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H I G H L I G H T S

• This paper presents enhanced modeling of gas network within planning models.• Solves the gas-electricity planning problem appling Dantzig-Wolfe decomposition.

• Presents a scalable planning problem under long-term uncertainties.

• Highlights the importance of multi-stage-stochastic gas-electricity planning problem.
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A B S T R A C T

Planning networks within a multi-stage stochastic framework is becoming critical for improving the economic
performance of investment decisions against the present levels of uncertainty. This problem, however, has been
proved extremely challenging to be solved on real networks, especially when considering the interactions among
various energy vectors. In this context, this paper proposes the use of Dantzig-Wolfe decomposition and parallel
asynchronous column generation to solve a multi-stage stochastic planning of an integrated power and natural
gas system, including non-linear effects of gas compressors reformulated in a mixed integer linear programming
fashion. We compare the computational performance of the proposed approach against two alternatives: a
parallel synchronous column generation approach and the counterfactual, monolithic approach, where the
mixed integer linear program (without decomposition) is directly solved by a commercial solver. Our sources of
long-term uncertainty are the locations and volumes of (i) new renewable generation (which may depend on
policy objectives, regulatory incentives, etc. that are constantly evolving) and (ii) new demands. The model also
ensures that the planned energy infrastructure can effectively be operated reliably against a large array of
operating conditions originated by high variability of renewable generation outputs, multiple demand levels and
hydro inflows. Through various case studies, we discuss and demonstrate the importance of stochastic and
integrated planning of electricity and natural gas systems along with the benefits of asynchronous algorithms
and decomposition techniques that can be parallelized.

In this paper we use the following rules to simplify the notation:

• Variables are presented in italic and bold, and constants are in ita-
lics. For instance, Vi j

k
, refers to a variable, Vi j

k
, is a parameter, and k, i

and j are indexes within particular sets. We use lower case to refer
generically to an index and upper case if an index is equal to a
particular value in a set. For example, if we want to refer to the

element where j= J0, we will write Vi J
k
, 0.

• We use a hat and an English letter in upper case to refer to sets as in
A . Sets can also be index dependent as in An.
• Upper and lower bounds are denoted with a bar above (upper
bound) or below (lower bound) the name of the variable, e.g.,V̄ and
V_ are the upper and lower limits of variable Vi j

k
, .
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Nomenclature

Indexes

h index that refers to a hydrological scenario
i index that refers to a specific asset in the class r
j index that refers to type, i.e., new asset capacity
k index that refers to an electrical or natural gas network

bus
l index that refers to a segment of a piecewise linear ap-

proximation
n index that refers to a scenario-tree node
o index that refers to an operating condition
r index that refers to a generation technology or transmis-

sion asset. For generation technology, it can be hydro-
power (H), renewable (RNW), dual-fuel (DF) [which can
be, in turn, coal (DFC), oil (DFO) or natural gas (DFG)],
non-dual-fuel (NDF). For a transmission asset, it can be a
power transmission line (L), pipeline (P), natural gas
compressor (CP), natural gas well (W), or liquefied-natural
gas regasification terminal (LNG)

s index that refers to an electrical system (ES) or natural gas
system (GS)

w Index that refers to wind availability scenario

Sets

F r set of all new and existing assets of class r
Gh w, set of all operating conditions associated with a hydro-

logical scenario h and a wind availability scenario w
H set of all thehydrological scenarios
I r set of discretized capacities –or types– associated with all

assets in class r
M r set of the new assets of class r that can be built
N set of all scenario-tree nodes
O set of the operating conditions
S s set of all buses of system s
W set of all the wind availability scenarios

Parameters

ai k
r
, incidence matrix entry of the electrical network of class r,

asset i, bus k
bi k

r
, incidence matrix entry of the natural gas network of class

r, asset i, bus k
BIGMr scalar of large magnitude of class r
CAPj

r maximum capacity of a new asset of class r, type j
ICi j

r
, annuitized investment cost (IC) of a new class r, asset i,

type j
ini k

r
, , outi k

r
, constants that indicate if the natural gas flows into or out
of the bus k of the asset i, class r

k i
r
0, , k i l

r
1, , constants that depend on the physical characteristics of

the asset i, class r, segment l
m n,i l i l, , weighting factor of the asset i, segment l
NLSr number of segments of the piecewise linear approximation

of class r
UCi

r fuel cost per unit of class r, asset i
UUCs unsupplied energy unit cost of system s
PLk o n, , active power consumption at bus k, operating condition o,

scenario-tree node n
GLk o n, , natural gas consumption at bus k, operating condition o,

scenario-tree node n
X 0i reactance of an existing transmission line, asset i
Xi j, reactance of a potential new transmission line, asset i,

capacity j
,i l i l0, , 1, , , i l2, , constants that depend on the physical characteristics

of compressors, asset i, segment l
ī maximum compression ratio of the asset i
n probability that scenario-tree node n occurs
n discount rate of the scenario-tree node n

o duration –in hours- of an operating condition o

Binary Variables

Si o n, , natural gas flow direction (1 if positive or 0 if negative)
through a pipeline or a compressor, asset i, operating
condition o, scenario-tree node n

zi l o n, , , auxiliary binary variable of the piecewise linear approx-
imation of the pipeline, asset i, segment l, operating con-
dition o, scenario-tree node n

i j n
r
, , granting decision variables of class r, asset i, type j, sce-

nario-tree node n
i j n
r
, , investment decision variables of class r, asset i, type j,

scenario-tree node n
i o n
r
, , commitment variable of class r, asset i, operating condi-

tion o, scenario-tree node n

Positive Variables

PGFi o n, , natural gas flow for a positive direction of the asset i,
operating condition o, scenario-tree node n

NGFi o n, , natural gas flow for a negative direction of the asset i,
operating condition o, scenario-tree node n

UEk o n
s
, , unsupplied energy in system s, at bus k, operative condi-

tion o, scenario-tree node n
i l o n
r
, , , auxiliary variable of the piecewise linear approximation of

class r, asset i, segment l, operating condition o, scenario-
tree node n

i o n
r
, , amount of primary energy consumed by a power generator

or transported by a transmission asset of class r, asset i,
operating condition o, scenario-tree node n

k o n, , natural gas pressure at bus k, operating condition o, sce-
nario-tree node n

i o n
in
, , natural gas pressure at the input node of the pipeline of

the asset i, operating condition o, scenario-tree node n
i o n
out
, , natural gas pressure at the output node of the pipeline of

the asset i, operating condition o, scenario-tree node n

Free Variables

LCPi o n l
CPC
, , , natural gas consumption of a compressor for a positive

direction of the natural gas flow of the asset i, segment l,
operative condition o, scenario-tree node n

LCNi o n l
CPC
, , , natural gas consumption of a compressor for a negative

direction of the natural gas flow of the asset i, segment l,
operative condition o, scenario-tree node n

Pi o n
r
, , active power flow through asset i, class r, operative con-

dition o of the scenario-tree node n
i o n, , difference between nodal pressures in the compressor i,

operative condition o of the scenario-tree node n
k o n, , voltage angle, at bus k, operative condition o of the sce-

nario-tree node n
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1. Introduction

Nowadays, energy planners need to deal with both the increasing
amounts of renewable generation in the power network and the un-
precedented levels of uncertainty in the long term originated, among
other reasons, by evolving policy and market conditions.

Regarding the increased amounts of renewables, it is important to
ensure that the planned network infrastructure can effectively be op-
erated reliably against a large array of operating conditions due to the
high variability of renewable generation outputs. This is exacerbated in
hydro-thermal systems, where there is also a need to consider a variety
of hydro inflows that can change every year/season. For instance, the
need to adequately face a dry year/season (driven, for example, by a
climate phenomenon like el niño in South America) might ultimately
drive the need for further thermal generation capacity. In this context,
gas-fired generation technologies are attractive because these can
properly provide generation adequacy in hydro-thermal power systems
and because of their lower CO2 emission levels that are in line with the
future decarbonization energy policy. Proper consideration of gas-fired
power plants, however, requires careful planning of further critical
infrastructure (which is also beyond the electricity system) such as the
gas network (including pipelines, compressors, LNG regasification
terminals, etc.). Hence, a proper energy plan may require recognition of
the interactions between the gas and the electricity systems, and this
has been already acknowledged by planners and regulators in jur-
isdictions like Colombia [1], Chile, [2], and CAISO [3].

Regarding the treatment of long-term uncertainty, planners need to
consider a variety of future scenarios that may happen and thus plan
infrastructure accordingly. In this context, investment decisions need to
be sufficiently flexible in order to adapt to multiple scenarios in the
long-term future, avoiding to lock into inefficient network plans that
are usually determined through deterministic models. In fact, de-
terministic planning, like that proposed in [4–9], can lead to network
investments that may be very efficient only if one given scenario rea-
lizes in the future (the one that is considered in the deterministic plan),
but can also lead to an extremely poor economic and reliability per-
formance if other realizations occur [10]. In contrast, planning through
stochastic optimization models (such as [11–14], for a comprehensive
review in electricity networks see [15]) can endogenously capture un-
certainty, finding the true optimal solutions that can properly hedge
against the uncertain future by determining investment plans that are
flexible and adaptable in the long term. Furthermore, stochastic plan-
ning can find solutions that remain hidden by deterministic plans, ir-
respective of the parameters used [15]. In other words, there are so-
lutions that are efficient and are revealed only under uncertainty and
these cannot be found by deterministic models that do not acknowledge
the presence of uncertainty. Although endogenous recognition of un-
certainty in planning models is paramount, in particular in the case of
the integrated electricity and gas systems as indicated in the latest lit-
erature such as [16–18], stochastic models still remain difficult to be
solved due to the large amounts of variables and constraints needed in
order to capture the occurrence of multiple scenarios in the future. This
difficulty is compounded by the presence of network elements that
require non-linear equations to be properly represented. In this context,
our paper provides a new multi-stage stochastic model to deal with the
integrated planning of power and natural gas systems with compressors
(that are usually ignored due to their non-linear equations) that is
solved through an asynchronous column generation approach.

1.1. Literature review

There are several papers that have proposed integrated electricity
and gas expansion planning problems. From a deterministic point of
view, static [4–6] and dynamic [7–9] integrated planning models have
been proposed, demonstrating the advantages of the combined opti-
mization of the power and natural gas systems. Beyond deterministic

models, only a few papers have incorporated uncertainties in the power
and natural gas systems. In this context, Refs. [16–22] proposed both
static (for instance [21,22]) and dynamic or multi-stage (for instance
[16–20]) planning models through robust and stochastic programs,
considering various uncertainties such as the load demand growth, fuel
availability, fuel costs, hydro inflows, and wind power outputs. Due to
the inherent computational complexity associated with uncertainty,
some of these papers (such as [19–21]) proposed meta-heuristic tech-
niques that do not guarantee optimal solutions (although these can
determine sufficiently good solutions in real, large-scale case studies).
Robust optimization has been also used to deal with reliability and
resilience within the integrated planning of the electricity and gas
systems. For instance [16,17], used robust optimization to determine
secured plans against various events such as the occurrence of extreme
events (superstorms, earthquakes and floods), wind power availability,
and system contingencies.

As far as we know, only Refs. [18,22] have proposed stochastic
optimization programs to deal with the combined planning of elec-
tricity and gas networks under uncertainty that can be optimally solved
through mixed integer linear programming (MILP) techniques. In fact,
Ref. [22] presented a two-stage stochastic optimization model to plan
electricity and gas networks under uncertainties related to electricity
and natural gas demands. This reference also highlights the need for
advanced algorithms to solve problems at a larger scale. Likewise, Ref.
[18] presented a multi-stage stochastic approach, demonstrating the
advantages of the multi-stage approach against a two-stage approach.
Our paper complements the previous literature as indicated next.

1.2. Paper’s contributions

The two main contributions of our paper are as follows:

1. Enhanced modelling of natural gas network components within
planning models: We model two features of the natural gas com-
pressors: their capability to transfer gas in two directions and the
effect of the compression rate on the natural gas consumption. These
features are often ignored in planning models. In fact, the former is
usually addressed under the assumption that natural gas flows only
in a single direction. The latter is often assumed proportional to the
flow magnitude through the compressor when, in reality, these re-
lations are non-linear. So, neither of these is accurate. In this vein,
we proposed a linear representation of both aforementioned features
so that (i) the natural gas can flow freely in both directions over the
network infrastructure and (ii) gas consumptions from compressors
are more accurately represented. Additionally, we propose a new
piecewise linear approximation of the natural gas flow through a
pipeline that has a lower error when comparing with other academic
literature. As a consequence, we believe that our piecewise linear
approximations make the modelling of the entire natural gas net-
work more realistic, accurate and therefore superior to previous
works (e.g. [4–28]) since the greater levels of details in compressors
and pipeline’s model have an important impact on network opera-
tion, which may, in turn, affect investment decisions.

2. A scalable gas-electricity network expansion problem: We apply
Dantzig-Wolfe decomposition and parallel asynchronous column
generation (expanding from [12]) to solve the integrated planning
of electricity and gas systems under long-term uncertainties such as
demand growth, volumes and locations of new renewable genera-
tion plants (that may depend on evolving policy, regulatory in-
centives, etc.) and under short-term variability of operating condi-
tions originated by multiple demand levels, renewable generation
outputs, hydro conditions, etc. Particularly, we use the split-variable
formulation and Dantzig-Wolfe reformulation of the capacity plan-
ning problem for electricity distribution proposed in reference [12]
and adapted it to our integrated gas-electricity network expansion
problem, solving the reformulated master-slave problem through an
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asynchronous column generation algorithm undertaken in a parallel
computing fashion. We also compare the computational perfor-
mance of the asynchronous column generation algorithm against
that of the synchronous version. To our knowledge, this is the first
time that these techniques are used to solve this problem.

Finally, it is worth to mention that we also contribute by adding
more quantitative evidence to the academic literature (like that in
[17–19]) that demonstrates the importance of multi-stage stochastic
planning of integrated electricity and gas systems. We believe this is a
key discussion since, in practice, network planners are still running
deterministic approaches to determine network investment decisions,
which significantly endangers the cost-effective transition towards a
more sustainable and low-carbon energy system. These deterministic
planning practices though may be justified by the lack of adequate
computational tools and algorithms to tackle multi-stage stochastic
planning problems in real life, which we attempt to attack in this paper.

This paper is organized as follows. Section 2 provides an overview
of the problem and the main features of our proposal. Sections 3 and 4
present our mathematical program and its solution methodology, re-
spectively. Section 5 shows the main results, illustrating (i) the features
of the stochastic planning of electricity and natural gas systems and (ii)
the computational performance of the proposed approach. Finally,
Section 6 concludes.

2. Problem overview

We seek to plan both electricity and natural gas networks in an
integrated fashion and across various years (so-called stages due to the
stochastic nature of the proposed mathematical program) when facing
long-term uncertainty. In this paper, our sources of long-term un-
certainty are the locations and volumes of (i) new renewable genera-
tion, for instance, wind based power generation (WG) [which may
depend on policy objectives, regulatory incentives, etc. that are con-
stantly evolving] and (ii) new demands (ND); although other sources of
uncertainty can be included without undertaking significant changes in
the proposed mathematical program. In our approach, we minimize the
coupled, total cost of electricity and natural gas systems (which is the
sum of the investment, operational and unsupplied demand costs in
both electricity and natural gas networks), while investing in new in-
frastructure such as transmission lines, transformers, conventional
generating units, gas pipelines, LNG regasification terminals and, im-
portantly, compressors.

In the short-term, we model various operating conditions within
every node of the scenario tree in order to determine operational and
unsupplied demand costs. These operating conditions also ensure that
the infrastructure planned can be operated against an array of different
levels of wind power generation, demand and hydro inflows.

An important feature of the proposed model is also the coupling
between electricity and gas sectors, and this is extremely important
when the planner can invest in gas generating units that need sig-
nificant network infrastructure (in both electricity and gas networks) to
properly operate the systems. Importantly, this is undertaken within a
stochastic framework with multiple long-term scenarios and operating
conditions in the short-term, which clearly increases the model com-
plexity.

In this context, we present 2 variants of a master-slave, column
generation algorithm (based on a Dantzig-Wolfe decomposition –DWD–
technique proposed in [12]): parallel asynchronous and synchronous.
The mathematical formulation and the solution methodology are pre-
sented next.

3. Mathematical formulation

The formulation corresponds to an integrated electricity and natural
gas expansion planning problem under uncertainty, which is tackled

through a multi-stage stochastic MILP model, whose objective function
and constraints are explained next.

3.1. Objective function

The model minimizes the expected present value of operational,
investment and unsupplied energy costs of both power and natural gas
networks. The objective function is shown in (1a) which is composed of
three terms –IC OC UEC, ,n o n o n, , – that are detailed in (1b), (1c) and (1d),
respectively. In this paper, an operating condition o is a combination of
one hydrological/inflow scenario, one discretized demand level, and
one wind availability level.

N

= + +IC OC UEC· ·( )
n

n n n
o O

o o n o n, ,
(1a)

Eq. (1b) is the investment cost of expanding the current power and
natural gas infrastructures to supply future demands at the scenario-
tree node n. and are the granted and required investment decision
variables at the scenario-tree node n that are detailed in Section 3.2.3.

= =IC IC · A H DF NDF L P CP LNG; ^ { , , , , , , }n
r A i M j I

i j
r

i j n
r

^ ^ ^
, , ,

r r (1b)

Eq. (1c) is the operational costs –OC– of an operating condition o at
node n of the scenario tree. It takes into account the cost of different
types of fuel to supply power and natural gas demands.

= =OC UC · B DFO DFC NDF W LNG; ^ { , , , , }o n
r B i F

i
r

i o n
r

,
^ ^

, ,
r (1c)

Finally, (1d) is the unsupplied energy cost of the power system (PS)
and the natural gas system (GS) of an operating condition o at node n of
the scenario tree.

=UEC UEUUC ·o n
s PS GS k S

s
k o n
s

,
{ , } ^

, ,
s (1d)

3.2. Main optimization constraints

For the sake of clarity, power and natural gas system constraints are
explained separately next. Non-anticipativity constraints are presented
at the end.

3.3. Power system constraints

Eq. (2a) is the active power balance equation at each bus of the
power network.

=

=

P UEa PL k S

C DFO DFC DFG NDF H RNW L

· ; ^ ;
^ { , , , , , , }

r C i F i k
r

i o n
r

k o n k o n
PS PS

^ ^ , , , , , , ,r

(2a)

Eqs. (2b)–(2d) represent the linear DC power flow equations asso-
ciated with the existing and potentially new network infrastructure.
PFi j o n, , , is an auxiliary variable that includes the multiple effects of a
transmission line on the disjunctive DC model.

=P
X

a i F i M1
0

· · ; { ^ }&{ ^ }i o n
L

i
k S

i k
L

k o n
L L

, ,
^

, , ,
PS (2b)

PFBIGM · X a

BIGM · i M

1 · ·

1 ; ^

L

j I
i j n
L

j I
i j i j o n

k S
i k
L

k o n

L

j I
i j n
L L

^
, ,

^
, , , ,

^
, , ,

^
, ,

L L PS

L
(2c)
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=P PF i M;i o n
L

j I
i j o n

L
, , , , ,

L (2d)

A piecewise linear representation of the fuel consumption of
thermal generators is shown in (2e)–(2h). Note that this representation
corresponds to a linearization of the quadratic fuel consumption func-
tion, often used for power generators [4]. It also models the dual-fuel
capability of thermal generators that it is the ability to utilize more than
one type of fuel.

= +
=

k k r D i F· · ; ^, ^
i o n
r

i
r

i o n
r

l

NLS

i l
r

i l o n
r r

, , 0, , ,
1

1, , , , ,

r

(2e)

= +
=

P P r D i F_ ; ^, ^
i o n
r

i
r

i o n
r

l

NLS

i l o n
r r

, , , ,
1

, , ,

r

(2f)

…r D i F l NLS0 ¯ ; ^, ^ , {1, 2, , }i l o n
r

i l
r

i o n
r r r

, , , , , , (2g)

+ + =i F D NDF DFC DFO DFG1; ; { , , , }i o n
DFC

i o n
DFO

i o n
DFG DF

, , , , , ,

(2h)
Eq. (2i) is the water discharge ( i o n

H
, , ) as a function of the power

output (Pi o n
H
, , ) and a water discharge constant ( )i

H . Eq. (2j) limits the
energy storage capacity E( )i h

H
, of a water reservoir for hydropower

generation.

= P i F· ; ^
i o n
H

i
H

i o n
H H

, , , , (2i)

E i F h H w W· ; ^ , ^ , ^
o G

o i o n
H

i h
H H

^
, , ,

h w, (2j)

Operational limits are represented as follows. Eq. (2k) limits the
unsupplied energy at each bus, (2l) limits the power output of all
generators, (2m)–(2n) limit the active power flow through the power
network assets.

UE PL k S0 ;k o n
PS

k o n
PS

, , , , (2k)

PP P r NDF DFC DFO DFG H RNW i

F

_ · ¯ · ; { , , , , , },
^

i
r

i o n
r

i o n
r

i
r

i o n
r

r
, , , , , ,

(2 l)

PP P i F i M; { }&{ }i
L

i o n
L

i
L L L

, , (2m)

PFCAP CAP i M j I· · ; ^ , ^
j
L

i j n
L

i j o n j
L

i j n
L L L

, , , , , , , (2n)

Finally, the maximum number of assets that can be built is limited
by (2o), while (2p)–(2q) ensure that a new asset can be utilized only
after being built. All new assets have a construction time (lag between
decision and implementation times) of one stage.

r A i M1; ^ , ^
j I

i j n
r r

^
, ,

r (2o)

P CAP · r H NDF L i M; { , , }, ^
i o n
r

j I
j
r

i j n
r r

, ,
^

, ,
r (2p)

P CAP · i M; ^
r DFO DFC DFG

i o n
r

j I
j
DF

i j n
DF DF

{ , , }
, ,

^
, ,

DF (2q)

3.4. Natural gas system constraints

For the natural gas system, (3a) represents the nodal balance
equation that includes the natural gas consumption of the compressor.

= UEb GL· ;
r E i F

i k
r

i o n
r

k o n k o n
GS

^ ^
, , , , , , ,

r

=k S E P CP CPC NDF DFG W LNG; { , , , , , , }GS (3a)

Eqs. (3b)–(3q) are the linear piecewise representations of the nat-
ural gas flows through existing or potentially new pipelines. The cor-
responding non-linear formulation can be found in [4,23–28] and the
proof of (3b)–(3q) is shown in appendix A1.

= +
=

m i F· ;i o n
out

i o n
in

l

NLS

i l i l o n
P P

, , , ,
1

, , , ,
(3b)

= PGF NGF r P CP i F; { , },i o n
r

i o n
r

i o n
r r

, , , , , , (3c)

+ =
=

PGF NGF i F;i o n
P

i o n
P

l

NLS

i l o n
P P

, , , ,
1

, , ,
(3d)

PGF SBIGM i F·0 ;i o n
P P

i o n
P

, , , , (3e)

NGF SBIGM i F0 ·(1 );i o n
P P

i o n
P

, , , , (3f)

+

…
= = m i F

l NLS

·( · ); ^ ,

{1, , }
u
l

i u o n
P

n i o n
in

u
l

i u i u o n
P P

P

1 , , ,
1

, , 1 , , , ,i l,

(3g)

…
=

i F l NLS; ^ , {2, , }i l o n
u

l

i u o n
P P P

, , ,
1

1

, , ,
(3h)

…zBIGM i F l NLS· ; ^ , {2, , }i u o n
P P

i l o n
P P

, , , , , , (3i)

+

…

=
z

z

BIGM n m

BIGM i F l NLS

·(1 ) · ·

·(1 ); ^ , {2, , }

P
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Eqs. (4a)–(4h) are the linear piecewise representations of the nat-
ural gas flows through existing or potentially new compressors. The
corresponding non-linear formulation can be found in [23–26], and the
proof of (4a)–(4h) is shown in appendix A2.
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The operational limits associated with the natural gas system are
presented in (5a)–(5c). Eq. (5a) limits the unsupplied natural gas vo-
lumes per bus, (5b) constrains the production of natural gas wells and
LNG-RT and the natural gas flow through the compressors, and (5c)
limits the natural gas pressure at each bus.

UE GL k S0 ;k o n
GS

k o n
GS

, , , , (5a)

r W LNG CP i F i M_ ¯ ; { , , }, { ^ }&{ ^ }i
r

i o n
r

i
r r GNL

, , (5b)

k S_ ;k o n
GS

, , (5c)

Eqs. (5d)–(5e) ensure that a new natural gas asset (e.g. pipelines,
LNG-TR, etc.) can be utilized only after being built.

i M; ^
i o n
CP

j I

i j n
CP CP

, ,
^

, ,
CP (5d)

CAP i M0 · ; ^
i o n
LNG

j I

j
LNG

i j n
LNG GNL

, ,
^

, ,
GNL (5e)

3.5. Non-anticipativity constraints

Eq. (6) –adapted from [12]– shows the non-anticipativity con-
straints in a compact form, where n is the binary vector composed of
all investment decision variables i j n

r
, , and n is the binary vector

composed of all “granting” decision variables that are penalized in (1b),
i.e., i j n

r
, , . Note that vectors are highlighted in double script.

Nn;n
n

n
n (6)

Note that n establishes a request of network expansion at each
node Nn of the scenario tree and those requirements are granted
by the vector n at some predecessor node n n.

4. Proposed methodology

This section presents the algorithm used to determine the optimal

solution of the abovementioned problem, which is based on a Dantzig-
Wolfe, column generation method introduced in [12]. Here, we present
2 implementations of a column generation: parallel asynchronous and
synchronous. Also, we briefly introduce the serial case in order to help
the reader understand our proposal. Next, we introduce some funda-
mental definitions that serve, afterwards, to explain the algorithm im-
plementation.

4.1. Fundamental definitions

Next, we re-write the entire problem in its compact form in order to
introduce, in a more straightforward manner, the master and slave
subproblems used to determine the optimal solution.

4.2. The compact problem

For the sake of simplicity, the complete formulation of the model in
its compact form is re-written and presented in (7a)–(7c), where n is
a vector that corresponds to the investment decisions at node Nn ,

n is a vector that corresponds to the operational variables at
node Nn , andFn represents the feasible solution space formulated
in detail previously in (2a)–(5e).

N

+min
n

n n n n
, ,

T T

n n n (7a)

s.t.

Nn;n
n

n
n (7b)

F Nn{ , } ;n n n (7c)

In (7b), n is a vector that facilitates the formulation of the master-
slave subproblems below and corresponds to, as explained in [17], the
required investments to deal only with the operating conditions that
compose node Nn , ignoring other nodes of the scenario tree.

4.3. The master problem (MP)

The MP is presented in (8a)–(8e), where investment decisions are
made based on a linear convex combination (with n

p being the
weighting variables) of the extreme points { , }n

p
n
p that represents

(5c). Each p-th extreme point of Fn is obtained by running the slave
subproblems (presented next). The dual variables n and µn are ob-
tained from a fully linear, relaxed MP that ignores the integrality of
(8d)–(8e).

N P

= + LminMP

n
n n n

p
n
p

n
p

,
T T

n
p

n (8a)

[DualVariables]

s.t.

N
P

L n; [ ]
p

n
p

n
p

n
n n

n (8b)

N
P

=L µn1; [ ]
p

n
p

n
(8c)

Nn{0, 1};n (8d)

N PL n p{0, 1}; ,n
p (8e)

4.4. The slave subproblem (SSP)

The SSP per node Nn is presented in (9a)–(9b), where dual
variables n and µn (imported from the master problem), are used.
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N

µmin
n

n n n n n,
T T

n n (9a)

s.t.

F{ , }n n n (9b)

4.5. Algorithm

(1) General description

The MP and SSP previously introduced are run by using the fol-
lowing 8-step algorithm.

i. By using =µ 0n and =n n for all Nn , solve (9a)–(9b) and
determine optimal values of n and n for all Nn . Also, define

=k: 1, P = k: { }, and, for all Nn , == :n
p k

n and == :n
p k

n.
ii. By using defined n

p and n
p for all Nn and Pp , solve

(8a)–(8e), relaxing the integrality constraints associated with
(8d)–(8e). Determine the value of the dual variables for all Nn
( n and µn ), the objective function

MP , and define =:MP LP MP .
iii. If optimal solution from step ii is integer, then define

=:MP MILP MP LP and go to v. Otherwise, go to iv.
iv. By using defined n

p and n
p for all Nn and Pp , solve

(8a)–(8e) (without linear relaxation), determine the optimal value
of the objective function MP , and define =:MP MILP MP .

v. By using n and µn for all Nn from step ii, solve (9a)–(9b) and
determine optimal values of n and n for all Nn .

vi. Define =d µ:n n n n n n
T *T for all Nn and calculate

(10):

N

N

=
+

+
GAP

d
d

( )MP MILP MP LP
n n

MP LP
n n (10)

vii. If GAP is equal to or lower than a certain (very small) number, then
STOP. Otherwise, go to viii.

viii. For all Nn do: if <d 0n then: = +k k: 1, P P= k: { },
== :n

p k
n and == :n

p k
n. Go to ii.

Although the above procedure does not ensure GAP=0, in practice,
we always obtain GAP < 0.05% in our case studies.

(2) Algorithm implementations

We implement the previous algorithm in 2 different running modes:
parallel synchronous and parallel asynchronous. We also present the
serial case in order to help the reader understand our proposal. These
modes differ in the aforementioned step v (i.e. execution of SSP) as
explained next:

a. Serial (S), where (9a)–(9b) is solved for all Nn , one after the
other.

b. Parallel synchronous (PS), where execution of (9a)–(9b) is started
for all Nn . Execution of (9a)–(9b) for each node n is undertake
in parallel. We move from step v to vi, once (9a)–(9b) has been
solved for all Nn .

c. Parallel asynchronous (PAS), where execution of (9a)–(9b) is started
for all Nn . We move from step v to vi after a critical waiting
time is reached (reset every time a new set of subproblems is exe-
cuted) and (9a)–(9b) has been solved for, at least, one node n (while
solutions for other nodes remain being executed). In this case, MP
can be run by adding new columns associated with <d 0n , while
slave subproblems continue being executed. Note that there is a lag
to compute (10) since, to do so, we have to wait for solutions from
(9a)–(9b) for all Nn whose executions started at the same time.
Next, we show that, despite this lag, this asynchronous mode pre-
sents the fastest times to solve the problem.

It is important to emphasize that we selected a Dantzig–Wolfe-based
approach rather than a (nested) Benders-based decomposition approach
(or any variants), because the latter does not allow straightforward
treatment of integer variables in a multi-stage stochastic setting. In this
vein, the work in [29] that developed the stochastic dual dynamic in-
teger programming (SDDiP) concept is promising. Comparisons be-
tween our proposal and the recent work in [29] are beyond the scope of
this paper.

5. Tests and results

In this section, two test systems are used to illustrate the advantages
of the proposed stochastic framework and solution methodology. The
first system is shown in Fig. 1(a) along with its scenario tree in Fig. 2(b)
and this is used to demonstrate how the proposed integrated stochastic
approach is paramount to capture uncertainty and thus determine
flexible, first-stage adaptive investment solutions that can be

(a) (b)
Fig. 1. (a) 3-bus test system at the stage 1 (where continuous and dashed lines indicate existing and candidate infrastructure, respectively) and (b) scenario tree.
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complemented later on by further investments, when more information
become available. The second test system is shown in Fig. 2, which is
used to demonstrate the need for decomposition approaches to make
the problem scalable. Here, we show that the proposed asynchronous
approach is critical to reach solutions within a reasonable execution
time. Note that the second test system presents a compressor in the gas
network, which is (as explained earlier) represented through a piece-
wise mathematical representation. Although this representation in-
creases the number of binary variables in the problem, we demon-
strated that the proposed approach can successfully deal with that as
shown next. For both test systems, all new assets have a construction
time (lag between decision and implementation times) of one stage.

The scenario tree used for both test systems is described in Fig. (2b),
where two types of uncertainty are considered: (1) the future connec-
tion of wind generation capacity (WG) that depends on evolution of
regulatory incentives and policy, and (2) the future connection of new
demand (ND).

All results are obtained on a 64-bit personal computer with a 3.2-
GHz processor Intel(R) Core(TM) i5-4570 CPU and 8 GB of RAM. The
proposed algorithms were implemented in GAMS version 24.5.4, the
MILP sub-problems were solved by using CPLEX 12.6.2.0, and the LP
master problem was solved by using KNITRO 9.1.0.

5.1. 3-bus case study: perfect information vs. Stochastic solution

(1) Input data

The 3-bus integrated system is composed of a 3-bus power system
and a 3-bus natural gas system (see Fig. 1a). At stages 1 and 2, the
power system is composed of 3 thermal generators (1 dual-fuel unit and
2 oil units), 1 hydro generator, 3 transmission lines and 2 power de-
mands located at bus 2 (50MW) and bus 3 (700MW). Likewise, the
natural gas system is composed of 1 pipeline, 1 well and no natural gas
demand, except for that from the dual-fuel unit. At stage 3, the natural
gas system will present 2 new demands ×(20 10 m h)3 3 at buses 2 and 3
(equal in volume), and, in the power system, 50MW of additional de-
mand will be connected to bus 2. Additionally, it is probable that a new
WG of 600MWmight be connected to bus 1 and a ND of 300MWmight
be connected to bus 3, and all the possible scenarios of ND and WG are
shown in the scenario tree of Fig. 1b.

In order to supply the future demand in the electricity and natural
gas systems, various candidate assets are proposed, which are plotted in
dotted lines in Fig. 1a. The capacity and annuitized cost of each can-
didate asset is presented in Table 1.

(2) Results

To demonstrate the advantages of the proposed stochastic frame-
work, the stochastic (STC) solution is compared against the optimal
investment plan under perfect information, i.e., the optimal plan that
results when the planner has full information on future generation and
demand realizations [11]. The optimal infrastructure found for each
scenario (SC) under perfect information and the optimal infrastructure
proposed by the STC, are presented in Table 2.

Table 2 shows that under perfect information, there are decisions
that are not optimal under the stochastic approach. Conversely and
more importantly, in the true stochastic solution, there are optimal
investments that are not found in any scenario under the deterministic
approach. For example, deterministic analysis can justify investment in
pipe 1–3 of up to 190mm, while in the stochastic approach investment
in the same pipe can be only up to 115mm. Similarly, investments in
line 1–2 and generator TG1 are not determined under any scenario in
the deterministic approach; however, they are clearly part of the op-
timal stochastic solution.

Table 3 shows the benefits of the stochastic solution in terms of its
lower expected cost against the uncertain future. In effect, Table 3
shows that although the realization of a particular scenario can be faced

Fig. 2. Natural gas (left) and electricity (right) systems at the stage 1. Continuous and dashed lines indicate existing and candidate infrastructure, respectively.

Table 1
Investment Cost – 3-Bus Test System.

L DF H P LNG-RT

Typea 1 2 1 1 1 2 1 2
Capacityb 300 1000 500 10 115 190 0.15 0.3
Annuitized costc 0.013 0.044 31 2 0.09 0.15 2.66 5.33

a Indicates the size of the new investment.
b In MW for electricity infrastructure, Mm3 for LNG terminal, and mm for

pipelines (diameter).
c In $/km for electricity lines and pipelines, and in $ for generators and LNG

terminals.
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at lower costs by deterministic decisions, under uncertainty, the sto-
chastic solution features the smallest average cost. In fact, optimal plan
SC1, for example, that is optimal only if scenario SC1 occurs in the
future, can perform very poorly if scenario SC6 happens (rather than
SC1). Hence, every deterministic plan performs the best under the
scenario for which it was designed, but poorly under another scenario.
In this context, the stochastic solution performs reasonably well under
every individual scenario and presents the lowest expected cost.

5.2. Larger scale study: scalability and computational performance

(1) Input data

The second test system is composed of the IEEE 24-bus power
system coupled with a modified Belgian 21-bus natural gas system (see
Fig. 2). For the power system, it is expected that a ND of 100MW and a
new WG of 1000MW may be connected to power bus 17; the possible
scenarios of ND and WG are shown in the scenario tree depicted in
Fig. 1b.

Table 4 shows the computational performance of the monolithic,
complete formulation (CF) of the model represented by (5) [without
using decomposition methods], and the PS and PAS implementations
presented in Section 3.2. We ignored the serial case, since this proved
extremely slow. To analyze the advantages of each implementation, 9
cases were defined with increasing size (escalating the number of op-
erating conditions, i.e. combination of different demand levels, hydro
inflows and wind availabilities). In this context, case 1 considers only
one operating condition in the entire year and, evidently, corresponds
to the smallest size in terms of the number of variables and constraints.
In contrast, case 9 features 150 operating conditions in a year which
represent the combination of 5 demand levels, 3 hydro conditions and
10 wind levels.

(2) Results

Table 4 shows that solving the problem through the CF can be
significantly problematic since we could only find solutions for the firsts
3 cases. For those of increased size, only PS and PAS are capable to find
an optimal solution, where PAS features a clear advantage in terms of
execution times. Interestingly, note that the advantages of CF for ex-
tremely small-size cases are quickly lost when the problem increases its
size.

6. Conclusions

We presented an integrated electricity and gas multi-stage stochastic
mathematical program, which considers (i) long-term uncertainty as-
sociated with locations and volumes of new renewable generation and
new demands, (ii) short-term variability associated with various oper-
ating conditions from multiple levels of wind, demand and hydro in-
flows in operational timescales, and (iii) a more adequately re-
presentation of the physics of the gas network by including the natural
gas consumption from compressors through a piecewise formulation of
their non-linear equations. The complete formulation is broken down
through a Dantzig-Wolfe decomposition and a parallel asynchronous
column generation algorithm that proves efficient for a larger instance
of the planning problem.

Through our model, we discussed the importance to properly re-
cognize uncertainty, variability and the coupling between the gas and
electricity networks when planning new infrastructure in the energy
sector. Failing to do so can lead to solutions extremely exposed to
higher costs in both the short term (since the network has not been
properly designed to deal with variable resources) and long term (since
investments cannot be easily adapted to various scenarios that may
occur in the future). We argue that these types of models and the ne-
cessary algorithms to efficiently solve large instances of the presented
expansion planning problem are extremely necessary given the very
high levels of uncertainty faced by energy planners currently, the

Table 2
Optimal infrastructure for 3-Bus Test System.

SC1a SC2a SC3a SC4a SC5a SC6a STCb

Line 1–2 0 0 0 0 0 0 1@n2
1–3 0 0 1@st2 1@st2 1@st1 1@st1 1@n1
2–3 0 1@st2 0 0 0 0 1@n1

Generator TG1 0 0 0 0 0 0 1@n1
TG2 1@st1 1@st1 1@st1 1@st1 0 1@st2 1@n2
HG1 0 0 0 0 0 0 0

Pipe 1–2 0 1@st2 0 0 0 0 2@n1
1–3 2@st1 2@st1 2@st1 2@st1 1@st2 1@st2 1@n2,3

LNG-RT LNG1 2@st1 2@st1 1@st1 1@st1 0 1@st2 2@n1

a x@y indicates: element type x decided at stage y (installed one stage later).
b x@z indicates: element type x decided at scenario tree node z (installed one

stage later).

Table 3
Operational and Investment Cost for 3-Bus Test System MMUSD.

Realization of

SC1 SC2 SC3 SC4 SC5 SC6 STC

Optimal plan SC1 $ 14.2 $ 18.8 $ 9.4 $ 12.0 $ 5.0 $ 7.6 $ 11.2
SC2 $ 14.5 $ 17.5 $ 9.5 $ 11.8 $ 5.2 $ 7.5 $ 11.0
SC3 $ 14.5 $ 20.1 $ 8.6 $ 10.5 $ 4.3 $ 6.1 $ 10.7
SC4 $ 14.5 $ 20.1 $ 8.6 $ 10.5 $ 4.3 $ 6.1 $ 10.7
SC5 $ 15.1 ISa IS IS $ 2.2 $ 4.6 IS
SC6 $ 17.5 IS IS IS $ 2.5 $ 4.3 IS
STC $ 14.5 $ 17.6 $ 9.3 $ 11.0 $ 3.8 $ 5.7 $ 10.3

a IS: infeasible solution.

Table 4
IEEE 24-Bus and Belgium Natural Gas Test System.

Case Demand
levels

Hydrology
conditions

Wind
levels

Number of
operating
conditions

Number of
continuous
variables

Number of
binary
variables

Number of
constraints

Simulation time (h) Costs

CF PS PAS Total cost
(MUSD)

Investment
cost (MUSD)

Operational
cost (MUSD)

1 1 1 1 1 5135 1622 5601 0.02 0.08 0.07 18596.463 302.061 18294.402
2 1 1 2 2 9807 2782 10,745 0.07 0.11 0.09 18645.986 309.534 18336.452
3 2 2 2 8 37,839 9742 41,481 20.31 5.72 4.38 19001.165 328.779 18672.386
4 3 3 3 27 126,607 31,782 138,769 a 13.99 9.49 19713.900 329.711 19384.189
5 5 3 2 30 140,623 35,262 154,009 a 11.45 7.49 19993.769 329.091 19664.678
6 5 3 3 45 210,703 52,662 230,785 a 22.07 15.69 19846.431 329.156 19517.275
7 5 3 5 75 350,863 87,462 384,337 a 42.91 27.21 19898.514 329.156 19569.358
8 5 5 5 125 584,463 145,462 640,257 a 71.91 41.22 19898.389 329.504 19568.885
9 5 3 10 150 701,263 174,462 768,217 a 75.12 55.16 19891.603 330.021 19561.582

a More than 80 h.
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necessity to ensure that decisions need to be both robust in the short-
term (so as to deal with variable conditions) and flexible and adaptive
in the long-term (so as to take appropriate first-stage decisions that can
be optimally complemented later on, while the future unfolds), and the
evident necessity to solve these problems in practice, at least over
simplified, equivalent networks that are large enough for policy and
long-term planning studies.
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Appendix A1: A linear approximation of the natural gas compressor

Eqs. (a.1)–(a.5) represent the relationship among natural gas flow , the pressure at both ends of the compressor ( in and out) and the com-
pression ratio of a natural gas compressor . LC is the load consumption that represents the natural gas that is required for the compressor to operate.
The complete model is in [23–26].

=·in out (a.1)

=LC · 1 ·| |out

in (a.2)

1 ¯ (a.3)

_ , ¯in out (a.4)

¯ ¯ (a.5)

Let be the difference between nodal pressures, i.e., = out in. Note that delta can also be expressed as a function of the compressor
ratio, i.e., = ( 1)· in, and the upper and lower bounds of are given by 0 and ( ¯ 1)· in respectively. The first order approximation of (a.2)
is given by (a.6) where = +( )LC · ( 1) 10 0 2 , and = + +LC LC· 2·( )·( )0 0 0 .

+LC LC LC· · · in
0

0 (a.6)

Eq. (a.6) is only valid for a given direction of and . That is, it is valid if >0 and >0 that in practical terms mean that the natural gas can
only flow through the compressor from node i to node j. However, the compressor in reality can redirect the flow so that natural gas might flow from
node j to node i. In such a case, (a.6) must be adapted so that the bi-directional ability of the compressor can be adequately model.

Let us assume, without loss of generality, that natural gas flows through the compressor from node i to node j that implies that =in i and
=out j. Hence, Eqs. (a.7)–(a.10) is a linear approximation of the compressor that models the bi-directional ability where LCP and LNP denote the

load consumption for a positive direction > >( 0 and 0) and a negative direction < <( 0 and 0)respectively.
= j i (a.7)

_ , ¯i j (a.8)

( ¯ 1)· ( ¯ 1)·j i (a.9)

=

= + > >

= + < <

= =

( )
( )LC

LCP

LCN

if

if

if

· · · , ( 0)&( 0)

· · · , ( 0)&( 0)

0 , ( 0) ( 0)

LC LC
i

LC LC
j

0
0

0
0

(a.10)

Eqs. (a.11)–(a.16) replace (11) to model the compressor in optimization problems. Note that the formulation (a.11)–(a.16) incorporate multiple
hyperplanes that correspond to different linear approximation around several points for improving the linear approximation. Sigma ( ) is used to
indicate the state of the compressor (on for σ= 1 and off for σ= 0), BIGM is a scalar of large magnitude, and NLS is the number of points. Sigma ( )
is a binary decision variable.

LC BIGM0 · (a.11)

( ¯ _ )· ( ¯ _ )· (a.12)

…LCP LC z NLS; {1, , }z (a.13)

…LCN LC z NLS; {1, , }z (a.14)

+ …LCPBIGM LC LC BIGM z NLS·(1 ) · · · ·(1 ); {1, , }z
z z

z

z
i

(a.15)
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+ …LCNBIGM LC LC BIGM z NLS·(1 ) · · · ·(1 ); {1, , }z
z z

z

z
j

(a.16)

Finally, and for illustration purposes, Fig. 3(a) is the LC-Eq. (A2)- for a compressor, and Fig. 3(b) shows our proposed approximation –Eqs.
(a.7)–(a.9) and (a.11)–(a.16)– if NLS=2 and the input pressure is assumed to be constant. Fig. 3(c) shows what is often used in the academic
literature as a linear approximation for the compressor that assumes a consumption between 3% and 5% of natural gas flow through it [4,17].
Observe that our approach leads to a lower error that in fact is shown in Fig. 4. Our approach, therefore, is closer -and more realistic- to the real
operational cost that, in fact, provides more accurate results.

Appendix A2: A linear approximation of the pipeline

Eq. (b.1) shows the natural gas flow ( ) through a pipeline as a function of nodal pressure ( ) and the duct resistance (C) [4,23–28]. A standard
linear approximation is in [23,27,28] that requires a considerable number of linear segments -and binary variables- to have a low error. As a result,
computation times of using this approximation are high. Our approach, on the contrary, utilizes line segments of the different size that implies lower
approximation error, as it proves in this appendix.

=sign C( )· ·( )in out
2 2 2 2 (b.1)

Let us define an isobaric curve (IC) that is obtained from (b.1) and resulting from solving out for a constant value of in i.e.,
out= C( )in

2 2 2 0.5 = K C( )2 2 0.5 where K denotes a constant value. Fig. 5 shows various IC –continuous blue lines– where each of them is
drawn for a particular value of K. The green IC corresponds to K= ¯ .

The dotted red line in Fig. 5 is a linear piecewise approximation of an IC that is obtained as indicated by (b.2). The parameterml is the slope of an
approximation segment and l is its amplitude. Let us call the dotted black lines as “cut,” and each cut is drawn from the origin to one point of the
green curve. NLS is the number of segments or the number of cuts plus one, and it is an input parameter for the linear approximation.

= +
=

m ·out in
l

NLS

l l
1 (b.2)

Note that Eq. (b.2) can approximate any IC, as long as the l strictly meet the following conditions:
(1) The summation of l must be equal to the absolute value of the pipeline flow (Eqs. (b.3)–(b.6)).

=PF NF (b.3)

+ =
=

PF NF
l

NLS

l
1 (b.4)

Fig. 3. LC comparison between (a) real consumption, (b) our approach, and (c) academic literature assumption.

Fig. 4. Error comparison between (a) our approach and (b) academic literature assumption.
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PF SBIGM·0 (b.5)

NF SBIGM·0 (1 ) (b.6)

(2) l must be positive (Eq. (b.7)), and the upper limit of summation of the l (Eq. (b.8)) is equal to the value given by the intersection between
the approximation segments and the cuts as shown in Fig. 5. nl is the slope of the cut.

l0 ;l (b.7)

+
= =n

m l1 · · ;
k

l

k
l

in
k

l

k k
1 1 (b.8)

(3) The next segment of l is added if and only if all the previous segments are at its upper bound. This requirement implies the use of auxiliary
binary variables (denoted as zl) and continuous variables (denoted as l) as indicated by (b.9)–(b.12). Note that (B9)–(20) also define the lower
bound of the summation of the l.

>
=

l; 1l
k

l

k
1

1

(b.9)

>zBIGM l· ; 1l l (b.10)

+ >
=

z zBIGM n m BIGM l·(1 ) · · ·(1 ); 1l l l in
k

l

k k l1
1

1

(b.11)

>z zBIGM BIGM l· · ; 1l l l (b.12)

On the other hand, Eqs. (b.13)–(b.16) relate the nodal pressures at both ends of the pipeline to the pressures through it. It is assumed, without loss
of generality, that the natural gas flow from node i to j.

S SBIGM BIGM· ·(1 ) (1 )i in (b.13)

S SBIGM BIGM· ·(1 ) (1 )j out (b.14)

S SBIGM BIGM· ·j in (b.15)

S SBIGM BIGM· ·i out (b.16)

Finally, Eqs. (b.2)–(b.16) are our piecewise-linear representation of (b.1). Our model shows a lower approximation error as shown in Fig. 6.
Observe how the error is substantially reduced for low pressures and low flows when compared with the traditional approximation [23,27,28]. The
black lines are our approach and the red lines are what it is often used as the approximation. Additionally, we used fewer binary variables than
[23,27,28] as a consequence of (b.9)–(b.12). It implies lower computational time than the traditional approach. Fig. 6 uses NLS= 3 for comparison
purposes.

Fig. 5. Isobaric curves for a pipeline.
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