (3.14), we may choose ρ̄2 > 0 such that

ρ̄2V − u ≥ ρ̄2R
−N−2α
0 φθ1(y)− u ≥ 0 in BN

R0
(0)× RM and

ρ̄2V − u ≥ ρ̄2ψµ(x)− u ≥ 0 in RN × {0}.

Taking ρ̄ = max{ρ̄1, ρ̄2}, defining W = ρ̄V − u and combining (3.9) with
(3.18), we have that

W ≥ 0 in B̄Rǫ
∪ (BN

R0
(0)× RM) ∪ (RN × {0}) and

(−∆)αxW +(−∆)yW +(1−A−ǫ2)W ≥ 0 in B̄c
Rǫ

∩ ((BN
R0
(0))c× (RM \{0})).

Then, by Lemma 2.1, we have that ρ̄V − u ≥ 0 in RN × RM . Thus, there
exists C(ǫ) > 1 such that

u(x, y) ≤ C(ǫ)ψµ(x)φθ1(y) ≤ C(ǫ)|x|−N−2αe−θ1|y|, (x, y) ∈ RN × RM .

Step 4. There exists C1(ǫ) > 0 and R > 0 such that

u(x, y) ≥ C1(ǫ)e
−θ2|y|, (x, y) ∈ BN

R (0)× RM . (3.19)

Let R0 be as in Proposition 3.1 and let R > R0 such that λ1 < ǫ2,
where λ1 is the first eigenvalue of the fractional Dirichlet problem (2.9) with
x0 = 0 and r = 4R. Let ϕN be the first eigenfunction of (2.9) and define
V1(x, y) = ϕN (x)φθ2(y) for (x, y) ∈ RN × RM . From (2.9) and (3.11), for
(x, y) ∈ BN

2R(0)× (BM
R1
(0))c with R1 =

M−1
ǫ

, we have

(−∆)αxV1 + (−∆)yV1 + (1−B + ǫ2)V1

=

[
λ1 + θ2

(
M − 1

|y| − θ2

)
+ 1−B + ǫ2

]
V1

≤ [ǫ2 + θ2(ǫ− θ2) + 1− B + ǫ2]V1 ≤ 0, (3.20)

if ǫ <
√
1− B. Let us define w1 = u− r1V1, where r1 > 0 is such that

w1 ≥ 0 in BRǫ
∪ (BN

2R(0)×BM
R1
(0))

and observe that w1 ≥ 0 in (BN
2R(0))

c × RM since V1 = 0. Combining (3.10)
with (3.20), we obtain that

(−∆)αxw1 + (−∆)yw1 + (1−B + ǫ2)w1 ≥ 0 in (BN
2R(0)× (BM

R1
(0))c) ∩ Bc

Rǫ

and then, by Lemma 2.1, we have that

w1 = u− r1V1 ≥ 0 in RN × RM .
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Since ϕN is classical solution of (2.9) with r = 4R and x0 = 0 then ϕN(x) is

positive in BN
R (0) ⊂ RN , we can finally choose C1(ǫ) > 0 such that

u(x, y) ≥ r1ϕN(x)φθ2(y) ≥ C1(ǫ)e
−θ2|y|, ∀(x, y) ∈ BN

R (0)× RM . (3.21)

Step 5. There exists C1(ǫ) > 0 such that, for R and R1 as in Step 4,

u(x, y) ≥ C1|x|−N−2α, (x, y) ∈ (BN
R (0))c × BM

R1
(0). (3.22)

To prove this, we define V2(x, y) = ψµ(x)ηM (y) for (x, y) ∈ RN ×RM , where
ηM is the solution of

{
−∆ηM (y) = λ̄1ηM(y), y ∈ BM

R2
(0),

ηM(y) = 0, y ∈ (BM
R2
(0))c,

(3.23)

with R2 > R1 such that λ̄1 < ǫ2. Here µ = [c(1 − B + 2ǫ2)]
−1
2α with c as

in Proposition 3.1 and ψµ defined in (3.1). By (3.2) and (3.23), for (x, y) ∈
((BN

R (0))c × RM) ∩ (RN ×BM
R2
(0)), we have that

(−∆)αxV2 + (−∆)yV2 + (1− B + ǫ2)V2

≤ (−c−1µ−2α + λ̄1 + 1− B + ǫ2)V2 = 0. (3.24)

Let w2 = u− r2V2, with r2 > 0 such that

w2 ≥ 0 in B̄Rǫ
∪ (BN

R (0)× RM) ∪ (RN × (BM
R2
(0))c).

Combining (3.10) with (3.24), we obtain that

(−∆)αxw2 + (−∆)yw2 + (1− B + ǫ2)w2 ≥ 0

in Bc
Rǫ

∩ ((BN
R (0))c × RM) ∩ (RN ×BM

R2
(0)). By Lemma 2.1, we have then

w2 = u− r2V2 ≥ 0 in RN × RM .

Since ηM is positive in BM
R1
(0) ⊂ BM

R2
(0), there exists C1(ǫ) > 0 such that for

any (x, y) ∈ (BN
R (0))c × BM

R1
(0), we have that

u(x, y) ≥ r2ψµ(x)ηM (y) ≥ C1(ǫ)|x|−N−2α.

Step 6. There exist C1(ǫ) > 0 such that, for R as in Step 4,

u(x, y) ≥ C1(ǫ)|x|−N−2αe−θ2|y|, (x, y) ∈ (BN
R (0))c × RM . (3.25)
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To prove this we let Ṽ (x, y) = ψµ(x)φθ2(y), for (x, y) ∈ RN ×RM with µ as
defined above. Using (3.2) and (3.11), for (x, y) ∈ (BN

R (0))c× (BM
R1
(0))c with

R1 =
M−1

ǫ
, we have that

(−∆)αx Ṽ + (−∆)yṼ + (1− B + ǫ2)Ṽ

≤
[
−c−1µ−2α + θ2

(
M − 1

|y| − θ2

)
+ 1− B + ǫ2

]
Ṽ

≤ [θ2(ǫ− θ2) + 1− B + ǫ2]Ṽ ≤ 0, (3.26)

if 0 < ǫ <
√
1− B. Since u is positive and V is bounded in BRǫ

, we can
choose r̃1 > 0 such that

u− r̃1V ≥ 0 in BRǫ
.

Since ψµ is bounded in BN
R (0), using (3.21), there exists r̃2 > 0 such that

u− r̃2V ≥ u− r̃2c1e
−θ2|y| ≥ 0 in BN

R (0)× RM ,

and by (3.22), there exists r̃3 > 0 such that

u− r̃3V ≥ u− r̃3|x|−N−2α ≥ 0 in (BN
R (0))c ×BM

R1
(0).

Taking r̃ = min{r̃1, r̃2, r̃3} and combining (3.10) with (3.26), we obtain that

w = u− r̃V ≥ 0 in B̄Rǫ
∪ (BN

R (0)× RM) ∪ ((BN
R (0))c × BM

R1
(0)) and

(−∆)αxw + (−∆)yw + (1−B + ǫ)w ≥ 0 in B̄c
Rǫ

∩ ((BN
R (0))c × (BM

R1
(0))c).

Thus Lemma 2.1, we have that w ≥ 0 in RN × RM and then (3.25) holds.
Finally, Step 1 − Step 6 completes the proof. �

3.2 Proof of Theorem 1.2

This subsection is devoted to prove Theorem 1.2. Our proof is based on
the fundamental solution of the mixed integro-differential operator. We first
study the fundamental solution K for

(−∆)αxu+ (−∆)yu+ u = 0 in RN × (RM \ {0}),

which can be characterized by

K(x, y) =

∫ ∞

0

e−tH(x, y, t)dt, (3.27)
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where

H(x, y, t) =

∫

RM

∫

RN

e−2πi(x,y)·(ξ1,ξ2)−t(|ξ1|2α+|ξ2|2)dξ1dξ2. (3.28)

In fact, for φ ∈ S, we have that

〈K, φ〉 =
∫
RN+M

∫∞

0

∫
RN+M e−2πi(x,y)·(ξ1,ξ2)−t(|ξ1|2α+|ξ2|2+1)φ(x, y)dξ1dξ2dtdxdy

=
∫
RN+M

[∫∞

0
e−t(|ξ1|2α+|ξ2|2+1)dt

∫
RN+M e−2πi(x,y)·(ξ1,ξ2)φ(x, y)dxdy

]
dξ1dξ2

=
∫
RN+M

[
1

|ξ1|2α+|ξ2|2+1

∫
RN+M e−2πi(x,y)·(ξ1,ξ2)φ(x, y)dxdy

]
dξ1dξ2

=
〈

1
|ξ1|2α+|ξ2|2+1

,Fφ
〉
.

Next we want to find some properties of H. To this end, we consider

Hα(x, t) =

∫

RN

e−2πix·ξ1−t|ξ1|2αdξ1 and H1(y, t) =

∫

RM

e−2πiy·ξ2−t|ξ2|2dξ2.

It is well known that the function Hα has the following properties:

Hα(x, t) = t−
N
2αHα(t

− 1
2αx, 1) and lim

|x|→∞
|x|N+2αHα(x, 1) = C,

where C > 0, which imply that there exists c1 > 0 and c2 > such that

c1min{t− N
2α , t|x|−N−2α} ≤ Hα(x, t) ≤ c2min{t− N

2α , t|x|−N−2α}, (3.29)

see [22, 17]. By the definition of H, we have that

H(x, y, t) = Hα(x, t)H1(y, t). (3.30)

Since we have

H1(y, t) = (4πt)−
M
2 e−

|y|2

4t , (3.31)

see [22], together with (3.27)-(3.30), for |y| > 2,

K(x, y) =

∫ ∞

0

e−tHα(x, t)H1(y, t)dt

≥ c1

∫ ∞

0

e−t min{t− N
2α , t|x|−N−2α}(4πt)−M

2 e−
|y|2

4t dt

≥ c1

∫ |y|
2
+1

|y|
2

e−tmin{t− N
2α , t|x|−N−2α}(4πt)−M

2 e−
|y|2

4t dt

≥ c3min{e−|y||y|− N
2α

−M
2 , |x|−N−2αe−|y||y|1−M

2 },
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for some c3 > 0. On the other hand, since for n ≥ 3 we have

∫ ∞

0

e−t(4πt)−
n
2 e−

|y|2

4t dt ≤ c4e
−|y||y|2−n(1 + |y|)n−3

2

with c4 > 0 (see [22]), for M ≥ 5 we have that

K(x, y) =

∫ ∞

0

e−tHα(x, t)H1(y, t)dt

≤ c2

∫ ∞

0

e−tmin{t− N
2α , t|x|−N−2α}(4πt)−M

2 e−
|y|2

4t dt

≤ c5min{
∫ ∞

0

e−t(4πt)−
N
2α

−M
2 e−

|y|2

4t dt, |x|−N−2α

∫ ∞

0

e−t(4πt)1−
M
2 e−

|y|2

4t dt}

≤ c6min{e−|y||y|2−N
α
−M(1 + |y|) N

2α
+M

2
− 3

2 , |x|−N−2αe−|y||y|4−M(1 + |y|)M−5
2 }

Therefore, for N ≥ 1 and M ≥ 5, there exist c8 > c7 > 0 such that

c7ρ(x, y) ≤ K(x, y) ≤ c8ρ(x, y)|y|
1
2 , (x, y) ∈ RN × (BM

2 (0))c, (3.32)

where ρ(x, y) is defined in (1.14). In what follows, we construct super and
sub-solutions to obtain the decay estimate given in Theorem 1.2.

Proof of Theorem 1.2. By the estimate in Theorem 1.1, we observe that,
for constants c10 > c9 > 0 such that

c9(1 + |x|)−N−2α ≤ u(x, y) ≤ c10(1 + |x|)−N−2α, (x, y) ∈ RN ×BM
2 (0),

so we only need to prove (1.13) holds for (x, y) ∈ RN × (BM
2 (0))c.

Step 1: Lower bound. Let ũ = K ∗ χBN
1 (0)×BM

1 (0), where χBN
1 (0)×BM

1 (0) is the

characteristic function of BN
1 (0)× BM

1 (0). By (3.32), we have that

ũ(x, y) ≥ c11 min{e−|y||y|− N
2α

−M
2 , (1 + |x|)−N−2αe−|y||y|1−M

2 }, (3.33)

for all (x, y) ∈ RN × (BM
2 (0))c, where c11 > 0. By definition of ũ, we have

(−∆)αx ũ+ (−∆)yũ+ ũ = 0 in RN × (RM \ {0}) \ (BN
1 (0)× BM

1 (0))

and, by (3.32) and Theorem 1.1, there exists c12 > 0 such that u ≥ c11ũ in
RN × {y ∈ RM : |y| = 2}. Since f is nonnegative, we use the Comparison
Principle to obtain that, for any (x, y) ∈ RN × (BM

2 (0))c

u(x, y) ≥ c11ũ(x, y) ≥ c12min{e−|y||y|− N
2α

−M
2 , (1 + |x|)−N−2αe−|y||y|1−M

2 }.
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Step 2: Upper bound. For y ∈ RM with |y| ≥ 2, there exists 1 ≤ i ≤M such
that |yi| > 1, we may assume that y1 > 1. Let ū(x, y) = K(x, y)(1− |y1|−1),
then by direct computation

(−∆)yū = (1− |y1|−1)(−∆)yK − 2y−2
1 ∂y1K + 2Ky−3

1

≥ (−∆)yK(1− |y1|−1) + 2Ky−3
1 ,

where the last inequality holds since y1 > 0 and ∂y1K < 0. Therefore, by
(3.32), we have that for (x, y) ∈ RN × (BM

2 (0))c,

(−∆)αx ū(x, y) + (−∆)yū(x, y) + ū(x, y)

≥ [(−∆)αxK + (−∆)yK +K](1− |y1|−1) + 2K(x, y)y−3
1 ≥ 2K(x, y)|y|−3

≥ 2c8min{e−|y||y|− N
2α

−M
2
−3, |x|−N−2αe−|y||y|−M

2
−2}. (3.34)

Since f(u) = O(up) near u = 0 for some p > 1, by Theorem 1.1 with ǫ = p−1
4p

,
we have that

(−∆)αxu+ (−∆)yu+ u) = f(u) ≤ c13(1 + |x|)−(N+2α)pe−
3p+1

4
|y|,

where c13 > 0. We notice that 3p+1
4

> 1. By definition of ū, (3.32) and

Theorem 1.1 with ǫ = p−1
4p

, there exists c14 > 0 such that u ≤ c14ū in

RN × {y ∈ RM : |y| = 2}. By Comparison Principle, we have that

u(x, y) ≤ c14ū(x, y) ≤ c14K(x, y)

≤ c15 min{e−|y||y| 12− N
2α

−M
2 , (1 + |x|)−N−2αe−|y||y| 32−M

2 }

for all (x, y) ∈ RN × (BM
2 (0))c and some c15 > 0. This complete the proof.

�

4 Symmetry results

In this section, we prove Theorem 1.3 by moving planes method. Let u be a
classical positive solution of (1.7) and consider first the y-direction. Let

Σy1
λ = {(x, y1, y′) ∈ RN × R× RM−1 | y1 > λ},

T y1
λ = {(x, y1, y′) ∈ RN × R× RM−1 | y1 = λ}

and uλ(x, y1, y
′) = u(x, 2λ − y1, y

′) for λ ∈ R. We introduce a preliminary
inequality which plays a crucial role in the procedure of moving planes.
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Lemma 4.1 Under the assumptions of Theorem 1.3, for any λ ∈ R, there
exists c1 > 0, independent of λ, such that

c1(

∫

Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤
∫

Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy <∞.

Proof. First we show that the integrals are finite. We observe that uλ
satisfies the same equation (1.7) as u in Σy1

λ . Taking (uλ−u)+ as test function
in the equations for u and uλ, subtracting and integrating in Σy1

λ , we find

∫

Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy

=

∫

Σ
y1
λ

(f(uλ)− f(u))(uλ − u)+dxdy. (4.1)

Now we only need to prove that

∫

Σ
y1
λ

(f(uλ)− f(u))(uλ − u)+dxdy < +∞. (4.2)

In fact, for any given λ ∈ R, using (1.10), we choose R > 1 such that

0 < uλ(x, y) ≤ Cǫ(1 + |x|)−N−2αe−θ1|yλ| < s0, ∀(x, y) ∈ Bc
R,

where yλ = (2λ− y1, y
′) for y = (y1, y

′) ∈ RM and s0 is from (F ).
If uλ(x, y) > u(x, y) for some (x, y) ∈ Σy1

λ ∩ Bc
R, we have 0 < u(x, y) <

uλ(x, y) < s0. Using (1.15) with v = uλ(x, y), then

f(uλ(x, y))− f(u(x, y))

uλ(x, y)− u(x, y)
≤ c̄uγλ(x, y),

then

(f(uλ(x, y))− f(u(x, y)))+(uλ(x, y)− u(x, y))+ ≤ c̄uγ+2
λ (x, y).

The inequality above is obvious if uλ(x, y) ≤ u(x, y) for some (x, y) ∈ Σy1
λ ∩

Bc
R. Then

(f(uλ)− f(u))+(uλ − u)+ ≤ c̄uγ+2
λ in Σy1

λ ∩Bc
R.
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Therefore,
∫

Σ
y1
λ

∩Bc
R

(f(uλ)− f(u))+(uλ − u)+dxdy

≤ c̄

∫

Σ
y1
λ

∩Bc
R

uγ+2
λ (x, y)dxdy

≤ c̄Cǫ

∫

Σ
y1
λ

(1 + |x|)−(N+2α)(γ+2)e−(γ+2)θ1|yλ|dxdy

≤ c̄Cǫ

∫

RN

(1 + |x|)−(N+2α)(γ+2)dx

∫

RM

e−(γ+2)θ1|y|dy < +∞,

where the last inequality holds by γ > 2αN
(N+M)(N+2α)

. Since u and uλ are
bounded and f is locally Lipschitz, we have

∫

Σ
y1
λ

∩BR

(f(uλ)− f(u))+(uλ − u)+dxdy < +∞.

Therefore, (4.2) holds. Together with (4.1), we have the second inequality in
the result.

Next we show that the first inequality holds in Lemma 4.1. Let us denote

w(x, y) =

{
(uλ − u)+(x, y), (x, y) ∈ Σy1

λ ,

(uλ − u)−(x, y), (x, y) ∈ (Σy1
λ )c

(4.3)

and
supp(w) = {(x, y) ∈ RN × RM | w(x, y) 6= 0},

where (uλ−u)+(x, y) = max{(uλ−u)(x, y), 0}, (uλ−u)−(x, y) = min{(uλ−
u)(x, y), 0}. We observe that w(x, y1, y

′) = −w(x, 2λ−y1, y′) for (x, y1, y′) ∈
RN × R× RM−1 and

w = uλ − u in supp(w). (4.4)

It is obvious that for (x, y) ∈ Σy1
λ ∩ supp(w), {z ∈ RN | (z, y) ∈ (Σy1

λ )c} = Ø
and

RN = {z ∈ RN | (z, y) ∈ Σy1
λ ∩ supp(w)} ∪

{z ∈ RN | (z, y) ∈ Σy1
λ ∩ (supp(w))c} ∪ {z ∈ RN | (z, y) ∈ (Σy1

λ )c}.
Combining with (4.4), then for (x, y) ∈ Σy1

λ ∩ supp(w),

(−∆)αxw(x, y)− (−∆)αx(uλ − u)(x, y) =

∫

RN

(uλ − u)(z, y)− w(z, y)

|x− z|N+2α
dz

=

∫

{z∈RN :(z,y)∈Σ
y1
λ

∩(supp(w))c}

(uλ − u)(z, y)

|x− z|N+2α
dz ≤ 0, (4.5)
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where the last inequality holds by uλ − u ≤ 0 in Σy1
λ ∩ (supp(w))c. On one

hand, from (4.5) and w = (uλ − u)+ > 0 in Σy1
λ ∩ supp(w), we have that

∫

Σ
y1
λ

∩supp(w)

(−∆)αxwwdxdy ≤
∫

Σ
y1
λ

∩supp(w)

(−∆)αx(uλ − u)(uλ − u)+dxdy.

(4.6)
On the other hand, we know that w(x, y) = (uλ−u)(x, y) and (−∆)yw(x, y) =
(−∆)y(uλ − u)(x, y) for (x, y) ∈ Σy1

λ ∩ supp(w). Together with (4.6), then
∫

Σ
y1
λ

∩supp(w)

[(−∆)αxw + (−∆)yw + w]wdxdy

≤
∫

Σ
y1
λ

∩supp(w)

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy

and then by the fact of w = (uλ − u)+ = 0 in Σy1
λ ∩ (supp(w))c, we have that

∫

Σ
y1
λ

[(−∆)αxw + (−∆)yw + w]wdxdy

≤
∫

Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+. (4.7)

By the definition of w, we have that
∫

RN+M

|w|2dxdy = 2

∫

Σ
y1
λ

|w|2dxdy,

∫

RN+M

|w|
2(N+M)
N+M−2αdxdy = 2

∫

Σ
y1
λ

|w|
2(N+M)
N+M−2αdxdy,

∫

RN+M

(−∆)ywwdxdy = 2

∫

Σ
y1
λ

(−∆)ywwdxdy,

∫

RN+M

(−∆)αxwwdxdy = 2

∫

Σ
y1
λ

(−∆)αxwwdxdy,

then, together with Proposition 2.1, we obtain that
∫

Σ
y1
λ

[(−∆)αxw + (−∆)yw + w]wdxdy

=
1

2

∫

RN+M

[(−∆)αxw + (−∆)yw + w]wdxdy

≥ c3(

∫

RN+M

|w|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

= c3(2

∫

Σ
y1
λ

|w|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M , (4.8)
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for some c3 > 0. Combining (4.7) with (4.8), by w = (uλ − u)+ in Σy1
λ , we

get the first inequality in Lemma 4.1. The proof is complete. �

Lemma 4.2 Under the assumptions of Theorem 1.3, for any λ ∈ R, there
exists c4 > 0 independent of λ such that

c4(

∫

Σ
x1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤
∫

Σ
x1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy <∞,

where Σx1
λ = {(x1, x′, y) ∈ R× RN−1 × RM | x1 > λ}.

Proof. The proof proceeds similarly to the proof of Lemma 4.1, the only
difference is to show (4.5) with (x, y) ∈ Σx1

λ ∩ supp(w). It is obvious that

RN = {z ∈ RN | (z, y) ∈ Σx1

λ ∩ supp(w)} ∪
{z ∈ RN | (z, y) ∈ Σx1

λ ∩ (supp(w))c} ∪
{z ∈ RN | (z, y) ∈ (Σx1

λ )c ∩ (supp(w))c} ∪
{z ∈ RN | (z, y) ∈ (Σx1

λ )c ∩ supp(w)}

and w = uλ − u in supp(w), then for (x, y) ∈ Σx1

λ ∩ supp(w),

(−∆)αxw(x, y)− (−∆)αx(uλ − u)(x, y) =

∫

RN

(uλ − u)(z, y)− w(z, y)

|x− z|N+2α
dz

=

∫

{z∈RN | (z,y)∈Σ
x1
λ

∩(supp(w))c}

(
1

|x− z|N+2α
− 1

|x− zλ|N+2α
)(uλ − u)(z, y)dz

≤ 0,

where zλ = (2λ − z1, z
′) for z = (z1, z

′) ∈ RN and the last inequality holds
by uλ − u ≤ 0 in Σx1

λ ∩ (supp(w))c. �

Theorem 4.1 Under the assumptions of Theorem 1.3, for x ∈ RN , we have

u(x, y) = u(x, |y|)

and u is strictly decreasing in y-direction.

Proof. We divide the proof into three steps.
Step 1: λ0 := sup{λ | uλ ≤ u in Σy1

λ } is finite. Since u decays at infinity, we
observe that the set {λ | uλ ≤ u in Σy1

λ } is nonempty. Using (uλ − u)+ as a
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test function in the equation for u and uλ, by (1.15) and Hölder inequality,
for λ big (negative), we find that

∫

Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy

=

∫

Σ
y1
λ

(f(uλ)− f(u))(uλ − u)+dxdy

=

∫

Σ
y1
λ

f(uλ)− f(u)

uλ − u
[(uλ − u)+]2dxdy ≤ c̄

∫

Σ
y1
λ

uγλ[(uλ − u)+]2dxdy

≤ c5

∫

Σ
y1
λ

(1 + |x|)−γ(N+2α)e−γθ1|yλ|[(uλ − u)+]2dxdy

≤ c5(

∫

Σ
y1
λ

(1 + |x|)−ae−b|yλ|dxdy)
2α

N+M (

∫

Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M ,

where a = γ(N+2α)(N+M)
2α

and b = θ1γ(N+M)
2α

. Since γ > 2αN
(N+2α)(N+M)

, we have
that a > N . Then we can choose R > 0 such that for all λ < −R,

c5(

∫

Σ
y1
λ

(1 + |x|)−ae−b|yλ|dxdy)
2α

N+M ≤ 1

4
.

By Lemma 4.1, we obtain that
∫

Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy = 0, ∀ λ < −R.

Thus uλ ≤ u in Σy1
λ for all λ < −R and then conclude that λ0 ≥ −R.

On the other hand, since u decays at infinity, then there exist λ1 ∈ R and
(x, y) ∈ Σy1

λ such that u(x, y) < uλ1(x, y). Hence λ0 is finite.

Step 2: u ≡ uλ0 in Σy1
λ0
. Assuming the contrary, we have that u 6≡ uλ0 and

u ≥ uλ0 in Σy1
λ0
, in this case the following claim holds.

Claim 1. If u 6≡ uλ0 and u ≥ uλ0 in Σy1
λ0

, then u > uλ0 in Σy1
λ0

.
Let us assume, for the moment, that Claim 1 is true, then for any given

λ ∈ (λ0, λ0 + ǫ), where ǫ > 0 is chosen later. Let P = (0, · · · , λ, · · · , 0) ∈ T y1
λ

and B(P,R) be the ball centered at P and with radius R > 1 to be chosen
later. Define B1 = Σy1

λ ∩B(P,R) and let us consider (uλ − u)+ test function
in the equation for u and uλ in Σy1

λ , then from Lemma 4.1 we obtain

(

∫

Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤ c6

∫

Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy
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= c6

∫

Σ
y1
λ

(f(uλ)− f(u))(uλ − u)+dxdy. (4.9)

We estimate the integral on the right. Proceeding as in Step 1, we can choose
R > 1 big enough such that

c7(

∫

Σ
y1
λ

\B1

(1 + |x|)−ae−b|yλ|dxdy)
2α

N+M ≤ 1

4

for some c7 > 0, where a = γ(N+2α)(N+M)
2α

and b = θ1γ(N+M)
2α

. Then

∫

Σ
y1
λ

\B1

(f(uλ)− f(u))(uλ − u)+dxdy ≤ c̄

∫

Σ
y1
λ

\B1

uγλ|(uλ − u)+|2dxdy

≤ c7(

∫

Σ
y1
λ

\B1

(1 + |x|)−ae−b|yλ|dxdy)
2α

N+M (

∫

Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤ 1

4
(

∫

Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M . (4.10)

Now using Claim 1, we choose ǫ > 0 such that c8|B1 ∩ supp(uλ − u)+| 2α
N+M <

1/4, for some c8 > 0. Since f is locally Lipschitz, using Hölder inequality, we
have

∫

B1

(f(uλ)− f(u))(uλ − u)+dxdy ≤ c46

∫

B1

|(uλ − u)+|2χsupp(uλ−u)+dxdy

= c8|B1 ∩ supp(uλ − u)+| 2α
N+M (

∫

B1

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤ 1

4
(

∫

B1

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M . (4.11)

From (4.9), (4.10) and (4.11), it follows that (uλ − u)+ = 0 in Σy1
λ . Then

uλ ≤ u in Σy1
λ for λ ∈ (λ0, λ0 + ǫ), which contradicts the definition of λ0. As

a consequence, we have u ≡ uλ0 in Σy1
λ0
.

In order to complete Step 2, we only need to prove Claim 1.

Proof of Claim 1. By contradiction, if there exists (x̄, ȳ) ∈ Σy1
λ0

such that
u(x̄, ȳ) = uλ0(x̄, ȳ), then

(−∆)αx(u− uλ0)(x̄, ȳ) + (−∆)y(u− uλ0)(x̄, ȳ) + (u− uλ0)(x̄, ȳ)

= f(u(x̄, ȳ))− f(uλ0(x̄, ȳ)) = 0.

Since (u−uλ0)(x̄, ȳ) = minΣ
y1
λ0

(u−uλ0) = 0, we have (−∆)y(u−uλ0)(x̄, ȳ) ≤ 0,

then
(−∆)αx(u− uλ0)(x̄, ȳ) ≥ 0. (4.12)
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The other side, we observe that {z ∈ RN | (z, ȳ) ∈ (Σy1
λ0
)c} = Ø when (x̄, ȳ) ∈

Σy1
λ0
. By u(x̄, ȳ) = uλ0(x̄, ȳ) and then

(−∆)αx(u− uλ0)(x̄, ȳ) = −
∫

RN

(u− uλ0)(z, ȳ)

|x̄− z|N+2α
dz

= −
∫

{z∈RN | (z,ȳ)∈Σ
y1
λ0

}

(u− uλ0)(z, ȳ)

|x̄− z|N+2α
dz ≤ 0, (4.13)

where the last inequality holds by u ≥ uλ0 in Σy1
λ0
.

Combining (4.12) with (4.13), we obtain that (−∆)αx(u − uλ0)(x̄, ȳ) = 0
and then from (4.13), we have that

u(z, ȳ) = uλ0(z, ȳ), ∀z ∈ RN , (4.14)

this means that u− uλ0 has property (P ) and by u 6= uλ0 in Σy1
λ0

we have

(x̄, ȳ) ∈ (Σy1
λ0
)0 := {(x, y) ∈ Σy1

λ0
| (u− uλ0)(x, y) = inf

Σ
y1
λ0

(u− uλ0) = 0} $ Σy1
λ0
.

Moreover, by Proposition 2.3 with Ω = Σy1
λ0
, we observe that Σy1

λ0
\ (Σy1

λ0
)0

satisfies interior cylinder condition at point (x0, y0) ∈ ∂(Σy1
λ0
)0 ∩ Σy1

λ0
. Then

there exist r > 0 small and ỹ ∈ RM such that

Or := BN
r (x0)× BM

r (ỹ) ⊂ Σy1
λ0

\ (Σy1
λ0
)0 and (x0, y0) ∈ ∂Or.

Let D be defined by (2.3). Since u ≥ uλ0 in Σy1
λ0
, then for any (x, y) ∈ D, we

have
∫

RN\BN
r (x0)

(u− uλ0)(z, y)

|x− z|N+2α
dz ≥ 0.

Finally, it is obvious that

(−∆)αx(u− uλ0) + (−∆)y(u− uλ0) + h(u− uλ0) = 0 in Σy1
λ0
,

where h = 1− f(u)−f(uλ0
)

u−uλ0
∈ L∞

loc(Σ
y1
λ0
). Then we use Theorem 2.1 to obtain

u ≡ uλ0 in Σ̃y1
λ0
,

which contradicts the condition of u 6= uλ0 in Σy1
λ0
, then we obtain the results

in Claim 1.

Step 3. By translation, we may say that λ0 = 0. Repeating the argument
from the other side, we find that u is symmetric about y1-axis. Using the
same argument in any y-direction, we conclude that

u(x, y) = u(x, |y|), (x, y) ∈ RN × RM .
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Finally, we prove that u(x, |y|) is strictly decreasing in |y| > 0. Indeed,
for any given y1 < ỹ1 < 0 and letting λ = y1+ỹ1

2
. Then, as proved above we

have
u > uλ in Σy1

λ .

For any given x ∈ RN , we observe that (x, ỹ1, 0, · · · , 0) ∈ Σy1
λ , then

u(x, ỹ1, 0, · · · , 0) > uλ(x, ỹ1, 0, · · · , 0) = u(x, y1, 0, · · · , 0).

Using the result of u(x, y) = u(x, |y|) for all (x, y) ∈ RN ×RM and |ỹ1| < |y1|,
we conclude monotonicity of u respect to y. This completes the proof. �

Next we study the symmetry result in x-direction.

Theorem 4.2 Under the assumptions of Theorem 1.3, for y ∈ RM , we have

u(x, y) = u(|x|, y)

and u is strictly decreasing in x-direction.

Proof. The proof of this theorem goes like the one for Theorem 4.1. The
only place where there is a difference is in the following property: if u 6≡ uλ0

and u ≥ uλ0 in Σx1
λ0

, then u > uλ0 in Σx1
λ0

. By contradiction, if there exists
(x̄, ȳ) ∈ Σx1

λ0
such that u(x̄, ȳ) = uλ0(x̄, ȳ), then

(−∆)αx(u− uλ0)(x̄, ȳ) + (−∆)y(u− uλ0)(x̄, ȳ) + (u− uλ0)(x̄, ȳ)

= f(u(x̄, ȳ))− f(uλ0(x̄, ȳ)) = 0.

Since u ≥ uλ0 in Σx1
λ0
, we have (u − uλ0)(x̄, ȳ) = minΣ

x1
λ0

(u − uλ0) = 0 and

(−∆)y(u− uλ0)(x̄, ȳ) ≤ 0 and then

(−∆)αx(u− uλ0)(x̄, ȳ) ≥ 0.

The other side, by direct computation, we have that

(−∆)αx(u− uλ0)(x̄, ȳ) =

∫

RN

(uλ0 − u)(z, ȳ)

|x̄− z|N+2α
dz

=

∫

{z∈RN | (z,ȳ)∈Σ
x1
λ0

}

(
1

|x̄− z|N+2α
− 1

|x̄− zλ0 |N+2α
)(uλ0 − u)(z, ȳ)dz ≤ 0,

where zλ0 = (2λ0 − z1, z
′) for z = (z1, z

′) ∈ RN and the last inequality holds
by u ≥ uλ0 in Σx1

λ0
. Therefore,

u(z, ȳ) = uλ0(z, ȳ), ∀z ∈ RN , (4.15)
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this means that u− uλ0 has property (P ) and by u 6= uλ0 in Σx1

λ0
we have

(x̄, ȳ) ∈ (Σx1
λ0
)0 := {(x, y) ∈ Σx1

λ0
| (u− uλ0)(x, y) = inf

Σ
x1
λ0

(u− uλ0) = 0} $ Σx1
λ0
.

Moreover, by Proposition 2.3, we observe that Σx1

λ0
\ (Σx1

λ0
)0 satisfies interior

cylinder condition at point (x0, y0) ∈ ∂(Σx1
λ0
)0 ∩Σx1

λ0
. Then there exist r1 > 0

and ỹ ∈ RM such that for all r ∈ (0, r1],

Or := BN
r (x0)× BM

r (ỹ) ⊂ Σx1

λ0
\ (Σx1

λ0
)0 and (x0, y0) ∈ ∂Or.

Next we show that there exists some r ∈ (0, r1] such that for any (x, y) ∈ D,
∫

RN\BN
r (x0)

(u− uλ0)(z, y)

|x− z|N+2α
dz ≥ 0, (4.16)

where D is defined by (2.3). Indeed, since u 6≡ uλ0 and u ≥ uλ0 in Σx1
λ0
, then

for (x, y) ∈ D ⊂ Σx1

λ0
, we have that

∫

RN

(u− uλ0)(z, y)

|x− z|N+2α
dz > 0.

Let us define

r(x, y) = sup{r ∈ (0, r1] :

∫

RN\BN
r (x0)

(u− uλ0)(z, y)

|x− z|N+2α
dz ≥ 0}. (4.17)

Let rm = inf(x,y)∈D r(x, y), it is obvious that rm ∈ [0, r1]. Now we prove that
rm > 0. By contradiction, if rm = 0, then there exist a sequence (xn, yn) ∈ D
and (x̃, ỹ) ∈ D̄ such that (xn, yn) → (x̃, ỹ) and r(xn, yn) → 0, as n → +∞.
Since r(x, y) is continuous, then r(x̃, ỹ) = 0. If (x̃, ỹ) ∈ D̄ \ (Σx1

λ0
)0, i.e.

u(x̃, ỹ) > uλ0(x̃, ỹ), we have
∫

RN

(u− uλ0)(z, ỹ)

|x̃− z|N+2α
dz

=

∫

{z∈RN | (z,ỹ)∈Σ
x1
λ0

}

(u− uλ0)(z, ỹ)(
1

|x̃− z|N+2α
− 1

|x̃− zλ0 |N+2α
)dz > 0.

By the continuity of the integration and (4.17), we obtain that r(x̃, ỹ) > 0,
which is impossible.

Then (x̃, ỹ) ∈ D̄ ∩ (Σx1
λ0
)0, i.e. u(x̃, ỹ) = uλ0(x̃, ỹ). Since the function

u− uλ0 has property (P ), then for any r̃ > 0,
∫

RN\BN
r̃
(x0)

(u− uλ0)(z, ỹ)

|x̃− z|N+2α
dz = 0.
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Combining with (4.17), we obtain that r(x̃, ỹ) = r1 > 0, which contradicts
r(x̃, ỹ) = 0. As a consequence, we have that 0 < rm ≤ r1. Taking r = rm,
then (4.16) holds for any (x, y) ∈ D. Finally, it is obvious that

(−∆)αx(u− uλ0) + (−∆)y(u− uλ0) + h(u− uλ0) = 0 in Σx1
λ0
,

where h = 1 − f(u)−f(uλ0
)

u−uλ0
∈ L∞

loc(Σ
x1

λ0
). Then we use Theorem 2.1 to obtain

that
u ≡ uλ0 in Σ̃x1

λ0
,

which contradicts the condition of u 6= uλ0 in Σx1
λ0
. Then u > uλ0 in Σx1

λ0
, to

complete the proof. �
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