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A B S T R A C T

The estimation of modal parameters is a critical requirement in structural health monitoring, damage detection, design
validation, among other topics. The most prevalent methodology for manual identification is via an interpretation of a
stabilization diagram. A density-based algorithm for automatically interpreting this type of diagram is proposed. The
method employs three stages of interpretation. First, hard criteria are used to discard distinct spurious modes. Second, a
density-based algorithm, Ordering Points to Identify the Clustering Structure (OPTICS), is used to cluster data. Finally, the
modal parameters are selected taking into account the density distribution of the clustered values. Automation on the
procedure is proposed, tested and applied to the vibration measurements of a building structure that has been con-
tinuously monitored since 2009. The results indicate a satisfactory interpretation, despite the low signal-to-noise ratios,
the effect of induced electric noise, the low density of the sensors, different ambient conditions, and the occurrence of
earthquake events.

1. Introduction

The estimation of the modal parameters of civil infrastructure is critical
in structural health monitoring, damage detection, design validation,
among other topics. Large quantities of data and the identification of basic
modal parameters need to be processed in short periods of time. The process
of modal parameter estimation can be divided into the following three
steps: data acquisition, cleansing and preprocessing, model parameter
identification and the selection of a representative set of structural modal
parameters. The first two processes usually need to be tuned once and can
be automatically executed, whereas the last process requires a considerable
amount of user interaction, which is the main focus of research concerning
automation for identification techniques.

This paper focuses on parametric system identification for civil
engineering structures. The technique is dependent on the parameter
estimation of a viscoelastic model with an unknown number of parti-
cipating modes. The process is usually iterative, in which several
models of a different order or size are identified. The model order is an
integer value that is equivalent to the number of eigenvalues in the
model. Specifying a low model order can produce an inaccurate data fit,
whereas a higher model order can yield spurious modal parameters. In
general, the order is overestimated [1]; thus, a procedure is required to
discriminate between real structural modes and spurious modes. The
most common procedure is the construction of a diagram in which the
real modes can be identified. This diagram is referred to as a stabili-
zation diagram.

A stabilization diagram can be defined as a model order vs. a frequency
plot (and generally includes a mode shape index and damping) for an ex-
tensive range of model orders. The main hypothesis, which is obtained from
the empirical observation of numerous modal identification problems, is
that the physical modes constantly appear with similar frequencies, along
with damping and mode shapes as the model order sequentially increases.
Thus, the objective of the stabilization diagram is to identify the stable
parameters that represent the physical modes. Note that other situations
exist in which stable parameters appear in the stabilization diagram, such as
machine vibrations or electrical signals that are not associated with the
study structure, and this has to be identified as spurious information.

Depending on the quality of the data, the number of sensors and the
efficiency of the identification algorithm, the stable physical parameters form
a column in the stability diagram. In the manual case, the definition or
identification of a stable column is dependent on the judgment of the analyst.

The majority of the strategies in the literature aim to automate the same
process that would be followed by a manual analysis of the stabilization
diagram. In these methods, the process can be divided into three stages:

(1) Stage 1: Detect and remove as many spurious modes as possible from the
stabilization diagram. The removal is generally based on the basic phy-
sical characteristics of viscoelastic and proportionally damped structures.

(2) Stage 2: Define sets of similar possible physical modes to define the
stable columns and delete possible sets of spurious modes.

(3) Stage 3: Select a representative mode for each set of physical modes
(stable columns).
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Several methodologies for the automatic or semi-automatic identifica-
tion of stability diagrams have been proposed Bakir et al. [2], Cabboi et al.
[3], Magalhaes et al [1], Reynders et al. [4]. For example, in stage one,
Magalhaes et al [1] manually fixes thresholds to define variations for the
modal properties that belong to a single mode. In stage two, a hierarchical
clustering approach is applied. Bakir [2] also fixes thresholds in stage one.
However, instead of applying a hierarchical clustering approach in the
second stage, he employs an overlapping histogram for the selection of the
identified modal properties. Cabboi et al. [3] uses an alternate method of
linkage for stage two, which is based on the distance between the para-
meters and a distance limit that requires adjustment. Stage three is often a
direct result of the different methodologies that are proposed by each au-
thor and often determines the final parameters from the average or median
values. The procedure proposed by Reynders et al. [4] presents a four-stage
process. The first stage establishes a series of soft and hard criteria. Based on
the results of the application of these criteria, spurious modes are initially
selected and deleted from the diagram using a k-means clustering algo-
rithm. In the second stage, sets of similar (close) modes are determined
using a hierarchical clustering algorithm, and then spurious modes are re-
moved using k-means clustering, considering the number of elements of
each set. In stage three, one mode is selected from each remaining set of
physical modes. The final selection is based on the accuracy of the modal
parameters, which are estimated and measured in terms of the damping
ratio, Modal Phase Collinearity (MPC) or Modal Phase Deviation (MPD).

In this paper, a density-based clustering algorithm based upon an ex-
isting algorithm called Ordering Points to Identify the Clustering Structure
(OPTICS [5]) is proposed and analyzed. This procedure provides more tools
to efficiently analyze the stabilization diagram, and also automation on this
algorithm is presented and analyzed. The analysis includes the results
yielded by the application of this methodology on a live monitored building.
The results provide guidelines and considerations that are aimed to improve
the interpretation of stabilization diagrams.

The organization of this paper is as follows. In Section 2, the case
study is presented from which the raw stabilization diagram for a single
record is exposed to be used for the analysis. Section 3 exposes the
proposed methodology and analyzes it using the results of the single
record provided by the case study. Section 4 presents the results ob-
tained by applying the algorithm on a given month (2282 records).
Finally, Section 5 concludes the paper.

2. Introduction and raw stabilization diagram of a single record

To illustrate the proposed methodology, an automatic interpretation
method is applied to the “Torre Central (TC)” Building, which is located in

the Faculty of Physical and Mathematical Sciences of the University of Chile
in Santiago, Chile. The structure has nine floors and two basements, with an
approximate height of 30.2 [m] above ground level. The thickness of each
of the shear walls is 35 [cm], and the thickness of each of the slabs is 25
[cm]. Eight accelerometers are installed on the structure, two accel-
erometers are installed on the basement, and three accelerometers are in-
stalled on the third and eighth floors. Additionally, three humidity sensors
have been installed at 20, 10, and 5m below the surface, connected to the
accelerometer data acquisition system. The monitoring system also gathers
information from a meteorological station 40m distant from the central
tower, which collects data from temperature, precipitation, and wind speed,
among others [6]. We have tested our proposal in an analytical model and it
yielded good results (Bilbao and Boroschek [7]), which are not described
here.

The records cover 15min segments of continuous measurements from
June 2009 to July 2014 with a sampling frequency rate that ranges from
100 to 200 [Hz]. The channels located in the basement were omitted from
the analysis given that they would most likely represent the behaviors of the
soil and foundation compared with the structural vibration and its modes.
Consequently, only six channels were considered.

The identification of the structure (construction of the stabilization
diagrams) is made using SSICOV [8] with the implementation of a fast
multi-order computation algorithm of the system matrices presented by
Döhler et al. [9].

Fig. 2.1 shows the stabilization diagram for a single record (09-26-
2009 01:00–01:15). Several spurious modes exist.

3. Proposed methodology

3.1. Stage one

The first stage of the algorithm is aimed at detecting and removing
as many spurious modes as possible from the stabilization diagram. To
discriminate between spurious and physical modes, different validation
criteria are used. These criteria can be categorized as hard validation
criteria, which yield binary answers, and soft validation criteria, which
yield values within a certain range.

Only hard validation criteria with relatively loose limits are pro-
posed to be employed as a first stage. In this manner, a more intuitive
approach to the cleaning of the stabilization diagram, which is easily
adjusted to the context of the identification process, can be developed.
Note that soft validation criteria can be transformed into hard valida-
tion criteria by imposing thresholds on their values.

The hard validation criteria considered on the methodology are
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Fig. 2.1. Stabilization diagram, TC record.
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presented in Table 3.1. It is noted that the criteria that can be used is
not limited to those exposed in Table 3.1. Moreover, the limits should
be evaluated beforehand, following the judgement by the analyst in
order to provide optimal results.

3.1.1. Stage one validation criteria
3.1.1.1. Distance criteria. Distance validation criteria are aimed at
determining the degree of “stability” by measuring the minimum
normalized relative distance between the mode in the analysis and the
modes in the nearest model order. This distance can be determined at a
model order k and a mode i, by either the eigenfrequencies fi

k, the damping
ratios i

k , the continuous-time eigenvalue k
ci or the mode shape i

k.
Note that (theoretically) the continuous-time eigenvalue is a func-

tion of the eigenfrequency and damping ratio [10]:

= ±f j f(2 ) (2 ) 1ci i i i
2

(3.1)

The distance criteria in terms of eigenfrequencies d f( )i
k , damping
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where i
k represents either fi

k, i
k or c

k
i . This parameter corresponds to the

minimum of the (normalized) distances between the analyzed mode i
k and

every mode found in the next model order +
j
k 1. A distance value near 0

would yield a larger probability that the analyzed mode is part of a stable
column, whereas a high distance value may indicate a spurious unstable
mode or another mode. Note that distance criteria on the eigenvalue was
not considered due to its redundancy on frequency and damping.

The distance criteria determined by the mode shape i
k are obtained

using the modal assurance criteria (MAC, [11]) value:
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(3.3)

where [ ] denotes the conjugate transpose of a vector. The distance
criteria as a function of the MAC value of the mode shape i

k are defined
as:

= +MAC max MAC( ) ( ( , ))d i
k

i
k

j
k 1

(3.4)

This definition yields the maximum MAC value that can be obtained
between the analyzed mode shape i

k and all of the mode shapes found
in the next model order +

j
k 1. A high MAC value presents a larger degree

of correlation between the mode shapes.

3.1.1.2. Mode shape complexity criteria. In civil engineering, structures
can be considered to be linear and proportionally damped at low amplitude
responses, with the exception of structures that are supported by rubber

isolators (high-damping rubber or natural rubber) and structures with
added energy dissipators. Linear and proportionally damped systems always
present real-valued mode shape vectors; however, their evaluation is
performed via a general modal analysis (i.e., the eigenvectors of the state
matrix), which will present complex vectors. Each element of the vector will
have the same phase angle, therefore, they can be normalized by the mean
phase to obtain real-valued mode shape vectors.

Considering that most structures can be assumed to be proportionally
damped, with the exclusion of some exceptional cases, measuring the com-
plexity of the mode shape, in terms of the monophasic behavior of the mode
shape vector, helps to determine if a mode is to be considered as a physical or
spurious mode. Two methods for determining this property have been pro-
posed: the modal phase collinearity (MPC) and the mean phase deviation
(MPD).

MPC is defined as [12]:

=
+

MPC ( ) 2 1j
1

1 2

2

(3.5)

where 1 and 2 are the maximum eigenvalue and minimum eigenvalue
(respectively) of the covariance matrix Scov between the real part and
imaginary part of the mode shape:
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Perfect collinearity in the complex plane (monophasic vector) is
achieved if only one eigenvalue differs from zero, in which case MPC
would assume a value equal to 1. If the two eigenvalues are equal
( =1 2), no collinearity (extreme case) exists; thus, the MPC would
assume a value equal to 0.

The MPD is defined as [4]:
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The subscript o is used to define each element of the mode shape
vector, wo represents weighting factors that are equal to | |jo to provide
a higher weight to higher amplitudes. V V,22 12 are the (2,2) and (1,2)
elements of theV matrix, which are determined from the singular value
decomposition of the matrix that is formed by the real and imaginary
parts of the mode shape vector:

=USV Re Im[ ( ) ( )]t
j j (3.8)

As its name implies, the MPD measures the weighted average of the
deviation of each element from the mean phase. Thus, a low value
(limited to 0) would represent no deviation from the mean phase
(monophasic behavior), whereas a higher value (limited to 45°) re-
presents the degree of variation of the phase for each element. This
parameter is normalized by 45° to obtain values in the range [0, 1].

The average of both of these criteria can also be used (known as the
modal complexity factor (MCF) [3]):

=
+

MCF
MPC MPD

( )
1 ( ) ( )

2i
i i

(3.9)

Note that this expression considers MPD to be normalized.

3.1.1.3. General hard criteria. Hard validation criteria are binary values
that represent the compliance of a given test. The most commonly used
criteria include the following, which are used in the proposed
methodology:

(1) Presence of negative or high damping ratios: In general, structures are
always stable; therefore, negative damping values should rarely be
encountered in practice. A hard criterion is defined by eliminating
all modes with negative damping. Given that high damping ratios

Table 3.1
Hard validation criteria summary.

Hard Validation Criteria

d f( ) 5[%]
d ( ) 20[%]

MAC1 5[%]d
MPC1 50[%]

MPD 50[%]
MCF 50[%]

=f Hzmin( ) 0[ ]
=f Hzmax( ) 25[ ]
=min( ) 0[%]
=max( ) 20[%]

presenceofconj ( )
presenceofconj ( )
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are unlikely, defining an upper limit for the damping ratio (usually
between 15[%] and 20 [%] if it is not an isolated or artificially
damped structure) is also applied to remove spurious modes.

(2) Presence of conjugate pairs: In theory, for every continuous-time ei-
genvalue ci and mode shape i, a second mode with conjugate
properties should also be present. Thus, the lack of complex con-
jugate pairs for ci and i indicates that the mode is spurious.

(3) Frequency limit: When determining the modal properties of a
structure, high-frequency modes may be unnecessary in the analysis
of the structure. Therefore, a limit in the frequency can be applied.

The results of the use of the criteria presented are shown in Fig. 3.1.
Note that 74% of the “spurious” modes were deleted using these broad
hard limits.

3.2. Stage two

Stage two of the interpretation process seeks to define sets of similar
(physical) modes (stable columns). This stage can be considered as the
core of the identification process. Bakir [2] uses a frequency-based
overlapping histogram to define these stable columns, which is the most
common tool in manual analyses. Magalhaes et al. [1] and Reynders
et al. [4] uses a hierarchical clustering approach to group modes to a
cut-off distance, noting that Reynders et al. [4] automatically defines
this cut-off distance. Cabboi et al. [3] proposes a grouping algorithm
that is based on the distance between elements by sequentially con-
sidering only one mode per model order for the definition of each set.

A tool for efficiently analyzing and automating the detection of
stable columns based on a density-clustering algorithm is proposed. The
selected clustering methodology is OPTICS [5], which is an extension of
the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [14]. The use of DBSCAN was initially presented
by the authors in [7]. The main concept of OPTICS is a reachability plot.

The procedure starts by calculating the weighted distance between all
objects in a set. In our case, each object is constructed using the modal fre-
quency and shape. Then the distance that cluster a minimum set of objects is
identified for each component, this is called the Core Distance. A procedure is
developed to find all the objects that are close together and that can be as-
signed to physical modes and those that are outliers. This procedure is based
on the concept of Reachability Distance and the ordering of the objects. The
results are visualized on what is call the Reachability Plot.

A detailed presentation of the various definitions is provided in
[13,14]. Note that the following notation has been modified in the
context of the current application.

3.2.1. Reachability plot construction
In order to explain the construction of reachability plots, a few

definitions must be presented.
Let D be a set of possibly physical modes and let p D be an object

that represents the mode properties. Each object p will be defined in
our case by its frequency and mode shape:

=p f{ , }i i i

Let the weighted distance between two objectsp p,i jbe a function of
f{ , } defined as follows:

= +dist p p
f f

f f
w MAC( , )

| |
max( , )

(1 ( , ))i j
i j

i j
i j

(3.10)

The damping ratio distance is not considered; it will often be mis-
leading due to identification inaccuracies and the high chance of two or
more (different) modes with similar damping ratios. The Eigenvalue
distance is also discarded given that it is a combination on frequency
and damping. A weighted distance is used to be able to consider a
different importance of the difference for the frequency or the mode
shape. Typically w equals one. Nevertheless, in some cases the effect of
the mode shape difference could be reduced by assigning a small value.

Let N p| ( )| be the number of objects at a distance fromp:

=N p card p dist p p| ( )| { | ( , ) }i i (3.11)

where card indicates the number of elements in a set (cardinal). Fig. 3.2
illustrates this definition.

We define the variable MinObj as the minimum number of objects in a
set to consider the set as a cluster. We can define the variable “Core
Distance” (CD) as the distance at which we have enclosed a minimum
number of objects MinObj inside the set. Note that if MinObj is larger than
the number of elements in the set D, the CD value will be undefined, i.e.,
the number of elements is insufficient for creating a cluster with the given
minimum number of elements. Therefore, CD is defined as:

=
<

CD p
Undefined if N p MinObj

N p MinObj( )
| ( )|

min(| ( )| ), otherwise.MinObj
(3.12)

Fig. 3.3 illustrates this definition considering =MinObj 3 (case a)
and =MinObj 7 (case b), where the minimum distance that is required
to enclose MinObj is shown (i.e., the Core Distance).

Let the reachability distance (RD) of the object pi with respect to the
object pj be the maximum value between the CD of pj and the distance
between them. Note that if MinObj is larger than the number of ele-
ments in the set D, this value will be undefined.
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Fig. 3.1. Cleared stabilization diagram (deleted: 74% of the total number of modes), TC record.
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=
<

RD p p
Undefined if N p MinObj

CD p dist p p otherwise( , )
| ( )|

max( ( ), ( , )), .MinObj i j MinObj j i j

(3.13)

Fig. 3.3 illustrates this definition, considering the following two
cases of interest: (a) where the RD is controlled by the distance between
the objects, and (b) where the RD is controlled by the CD.

The reachability plot is defined as a graphical representation of the
order obtained for the objects using the reachability distance metric,
from which clusters can be identified.

The reachability plot is obtained by evaluating the RD between each
object and the rest of the set in a sequential manner. In each iteration, the RD
between the selected object and the rest of the set is computed. The closest
object (in terms of RD) is identified. A sequential label is assigned to it (thus
creating the order of the objects) and it is used as the next object for the
computation of RD. The set is reduced in each iteration by deleting the
previously analyzed object. The resulting reachability plot is presented in
Fig. 3.4.

A few observations on the procedure are indicated below:

(1) The order of the objects is part of the result of the algorithm.
(2) The first object can be arbitrarily selected without hindering the

ability to detect the cluster structure.

(3) The RD value is always assigned to the object that had the minimum RD
with respect to the analyzed object. Therefore, the first object analyzed
does not have an RD value. The solution proposed is to assign 1.1 times
the value of the largest RD value obtained for the rest of the objects. Note
that this does not alter the results provided by the reachability plot.

(4) The RD values are computed at each iteration for every object left in
the set, and it will rewrite the previous RD value as long as it is
smaller than the one that the object already had. This means that if
at a certain point in the iteration no objects had their RD value
rewritten, or the minimum RD value was not defined in the current
iteration, then the next object in the analysis is defined by a pre-
vious iteration and not by the object in analysis.

(5) The RD assigned to each object, measures how connected it is to the
reference object (or a previous object, taking into account the
special case explained earlier). This parameter is controlled by the
maximum value between the distance between the two objects
being analyzed or by the Core Distance (see Eq. (3.12)). From a
physical point of view, the distance function measures only the
distance between the objects, in terms of frequency and mode
shape. Meanwhile the CD measures how far one should go to find a
set of MinObj in the neighborhood of the object.

Four generic cases can be discussed:

Case (a) If the distance between the two objects is large, but CD is
small, this means that the objects are not in the same cluster (see
Fig. 3.3(a), with pj being the current object and pi the previous
object). This information is saved assigning the distance between the
objects to the RD value.
Case (b) If the distance between the two objects is small, but CD is large,
this means that both objects are probably outliers, (see Fig. 3.3(b)). This
information is saved assigning the CD to the RD value. When CD is large.
this means there are not too many objects close together.
Case (c) If both the distance between the two objects and the CD are
large, this means that the object is not part of the cluster of the previous
object. This information is saved assigning the larger value to RD.
Case (d) Finally, if both the distance and CD are small, this probably
means that both objects are part of the same cluster. This information is
saved assigning the largest of these relatively small values to the RD.

Note however, especially for the last two cases, that the “large” and
“small” values are relative to the rest of the objects.

x axis
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ax
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Fig. 3.2. Number of objects at a distance from reference object p:
=N p| ( )| 3.
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Fig. 3.3. Reachability distance, considering (a) Case for distance between objects larger than CD, and (b) Case for Core Distance larger than distance between all
objects considered ( =MinObj 7).
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3.2.2. Reachability plot analysis
Now that the reachability plot has been developed (see Fig. 3.4), the

clustering structure can be observed and derived from this plot where
the low RD regions represent objects that are part of the same cluster,
and the high RD regions most likely represent outliers.

In particular, each case discussed in the previous section can be found in
the reachability plot: Case a) can be found at the objects with a high RD
value just before the start of a low RD value region, Case b) can be found in
objects with a high RD value at the middle of a high RD value region, Case
c) can be found in objects with a high RD value at the start of a high RD
value region, and Case d) can be found in objects with a low RD value at a
low RD value region. These cases are illustrated in Fig. 3.4.

As noted in the previous section, “large” and “small” values are
relative to the whole set, and by inspection of the reachability plot,
these relative values can be observed from the plot.

3.2.3. Reachability plot analysis automation
The final step is the automatic detection of clusters from the

reachability plot. To attain automation, we propose the following
methodology, motivated by the recommendations in [5].

Considering the observations found in the previous sections, a
cluster will be defined as the set of objects starting at the last object of a
high RD value region and ending at the last object of a low RD value
region. Every object that is not considered as part of a cluster will be
considered as spurious.

To identify the clusters from the reachability plot, two concepts will
be used: contiguous objects that clearly display a different RD value
(positive or negative difference, we will define this difference as slopes)
and segments of contiguous objects with similar RD values (valley)

3.2.3.1. Slope between close objects. In order to measure the difference
or slope between contiguous objects, the following normalized distance
between subsequent RD values is employed:

= +s p RD RD
RD

( )
max( )RD k

k k1

(3.14)

A high (positive) distance indicates an upward slope of the RD plot,
and a high (negative) distance indicates a downward slope, and values
near zero indicate nearly constant RD values.

To differentiate valley objects from those in high RD regions with
positive and negative slopes, the following definitions are constructed
based on a reference value of slope, :

>
<

UPobject p if s p
DOWNobject p if s p

( ): ( ( ) )
( ): ( ( ) )

k RD k

k RD k (3.15)

In order to maintain automation we propose to define as
= mean s(| |)/2RD . Fig. 3.5 shows the slope s p( )RD k values for each object,

where the and thresholds are shown (in red). Given that the thresholds
are hard to distinguish, Fig. 3.6 shows the reachability plot, where the
UPobjects and DOWNobjects are identified by red and green, respectively.
Note that the baseline is change to -0.1 for illustration purposes.

3.2.3.2. Finding regions of changing RD values. Using the previously
defined slope of objects, regions of increasing or decreasing RD values
are identified as intervals of UP or DOWN objects, such that they
maintain the sign of the slope and avoid the inclusion of possible
clusters in these areas.

There are two possible situations for a constant positive slope or con-
stant negative slope. A constant positive slope region is defined as follows:

An interval I= [s,e] is to be considered as a constant positive slope
region if:

a. s is an UPobject s( ).
b. e is an UPobject e( ).
c. Each point between p s e[ , ]k is at least as high as its predecessor:
d. <p s p e p p, :k k k k 1
e. I does not contain more than MinObj consecutive points, which are

relatively constant (i.e., are not UPobject ); otherwise, it can be a
cluster

f. I is maximal: =J I J UParea J I J: ( , ( ) ), which states that an
constant positive slope region cannot exist inside a similar region.

The constant negative slope region is defined similarly. The UP
slope region are displayed in red and the DOWN slope region are dis-
played in green in Fig. 3.7; note that the baseline is changed to −0.1 for
illustration purposes.

3.2.3.3. Cluster detection. After the identification of slope regions,
clusters are defined as the set of objects inside a region of low
constant RD values limited by regions where the normalized
difference between two consecutive RD values is higher than a
predefined threshold. The resulting algorithm for cluster detection is
defined as follows:

(1) Start from the first object.
(2) If the object is the end of a high negative slope region, start the

construction of a new cluster. If not, select the next object.
(3) If the construction has started (step 2), three cases exist for the next

object:
a. If the object is not part of a high slope region (DOWN or UP),
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Fig. 3.4. Reachability plot, TC record.
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then assign it to the cluster in construction.
b. If the object belongs to a high negative slope region, delete the

construction and start the formation of a new cluster (i.e., return to
step 2).

c. If the object is part of a high positive slope region, end the cluster
at this object.

(4) Repeat steps 2 and 3 until the last object is analyzed.
(5) If any cluster has less than MinObj objects, the cluster is dis-

regarded.

Note that the last step is introduced for consistency in the algorithm:
MinObj should be understood as the minimum number of elements in a
cluster.

Fig. 3.8 presents the results of the application of the algorithm in
terms of the reachability plot, where each cluster is identified by color;
note that the baseline is changed to -0.1 for illustration purposes. In
Fig. 3.9, the resulting clusters are identified from the stabilization
diagram (using the same colors to distinguish the clusters).

3.2.3.4. Parameter automatization. Given the construction of the
proposed methodology, the only parameter that needs to be defined
is MinObj, i.e., the minimum number of elements that define a cluster.
To analyze the effect of this value on the reachability plot, we have
evaluated the effect of MinObj in the RD Plot. We have obtained the
reachability plot for different values of MinObj, which vary from 1 to

100. Each plot has been grouped in a single 3D plot, as shown in
Fig. 3.10. In this figure, the color intensity scale represents the RD value
as a function of the ordered objects and MinObj. For example, if we
consider 1/3 of the total number of model orders, we obtain the red line
in Fig. 3.10, which corresponds to the values observed in Fig. 3.4. 2/3
of the total number of model orders corresponds to the purple dashed
line in Fig. 3.10 and 1/6 of the total number of model orders
corresponds to the green line.

Note that a lower MinObj value would cause the RD values to be
controlled by the maximum distance between the modes, which loses
the meaning of defining a MinObj parameter. Whereas a higher MinObj
value would cause the RD values to be controlled by a higher CD value,
which would cause more distant modes to be grouped (which is a direct
consequence of requiring a large MinObj value).

Given the results obtained from this analysis, it becomes apparent
that the reachability plot is not too sensitive to a reasonable value for
MinObj. Thus, we propose to set MinObj equal to 1/3 of the total
number of model orders. This means that, in order for a cluster to be
considered as such, it should form a stable column covering at least a
third of the stabilization diagram. However, this parameter should be
defined at the same time as the selection of hard validation criteria to
be used, and should be treated as an added tool to the analysis: setting
MinObj as a low percentage of the total number of model orders will
allow the consideration of modes that have low stability (i.e. it will
include modes that are relatively less stable), and in the other hand,
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Fig. 3.5. Normalized distance between subsequent
RD values, and threshold value, TC record.
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Fig. 3.6. UPobjects and DOWNobjects (red and green, respectively), TC record. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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setting MinObj as a high percentage of the total number of model orders
will limit the selection of less stablemodes, thus only allowing well
defined modes to be considered as a result.

3.3. Stage three

The third and final stage of the proposed methodology is aimed at
defining the representative properties of each set of similar modes.

The methodologies found by the different authors can be categorized as
follows: computation of the mean frequency, mean mode shape and median
damping for each set (Cabboi et al. [3], Magalhaes et al. [1]), and the se-
lection of a single object from the set by detecting the set nearest the median
value or the lowest MCF value (Reynders et al. [4]). Note that Bakir et al.
[2] does not mention an approach regarding this subject.

Accurate values can be obtained by any of the methodologies that
are proposed by the different authors. The only problem that could arise
is the selection of an “outlier” object or the inclusion of this object into
the computed mean or median values.

To avoid the consideration of an “outlier” object, the proposed metho-
dology aims to assign the densest object in each set as the representative
element of the set. The proposed methodology iteratively uses CD to delete
objects from the set. In each iteration, the CD is computed using MinObj as
half of the number of elements of the set, and the objects that have a CD
larger than the average CD are removed from the set. This process is

repeated until only one object remains, or the iteration stops removing
objects, in which case one randomly chosen object is selected. Note that this
last consideration ensures the convergence of the algorithm.

Therefore, the proposed methodology for each set is defined as
follows:

(1) Use MinObj =round (number of elements/2).
(2) Compute the core distance (CD) with respect to MinObj and the

distance function defined in equation (3.10) for each object.
(3) Every element that has a CD larger than the mean CD value is de-

leted from the iteration.
(4) Repeat steps 1 through 3 using the remaining elements (thus, de-

creasing the number of elements for the computation of MinObj). If
the objects from the previous iteration are the same objects for the
current iteration, remove one (any) element, which ensures the end
of the iteration.

(5) The last remaining element is the selected element of the cluster.

Fig. 3.11 displays the cluster number that is associated with the mode
number and the frequency for all elements in each cluster in our example
set. The red crosses in this figure represent the selected frequency values.
Fig. 3.12 displays the damping vs. cluster number. As expected, a larger
dispersion is observed and the density-based selected value is represented
by the red crosses. Fig. 3.13 shows every mode shape (with real and
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Fig. 3.7. UP and DOWN slope region (red and green, respectively), TC record. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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imaginary parts) for each cluster (mode number), and the density-based
selected mode shape is indicated in red (solid red line represents the real
part and a dashed red line represents the imaginary part).

4. Real case application

Fig. 4.1 shows the frequencies identified for August 2009 TC records (a
total of 2610 results, each one obtained every 15min during the entire
month) using the proposed methodology. Only ambient records are con-
sidered with a PGA limit of less than 0.002 [g] to avoid the incorporation of
earthquake events that occurred during the same time period. In this figure,
eight frequencies can be observed. Note that a frequency limit of 10Hz was
considered given the low quality of the modes higher than 10Hz.

Note that in order to identify a mode in a single 15min record, the
mode should be succesfully excited, i.e. it should be present in the
stabilization diagram as a stable column. Given that not every mode is
necessarily present in every single record, the history of frequencies
yields more modes than the single analysis. This explains why only
seven modes below 10Hz were found in the single record analysis,
compared with the results obtained from the history of frequencies.

The effect of daily temperature variation is clearly visible in all fre-
quency series, but the two frequencies between 7.5 and 8.0Hz are more
pronounced. Many of the identified spurious frequencies are due to low
signal-to-noise ratios, the effect of induced electric noise, the low densities

of the sensors and small earthquake events. These non-persistent fre-
quencies can be easily removed using a modal tracking algorithm.

As stated in Section 3.2.1, the MinObj value should be considered as the
number of objects that a stable column should have in order to be con-
sidered as such. Therefore, MinObj could be set up higher in order to only
consider stable columns that cover a higher number of objects in the sta-
bilization diagram. Fig. 4.2 shows the same analysis but using MinObj as 3/
4 of the total number of model orders. From this result, and as expected, less
outliers are found in the frequency series at the expense of having less
objects found near 9Hz frequency. The reason being that these modes are
difficult to detect due to noisy signals and other variables as previously
discussed. As a consequence of this problem, the single record analysis only
presented one frequency near 9Hz, given that the other was not clearly
present on the stabilization diagram analyzed. If it is desired that this fre-
quency be included, the MinObj selected in figure Fig. 4.1 could be used.

5. Conclusions

A methodology to analyze and automatically interpret stabilization
diagrams using a density-based clustering algorithm has been proposed.
This new methodology allows an improved manual analysis to be per-
formed based on the use of reachability plots to easily detect clustering
structures on the stabilization diagram.

The proposed methodology was presented in detail through its
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version of this article.)
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application on a real case study (TC building) for a single 15min record
and was subsequently applied to a month of records. Both cases yielded
good results in spite of the presence of spurious modes due to low
signal-to-noise ratios, the effect of induced electrical noise, and the low
densities of the sensors and small earthquake events.

The density-based methodology consists of three stages. The first stage is
a classification that is based on basic physical parameters, of which the most
effective parameters are as follows: limits on damping values (greater than 0
and typically lower than 10% for typical structures and 25% for artificially
damped structures, nonlinear structures and structures with friction contacts
or connections), MPD and 1-MPC lower than 0.50 and the existence of a
conjugate pair for frequency andmode. Additional limits on sequential model
orders on a stabilization diagram for MAC and frequency substantially con-
tribute to the identification of a stable modal parameter, and a rather low
difference value has a strong effect. Thus, we confirm the standard re-
commended values for mode shape difference 1−MAC < 5% and fre-
quency difference of d(f) < 5%. For the second stage, we identify stable
columns in the stability diagram using OPTICS as a density-based classifica-
tion algorithm. In the third and final stage, the selection of a single group of
parameters for each mode is selected using a density-based approach again.

The only relevant parameter that needs to be adjusted to attain
automation is the minimum number of modal objects in a given cluster,

MinObj. An analysis was carried out demonstrating that the metho-
dology is not too sensitive on this parameter and can be defined in an
intuitive manner by setting it as the desired number of elements that a
stable column should have to be considered as a valid mode. In the
proposed procedure we generalize its implementation setting the
minimum number of objects to 1/3 of the total number of model orders.

The proposed automation of the methodology allows for a simple
and reliable procedure that can be set-up (once) by following the jud-
gement of the analyst through the definition of hard validation criteria
and the definition of what should be considered as a valid cluster or
stable column through the definition of the MinObj parameter.

Furthermore, the reachability distance, RD, values obtained from the
construction of the reachability plot can provide relevant information re-
garding the confidence of a given identified mode: a high mean RD value of
a cluster would mean that the stable column was not as dense or consistent
when compared to a low mean RD value of a cluster.
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